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A VARIATIONAL MODEL
FOR IMAGE ARTIFACT CORRECTION
BASED ON WASSERSTEIN DISTANCE
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Abstract: Uneven illumination is a recurrent problem in image processing. This
is essentially due to image acquisition sensors’ malfunction or external interference.
In this paper we propose a variational model for nonuniform illumination correction,
that incorporates a penalty term that performs the intensity distribution transfer
between two pre-defined sub-regions of the input scalar image, one uniformly il-
luminated and the other nonuniformly illuminated. This term representing the
illumination correction is a Wasserstein distance. It corresponds to the optimal
permutation minimizing the cost of rearranging the intensity distribution of the
nonuniformly illuminated sub-region into the other, the uniformly illuminated. Si-
multaneously, this variational model also carries out a regularization of the image
by means of a total variation penalty term, to reduce noise. The effectiveness of the
model is illustrated for some images.
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lumination correction.
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1. Introduction
Nonuniform illumination correction, contrast enhancement, color modifi-

cation and shadow removal are common problems in image processing. In
particular medical imagery [3] as well as remote sensing imagery [5] are fre-
quently affected by these type of problems. These are errors that are caused
by faults or lack of accuracy of the acquisition devices or by external factors,
as for example, properties of the organ under study, in the case of medi-
cal images, or, in the case of remote sensing images, atmospheric scattering
or absorption, terrain attenuation, aspect, clouds, variability of light condi-
tions, and so on. Uniform illumination is an extremely important asset to
performing correctly other tasks in image processing or image analysis, as for
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instance, image registration, image segmentation, classification, detection of
abnormalities in medical images, surveillance, etc.

Therefore illumination correction is an important area in image processing
and many methods exist in the literature to address it. Among them we refer
to histogram equalization techniques [10, 9, 12], which have some drawbacks
because they can also generate extra artifacts, and to the very popular and
effective PDEs (partial differential equations) based models and variational
techniques [2], as for instance [4, 5, 7] relying on the retinex theory [6].

In this paper, and motivated by the variational model described in [13],
as well as in [11], we propose a simple and alternative variational model
for artifact correction in scalar images, involving the Wasserstein distance
(also called the earth mover distance), which is simultaneously an inten-
sity distribution transfer model and a denoising model. More precisely, it
is formulated as a minimization problem, and includes a fidelity term, for
preserving the main global features of the image, and two penalty terms: a
total variation term representing the denoising technique, while preserving
the edges in the image [14], and a Wasserstein metric term that measures
the intensity difference between two pre-defined sub-regions of the image,
one uniformly and other nonuniformly illuminated. This latter term, relying
on the Monge-Kantorovich optimal mass transport theory [15], corrects the
badly illuminated parts in the image by changing its pixel intensity distribu-
tion in order to match a pre-defined intensity distribution, that in our model
corresponds to another pre-defined part, of the same input image, displaying
uniform illumination.

The paper is organized as follows. After this introduction, in Section 2 we
describe the model and its numerical approximation. In Section 3 we present
the tests to assess the performance of the model and the results obtained.
The paper ends with some conclusions and perspectives.

2. Variational Model
Let u : Ω → [0, 255] denote a generic discrete grayscale image with Ω a

discrete two-dimensional set of size n1 × n2 and where x ∈ Ω denotes the
coordinates of an arbitrary pixel. The real value u(x) ∈ [0, 255] is usually
referred to as the intensity of pixel x.

Let us denote by Io the original noise free image, by In the noisy input
image, and by Ir a reference image to be defined later on. We define the
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following variational model

min
u

(
θF (u, In) + αTV (u) + β(x)W (u, Ir)

)
, (1)

where F (·, ·) represents a fidelity term, given by,

F (u, In) =
1

2

∑
x∈Ω

(In(x)− u(x))2 dx, (2)

TV (·) denotes the total variation penalty term, defined by,

TV (u) =
∑
x∈Ω

(∇x1u(x)2 +∇x2u(x)2)1/2, (3)

with ∇x1 and ∇x2 are discrete versions of the vertical and horizontal deriva-
tives, respectively. In (1), we also represent by W (·, ·) the discrete Wasser-
stein distance

W (u, Ir) = min
σ∈Σ(Ω)

1

2

∑
x∈Ω

(Ir(σ(x))− u(x))2, (4)

where σ is a permutation in the set Σ(Ω) of permutations of Ω. Moreover,
still in (1), θ and α are positive parameters while β(x) represents a properly
defined spatially adaptive term.

For discrete one dimensional settings it is well known [13] that the optimal
permutation σ∗, i.e., the solution of the minimization problem (4), can be
obtained as the following composition

σ∗ = σIr ◦ σ−1
u ,

with σu and σIr the permutations that sort the pixels of u and Ir in the same
order. Using this notation, we can rewrite (4), as follows

W (u, Ir) =
1

2

∑
x∈Ω

(Ir(σ
∗(x))− u(x))2. (5)

The problem of sorting N = n1 × n2 pixels can be quickly solved in only
O(N logN) operations. However, we note that a straightforward extension
of the Wasserstein distance to three dimensional color images is a much
more costly problem with at least O(N 2.5 logN) time complexity. Recently,
in [1], the authors were able to significantly reduce this computational cost by
approximating the Wasserstein distance by the so-called Sliced Wasserstein
distance. For smoother data there is also the possibility of basing the the
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calculation of the Wasserstein distance on the Monge-Ampère equation with
linear complexity in practice [8].

To solve the minimization problem (1) we deduce the associated Euler-
Lagrange equation (first-order condition) for u, parametrize the descent di-
rection by an artificial time t ≥ 0 (by considering the image u is a function
of space and time) and use an explicit time scheme, to obtain the following
numerical implementation

un+1 − un

∆t
= θ

∑
x∈Ω

(In(x)− un(x)) + β(x)
∑
x∈Ω

(Ir(σ
∗(x))− un(x))

+ α
∑
x∈Ω

(
∇x1

( ∇x1u
n(x)

‖∇un(x)‖ε

)
+∇x2

( ∇x2u
n(x)

‖∇un(x)‖ε

))
, for n = 0, . . . , N,

(6)

where ∆t is the time step parameter and

‖∇un(x)‖ε = (ε2 +∇x1u(x)2 +∇x2u(x)2)1/2,

with ε a small positive constant added to avoid possible divisions by zero
[16]. As an initial condition we take u0 = In and at the boundary we impose
Neumann boundary conditions.

3. Numerical Experiments
In this section we present a set of experimental tests that illustrate the

behavior of the proposed variational image model (1). We consider artifacts
free images, denoted by Io, and we synthetically generate corrupted images
by adding Gaussian noise and illumination distortion to obtain In. Two ex-
amples with different levels of noise and illumination distortion are given.
In this synthetic setting, where the original image Io is available, we use a
brute-force search optimization procedure to find the optimal parameters θ
and α. In particular, we look for the parameters combination that mini-
mizes the Euclidean distance between u and Io, i.e., we solve the following
minimization problem

min
θ,α

∑
x∈Ω

(
Io(x)− u(x)

)2
,

with u the solution, for a particular combination of θ and α, obtained from
(6). In what concerns β(x), it is obtained from the synthetic mask used to
add the illumination distortion.



A VARIATIONAL MODEL BASED ON WASSERSTEIN DISTANCE 5

Figure 1. From left to right: Original image Io, intensity dis-
tortion mask Mn, and noisy image In, where the dashed blue box
represents Ir before being resized.

3.1. Example 1. For the first example we consider the original aerial image
Io displayed in Figure1 (on the left). The noisy image In, also displayed in
Figure 1 (on the right), was obtained from the image Io by adding Gaussian
noise with null mean and variance equal 0.002. Moreover, we used the image
Mn (on the middle in Figure1) to apply illumination distortion. For that the
following operation was performed

In = max(Io − γMn, 0) (7)

where γ represents the level of distortion, in this case we considered γ = 90.
Note also that Mn(x) ∈ [0, 1]. The parameter β(x) is set equal to Mn. This
choice means that more weight is given to the Wasserstein term when the
illumination distortion is bigger.

The results of the proposed method are given in Figure 2. A close analysis
of the recovered image u (image on the left) reveals that the illumination
distortion was eliminated and that the level of noise was reduced. Moreover,
a comparison with the original image Io shows that the original contrast was
preserved and that the image is not blurred, i.e., the image details have
been preserved. The zoom images in Figure 2 confirm this observation. For
better illustration we also give in Figure 3 the difference, in absolute value,
between the original image Io and the noisy image In (image on the left), and
between the original image Io and the image u obtained with the proposed
algorithm (image on the right). As can be seen the recovered image u is much
closer than In to the original image Io, a great amount of artifacts (noise and
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Figure 2. From left to right: image u obtained with the pro-
posed method and zoom image of the recovered image u, noisy
image In, and original image Io.

illumination related) were eliminated. For this example the optimal value of
the parameters was found to be θ = 0.02 and α = 0.3.

Figure 3. From left to right: image of the absolute error be-
tween the original image Io and the noisy image In and between
the original image Io and the recovered image u.

3.2. Example 2. In our second example (Mandrill image), the level of noise
was increased, we added Gaussian noise with null mean and variance equal
0.01, and the illumination distortion was also stronger, we took σ = 100 in
(7). The image Io, the image Mn, and the noisy image In are presented in
Figure 4.

The recovered image u is shown in Figure 5 and even under this more
demanding conditions we were able to obtain a good approximation of the
original image. As highlighted in the zoom images of Figure 5 much of the
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Figure 4. From left to right: Original image Io, intensity dis-
tortion mask Mn, and noisy image In, where the dashed blue box
represents Ir before being resized.

noise and illumination distortion were successfully eliminated and the details
were preserved.

Figure 5. On the left: image u obtained with the proposed
method . On the right: (top to bottom) zoom image of the
recovered image u, noisy image In, and original image Io.

The absolute difference between In and Io and between u and Io is shown in
Figure 6. The improvements obtained with the proposed variational method
are evident, most of the artifacts were significantly reduced. In this example
the optimal parameters θ = 0.05 and α = 1.2 were found. Note that when
compared with Example 1 the value α, associated with the denoising total
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Figure 6. From left to right: image of the absolute difference
between the original image Io and the noisy image In and between
the original image Io and the recovered image u.

variation term, is much larger. This is expected since in Example 2 the level
of Gaussian noise was increased.

The reference images Ir used in Example 2 and Example 3 are indicated
by a dashed blue box in the noisy images of Figure 1 and Figure 4. Observe
that these sub-images are afterwards resized to the images In dimensions.

3.3. Example 3. We observe that in these synthetic examples a good es-
timation of the parameter β(x) is easily obtained. However, this may not
be the case in real-world conditions. Having this issue in mind, we test in
the next example the robustness of the proposed method with respect to
β(x). We consider again Example 2, but now we use a rough estimation of
the parameter β(x) in our variational model. The new parameter β(x) and
the recovered image u are shown in Figure 7. As can be seen, the image u
obtained with this rough β(x) is comparable with the one obtained in Ex-
ample 2, where a more accurate estimation of β(x) was used. Nevertheless,
as highlighted in Figure 8, the results are not as precise as before.

4. Conclusion
In this work a variational image correction model was proposed and tested.

Our model allows the automatic correction of common image related arti-
facts, namely, noise and illumination imbalance. The numerical results pre-
sented illustrate the applicability and efficiency of the proposed methodology.
The correction of these type of problems is of major importance, for instance,
on medical images [3]. As future work, we plan to extend the proposed model
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Figure 7. From left to right: new rough parameter β(x), image
u obtained with rough β(x), and image u obtained in Example 2
with precise β(x).

Figure 8. From left to right: image of the absolute difference
between the original image Io and the recovered image u obtained
with rough and precise β(x), respectively.

to color images and to perform more tests in real medical and remote sens-
ing images. Another issue that should be addressed is the development of an
automatic procedure to select the parameter β(x).
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