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AN IMPROVED SERRE MODEL: EFFICIENT SIMULATION
AND COMPARATIVE EVALUATION
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Abstract: The so-called Serre or Green & Naghdi equations are a well-known set
of fully nonlinear and weakly dispersive equations that describe the propagation of
long surface waves in shallow water. In order to extend its range of application to
intermediate water, some modifications have been proposed in the literature. In
this work, we analyze a new Serre model with improved linear dispersion charac-
teristics. This new Serre system, herein denoted by Serreα,β, presents additional
terms of dispersive origin, thus extending its applicability to more general depth to
wavelength ratios.

A careful development of the Serreα,β model allows a straightforward and effi-
cient numerical implementation. This model is suitable for numerical integration
by a splitting strategy which requires the solution of a hyperbolic problem and a
dispersive problem. The hyperbolic part is discretized using a high order finite vol-
ume method. For the dispersive part standard finite differences are used. A set of
numerical experiments are conducted to validate the Serreα,β model and to test the
robustness of our numerical scheme. Theoretical solutions and benchmark experi-
mental data are used. Moreover, comparisons against the classical Serre equations
and against another well established Serre model with improved dispersion charac-
teristics are also made.

Keywords: Serre equations, Dispersion properties, Intermediate water, Numerical
simulation, Splitting method, Finite volume, Finite difference.

1. Introduction
Coastal areas are attractive for human settlement and have great economic

and social importance. Therefore, the preservation and monitoring of coastal
and estuarine regions is of utmost interest. The mathematical modeling of
water wave dynamics is crucial for many nearshore phenomena. For instance,
wave propagation plays an important role in erosion and sediment trans-
port [5]. The design of shoreline structures, like breakwaters and jetties,
also requires an accurate understanding of wave propagation in complex me-
dia. Due to its flexibility and low cost, in comparison with physical models,
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mathematical modeling and simulation is a convenient and valuable tool to
support engineering projects. For instance, in [14], mathematical models for
wave dynamics were used to help in the design of a new dissipation platform
to protect the fortification of S. Lourenço da Cabeça Seca. This fortification,
located at the mouth of the Tagus estuary (Lisbon, Portugal) was build in
the end of the XVI century, and is threatened by the continuous action of
waves and currents. Another example is the development of new protective
jetties for the port of Figueira da Foz, Portugal [12].

In a general setting, the propagation of water waves is governed by a subset
of the Navier-Stokes equations with the assumptions of non-compressibility,
irrotationality, and perfect fluid, commonly known as Euler equations. Due
to the inherent complexity of this system of equations, whose practical appli-
cations require efficient information processing and a large amount of data to
be stored, several simplified versions have been proposed. Three of the most
common ones are the Saint-Venant, the Boussinesq, and the Serre or Green
& Naghdi equations [4, 33, 31]. Basically, two types of effects are present
in nearshore wave dynamics: nonlinear effects and dispersive effects. The
Saint-Venant system is a nonlinear set of equations which is able to describe
the nonlinear transformation of some types of waves. This system is suitable
for real-world applications, however, due to the total absence of dispersive
properties it is not capable of describing wave shoaling and wave propagation
over long periods of analysis. In comparison, the Boussinesq system presents
better dispersion properties, but its applicability requires some restriction
about the nonlinearity. In particular, the Boussinesq equations assume small
wave amplitudes. The Serre equations, a so-called fully nonlinear and weakly
dispersive system are a set of equations that include the Saint-Venant and the
Boussinesq equations as particular cases [10]. Unlike the Boussinesq equa-
tions they are suited for strongly nonlinear wave propagation. However, like
the Boussinesq equations, they are only applicable to shallow water weakly
dispersive wave processes. Therefore, they are not accurate for some complex
problems, such as wave propagation over uneven bathymetry where highly
dispersive waves can arise as a consequence of nonlinear interactions. These
limitations make the Serre standard system not accurate enough for real
world nearshore wave dynamics.

To avoid the drawbacks of the classical Serre equations, several improve-
ments were proposed throughout the years. Also extensions to wave breaking
problems have been subject of intensive research (see [2] for a recent survey).



AN IMPROVED SERRE MODEL: SIMULATION AND COMPARATIVE EVALUATION 3

Our main goal in the present work is to extend the applicability of the Serre
equations by improving their dispersive properties. We observe that some
early studies were conducted in this direction. For instance in [38, 19], fol-
lowing the methodology of [30], the dispersion characteristics were improved
by replacing the depth-averaged velocity by a dependent variable. Other
common methodology to improve the Serre model consists in the addition
of terms of dispersive origin. Used first to improve the Boussinesq equations
[27], this approach was later adapted to the Serre model in [11]. Following
similar arguments a different Serre model with improved dispersion prop-
erties was also derived in [3]. Other related alternative models are given
in [6, 24]. Following a different concept, an improved model was recently
proposed in [8] for flat bottoms. In what concerns numerical simulation fi-
nite difference methods were, until very recently, the most usual approach
[11, 38, 19]. Lately, the combination of finite difference and finite volume
was used in [3, 6, 24] and finite element and discontinuous Galerkin methods
were proposed in [28, 18] and [16], respectively. Emphasis should be given to
the fact that these methods are mainly restricted to one dimensional prob-
lem. One exception is [24] where the method of [6] was extended to two
dimensions, but only for cartesian meshes. We refer also to [17] where a
discontinuous Galerkin method on simplicial unstructured meshes was used
to solve a new class of asymptotically equivalent Serre equations. It should
be also mentioned that due to their simpler form the Boussinesq equations
have received far more attention in the literature than the Serre equations.

The rest of the paper is organized as follows. For completeness a short
derivation of the classical Serre equations is included in the next section. In
Section 3, and following the ideas of [11], we derive our improved Serre equa-
tions, that we call Serreα,β model. This model has the same precision as the
classical Serre, up to same order of accuracy, but has improved dispersion
characteristics. Another well-know Serre model with improved dispersion
properties, herein designated as Serreθ, is also presented. The new numerical
strategy used to solve the proposed model is given in Section 4. The fol-
lowing Section 5 is dedicated to numerical experiments. Here, the numerical
scheme is tested and the Serreα,β model is validated. Numerical comparisons
against the classical and the extended Serreθ models are also given. Finally,
in Section 6, some conclusions are drawn.
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2. Classical Serre Model
In this section we briefly derive the classical Serre equations referring to

[13, 32, 7] to more details. We consider a three-dimensional fluid flow with
horizontal velocity u(x, y, z, t), transverse velocity v(x, y, z, t) and vertical
velocity w(x, y, z, t). By p(x, y, z, t) we represent the pressure in the fluid.
We assume a constant in time bathymetry b = b(x, y) and denoting by h0 the
reference depth we define the vertical height h(x, y, t) = h0+η(x, y, t)−b(x, y),
with η = η(x, y, t) the free surface elevation. Moreover, let us denote by
a the typical wave amplitude and by L the horizontal length scale. We
also introduce the parameter of frequency, σ = h0/L, and the parameter of
nonlinearity, ε = a/h0. In the following we use the dimensionless variables
x = x/L, y = y/L, and z = z/h0. In our coordinate system the axes x and
y coincide with the free surface at rest and the z axis is positive upward.

The classical Serre equations are derived from the momentum equations
assuming an incompressible, inviscid, and irrotational fluid, and neglect-
ing surface stress. The incompressibility and irrotationality assumptions are
equivalent to

ux + vy + wz = 0 (1)

and

uz = σ2wx, vz = σ2wy, vx = uy, (2)

respectively. The momentum equations are as follows,

εut + ε2(uux + vuy + wuz) = −px
εvt + ε2(uvx + vvy + wvz) = −py

εσ2wt + ε2σ2(uwx + vwy + wwz) = −pz − 1. (3)

The system of equations (1)-(3) is complemented with the boundary condi-
tions

w = σ2ubx + σ2vby, at the bottom, z = −1 + σ2b

w = ηt + εuηx + εvηy, at the free surface, z = εη

p = 0, at the free surface, z = εη.

Integrating (1)-(3) over the water depth, this three-dimensional system be-
comes two-dimensional in the variables

ū(x, y, t) =

∫ z

0

u(x, y, z, t) dz and v̄(x, y, t) =

∫ z

0

v(x, y, z, t) dz.
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Next, assuming the shallow water condition σ << 1, and expanding the
variables in terms up to O(σ2), it can be shown that the new variables ū, v̄,
and w satisfy

ht + (hū)x + (hv̄)y = 0

ūt + ūūx + v̄ūy + gηx + [(2/3)hx + (1/2)bx]P

+ (1/3)hPx + hxQ+ (1/2)hQx = 0 (4)

v̄t + ūv̄x + v̄v̄y + gηy + [(2/3)hy + (1/2)by]P

+ (1/3)hPy + hyQ+ (1/2)hQy = 0,

where g is the gravitational acceleration and

P = h(Ā2 − ūĀx − v̄Āy − Āt)

Q = wt + ūwx + v̄wy,

with w = ūbx + v̄by and Ā = ūηx + v̄ηy.
The set of equations (4) is known as Serre [33] or Green and Naghhi [21]

equations. The one-dimensional version of these equations is written as
ht + (hu)x = 0

ut + uux + gηx + Ωut − hhxuxt − h2

3 (uxxt − uxuxx + uuxxx)

−hhxuuxx + [h(ux)
2 + bxxu

2]ηx + (Ω + hbxx)uux + h
2bxxxu

2 = 0,

(5)

with

Ω(v) = (hxbx + b2
x +

h

2
bxx)v (6)

and where we have dropped, for simplicity of presentation, the bar over the
variable u. Note that (5) is a fully nonlinear set of equations, since no
assumption was made on the nonlinearity parameter ε. We observe that the
well-known Boussinesq equations [4] are obtained from (1)-(3) assuming that
O(ε) = O(σ2), or equivalently, O(ε) << 1. Therefore, the weakly nonlinear
Boussinesq equations are only suitable for waves of small relative amplitude.
In one dimension the Boussinesq equations are defined by{

ht + (hu)x = 0

ut + uux + gηx + (h0 − b)(bxuxt + 1
2bxxut −

1
3(h0 − b)uxxt) = 0.
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Let us also mention that neglecting all the terms of dispersive origin, i.e,
keeping terms only up to O(1) in σ, we obtain the Saint-Venant system [31]{

ht + (hu)x = 0

ut + uux + gηx = 0.
(7)

Multiplying the second equation of (7) by h, and using the fact that ht =
−(hu)x and ηx = hx + bx, we can rewrite (7) in the equivalent form{

ht + (hu)x = 0

(hu)t + (hu2 + 1
2gh

2)x + ghbx = 0.
(8)

3. The Improved Serreα,β Model
In this section we establish the new Serreα,β model. In a first step, we

rewrite the Serre system (5) in an equivalent but computationally more con-
venient form. This new formulation allows us to also obtain the new system
in a form suitable for numerical purposes.

Following the steps that led to (8), it can be shown that (5) admits the
equivalent representation{

ht + (hu)x = 0

(hu)t + (hu2 + 1
2gh

2)x + ghbx + hT (ut) + hQ(u) = 0,
(9)

where T and Q are defined by

T (v) = −h
2

3
vxx − hhxvx + (bxηx +

h

2
bxx)v, (10)

and

Q(v) = −h
2

3
vvxxx − hhxvvxx + (bxηx +

h

2
bxx)vvx + hηx(vx)

2

+
h2

3
vxvxx + hbxxvvx + ηxbxxv

2 +
h

2
bxxxv

2.

Note that Q presents derivatives of third order in u, what can lead to nu-
merical instabilities [3]. To overcome this issue we note that

T (vvx) = −h
2

3
vvxxx − hhxvvxx + (bxηx +

h

2
bxx)vvx − hhx(vx)2 − h2vxvxx,
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which allows the computation of Q(v) using T (vvx) by

Q(v) = T (vvx) + hhx(vx)
2 + h2vxvxx + hηx(vx)

2

+
h2

3
vxvxx + hbxxvvx + ηxbxxv

2 +
h

2
bxxxv

2,

or equivalently

Q(v) = T (vvx) + h(hx + ηx)(vx)
2 +

4h2

3
vxvxx + hbxxvvx + (ηxbxx +

h

2
bxxx)v

2.

Therefore, we can recast (9) as{
ht + (hu)x = 0

(hu)t + (hu2 + 1
2gh

2)x + ghbx + hT (ut + uux) + hQ(u) = 0,
(11)

with T given by (10) and Q redefined by

Q(v) = h(2hx + bx)(vx)
2 +

4

3
h2vxvxx + hbxxvvx + (ηxbxx +

h

2
bxxx)v

2.

Let us assume that h 6= 0. Defining T 1
h
(v) = T ( vh) and adding and subtracting

hT (gηx) to the second equation of (11), we can write the Serre system in the
following form{

ht + (hu)x = 0

(I + hT 1
h
)((hu)t + (hu2 + 1

2gh
2)x + ghbx)− hT (gηx) + hQ(u) = 0,

(12)

where I denotes the identity operator.

Remark 3.1 Note that third order derivatives are still present in (12)
through T 1

h
((hu)t). However, from the numerical point of view, this formu-

lation is more efficient because these derivatives do not need to be explicitly
calculated.

3.1. Functional splitting. Note that system (12) can be seen as an up-
date of the hyperbolic nonlinear Saint-Venant system (8) using the dispersive
terms hT 1

h
((hu)t + (hu2 + 1

2gh
2)x + ghbx)− hT (gηx) + hQ(u). This fact moti-

vates the splitting of the Serre system (12) into two coupled problems where
the hyperbolic nature of the solution of the Saint-Venant system is corrected
by a dispersive system. In order to do that, let us denote by ∆t the uniform
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time step associated with the time grid {tn, n = 0, . . . , N}, with tn = n∆t,
and let hSV (t), uSV (t) be defined by the Saint-Venant system

(hSV )t + (hSV uSV )x = 0

(hSV uSV )t + (hSV u
2
SV + 1

2gh
2
SV )x + ghSV bx = 0, t ∈ (tn, tn+1],

hSV (tn) = h(tn), uSV (tn) = u(tn),

(13)

where h(tn), u(tn) are assumed to be known. Let also hd(t), ud(t) be defined
by the initial value problem

(hd)t = 0

(I + hdT 1
hd

)((hdud)t − hdT (gηd,x) + hdQ(ud) = 0, t ∈ (tn, tn+1],

hd(tn) = hSV (tn+1), ud(tn) = uSV (tn+1).

(14)

Then, the splitting approximation to the solution h(tn+1), u(tn+1) of the Serre
system (12) is taken to be h(tn+1) ' hd(tn+1), u(tn+1) ' ud(tn+1).

To represent in a more convenient way the defined splitting solution we
introduce the following notations:

(hd(tn+1), ud(tn+1)) = Sd(hSV (tn), uSV (tn)),

(hSV (tn+1), uSV (tn+1)) = SSV (h(tn), u(tn)).

Using these notations we are able to represent the solution of the previous
functional splitting in the following equivalent form

(h(tn+1), u(tn+1)) w Sd(SSV (h(tn), u(tn)) := Sd ◦ SSV (h(tn), u(tn)).

System (14) can be replaced by a new one with improved dispersive proper-
ties. We follow the approach used in [11], in which terms of dispersive origin
were added and subtracted to the classical Serre equations. In particular, we
add and subtract to the second equation of (14) the term hdT

α,β
1
hd

((hdud)t),

with

T α,β(v) = −βh
2

3
vxx − αhhxvx + α(bxηx +

h

2
bxx)v.

Moreover, using the classical approximation, ud,t = −gηd,x, we find the prob-
lem

(hd)t = 0

(I + hdT 1
hd

+ hdT
α,β
1
hd

)((hdud)t)− hd(T − T α,β)(gηd,x) + hdQ(ud) = 0

hd(tn) = hSV (tn+1), ud(tn) = uSV (tn+1),
(15)
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for t ∈ (tn, tn+1]. The solution of (15) is now denoted by Sα,βd (hSV , uSV ). Using

the coupling Sα,βd ◦ SSV we define the proposed Serreα,β model. Moreover,
another coupling can be obtained if we replace (15) by a new problem that
can be established following the approach described in [3]. It is given by

(hd)t = 0

(I + hdθT 1
hd

)((hdud)t)− hdT (gηd,x) + hdQ(ud) = 0, t ∈ (tn, tn+1],

hd(tn) = hSV (tn+1), ud(tn) = uSV (tn+1),

with θ constant. If the solution of the previous problem is denoted by
Sθd(hSV , uSV ), then Sθd ◦ SSV defines the well-known Serreθ model.

Remark 3.2 We emphasize that the solutions Sα,βd (hSV , uSV ), Sθd(hSV , uSV )
and Sd(hSV , uSV ) are equivalent up to orderO(σ2). We note that Sd(hSV , uSV )

can be obtained from Sα,βd (hSV , uSV ) considering α = β = 0 and from
Sθd(hSV , uSV ) taking θ = 1.

In this work we employ a Strang second order splitting [34]. Before pre-
senting this new splitting we introduce some notation. By SSV (∆t)(h, u),

SSV (∆t)(hd, ud), Sd(∆t)(hSV , uSV ), Sα,βd (∆t)(hSV , uSV ), and Sθd(∆t)(hSV , uSV )

we denote the solutions SSV (h, u), SSV (hd, ud), Sd(hSV , uSV ), Sα,βd (hSV , uSV ),
and Sθd(hSV , uSV ), respectively. The Strang splitting solution at tn+1 defined,

for instance, by Sα,βd (hSV , uSV ), is then obtained from

SSV (
∆t

2
) ◦ Sα,βd (∆t) ◦ SSV (

∆t

2
)(h, u)(tn), (16)

that is, from the composition of iii with ii and i, where

i.


(hSV )t + (hSV uSV )x = 0

(hSV uSV )t + (hSV u
2
SV + 1

2gh
2
SV )x + ghSV bx = 0, t ∈ (tn, tn+1/2],

hSV (tn) = h(tn), uSV (tn) = u(tn),

with tn+1/2 = tn +
∆t

2
,

ii.


(hd)t = 0

(I + hdT 1
hd

+ hdT
α,β
1
hd

)((hdud)t)− hd(T − T α,β)(gηd,x) + hdQ(uf) = 0

hd(tn) = hSV (tn+1/2), ud(tn) = uSV (tn+1/2),
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for t ∈ (tn, tn+1], and

iii.


(hSV )t + (hSV uSV )x = 0

(hSV uSV )t + (hSV u
2
SV + 1

2gh
2
SV )x + ghSV bx = 0, t ∈ (tn+1/2, tn+1],

hSV (tn+1/2) = hd(tn+1), uSV (tn+1/2) = ud(tn+1),

The approximation to the solution h(tn+1), u(tn+1) is then h(tn+1) ' hSV (tn+1),
u(tn+1) ' uSV (tn+1). We call this last splitting the Serreα,β model. The

Strang splitting obtained by replacing Sα,βd by Sθd is called the Serreθ model,

while the one obtained by replacing Sα,βd by Sd is called the Serre model.

Remark 3.3 Some effort has been made to estimate the optimal value
of the parameters α, β, and θ associated with the extended Serre systems.
Usually, this analysis is carried out using linearized systems. Note that a
number of simplifications and assumptions are involved in this type of anal-
ysis and they are not problem independent. For further discussion on this
subject we refer to [11, 3, 25, 26].

4. A Coupled Finite Volume - Finite Difference Method
The functional splitting allows us to use in the numerical simulation meth-

ods well adapted to each subproblem. In our case, for the hyperbolic Saint-
Venant problem, we use a finite volume method in space while for the dis-
persive problems that define Sα,βd , Sθd, or Sd solutions we use a classical finite
difference method in space. The time integration will be performed using a
Runge-Kutta method. Details of the proposed numerical scheme are given
next.

4.1. Discretization of the Saint-Venant system. For clarity, let us write
again the Saint-Venant system (8), it is given by,{

(hSV )t + (hSV uSV )x = 0

(hSV uSV )t + (hSV u
2
SV + 1

2gh
2
SV )x + ghSV bx = 0, t ∈ (tn, tn+1].

(17)

Next, we briefly describe the high order finite volume method used to solve
system (17) and we refer to [22, 23] for further details.

Let us define w = h+b and q = hu. Where, for simplicity, we have dropped
the subscript SV . Using this notation and the fact that bt = 0 we can rewrite
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(17) in the equivalent form
wt + qx = 0

qt +
( q2

w − b
+
g

2
(w − b)2

)
x

= −g(w − b)bx.
(18)

Moreover, defining

U = [w, q]T , F (U, b) = (q,
q2

w − b
+
g

2
(w − b)2)T ,

and
S(U, b) = (0, −q(w − bx))T ,

we obtain the usual conservative form

Ut + F (U, b)x = S(U, b). (19)

Without loss of generality we assume that the spatial domain is [0, 1] and let
{xj = j∆x, j = 1, . . . , N, x1 = ∆x, xN = 1−∆x} be a uniform grid in this
spatial domain, where ∆x represents the uniform mesh step size. Following
the traditional finite volume approach, we integrate (19) over a finite volume
cell Ij = [xj−1/2, xj+1/2], obtaining

(Ūj)t = −
Hj+1/2 −Hj−1/2

∆x
+ S̄j, j = 1, . . . , N ; t ∈ (tn, tn+1]. (20)

In (20), Ūj represents the approximation defined by the midpoint rule of the
respective integral, i.e.,

Ūj ≈
1

∆x

∫
Ij

U(x, t) dx,

and S̄j the approximation

S̄j ≈
1

∆x

∫
Ij

S(U(x, t), b(x, t)) dx

to be defined later. To give the expression of Hj±1/2 we introduce the piece-

wise linear reconstruction Ũj defined by

Ũj(x) = Ūj + (Ux)j(x− xj), xj−1/2 < x < xj+1/2,

where (Ux)j denotes the numerical slope obtained by the generalized minmod
limiter

(Ux)j = minmod
(
δ
Ūj − Ūj−1

∆x
,
Ūj+1 − Ūj−1

2∆x
, δ
Ūj+1 − Ūj

∆x

)
,
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with δ ∈ [1, 2] and

minmod(z1, z2, . . .) =


minj{zj}, if zj > 0 ,∀j,
maxj{zj}, if zj < 0 ,∀j,
0, otherwise.

Then the central-upwind numerical fluxes are given by

Hj+1/2 =
a+
j+1/2F (U−j+1/2, bj+1/2)− a−j+1/2F (U+

j+1/2, bj+1/2)

a+
j+1/2 − a

−
j+1/2

+
a+
j+1/2a

−
j+1/2

a+
j+1/2 − a

−
j+1/2

(
U+
j+1/2 − U

−
j+1/2

)
,

where U±j+1/2 are given by Ũj(xj+1/2 + 0) and Ũj+1(xj+1/2 − 0), i.e., the right

and the left values at x = xj+1/2, respectively, and the local propagation
speeds a±j+1/2 are determined by

a+
j+1/2 = max

{
u+
j+1/2 +

√
gh+

j+1/2, u
−
j+1/2 +

√
gh−j+1/2, 0

}
,

a−j+1/2 = max
{
u+
j+1/2 −

√
gh+

j+1/2, u
−
j+1/2 −

√
gh−j+1/2, 0

}
.

Finally the source term in (20), S̄j, is given by

S̄
(2)
j = −g

(b(xj+1/2)− b(xj−1/2))(w
−
j+1/2 − b(xj+1/2) + w+

j−1/2 − b(xj−1/2))

2∆x
.

This discretization of the source term ensures that the method is well bal-
anced, meaning that it is stable for steady state solutions of system (18) as
well as their small perturbations [22]. A few remarks are now in order.

Remark 4.1 The role of the minmod limiter is to ensure the stability
of the numerical solution avoiding the creation of spurious oscillations near
steep fronts. The parameter δ controls the amount of numerical dissipation,
with larger values corresponding to a less dissipative numerical scheme, but
more prone to oscillations. The optimal value of δ is problem dependent, in
this work we used δ = 1.3. For a review on the minomd limiter and other
limiters we refer to [29, 35, 36].

Remark 4.2 This scheme can be easily modified to handle discontinuous
bottoms and also to be positivity preserving [22, 23]. This last property
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is particular important for problems where the water height is almost zero
(h ∼ 0). Since in this work we do not consider applications with almost dry
states or discontinuous bottoms, we found the proposed method adequate
and reliable enough.

Remark 4.3 This finite volume method is theoretically second order ac-
curate for sufficiently smooth solutions, but it may reduce, as usual, to a first
order method near steep fronts or discontinuities. Note that when the min-
mod limiter is equal to zero the proposed scheme reduces to the first order
upwind scheme.

System (20) is now rewritten as

Ū ′(t) = FFV,∆t(Ū(t)), t ∈ (tn, tn+1]. (21)

For the time discretization of the ordinary differential system (21) a third
order strong stability preserving (SSP) Runge-Kutta method is applied. By
employing a third order method we ensure that the second order of the
splitting approach (16) is preserved.

Explicit SSP methods like the one used here have proven to be well adapted
to solve hyperbolic problems. In particular they present better stability
properties, with no extra computational cost, when compared with other
explicit methods of equivalent order [20]. For the differential problem (21)
our SSP method can be written as follows

Ū (1) = Ūn + ∆tFFV,∆t(Ū
n),

Ū (2) =
3

4
Ūn +

1

4
Ū (1) +

1

4
∆tFFV,∆t(Ū

(1)), (22)

Ūn+1 =
1

3
Ūn +

2

3
Ū (2) +

2

3
∆tFFV,∆t(Ū

(2)),

where ∆t is the time step and where Ūn and Ūn+1 are the approximations
for Ū(tn) and Ū(tn+1), respectively.

To simplify the presentation of the discrete version of the Strang splitting
(16) we denote the previous solution computed at time level tn+1 by

Ūn+1 = SFV (∆t)(Ūn),

this leads to

(hn+1
SV , u

n+1
SV ) = SFV (∆t)(hnSV , u

n
SV ). (23)
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The Courant-Friedrichs-Lewy stability condition associated with this ex-
plicit integration method is given by

∆tn = CFL
∆x

maxj(max(an,+j+1/2, −a
n,−
j+1/2))

, (24)

with CFL less or equal to one [20]. Throughout this work we have used the
value CFL = 0.5. Note that to shorten notation we have been assuming that
the time step ∆t is uniform. However, in fact, the time step is non-uniform;
it is defined by (24) and the time grid is given tn+1 = tn + ∆tn.

4.2. Discretization of the dispersion system. Let us rewrite system (15)
in the equivalent form{

(hd)t = 0

(I + T + T α,β)(ud)t = g(T − T α,β)ηd,x −Q(ud), t ∈ (tn, tn+1].
(25)

Using the fact that (hd)t = 0, and dropping for convenience the subscript d,
system (25) reduces to the following partial differential equation,

(I + T + T α,β)ut = g(T − T α,β)ηx −Q(u), (26)

with T , T α,β, and Q given by

T (v) = −h
2

3
vxx − hhxvx + (bxηx +

h

2
bxx)v,

T α,β(v) = −βh
2

3
vxx − αhhxvx + α(bxηx +

h

2
bxx)v,

and

Q(v) = h(2hx + bx)v
2
x +

4

3
h2vxvxx + hbxxvvx + (ηxbxx +

h

2
bxxx)v

2.

The dispersive equation (26) is discretized by standard finite difference
technique. To define the scheme we introduce the grid {x̄i = i∆x, i =
0, . . . , N, x̄0 = 0, x̄N = 1}. The finite difference method is obtained by
replacing in (26) the second and third spatial derivatives by the following
second order approximations

vx(x̄i) ≈ Dcvi =
vi+1 − vi−1

2∆x
, vxx(x̄i) ≈ D2vi =

vi+1 − 2vi + vi+1

∆x2
,

vxxx(x̄i) ≈ D3vi =
−vi−2 + 2vi−1 − 2vi+1 + 2vi+2

2∆x3
,
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where vi = v(x̄i), vi±1 = v(x̄i±1), and vi±2 = v(x̄i±2).
We remark that when D2 and D3 are used near the boundary, fictitious

grid points are needed outside of the domain. We define x−2 = −2∆x,
x−1 = −∆x, at the left boundary, and xN+2 = 1+2∆x, xN+1 = 1+∆x, at the
right boundary. Assuming periodic boundary conditions, we set v−k = vN−k
and vN+k = vk, k = 1, 2. It is important to observe that the finite difference
nodes x̄i are set at the boundary of the finite volume cell Ij = [xj−1/2, xj+1/2]
and therefore do not coincide with the finite volume nodes xj. Whenever
necessary we use cubic interpolation to switch between the finite volume
and the finite difference approximation. The use of third order interpolation
ensures that no lost of accuracy occurs in this auxiliary step. In what follows
we use tilde over variables to denote interpolated values.

Using the finite difference operators Dc, D2, and D3 in T , T α,β, and Q we
get

T∆x(vi) = −(hi)
2

3
D2vi − hiDchiDcvi + (DcbiDcηi +

hi
2
D2bi)vi,

T α,β∆x (vi) = −β (hi)
2

3
D2vi − αhiDchiDcvi + α(DcbiDcηi +

hi
2
D2bi)vi,

and

Q∆x(vi) = hi(2Dchi +Dcbi)(Dcvi)
2 +

4

3
(hi)

2DcviD2vi

+ hiD2biviDcvi + (DcηiD2bi +
hi
2
D3bi)(vi)

2.

Considering the previous approximations in (26) we obtain

(I + T∆x + T α,β∆x )ū′d,i(t) = g(T∆x − T α,β∆x )Dcηi(t)−Q∆t(ūd,i(t)),

for t ∈ (tn, tn+1], i = 1, . . . , N, and with ūd,i(t) the numerical approximation
at x̄i for ud(t). This can be written as{

ū′d(t) = FFD(ūd(t)), t ∈ (tn, tn+1]

ūnd = ũ
n+1/2
SV .

(27)

For the time discretization of (27) we adopt again the SSP Runge-Kutta
method (22). After the time integration in [tn, tn+1] we get un+1

d .
The finite difference discretization of the dispersion equation (25) and the

time integration of (27) leads to hn+1
d , un+1

d being this solution represented
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by

(hn+1
d , un+1

d ) = Sα,βFD(∆t)(hnd , u
n
d). (28)

We recall that hnd = h̃
n+1/2
SV , und = ũ

n+1/2
SV , where h̃

n+1/2
SV and ũ

n+1/2
SV are deter-

mined by cubic interpolation of h
n+1/2
SV and u

n+1/2
SV , respectively. Note also

that from the first equation of (25) we get hn+1
d = hnd .

The corresponding approximation for the Serreθ model can be obtained
adapting the procedures that led to (28). This solution is represented by

(hn+1
d , un+1

d ) = SθFD(∆t)(hnd , u
n
d). (29)

4.3. Fully discrete Strang splitting method. The numerical approxi-
mation for the Serreα,β solution defined by (16) at time level tn+1 is then
obtained coupling the finite volume solution (23) with the finite difference
approximation (28) by the following Strang splitting method

i.

{
(h

n+1/2
SV , u

n+1/2
SV ) = SFV (hnSV , u

n
SV )

hnSV = hn, unSV = un,
ii.

{
(hn+1

d , un+1
d ) = Sα,βFD(hnd , u

n
d)

hnd = h̃
n+1/2
SV , und = ũ

n+1/2
SV ,

iii.

{
(hn+1

SV , u
n+1
SV ) = SFV (h

n+1/2
sv , u

n+1/2
SV )

h
n+1/2
SV = h̃n+1

d , u
n+1/2
SV = ũn+1

d .

The Strang splitting method that leads to an approximation for Serreθ is
defined analogously replacing the second step ii by{

(hn+1
d , un+1

d ) = SθFD(hnd , u
n
d)

hnd = h̃
n+1/2
SV , und = ũ

n+1/2
SV .

5. Numerical Experiments
In this section we present some numerical results that intent to show the

performance of our numerical approach as well as to validate the proposed
Serreα,β model. For that we consider three examples, namely:

1. A solitary wave traveling over a flat plane with a known analytic
solution;

2. A solitary wave traveling up a slope and reflection on a vertical wall
with available experimental data;

3. A periodic wave traveling over an irregular underwater bar with avail-
able experimental data.
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The first theoretical example aims to test the stability and convergence prop-
erties of our numerical scheme. In the next two examples we use experimental
data available in the literature. Our intention is not only to illustrate the
behavior of our splitting scheme using real laboratory data but also to make
a comparison between the classical Serre model, the extended Serreθ model,
and the proposed extended Serreα,β model.

5.1. Example 1: Solitary wave over a flat plane. We are not aware
of any theoretical solution for the extended Serreα,β system. However, for
the classical Serre system (12), which is obtained setting α = β = 0 in
system (15), some analytical solutions have been derived. Considering flat
bathymetry b = 0, one of such solutions is expressed in a form of the solitary
wave

h(x, t) = h0 + a(sech(K(x− Ct− x0)))
2, u = C(1− h0

h
),

where h0 is the water depth at rest, x0 is the initial position of the wave
crest, a is the wave amplitude, and C and K are constants defined by C =
c0

√
1 + a/h0 and K =

√
3a/(4h2

0(h0 + a)), with c0 =
√
gh0.

For our experiment we set the spatial domain [0, 250] (m) and the param-
eters x0 = 25 (m), h0 = 1 (m), and a/h0 = 0.6. The spatial mesh step
size used in the simulation was ∆x = 0.05 (m). In what concerns boundary
conditions, periodic ones were used. In Figure 1 and Figure 2 we present
the numerical solution at time t = 50 (s) of the free surface elevation η and
of the velocity u, respectively. The theoretical solution at the same time as
well as the initial condition are also displayed. It is observed that the wave
amplitude and speed are correctly reproduced by the proposed numerical
method and no numerical instability is visible. More rigorously, at t = 50 (s)
the root-mean square error (RMSE) for η and u is equal to 0.00017 (m) and
to 0.00044 (m/s), respectively. The RMSE is given by

RMSE =
( 1

N

N∑
i=1

(vni − v(xi, tn))
2
)1/2

,

where vni represents the numerical approximation at the mesh point xi and
time tn of the exact solution v(xi, tn).

To further highlight the robustness and accuracy of our splitting method
we also compare our results with the results presented in [11] where a cum-
bersome finite difference method was used to solve the Serre system in the



18 J. S. A. DO CARMO, J.A. FERREIRA, L. PINTO AND G. ROMANAZZI

0 50 100 150 200 250

1

1.1

1.2

1.3

1.4

1.5

1.6

x (m)

fr
ee

su
rf
a
ce

el
ev
a
ti
o
n
(m

)
t = 50 (s)t = 0 (s)

Figure 1. Numerical solution of free surface elevation η at time
t = 50 (s) (red dash line) and analytical solution at time t = 0
(s) and time t = 50 (s) (black solid line).

compact form (5). For instance, in what concerns the RMSE of η, the value
reported in [11] was 0.0007 (m), this is more than four times higher than
our value, 0.00017 (m). Note that the value ∆x = 0.05 (m) was used in
both cases. In the next experiment we estimate the convergence rate of the
numerical method with respect to the L∞-norm. For that we fix T = 5 (s)
and vary the size of the spatial mesh step size ∆x. We denote by

Eη
k = max

i=1,...,N
|ηni − η(xi, tn)|, k = 1, . . . , 4,

the error of the free surface elevation at the mesh ∆xk = 0.4, 0.2, 0.1, 0.05.
To calculate the numerical order of convergence we use the expression

rate = log2

Eη
k

Eη
k+1

.

The results given in Table 1 confirm the expected second order convergence
rate. Here, we use the notation Eu

k to denote the error for the velocity u.

5.2. Example 2: Solitary wave traveling up a slope with reflection
on a vertical wall. For our second example we consider the already classical
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Figure 2. Numerical solution of velocity u at time t = 50 (s)
(red dash line) and analytical solution at time t = 0 (s) and time
t = 50 (s) (black solid line).

∆xk Eη
k rate Eu

k rate

0.4 0.165 - 0.315 -
0.2 0.0434 1.927 0.0860 1.873
0.1 0.0110 1.980 0.0235 1.872
0.05 0.00265 2.053 0.00587 2.000

Table 1. Numerical estimation of the convergence rate.

experiment reported in [15, 37]. The goal of such experiment was to study
the behavior of a wave traveling up a slope with reflection on a vertical wall.
We take the bathymetry profile shown in Figure 3 and consider a solitary
wave initially centered at x = 25 (m) and with an amplitude of a = 0.12
(m). The wave propagates from left to right with velocity u obtained from
the equation given in previous Example 1. As depicted in Figure 3 the
wave climbs a slope before being reflected by an impermeable wall. The
slope starts at x = 55 (m) and ends at x = 75 (m) precisely were the
wall is located. The water depth at rest is 0.70 (m). In this simulation we
consider fully reflecting boundary conditions [3] at the right boundary, which
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Figure 3. Bottom topography associated with Example 2.

corresponds to the impermeable wall. To avoid wave reflections from the left
boundary we extend the computational domain. The spatial step size is set
to ∆x = 0.05 (m). This value was empirically chosen based on the accuracy
of the results. The experimental data available corresponds to the evolution
over time of the free surface elevation η at the point x = 72.75 (m).

5 10 15 20 25 30
−0.05

0

0.05

0.1

0.15

0.2

t (s)

fr
ee

su
rf
a
ce

el
ev
a
ti
o
n
(m

)

Figure 4. Time evolution of free surface elevation η at x =
72.75(m); numerical solution with the Serre model (red line) and
experimental data (black line).

In the following we compare the experimental data with numerical results
obtained with our improved Serreα,β model. First we consider α = β = 0,
which corresponds to the classical Serre system. The results for the free
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surface elevation are given in Figure 4. As can be seen a good agreement
between numerical and experimental data is observed. The phase discrepancy
is of about 0.017 (s) for the first peak and of about 0.026 (s) for the second
peak. The RMSE for the wave height at the first and the second peak is
equal to 0.0086 (m) and 0.0044 (m), respectively. Visually, these results are
similar to those obtained in [3, 28].

As already mentioned, the Serreα,β model is only relevant in intermediate
water conditions, and when dispersive effects play a key role. Therefore,
for this experiment, it is not expected that it leads to a big improvement.
Nevertheless, we used exhaustive search optimization to find the parameters
α and β that minimize the phase and height errors at the two peaks. For
α = 0.01 and β = 0.017 the phase error was 0 (s) and the height error
at the first and the second peak was equal to 0.0073 (m) and 0.0064 (m),
respectively. This is illustrated in Figure 5. On the other hand, we were not
able to significantly decrease the height error without increasing the phase
error already obtained with the Serre model.
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Figure 5. Time evolution of free surface elevation η at x =
72.75(m); numerical solution with the Serreα,β model (α = 0.01
and β = 0.017) (red line) and experimental data (black line).

We also conducted tests with the extended Serreθ model. We were able
to reduce the phase error to 0 (s) considering θ = 1.11. In this case the
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total height error at the peaks was 0.017 (m). We remark that for the same
phase error we were able to obtain an inferior height error with our model,
namely 0.015 (m) (see Table 2). Note also that for any θ value the height
error given by this model was always superior to the one already given by
the Serre model. These findings are summarized in Table 2. The results for
Serreθ are not shown since they are identical to those for Serreα,β.

Parameters Height Error (m) Phase Error (s)

α β θ 1st Peak 2nd Peak Total 1st Peak 2nd Peak Total
Serre 0 0 - 0.0086 0.0044 0.013 0.017 0.026 0.043
Serreθ - - 1.11 0.0068 0.0096 0.017 0 0 0
Serreα,β 0.01 0.017 - 0.0075 0.0064 0.015 0 0 0

Table 2. Comparison for Example 2 between the Serre and the
extended Serre models.

5.3. Example 3: Periodic wave over an underwater bar. In our last
example we consider the experiment reported in [1] (see also [9]) and whose
experimental setup is shown in Figure 6. As can be seen this setup consists
of a wave flume with 25 (m) long with an underwater bar of 11 (m) located
between the 6th and 17th (m)of the flume. In the first 6 (m), the trapezoidal
bar presents a positive slop of 1:20 followed by a 2 (m) horizontal crest and
a downstream slope of 1:10. The water height before and after the bar is

Figure 6. Bottom topography of Example 3 and location of the gauges.

equal to 0.40 (m) reducing to 0.1 (m) at the top of the bar. At the left
boundary periodic waves are generated using an hydraulically driven piston-
type wavemaker. Experimental free surface measurements were acquired
using a series of wave gauges placed through the channel. The location of
the gauges is identified in Figure 6, with numbers from 1 to 6, and the precise
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location of the gauges is 13.5, 14.5, 15.7, 17.3, 19, and 21 (m), respectively.
For our purpose the last three gauges, after the wave interaction with the
underwater bar, are particularly relevant.

According to [1] the experimental wave height was 0.02 (m), while the
period and the wavelength were 2.02 (s) and 3.73 (m), respectively. To
simulate this type of wave we set an input condition at the left boundary.
For the free surface elevation η we use the expression

η(0, t) = cos(2πft)a

where a is the wave amplitude and f is the wave frequency. For the velocity
u the following equation was used

u(0, t) =
g

2πf
tanh(

2πh0

λ
)

1

h0
η(0, t)

with λ the wavelength. At the right boundary, to avoid non physical reflec-
tions, the computational domain was extended. To discretize the domain a
mesh step size of ∆x = 0.02 (m) was used. Like in the previous example,
∆x was empirically chosen based on the fit of the experimental data. The
results of our simulation are depicted in Figure 7 for classical Serre, Figure 8
for Serreθ, and Figure 9 for Serreα,β. In each figure four plots are shown, cor-
responding to the comparison between the experimental and the numerical
data at the gauges 1, 4, 5, and 6. The results are given for the time interval
[25, 30] (s) where the wave dynamics are already stabilized. For the Serreθ
and Serreα,β models an exhaustive search optimization was done in order to
find the optimal parameters.

The analysis of Figure 7 reveals that the classical Serre system is able to
accurately describe the experimental measurements up until gauge 1, located
at 13.5 (m). However, at the wave gauges 4, 5, and 6 the discrepancy between
numerical predictions and experimental data is significant. This discrepancy
becomes more pronounced as the distance between the gauge and the un-
derwater bar increases. As shown in Figure 7 (top image on the left) the
regular incident wave shoals and steepens when going up and over the bar,
accumulating higher harmonics as the nonlinearity increases. These higher
harmonics are released on the downward slope and can be seen as highly
dispersive waves. Under these conditions the limitations of the weakly dis-
persive Serre equations become evident. In fact, a comparison with the Serreθ
(Figure 8) and Serreα,β (Figure 9) models, both having additional terms of
dispersive origin, reveals their superiority. This is clear visible at the three
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Figure 7. From left to right and top to bottom: Time evolution
of free surface elevation η at wave gauges 1, 4, 5, and 6; numerical
solution obtained with the classical Serre model (red line) and
experimental data (black line).

gauges located after the bar. Note that at gauge 1 all three models have
a similar and good performance. In what concerns the differences between
Serreθ and Serreα,β, it is observed that both models have identical results
until gauge 4 located at 17.3 (m). However, at the last two gauges, when
the higher harmonics are already fully released, the proposed Serreα,β pro-
vides a better agreement with the experimental data. We remark that the
results obtained with the Serreθ model are visually identical to those reported
in [24, 6].



AN IMPROVED SERRE MODEL: SIMULATION AND COMPARATIVE EVALUATION 25

25 26 27 28 29 30

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

t (s)

fr
ee

su
rf
ac
e
el
ev
at
io
n
(m

)

25 26 27 28 29 30

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

t (s)

fr
ee

su
rf
ac
e
el
ev
at
io
n
(m

)

25 26 27 28 29 30
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

t (s)

fr
ee

su
rf
ac
e
el
ev
at
io
n
(m

)

25 26 27 28 29 30

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

t (s)

fr
ee

su
rf
ac
e
el
ev
a
ti
on

(m
)

Figure 8. From left to right and top to bottom: Time evolution
of free surface elevation η at wave gauges 1, 4, 5, and 6; numerical
solution obtained with the Serreθ model with θ = 1.14 (red line)
and experimental data (black line).

To better illustrate our discussion we present in Figure 10 the RMSE,
for each model, at all gauges (1 to 6). The results displayed in Figure 10
confirm and highlight the superiority of the improved Serre models for highly
dispersive waves. The better performance of the proposed Serreα,β is also
clear, particularly at the last two gauges where the dispersive waves are
more significant.
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Figure 9. From left to right and top to bottom: Time evo-
lution of free surface elevation η at wave gauges 1, 4, 5 and
6; numerical solution obtained with the Serreα,β model with
(α, β) = (0.06, 0.055) (red line) and experimental data (black
line).

6. Conclusion
In this work an efficient numerical strategy for an extended Serre system

with improved dispersion properties, denoted by Serreα,β, was proposed and
tested. Our strategy relies on a splitting scheme where a high order finite vol-
ume method is used to discretize the hyperbolic part while a finite difference
method is used for the dispersive part. This efficient approach is only possi-
ble due to a formulation of the Serreα,β system in a form suitable for these
numerical methods. A series of numerical experiments prove the robustness
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Figure 10. Comparison of the RMSE at the six gauge of Exam-
ple 3; classical Serre (black line), Serreθ (blue line), and proposed
Serreα,β (red line).

and accuracy of our strategy. Moreover, using the challenging propagation
of regular waves over a submerged bar data [1], we also prove the ability of
our model to reproduce strongly dispersive waves propagation. Comparisons
with the classical Serre model, as well as with the well established Serreθ
model, illustrate the superiority of the proposed Serreα,β model.

Some directions of future research include the extension of our model to
two dimensions and the simulation of more demanding problems including
dry areas, wave breaking, and run-up processes.
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