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1. Introduction
The origins of the structure of quandle go back to the early 40’s when

M. Takasaki [15] defined the notion of a kei in order to find an algebraic struc-
ture to capture the properties of reflections in a Euclidean space. A kei is
defined as a set A equipped with a binary operation C satisfying the following
three identities for all a, b, c ∈ A :

• aC a = a;
• (aC b) C b = a;
• (aC b) C c = (aC c) C (bC c).

The notation aC b stands for the reflection of a over b.
Forty years later arose the structure of quandle, as defined by D. Joyce [12].

The aim of this structure was to construe the symmetries of a geometric object
on the object itself. In particular, quandles have interesting interactions with
knot theory where they actually provide a knot invariant. In fact, replacing the
knot group with the knot quandle, it was proved in [12] that two tame knots
with isomorphic knot quandles are equivalent up to orientation.

Definition 1.1. A quandle is a set A equipped with two binary operations C
and C−1 such that for all a, b, c ∈ A:
(Q1) aC a = a (idempotency);
Received March 27, 2017.
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(Q2) (aC b) C−1 b = a = (aC−1 b) C b (right invertibility);
(Q3) (aC b) C c = (aC c) C (bC c) (self-distributivity).

Given two quandles A and B, a function f : A→ B is a quandle homomor-
phism when it preserves the two binary operations: the equalities f(aC a′) =
f(a)Cf(a′) and f(aC−1 a′) = f(a)C−1 f(a′) hold for all a, a′ ∈ A. We denote
the category of quandles by Qnd and call a surjective quandle homomorphism
an extension.
In this article, we will be mainly interested in two classes of extensions in

Qnd: the classes of central and normal extensions. Both notions come from
categorical Galois theory and they are defined with respect to a fundamental
adjunction linking the category of quandles to its full subcategory of trivial
quandles (a quandle A is trivial when aC a′ = a and aC−1 a′ = a for all a, a′
in A).

Qnd ⊥ Qnd∗

π0

⊇

(1)

Note that the notion of central extension that we study here corresponds to
another notion (specific to the context of quandles) introduced by M. Eiser-
mann. In [9], he developed a Galois theory for what he called quandle coverings.
A quandle homomorphism f : A → B is a quandle covering if it is surjective
and f(a) = f(a′) implies c C a = c C a′ for all c ∈ A. The coincidence of the
two notions was proved in [6].
On the contrary, normal extensions do not seem to have been studied earlier

in the context of quandles. Nevertheless, they can be also described easily: a
surjective homomorphism f : A → B is a normal extension if, for all ai ∈ A,
αi ∈ {−1, 1} with 0 ≤ i ≤ n,

a0 C
α1 a1 C

α2 · · ·Cαn an = a0,

implies
a′0 C

α1 a′1 C
α2 · · ·Cαn a′n = a′0

for all a′i ∈ f−1(f(ai)).
The aim of this article is to prove that it is possible to centralize and nor-

malize any quandle extension. More formally, we shall prove that there are left
adjoints to the inclusion functors CExt(Qnd) ↪→ Ext(Qnd) and NExt(Qnd) ↪→
Ext(Qnd) where CExt(Qnd) is the category of central extensions, NExt(Qnd)
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is the category of normal extensions, and Ext(Qnd) the category of extensions
(all viewed as full subcategories of the category Qnd→ of arrows in Qnd). The
construction of a universal central (or normal) extension associated with any
surjective quandle homomorphism can be used to obtain a description of the
fundamental group of a quandle, and to relate it with cohomology and extension
theory of quandles. It is, moreover, the first step in order to get a homotopy
theory for quandles (this is material for future work).

2. On the category of quandles
We already recalled in the Introduction the notion of quandle. Here we

provide some basic examples of quandles:

Example 2.1 ([12]). (1) Any set A is a quandle with the structure defined
by

aC a′ = a = aC−1 a′

for all a, a′ ∈ A. Such quandles are called trivial quandles.
(2) Given a multiplicative group G, we can define

g C h = h−1 · g · h

and
g C−1 h = h · g · h−1

for all g, h ∈ G. The group G equipped with these operations is a
quandle called the conjugation quandle. This is, in some sense, the
key example of quandles. Indeed, as observed in [12], the Wirtinger
presentation of the knot group of a given knot only involves conjugations.
Whence the idea of replacing knot groups with knot quandles: the axioms
defining a quandle have been obtained from those satisfied by the group
conjugation. As we recalled in the Introduction, the knot quandle of a
tame knot characterizes the knot up to orientation.

(3) Let n be a positive integer and define on Zn the operations

iC j = 2j − i = iC−1 j

for all i, j ∈ Zn. This defines a quandle called dihedral quandle.
(4) More generally, if G is a multiplicative group, we can define

g C h = h · g−1 · h = g C−1 h

for all g, h ∈ G. This defines a quandle called core quandle.
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(5) LetM be a module over the ring Z[t, t−1] of Laurent polynomials. Define

xC y = t(x− y) + y

and
xC−1 y = t−1(x− y) + y

for all x, y ∈ M . This defines a quandle called Alexander quandle.
These quandles can be used to compute the Alexander polynomial of a
knot.

A well-known fact about any quandle A is that the axioms (Q2) and (Q3)
imply that, for every b ∈ A, the right translation (−)ρb : A → A defined by
aρb = aC b is an automorphism.

Definition 2.2. The group Inn(A) of inner automorphisms of a quandle A is
the subgroup of Aut(A) (the group of all automorphisms of A) generated by all
right translations ρb with b ∈ A.

From a quandle A, we define a connected component to be an orbit under the
action of the group Inn(A) (for a ∈ A, we write ηA(a) for its orbit). The set of
connected components of A is denoted by π0(A) and yields a trivial quandle.
The reflection of the category of quandles into its full subcategory of trivial
quandles is precisely given by π0 : Qnd→ Qnd∗, which takes a quandle A and
send it to its set of connected components π0(A). The component of the unit
η at A is given by ηA : A→ π0(A) : a 7→ ηA(a).
We recall that a variety (in the sense of universal algebra) is a class of algebras

of signature F satisfying a set of identities of the same signature F , with
morphisms preserving the operations in F (see Birkhoff’s theorem [3]).
Like any other variety, Qnd is in particular a regular category [1]. This means

that
(1) every morphism f can be factored as f = m ◦ p where m is a monomor-

phism and p is a regular epimorphism (the coequaliser of some pair of
parallel morphisms), and such a factorization is unique up to isomor-
phisms;

(2) every pullback of a regular epimorphism along any morphism is a regular
epimorphism (we say that regular epimorphisms are pullback-stable).

We recall that in Qnd, as in any variety, a monomorphism is an injective ho-
momorphism and a regular epimorphism is a surjective homomorphism. A



HOW TO CENTRALIZE AND NORMALIZE QUANDLE EXTENSIONS 5

consequence of the above axioms is that regular epimorphisms are orthogonal
to monomorphisms, by which we mean that for every commutative diagram

A B

C D

p

u v

m

where p is a regular epimorphism andm a monomorphism, there exists a unique
morphism t : B → C such that u = t ◦ p and v = m ◦ t. In particular, this
implies that a factorization f = m ◦ p as above is unique (up to isomorphism).
We shall use this fact in Section 6.

3. Central and normal extensions
The adjunction (1) is at the heart of this paper. The reason is that it fits

in the categorical Galois theory developed by G. Janelidze [10]. In particular,
the categorical Galois theory studies central extensions and normal extensions
defined with respect to adjunctions that satisfy a certain pullback preservation
property. Such adjunctions are said to be admissible (see the beginning of
Section 4 for the definition). In order to give a hint of this theory, let us
restrict ourselves to the case of an adjunction

C ⊥ H

I

H

(2)

where C is a variety and H a subvariety of C (see [11] for a more general
approach). This basically says that the components of the unit (resp. counit)
are regular epimorphisms (resp. isomorphisms), H is an inclusion, and H is
closed under quotients (if f : A→ B is a surjective homomorphism and A is in
H, B is also in H). In particular, the adjunction is a (regular epi)-reflection.
Relatively to any adjunction (2), it is possible to define the notions of trivial

extension, central extension, and normal extension. These are all special surjec-
tive homomorphisms in the category C. A surjective homomorphism f : A→ B
will often be called an extension (of B).

Definition 3.1. An extension f : A→ B is
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• trivial when the naturality square of the adjunction

A HI(A)

B HI(B)

ηA

f HI(f)

ηB

(3)

is a pullback;
• central when there exists a surjective homomorphism p : E → B such
that p1 : E ×B A→ E in the pullback

E ×B A A

E B

p2

p1 f

p

(4)

is a trivial extension (in that case we say that f is split by p);
• normal when f1 : Eq(f)→ A in the pullback

Eq(f) A

A B

f2

f1 f

f

(5)

is a trivial extension (i.e. f is split by itself). Here Eq(f) is the kernel
congruence of A: two elements a1, a2 ∈ A are in relation w.r.t. Eq(f)
if and only if f(a1) = f(a2).

As proved in [6], for our adjunction (1), an extension f : A→ B is trivial if
and only if the following condition (T ) holds:

∀ a, a′ ∈ A, if f(a) = f(a′) and π0(a) = π0(a
′), then a = a′. (T)

As explained before, the central extensions relative to the adjunction (1)
turn out to be exactly the quandle coverings defined by M. Eisermann [9]:
f : A → B is a quandle covering if it is surjective and f(a) = f(a′) implies
cC a = cC a′ for all c ∈ A. The proof of this result can be found in [6]. It is
interesting for us to note that this proof uses the existence of a special central
extension p : Ã → A for any quandle A which is “weakly universal”, i.e. such
that every central extension of A is actually split by p (See [6, Theorem 2] and
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its proof). In particular p : Ã → A is a normal extension. We shall make use
of those special normal extensions in Section 5.
In many cases, normal extensions coincide with central extensions. A typical

example is given by the (regular epi)-reflection between the variety of groups
and its subvariety of abelian groups

Grp ⊥ Ab

ab

⊇

(6)

Here ab is the abelianization functor sending a group G to G/[G,G]. The cen-
tral extensions for this adjunction are exactly the classical central extensions:
a group homomorphism f : A→ B is central if and only if its kernel Ker(f) is
a subgroup of the centre Z(A) of A. For our adjunction (1), it is not true that
normal and central extensions coincide. In the following proposition we give
a description of the normal extensions and, via an example (see Example 3.3
below), we show that the central extensions are not always normal extensions
(of course, the converse is true: every normal extension is central).

Proposition 3.2. A surjective quandle homomorphism f : A→ B is a normal
extension if and only if the following condition (N) holds:
for all ai ∈ A (with 0 ≤ i ≤ n) and αj ∈ {−1, 1} (with 1 ≤ j ≤ n), if

a0 C
α1 a1 C

α2 · · ·Cαn an = a0,

then
a′0 C

α1 a′1 C
α2 · · ·Cαn a′n = a′0

for all a′i ∈ f−1(f(ai)).

Proof : By definition, f : A → B is a normal extension if and only if the first
projection f1 : Eq(f)→ A in the following diagram is a trivial extension.

Eq(f) A

A B

f2

f1 f

f

But f1 : Eq(f)→ A is a trivial extension if and only if Condition (T ) holds:
∀ (a0, a

′
0), (x0, x

′
0) ∈ Eq(f), if

f1(a0, a
′
0) = f1(x0, x

′
0)



8 MATHIEU DUCKERTS-ANTOINE, VALERIAN EVEN AND ANDREA MONTOLI

(i.e. a0 = x0) and
π0((a0, a

′
0)) = π0((x0, x

′
0)),

then
(a0, a

′
0) = (x0, x

′
0).

This translates to the following condition:
∀ a0, a′0, x′0 such that f(a0) = f(a′0) = f(x′0), if there exists (ai, a

′
i) ∈ Eq(f)

with 1 ≤ i ≤ n such that

(a0, a
′
0) C

α1 (a1, a
′
1) C

α2 · · ·Cαn (an, a
′
n) = (a0, x

′
0)

then (a0, a
′
0) = (a0, x

′
0), which means

(a0, a
′
0) = (a0, a

′
0) C

α1 (a1, a
′
1) C

α2 · · ·Cαn (an, a
′
n).

Clearly, condition (N) implies the previous condition, but it is also true that
the previous condition implies (N) since we can take x′0 to be

x′0 = a′0 C
α1 a′1 C

α2 · · ·Cαn a′n.

Example 3.3. Consider the involutive (C = C−1) quandle A given by

C a b c d
a a a a a
b b b d b
c c c c c
d d d b d

and the two-elements trivial quandle X = {x, y}. Now consider f : A → X
defined by f(a) = f(b) = f(d) = x and f(c) = y. It is not a normal extension
since f(a) = f(b) and a C c = a but b C c = d 6= b. To see that it satisfies
Condition (C), it suffices to observe that elements with the same image by f
act in the same way, when we compute C with them on the right or, in other
terms, when they give the same column in the composition table above.

Let us fix some notations. It is standard to write Qnd→ for the category
of arrows in Qnd. The objects of Qnd→ are the quandle homomorphisms and
the arrows of Qnd→ are the commutative squares in Qnd. More formally, if
f : A → B and g : C → D are two objects of Qnd→, a morphism from f to g
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in Qnd→ is a pair (α1 : A→ C, α0 : B → D) such that α0 ◦ f = g ◦ α1, i.e. the
square

A C

B D

α1

f g

α0

commutes.
We write Ext(Qnd) for the full subcategory of Qnd→ whose objects are the

extensions. Similarly, CExt(Qnd) (resp. NExt(Qnd)) denotes the full subcate-
gory of Qnd→ whose objects are central (resp. normal) extensions. The category
Ext(B) is the full subcategory of the comma category (Qnd ↓ B) determined
by the extensions of B (so that a morphism in Ext(B) is a commutative trian-
gle). We will write TExt(B), CExt(B) and NExt(B) for the full subcategories
of Ext(B) determined by the trivial extensions of B, central extensions of B,
and normal extensions of B, respectively.
The following inclusions are always true:

TExt(B) ⊆ NExt(B) ⊆ CExt(B) ⊆ Ext(B).

Note that the first inclusion above comes from the admissibility of the adjunc-
tion. Indeed, for admissible adjunctions, the trivial extensions are pullback-
stable [11, Proposition 4.1]. For this reason, the central and normal extensions
also enjoy pullback stability [11, Proposition 4.3].
We now make some remarks on our two main problems.
(1) To find a left adjoint to the inclusion functor CExt(Qnd) ↪→ Ext(Qnd).

We are looking here for a way to transform universally any extension into
a central extension. Due to the pullback stability of central extensions,
we can split this problem into smaller problems: for each quandle B,
find a left adjoint to the inclusion CExt(B) ↪→ Ext(B). In other words,
if f : A→ B is an extension, we are searching for a decomposition

A B

A

f

q cf

where cf is central and it is universal: if f = c′ ◦ q′ with c′ : A′ → B a
central extension of B, there must exist a unique φ : A→ A′ such that
c′ ◦ φ = cf and φ ◦ q = q′. We will give two methods of doing so, one
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of which uses a categorical approach while the other uses an algebraic
approach. It turns out that q is always a regular epimorphism, so that
our problem further reduces to finding an appropriate congruence Rc on
A.

(2) To find a left adjoint to the inclusion functor NExt(Qnd) ↪→ Ext(Qnd).
Although, in principle, the same procedure as above could be followed,
we were not able to tackle the problem in that way. Instead, we use
a general argument (the Freyd Adjoint Functor Theorem) in order to
solve the problem. Note that this method can also be used to solve the
first problem but its drawback is that it is not really constructive: we
are left with no good information on how to construct the left adjoint
we are looking for, only its existence is proved.

4. Trivializing an extension
The adjunction (2) is said to be admissible when the left adjoint functor

I : C → H preserves pullbacks of the following form, where H(f) is a surjective
homomorphism:

B ×HI(B) H(X) H(X)

B HI(B).

p2

p1 H(f)

ηB

(7)

A famous example of an admissible adjunction is the reflection (6) of the cate-
gory Grp into Ab. As explained in [11], this fact is a consequence of an important
property of the variety Grp of groups: it is a Mal’tsev variety, i.e. a variety in
which congruences over any object permute in the sense of the composition of
relations. Here we adopt the classical terminology used in universal algebra and
we call an equivalence relation R ⊆ A× A on (the underlying set of) a quan-
dle A, a congruence, if it has the property that R is also a subquandle of the
product quandle (A× A,C,C−1), so that, for any (a, b) ∈ R and (a′, b′) ∈ R,
both the elements

(a, b) C (a′, b′) = (aC a′, bC b′)

and
(a, b) C−1 (a′, b′) = (aC−1 a′, bC−1 b′)

belong to the relation R.
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Given two congruences R and S on a quandle A, their (relational) composite
S ◦R is defined as the following relation on A:

S ◦R = {(a, b) ∈ A× A | ∃ c ∈ A with (a, c) ∈ R and (c, b) ∈ S}.
For a variety C of algebras, having permutable congruences, meaning that we
have R ◦ S = S ◦ R for all congruences R and S on any object C ∈ C,
is equivalent to the fact that the corresponding theory has a ternary term
p(a, b, c) such that p(a, b, b) = a and p(a, a, b) = b (see [13]). For the variety of
groups, such a ternary term is given by p(a, b, c) = a · b−1 · c. When the variety
C is a Mal’tsev variety, the adjunction (2) is always an admissible adjunction
(see [11] for a proof of this result). An interesting aspect of the adjunction
(1) is that, although the variety Qnd of quandles is not a Mal’tsev variety, one
can still find sufficient congruences that permute, making the adjunction (1)
an admissible adjunction. These congruences were named orbit congruences
in [4], where they were introduced in a completely different context.

Definition 4.1. For any subgroup N of Inn(A), define the relation ∼N⊂ A×A
by

a ∼N b if and only if there exists n ∈ N such that an = b.

This relation is actually an equivalence relation. When moreover N is a
normal subgoup of Inn(A), ∼N becomes a congruence on A, called an orbit
congruence (see Theorem 6.1 in [4]). One can show (Lemma 2.6 in [7]) that
the orbit congruences in Qnd permute with any other reflexive relation R:
∼N ◦R = R◦ ∼N . Since the kernel congruence Eq(ηA) of the A-component
of the unit of the adjunction (1) ηA : A → π0(A) is an orbit congruence (it is
∼Inn(A)), the adjunction (1) can be shown to be admissible for Galois theory.
The proof of these facts relies on the two following results that we shall also use
later on. Note that the following Lemma is a simple modification of Lemma 1.7
in [7].

Lemma 4.2. Let
A C

B D

g

f f

g

be a pushout of surjective homomorphisms in Qnd such that

Eq(f) ◦ Eq(g) = Eq(g) ◦ Eq(f).
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Then the canonical factorization (f, g) : A→ B×D C to the pullback of f and
g is a surjective homomorphism.

Corollary 4.3. [7] For any surjective homomorphism f : A → B in Qnd the
commutative square

A π0(A)

B π0(B)

ηA

f π0(f)

ηB

(8)

where η is the unit of the adjunction (1) has the property that the canoni-
cal arrow 〈f, ηA〉 : A → B×π0(B)π0(A) to the pullback (of π0(f) and ηB) is
surjective.

Since our adjunction (1) is admissible, there exists a left adjoint to the in-
clusion functor TExt(B) ↪→ Ext(B) (see [11]). Actually, given a surjective
quandle homomorphism f : A → B, we can find a congruence Rt on A such
that t : A/Rt → B in the factorization

A B

A/Rt

f

t

is a universal trivial extension. The trivial extension t is the pullback of π0(f)
along ηB and Rt = Eq(f)∩ ∼Inn(A) is the kernel pair of the comparison mor-
phism 〈f, ηA〉 : A→ B×π0(B) π0(A) so that A→ A/Rt = A→ B×π0(B) π0(A)
(see [7]).

5. Centralizing an extension
This section is devoted to the proof of our main result, namely the construc-

tion of the centralization of a quandle extension. We first describe a general
construction by using categorical arguments, then we give a concrete and alge-
braic description of the centralization.
The first construction we consider is based on the method used by T. Ev-

eraert [8] to centralize extensions in the case of an adjunction (2) where the
variety C is a Mal’tsev variety. We will show that the same method still works
for the adjunction (1) by pointing out a weaker condition than the permutabil-
ity of all congruences.
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Lemma 5.1. Consider the following pullback

E ×B A A

E B

p2

p1 f

p

(9)

where f : A → B is a surjective quandle homomorphism and p : E → B is a
normal extension. Then

Eq(p2) ◦ (Eq(p1)∩ ∼Inn(E×BA)) = (Eq(p1)∩ ∼Inn(E×BA)) ◦ Eq(p2).

Proof : If ((e, a), (e′, a′)) ∈ Eq(p2) ◦ (Eq(p1)∩ ∼Inn(E×BA)) then there exists
(ε, α) ∈ E ×B A such that

(e, a)(Eq(p1)∩ ∼Inn(E×BA))(ε, α) Eq(p2)(e
′, a′).

Thus we have (ε, α) = (e, a′) with p(e) = f(a′) and

π0(e, a
′) = π0(e, a).

The first condition implies that p(e) = f(a′) = p(e′) while the second condition
implies the existence of elements (ei, ai) ∈ E ×B A and αi ∈ {−1, 1} with
1 ≤ i ≤ n such that

(e, a) Cα1 (e1, a1) C
α2 (e2, a2) · · ·Cαn (en, an) = (e, a′).

In particular, this shows that

p(e) = p(e′)

and
eCα1 e1 C

α2 e2 · · ·Cαn en = e.

Since p : E → B is a normal extension, Proposition 3.2 implies that

e′ Cα1 e1 C
α2 e2 · · ·Cαn en = e′.

Now we have that
(e, a) Eq(p2)(e

′, a)

and
(e′, a) Cα1 (e1, a1) C

α2 (e2, a2) · · ·Cαn (en, an) = (e′, a′)

which implies that

(e′, a)(Eq(p1)∩ ∼Inn(E×BA))(e
′, a′)
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and thus
((e, a), (e′, a′)) ∈ (Eq(p1)∩ ∼Inn(E×BA)) ◦ Eq(p2).

Note that this result does not remain true if p is not asked to be a normal
extension.

Example 5.2. Consider the involutive quandle A given by the following table
:

C a b c d
a a a a b
b b b b a
c c c c c
d d d d d

and B = {x, y} the two-elements trivial quandle. Now define a quandle ho-
momorphism f : A → B by f(a) = f(b) = f(c) = x and f(d) = y. This
quandle homomorphism has a section s : B → A (this means that f ◦ s = idB)
defined by s(x) = c and s(y) = d. Let us consider the kernel congruence
of f , which is given by the set ∆ ∪ {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)},
where ∆ is the diagonal of A, representing the reflexivity part of the relation:
∆ = {(x, x) |x ∈ A}.
If we compute the intersection Eq(p1)∩ ∼Inn(A×BA), we get

∆ ∪ {((c, a), (c, b)), ((c, b), (c, a))}.
The idea is that members of Eq(p1) share the same first element but the only
couple that acts non trivially via the operation C is (d, d) which changes the
first entry of an element (s, t) whenever s = a or b. This implies that the only
remaining elements are the elements from the diagonal and elements with “c”
in the first entry.
Now let us consider the element ((b, a), (c, b)). This element is in

(Eq(p1)∩ ∼Inn(A×BA)) ◦ Eq(p2)

since
(b, a) Eq(p2)(c, a)(Eq(p1)∩ ∼Inn(A×BA))(c, b).

But ((b, a), (c, b)) doesn’t belong to Eq(p2) ◦ (Eq(p1)∩ ∼Inn(A×BA)) since

(b, a)(Eq(p1)∩ ∼Inn(A×BA))(b, a)

is the only choice in (Eq(p1)∩ ∼Inn(A×BA)).
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This permutability property is crucial for the construction, since it allows us
to show that the image of a congruence remains a congruence.

Proposition 5.3. Let f : A→ B be a surjective quandle homomorphism and
R a congruence on A. Then f(R) is a congruence when R◦Eq(f) = Eq(f)◦R.

Proof : It is easy to see in general that the image of a congruence is still a
reflexive and symmetric relation compatible with the operations.
Suppose that R ◦ Eq(f) = Eq(f) ◦ R. We have to show that f(R) is

a transitive relation. For this, let (b1, b2) and (b2, b3) be elements of f(R),
then there exist (a1, a2) ∈ R such that f(a1) = b1 and f(a2) = b2 and
(a′2, a3) ∈ R such that f(a′2) = b2 and f(a3) = b3. In particular, we see that
(a2, a

′
2) ∈ Eq(f). It follows that (a2, a3) ∈ R ◦ Eq(f) (since a2 Eq(f)a′2Ra3)

but then (a2, a3) ∈ Eq(f) ◦ R which means that there exists z ∈ A such that
a2Rz Eq(f)a3. Remark that this implies that f(z) = f(a3) = b3 and thus, since
R is transitive, (a1, z) ∈ R, showing that (f(a1), f(z)) = (b1, b3) ∈ f(R).

Corollary 5.4. Consider the pullback (9) where f : A → B is a surjective
quandle homomorphism and p : E → B is a normal extension. Then the
relation p2(Eq(p1)∩ ∼Inn(E×BA)) is a congruence on the quandle A.

Proof : This follows directly from Lemma 5.1 and Proposition 5.3.

We are now in the position to prove our main theorem.

Theorem 5.5. The category CExt(B) of central extensions of B is a (regular
epi)-reflective subcategory of the category Ext(B).

Proof : Let f : A → B be a surjective quandle homomorphism and consider
the weakly universal central extension p : B̃ → B, whose existence has been
recalled in Section 3. Take the pullback of f along p:

B̃ ×B A A

B̃ B.

p2

p1 f

p

In order to simplify the notation, let us write

∩ = Eq(p1)∩ ∼Inn(B̃×BA)
.

The congruence ∩ is actually the congruence that trivializes p1, i.e. such that
l : (B̃×BA)/∩ → B̃ is the universal trivial extension associated with p1. Now,
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since p : B̃ → B is a normal extension, we already know from Corollary 5.4 that
p2(∩) is a congruence on the quandle A. Now consider the following diagram

∩ p2(∩)

B̃ ×B A A

(B̃ ×B A)/∩ A/p2(∩)

B̃ B.

t2t1

φ

q2q1

p2

p1

t

f

q

l

p

We first observe that since

q ◦ p2 ◦ t1 = q ◦ q1 ◦ φ
= q ◦ q2 ◦ φ
= q ◦ p2 ◦ t2

there exists a unique quandle homomorphism h : (B̃×BA)/∩ → A/p2(∩) such
that h ◦ t = q ◦ p2.
Also, since φ : ∩ → p2(∩) is a surjective quandle homomorphism and

f◦q1◦φ = f◦q2◦φ, we have a unique quandle homomorphism cf : A/p2(∩)→ B
such that cf ◦ q = f .
Now we observe that the square of surjective homomorphisms

B̃ ×B A A

(B̃ ×B A)/∩ A/p2(∩)

p2

t q

h

(10)

is a pushout since φ : ∩ → p2(∩), t : B̃ ×B A → (B̃ ×B A)/∩ and q : A →
A/P2(∩) are surjective quandle homomorphisms. By Lemma 5.1 and Lemma 4.2,
this implies that the comparison morphism 〈t, p2〉 : B̃ ×B A → (B̃ ×B A)/ ∩
×A/p2(∩)A is surjective. (p1, p2) being a jointly monomorphic pair, the pair
(t, p2) is also jointly monomorphic and 〈t, p2〉 is injective. Consequently, the
square (10) is a pullback.
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Now we have the following situation

B̃ ×B A A

(B̃ ×B A)/∩ A/p2(∩)

B̃ B

t

p2

p1

f

q

h

l cf

p

where the back square and the top square are pullbacks. Since q : A→ A/p2(∩)
is a surjective quandle homomorphism, the square

(B̃ ×B A)/∩ A/p2(∩)

B̃ B

h

l cf

p

is also a pullback [11, Proposition 2.7]. Since l is a trivial extension, this means
that cf : A/p2(∩)→ B is a central extension.
All is left to show now is the universality of the construction. For this,

consider the following factorization

A B

C

f

u c

where c : C → B is a central extension. Take the pullback of c along p

B̃ ×B C C

B̃ B

s2

s1 c

p
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where s1 : B̃ ×B C → B̃ is then a trivial extension. Since the diagram

B̃ ×B A C

B̃ B

u◦p2

p1 c

p

commutes, there is a unique quandle homomorphism β : B̃ ×B A → B̃ ×B C
such that u ◦ p2 = s2 ◦ β and s1 ◦ β = p1. By universality of the factorization
l ◦ t, there exists a unique quandle homomorphism γ : (B̃×B A)/∩ → B̃×B C
such that β = γ ◦ t and l = s1 ◦ γ. Thus s2 ◦ γ ◦ t = s2 ◦ β = u ◦ p2, and
since the square (10) is a pushout, this yields a unique quandle homomorphism
α : A/p2(∩) → C such that α ◦ h = s2 ◦ γ and α ◦ q = u. The latter equality
implies that

c ◦ α ◦ q = c ◦ u = f = cf ◦ q,
and since q is a surjective homomorphism, we have cf = c ◦ α.
Let us give now a concrete, algebraic description of the congruence needed

to produce the centralization of f , that is, a description of p2(∩). We define
explicitly a congruence Rc such that Rc ⊆ Eq(f) and show directly that the
induced extension c in

A B

A/Rc

f

qRc c

is the reflection of f in CExt(B), so that p2(∩) = Rc. Thus, this also offers
another approach to centralization. We define a relation R on A by putting

R = {(z C x, z C x′) | z, x, x′ ∈ A and f(x) = f(x′)} ⊆ A× A.
This relation is reflexive and symmetric but not transitive. Moreover, it is not
stable under the quandle operations, so it is not a congruence in general. We
construct Rc as the congruence generated by R and we denote the correspond-
ing quotient by qRc

: A→ A/Rc.
The congruence Rc is included in the kernel congruence Eq(f) of f . Indeed,

every element of R is included in the kernel congruence of f : if (zCx, zCx′) ∈
R, then

f(z C x) = f(z) C f(x) = f(z) C f(x′) = f(z C x′).
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The universal property of the quotient induces a unique quandle homomor-
phism c : A/Rc → B, which is actually a central extension: if c([a]Rc

) =
c([a′]Rc

) then in particular f(a) = f(a′); this implies that (z C a)Rc(z C a′)
and consequently [z C a]Rc

= [z C a]Rc
.

Now let us see that it is universal: given another factorization f = c′ ◦ q,
with c′ : A′ → B a central extension, we have to verify the existence of a unique
φ : A/Rc → A′ such that c′ ◦ φ = c and φ ◦ qRc

= p. Let (z C a, z C a′) ∈ R,
then f(a) = f(a′) or equivalently c′ ◦ q(a) = c′ ◦ q(a′). The homomorphism c′

being a central extension, we have that w C q(a) = w C q(a′) for all w ∈ A′.
Thus by taking w = q(z) we get q(z C a) = q(z C a′), and by the universal
property of the quotient qRc

we get the desired factorization.

6. Normalizing an extension
Now we focus our attention to the case of normal extensions. We are going

to prove the following theorem.

Theorem 6.1. The category NExt(Qnd) of normal extensions is a (regular
epi)-reflective subcategory of the category Ext(Qnd).

For this, we first prove that the inclusion functor

H1 : NExt(Qnd) ↪→ Ext(Qnd)

has a left adjoint using the Freyd Adjoint Functor Theorem (see, for example,
Theorem 9.9 in [2]):

Theorem 6.2. Given a small-complete category A with small hom-sets, a
functor G : A → X has a left adjoint if and only if it preserves all small limits
and satisfies the so-called Solution Set Condition: for each object X ∈ X there
is a set SX of objects of the comma category (X ↓ G) such that for every object
Y of (X ↓ G) there is a morphism S → Y in (X ↓ G) with S in SX .

Recall that an object of (X ↓ G) is an arrow in X of the form f : X → G(A)
for some A, and a morphism in (X ↓ G) from f : X → G(A) to f ′ : X → G(A′)
is an arrow a : A→ A′ in A such that f ′ = G(a) ◦ f .
We split the proof into several lemmas.

Lemma 6.3. The category Ext(Qnd) is small-complete.

Proof : Let us first recall that all small limits exist if small products and equal-
izers exist. First, all small products in Ext(Qnd) exist and are computed as
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in Qnd→, i.e. the product of a family (fi : Ai → Bi)i∈I of surjective quan-
dle homomorphisms is given by

∏
i∈I fi :

∏
i∈I Ai →

∏
i∈I Bi. Now, let α =

(α1, α0) : f → g and β = (β1, β0) : f → g be two parallel morphisms in
Ext(Qnd). The equalizer of (α, β) is given by ((e1, e0 ◦ m) : p → f) where
((e1, e0) : e → f) is the equaliser of (α, β) in Qnd→ and p and m come from
the regular epi-mono factorization e = m ◦ p:

E1 A C

I

E0 B D

e1

p

e

α1

β1

f g

m

e0◦m

e0

α0

β0

Lemma 6.4. NExt(Qnd) is closed under subobjects in Ext(Qnd).

Proof : A morphism (α1, α0) in Ext(Qnd)

A C

B D

α1

f g

α0

is a monomorphism if and only if α1 is an injective homomorphism. Indeed,
suppose that α1 is injective and consider the diagram:

Z A C

X B D

m1

m2

h

α1

f g

n1

n2

α0

where α1 ◦ m1 = α1 ◦ m2 and α0 ◦ n1 = α0 ◦ n2. Since α1 is injective, we
get that m1 = m2 and from the surjectivity of h we obtain that n1 = n2.
Conversely, suppose that (α1, α0) is a monomorphism in Ext(Qnd) and consider
two quandle homomorphisms m1,m2 : Z → A such that α1 ◦ m1 = α1 ◦ m2.
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Then we can consider the following commutative diagram:

Z A C

X B D

m1

m2

α1

f g

f◦m1

f◦m2

α0

Being (α1, α0) a monomorphism in Ext(Qnd), we get that m1 = m2.
We want to prove that if g is a normal extension and α1 an injective homo-

morphism, f is a normal extension, too.
Let ai, a′i be elements of A and αi be elements of Z for 0 ≤ i ≤ n such that

a0 C
α1 a1 C

α2 · · ·Cαn an = a0

and f(ai) = f(a′i). We must show that

a′0 C
α1 a′1 C

α2 · · ·Cαn a′n = a′0.

For this, it suffices to show that

α1(a
′
0) C

α1 α1(a
′
1) C

α2 · · ·Cαn α1(a
′
n) = α1(a

′
0)

since α1 is injective. But we know that

α1(a0) C
α1 α1(a1) C

α2 · · ·Cαn α1(an) = α1(a0)

and g(α1(ai)) = α0(f(ai)) = α0(f(a′i)) = g(α1(a
′
i)). The result follows by

normality of g.

Lemma 6.5. NExt(Qnd) is small-complete and H1 preserves small limits.

Proof : It is easy to show that the subcategory NExt(Qnd) is closed under
small products computed in Ext(Qnd). The fact that it is also closed under
equalizers follows from the fact that it is closed under subobjects. Consequently,
NExt(Qnd) is closed under all small-limits in Ext(Qnd) and the result follows.

Lemma 6.6. The inclusion functor H1 satisfies the Solution Set Condition.

Proof : For any quandle A, we define

QA = {canonical projection π : A→ A/R | R congruence on A}

to be the set of canonical representatives of quotients of A (there is only a set of
congruences on A). As in every variety, any surjective quandle homomorphism
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q : A→ Q is isomorphic to an element πq : A→ A/Eq(q) of QA, i.e. q = iq ◦πq
for a (unique) isomorphism iq:

A Q

A/Eq(q) Im(q)

q

πq

iq

Let f : A→ B be an object of Ext(Qnd). Consider the class of pairs

(q : A→ Q, g : Q→ B)

with q a surjective homomorphism and g a normal extension such that f = g◦q.
Since q is an epimorphism, such a g is unique, hence the existence of g can be
viewed as a property ϕ(q) of the morphism q:

ϕ(q) ≡ there exists g normal such that f = g ◦ q.
It is obvious that ϕ(q) holds if and only if ϕ(πq) holds. We define Sf to be the
set

Sf = {(π, 1B) : f → H1(g) | π is in QA}
of objects of (f ↓ H1) and Sf to be the class of objects of (f ↓ H1) of the form

(q, 1B) : f → H1(g)

where q is a surjective homomorphism (and g is normal). For any object
y = (q, 1B) : f → H1(g) of Sf , there is a morphism from the object

sy = (πq, 1B) : f → H1(g ◦ iq)
in Sf to y given by

(iq, 1B) : g ◦ iq → g.

Now let y = (α1, α0) : f → H1(g) be an object of (f ↓ H1). Consider the
commutative diagram in Qnd

A C

I B ×D C

B B B D

α1

〈f,α1〉

p

f g

g′′

m

α′
0

g′

α0

where
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• (B ×D C, g′, α′0) is a pullback of α0 and g;
• 〈f, α1〉 is the unique induced morphism such that f = g′ ◦ 〈f, α1〉 and
α1 = α′0 ◦ 〈f, α1〉;
• 〈f, α1〉 = m ◦ p is a (regular epi)-mono factorization of 〈f, α1〉;
• g′′ = g′ ◦m.

Since f is surjective, g′′ is a surjective homomorphism, too. Therefore, it is
also a subobject in Ext(Qnd) of the normal extension g′ and, consequently, a
normal extension. We define y′ to be the object of Sf

y′ = (p, 1B) : f → H1(g
′′)

and we see that there is an arrow from y′ to y, namely

(α′0 ◦m,α0) : g′′ → g.

Combining this with the previous observations, we find at least one object
s = sy′ in the set Sf and an arrow from s to y. This concludes the proof.

We have just proved that a left adjoint to H1 exists. It remains to prove that
every component of the unit of the adjunction is a regular epimorphism. This
comes from the following observations:

(1) It is easy to show that, for an object s in Sf (or Sf) and y in (f ↓ H1),
there is at most one arrow s→ y in the category (f ↓ H1).

(2) Consequently, the initial object of (f ↓ H1) (i.e. the reflection of f in
NExt(Qnd)) can be chosen in Sf . Indeed, it is direct to check that, for y
the reflection of f in NExt(Qnd), sy′ is also initial, so that sy′ ∼= y. This
means that the reflection of f in NExt(Qnd) is, up to isomorphisms, of
the form η1f = (π, 1B) : f → H1(nf) for some π in QA (we denote by
nf the normalization of f). If we write (Rn, π1, π2) for the congruence
associated with π, we find that

Rn

π1 //

π2
//

π1◦f=π2◦f
��

A

f
��

π // A/R

nf
��

B B B

is a coequalizer diagram in Ext(Qnd). This conclude the proof of The-
orem 6.1.

Note that we can prove in a very similar way that the inclusion CExt(Qnd) ↪→
Ext(Qnd) has a left adjoint. Indeed, the category CExt(Qnd) enjoy the same
closure properties as NExt(Qnd) inside Ext(Qnd).
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More generally, the same kind of proof (with some obvious modifications)
can be used to obtain the following general result:

Theorem 6.7. Let

C ⊥ H

I

⊇

be an admissible adjunction, where C is a variety and H is a subvariety of
C. Let us assume that NExt(C) (resp. CExt(C)) is closed under subobjects
and small products in Ext(C). Then NExt(C) (resp. CExt(C)) is a (regular
epi)-reflective subcategory of Ext(C).

Contrary to the case of central extensions, for normal extensions we haven’t
been able to find a concrete description of the congruence Rn whose quotient
gives the normalization of a quandle extension, since the Adjoint Functor The-
orem is not really constructive. A description of such a congruence (whose
existence is a consequence of Theorem 6.1) is an open problem.
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