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ABSTRACT: Composing with the inclusion Set — Cat, a graph G internal to Set
becomes a graph of discrete categories, the coinserter of which is the category freely
generated by G. Introducing a suitable definition of n-computad, we show that a
similar approach gives the n-category freely generated by an n-computad. Suitable
n-categories with relations on n-cells are presented by these (n + 1)-computads,
which allows us to prove results on presentations of thin groupoids and thin cate-
gories. So motivated, we introduce a notion of deficiency of (a presentation of) a
groupoid via computads and prove that every small connected thin groupoid has
deficiency 0. We compare the resulting notions of deficiency and presentation with
those induced by monads. In particular, we find our notion of group deficiency
to coincide with the classical one. Finally, we study presentations of 2-categories
via 3-computads, focusing on locally thin groupoidal 2-categories. Under suitable
hypotheses, we give efficient presentations of some locally thin and groupoidal 2-
categories. A fundamental tool is a 2-dimensional analogue of the association of
a “topological graph” to every graph internal to Set. Concretely, we construct a
left adjoint Frop, : 2-cmp — Top associating a 2-dimensional CW-complex to each
small 2-computad. Given a 2-computad g, the groupoid it presents is equivalent to
the fundamental groupoid of Frop, (g). Finally, we sketch the 3-dimensional version
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Introduction

The category of small categories cat is monadic over the category of small
graphs grph. The left adjoint F; : grph — cat is defined as follows: F;(G) has
the same objects of G and the morphisms between two objects are lists of
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composable arrows in GG between them. The composition of such morphisms
is defined by juxtaposition of composable lists and the identities are the
empty lists.

Recall that a small graph is a functor G : 8°? — Set in which & is the
category with two objects and two parallel morphisms between them. If we
compose GG with the inclusion Set — cat, we get a diagram G’ : P — cat.
The benefit of this perspective is that the category freely generated by G is
the coinserter of G', which is a type of (weighted) 2-colimit introduced in
[17].

In the higher dimensional context, we have as primary structures the so
called n-computads, firstly introduced for dimension 2 in [31]. There are
further developments of the theory of computads [29, 5, 19, 27, 13], including
generalizations such as in [1] and the proof of the monadicity of the category
of the strict w-categories over the category of w-computads in [20].

In this paper, we give a concise definition of the classical (strict) n-computad
such that the (strict) n-category freely generated by a computad is the coin-
serter of this computad. More precisely, we define an n-computad as a graph
of (n — 1)-categories satisfying some properties (given in Remark 8.12) and,
then, we demonstrate that the n-category freely generated by it is just the
coinserter of this graph composed with the inclusion (n — 1)-Cat — nCat,
getting in this way the free n-category functor whose induced monad is de-
noted by F,. More generally, we show that this approach works for an n-
dimensional analogue of the notion of derivation scheme introduced in [34].

Since we are talking about coinserters, we of course consider a 2-category
of n-categories. Instead of m-natural transformations, we have to consider
the n-dimensional analogues of icons introduced in [23]. We get, then, 2-
categories nCat of n-categories, n-functors and n-icons. In dimension 2, this
allows to get the bicategories freely generated by a computad as a coinserter
of the 2-category Bicat of bicategories, pseudofunctors and icons as well.

Every monad T on a category X induces a notion of presentation of algebras
given in Definition 3.1, which we refer as J-presentation. If, furthermore, X
has a strong notion of measure p of objects, we also get a (possibly naive)
notion of deficiency (of a presentation) of a T-algebra induced by u (given in
Remark 6.16). In the case of algebras over Set (together with cardinality of
sets) given in 6.1, we get the classical notions of deficiency of a (presentation
of a) finitely presented group, deficiency of a (presentation of a) finitely
presented monoid and dimension of a finitely presented vector space.



FREELY GENERATED n-CATEGORIES, COINSERTERS AND PRESENTATIONS 3

Higher computads also give notions of presentations of higher categories.
More precisely, using the description of n-computads of this paper, the co-
equalizer of an n-computad g : & — (n — 1)-Cat, denoted by P(,_1)(g), is
what we call the (n — 1)-category presented by this n-computad in which
the n-cells of the computad correspond to “relations of the presentation”. In
this context, an n-computad gives a presentation of an (n — 1)-category with
only equations between (n — 1)-cells.

We show that every presentation of (n — 1)-categories via n-computads
are indeed particular cases of J,-presentations. Moreover, on one hand, the
notion of F-presentation of a monoid does not coincide with the (classical)
notion of Fy-presentation, since there are F;-presentations that are not Fo-
presentations of a monoid. On the other hand, the notion of presentation of
a monoid via computads does coincide with the classical one.

We present, then, the topological aspects of this theory. In order to do
so, we construct two particular adjunctions. Firstly, we give the construc-
tion in Remark 5.1 of the left adjoint functor Ftep, : Grph — Top which
gives the “topological graph” associated to each graph &°° — Set via a
topological enriched version of the coinserter. Secondly, we show how the
usual concatenation of continuous paths in a topological space gives rise to
a monad functor/morphism F, — F1op, between the free category monad
and the monad induced by the left adjoint F1op,. Finally, using this monad
morphism, we construct a left adjoint functor Frop, : 2-cmp — Top.

The adjunction F1op, - Crop, gives a way of describing the fundamental
groupoid of a topological space: Crop,(X) presents the fundamental groupoid
of X. More precisely, it is clear that P;Crop,(X) = II(X) which we adopt
as the definition of the fundamental groupoid of a topological space X in
Section 5.

Denoting by £ : cat — gr the functor left adjoint to the inclusion of
the category of small groupoids into the category of small categories, we
show that the fundamental groupoid of a graph is equivalent to the groupoid
freely generated by this graph, proving that there is a natural transformation
which is objectwise an equivalence between £1F; and IFep, = P1Crop, Frop, -
We also show that, given a small 2-computad g, there is an equivalence
P1FTop, (9) =~ £1P1(g), which means that there is an equivalence between the
fundamental groupoid of the CW-complex/topological space associated to a
small 2-computad g and the groupoid presented by g.




4 FERNANDO LUCATELLI NUNES

In the context of presentation of groups via computads, the left adjoint
functor Frop, formalizes the usual association of each classical (H—)pre—
sentation of a group G with a 2-dimensional CW-complex X such that
T (X) ~ (5.

We study freely generated categories and presentations of categories via
computads, focusing on the study of thin groupoids and thin categories. By
elementary results on Euler characteristic of CW-complexes, the results on
F1op, described above imply in Theorem 6.7 which, together with Theorem
6.13, motivate the definition of deficiency of a groupoid (w.r.t. presentations
via groupoidal computads). We compare this notion of deficiency with the
previously presented ones: for instance, in Remark 6.16, we compare with
the notion of deficiency induced by the free groupoid monad £,F; together
with the “measure” Euler characteristic, while in Propostion 6.11 we show
that the classical concept of deficiency of groups coincides with the concept
of deficiency of the suspension of a group w.r.t. presentations via computads.

By Theorem 6.13 and Theorem 6.7, the deficiency of thin “finitely gener-
ated” groupoids are 0, what generalizes the elementary fact that the trivial
group has deficiency 0. Moreover, this implies that Theorem 6.13 gives ef-
ficient presentations, meaning that it has the least number of 2-cells (equa-
tions) of the finitely presented thin groupoids.

We lift some of these results to presentations of thin categories and give
some further aspects of presentations of thin categories as well. Finally, sup-
ported by these results and the characterization of thin categories that are
free F -algebras, we give comments towards the deficiency of a thin finitely
presented category, considering a naive generalization of the concept of defi-
ciency of groupoid introduced previously.

The final topic of this paper is the study of presentations of locally thin
2-categories via 3-computads. Similarly to the 1-dimensional case, we firstly
describe aspects of freely generated 2-categories, including straightforward
sufficient conditions to conclude that a given (locally thin) 2-category is not
a free Fp-algebra. We conclude that there are interesting locally thin 2-
categories that are not free, what gives a motivation to study presentations
of locally thin 2-categories. In order to study such locally thin 2-categories,
we study presentations of some special locally thin (2,0)-categories which
are, herein, 2-categories with only invertible cells. With suitable conditions,
we can lift such presentations to presentations of locally thin and groupoidal
2-categories.
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We also give a sketch of the construction of a left adjoint functor Frp, :
3-cmp — Top which allows us to give a result (Corollary 10.16) towards a
3-dimensional version of Theorem 6.7. This result shows that the presen-
tations of (2, 0)-categories given previously have the least number of 3-cells
(equations): they are efficient presentations.

In [24, 25, 26], we introduce 2-dimensional versions of bicategorical re-
placements of the category A’3 of the ordinals 0, 1, 3 and order-preserving
functions between them without nontrivial morphisms 3 — n. We apply our
theory to give an efficient presentation of the bicategorical replacement of the
category A and study the presentation of the locally groupoidal 2-category
A, introduced in [25].

This work was realized in the course of my PhD studies at University of
Coimbra. I wish to thank my supervisor Maria Manuel Clementino for giving
me useful pieces of advice, feedback and insightful lessons.

1. Preliminaries

The most important hypothesis is that Cat, CAT are cartesian closed cate-
gories of categories such that Cat is an internal category of CAT. So, herein, a
category X means an object of CAT. Moreover, if X, Y are objects of Cat, we
denote by Cat[X, Y] its internal hom and by Cat(X,Y") the discrete category
of functors between X and Y. We also assume that the category of sets Set
is an object of Cat. The category of small categories is cat := int(Set), that
is to say, cat is the category of internal categories of the category of sets.

If V' is a symmetric monoidal closed category, we denote by V-Cat the cat-
egory of V-enriched categories. We refer the reader to [16, 9, 3] for enriched
categories and weighted limats. It is important to ratify that herein the col-
lection of objects of a V-category X of V-Cat is a discrete category in Cat,
while V-cat denotes the category of small V-categories.

Inductively, we define the category n-Cat by (n + 1)-Cat := (n-Cat)-Cat
and 1-Cat := Cat. Therefore there are full inclusions (n+1)-Cat — int(n-Cat)
and n-Cat is cartesian closed, being an (n+ 1)-category which is not an object
of (n + 1)-Cat. In particular, Cat is a 2-category which is not an object of
2-Cat.

We deal mainly with weighted limits in the Cat-enriched context, the so
called 2-categorical limits. The basic references are [31, 17]. Let W: & —
Cat, W : &°°? — Cat and D : & — 2 be 2-functors with a small domain. If it
exists, we denote the weighted limit of D with weight W by {W, D}. Dually,
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we denote by W' sk D the weighted colimit provided that it exists. Recall
that, by definition, there is a 2-natural isomorphism (in X)

AW % D, X) =[G, Cat] (W, A(D—, X)) = {W,A(D—, X)}

in which [G°P, Cat]| denotes the 2-category of 2-functors & — Cat, 2-natural
transformations and modifications.

In the last section, we apply 2-monad theory to construct 2-categories nCat
for each natural number n. We refer the reader to [4] for the basics of 2-
monad theory. The category nCat is one of the possible higher dimensional
analogues of the 2-category of 2-categories, 2-functors and icons introduced
in [23].

The category Ais the category of finite ordinals, denoted by 0,1,2,....n,...,
and order-preserving functions between them. We denote by A the full sub-
category of nonempty ordinals. There are full inclusions A - A — cat —
Cat. Often, we use n also to denote its image by these inclusions. Thereby
the category n is the category

0—>1—-—>n—1

For each n of A, the n-truncated category of A, denoted by A, is the full
subcategory of A with only 0,1,...,n as objects. The truncated category
A, is analogously defined. For instance, the category A, is generated by the
faces d°, d' and by the degeneracy s° as follows:

dl
1 ~—50

- >

dO

2

in which, after composing with the inclusions Ay — A — Cat, d° and d!
are respectively the inclusions of the codomain and the domain of morphism
0 — 1 of 2.

Moreover, the category & is, herein, the subcategory of A, without the
degeneracy 2 — 1 and with all the faces 1 — 2 of A, as it is shown below.
Again, considering & as a subcategory of Cat, d' is the inclusion of the
domain and d" is the inclusion of the codomain.

dl
1—=2
dO
We denote by J : & — Cat the inclusion given by the composition of the
inclusions & — A, — Cat. The 2-functor J defines the weight of the limits
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called inserters, while J-weighted colimits are called coinserters. Also, we
have the weight U;£,J : & — Cat which gives the notions of isoinserter and
1socoinserter, defined as follows:

1—=V2

in which V2 is the category with two objects and one isomorphism between
them and U;£17(d"), U1 £1I(d}) are the inclusions of the two different objects.

Let 25 be the 2-category below with two parallel nontrivial 1-cells and only
one nontrivial 2-cell between them. We define the weight J,, by

J22:22—>C3t
s | x—=1_§ V2,

_ T —

in which the image of the 2-cell is the only possible natural isomorphism
between the inclusion of the domain and the inclusion of the codomain. The
Jo,-weighted colimits are called coinverters.

Finally, let &, be the 2-category with two parallel nontrivial 1-cells and
only two parallel nontrivial 2-cells between them. We define the weight Jg,
by

J@Q : 052 — Cat
« L +—=1 | 2,
in which the images of the 2-cells are the only possible natural transformation

between the inclusion of the domain and the inclusion of the codomain. The
Je,-weighted colimits are called coequifiers.

1.1. Thin Categories and Groupoids. A category X is a groupoid if every
morphism of X is invertible. The 2-category of groupoids of Cat is denoted
by Gr. The inclusion U; : Gr — Cat has a left 2-adjoint £;. Also, the category
of locally groupoidal 2-categories is, by definition, Gr-Cat and the previous
adjunction induces a left adjoint L5 to the inclusion U, : Gr-Cat — 2-Cat.

Definition 1.1. [Connected Category] A category X of Cat is connected if
every object of £1(X) is weakly terminal. In particular, a groupoid Y is
connected if and only if every object of Y is weakly terminal.

A category X of Cat is thin if between any two objects of X there is at
most one morphism. Again, we can consider locally thin 2-categories, which
are categories enriched over the category of thin categories of Cat. We denote
by Prd the category of thin categories. The inclusion M; : Prd — Cat has
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a left 2-adjoint M;. Again, it induces a left adjoint My to the inclusion
Prd-Cat — 2-Cat.

Remark 1.2. The 2-functors U; : Gr — Cat, M; : Prd — Cat are 2-monadic
and the 2-monads induced by them are idempotent, since Uy, M; are fully
faithful. Therefore U, M; create 2-limits.

The functor U, is left adjoint: hence, as U; is monadic, U, creates coequal-
izers and coproducts. But it does not preserve tensor with 2. Finally, Prd is
isomorphic to the 2-category of categories enriched over 2 and, hence, it is
2-cocomplete.

Proposition 1.3. Let X be an object of Gr or Cat. We have that X is a
thin category if and only if X is (isomorphic to) the coequifier of

(BPhX)g ol BT ~ X

in which Cat(®°P, X) =~ (&°Ph X)) is the discrete category of internal graphs
of X, ag = G(d°) and Bg = G(dV).

Theorem 1.4. There are categories X, Y in Cat such that £L1(X) and Y are
thin, but X and £1(Y) are not thin. In particular, L1 is not faithful.

Proof: For instance, we define Y to be the category generated by the graph

T (ezample of weak tree)

in which there is no nontrivial composition and X can be defined as

_f%

k —h—> *k g

%
satisfying the equation fh = gh. n

A category X satisfies the cancellation law if every morphism of X is a
monomorphism and an epimorphism.

Theorem 1.5. If X satisfies the cancellation law and £1(X) is a thin groupoid,
then X 1s a thin category.

Proof: The components of the unit on the categories that satisty the cancel-
lation law of the adjunction £; - U, are faithful. Thereby, if X satifies the
cancellation law and £;(X) is thin, X is thin. |

Theorem 1.6. Let X be an object of Prd or Cat. X 1is a groupoid if X is
the coinverter of

2hX)y —al = X
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in which (2hX)g is the discrete category of morphisms in X and ay = f.

Remark 1.7. As a consequence, since My preserves 2-colimits and, for each
Y in Prd, the induced functor Prd((2dM;(X))o, Y) — Prd(My(2hX ), Y) is
fully faithful, M; preserves groupoids.

2. Graphs

We start studying aspects of graphs and freely generated categories. An
internal graph of a category X is a functor G : &°° — X, while the category
of graphs internal to X, denoted by Grph(X), is the category of functors and
natural transformations CAT[&P, X].

Herein, a graph is an internal graph of discrete categories in Cat. That is
to say, a graph is a functor G : °? — Cat that factors through the inclusion
of the discrete categories SET — Cat. This defines the category of graphs
Grph := Grph(SET). Although the basic theory works for larger graphs and
computads in the setting of Section 1, the combinatorial part is of course
just suited for small graphs and computads. We define the category of small
graphs by grph := Cat[®°P, Set|, while the category of finite/countable graphs
is the full subcategory of small graphs G such that G(1) is finite/countable.

If G: &P — Catis a graph, G(1) is the discrete category/collection of
objects of G, while G(2) is the discrete category/collection of arrows (or edges)
of G. An arrow a of G is denoted by a : © — z, if G(d")(a) = z and
G(dY)(a) = z. As usual, in this case, z is called the codomain and z is called
the domain of the edge a.

We also consider the category of reflexive graphs RGrph := Cat [A5", SET]
and the category of small reflexive graphs Rgrph := Cat[A%’, Set]. If G is
a reflexive graph, the collection in the image of G(s°) is called the collec-
tion/discrete category of trivial arrows/identity arrows/identities of G.

The inclusion & — AP induces a forgetful functor R : RGrph — Grph
and the left Kan extensions along this inclusion provide a left adjoint to this
forgetful functor, denoted by €.

Lemma 2.1. The forgetful functor R : RGrph — Grph has a left adjoint €.

Remark 2.2. The terminal object of RGrph is denoted by e. It has only one
object and its trivial arrow. It should be noted that RGrph is not equivalent
to Grph, since e is also weakly initial in RGrph while the terminal graph

R(e) = () is not.



10 FERNANDO LUCATELLI NUNES

The inclusion SET — Cat has a right adjoint (—)p : Cat — SET, the
forgetful functor. The comonad induced by this adjunction is also denoted
by (—)o. On one hand, we define €; : Cat — Grph by C;(X) := Cat(J—, X) =
(Cat[J—, X])o. On the other hand, if G : °? — Cat is any 2-functor, we
have:

Cat[J * G, X| = [&°? Cat] (G, Cat|I—, X]),

since J sk G = G % J. This induces an adjunction between the category of
categories and the category of internal graphs of Cat. If G(2) is a set, this
shows how the coinserter encompasses the notion of freely adding morphisms
to a category G(1). In particular, if G is a graph, this induces a (natural)
bijection between natural transformations G — Cat(J—, X) and functors
J % G — X. Therefore:

Lemma 2.3. F; : Grph — Cat, F1(G) = T k G gives the left adjoint to Cy.

Informally, we get the result above once we realize that if X is a category in
Cat then a functor f : F(G) — X needs to correspond to a pair (fy, o/), in
which fy : G(1) — (X)g is a morphism of SET and o/ : foG(d') — foG(d°)
is a natural transformation. This is precisely an object of the inserter of
Cat(G—, X).

Remark 2.4. [Categories freely generated by reflexive graphs] We can also
consider the inclusion J* : A, — Cat and this inclusion induces the functor
e} : Cat — RGrph, C}(X) = Cat(J*—, X). Analogously, this functor has a
left adjoint defined by F3(G) = J% sk G. It is easy to verify that there is a
natural isomorphism F; =~ FRE.

If G is a reflexive graph and z is an object of G, we say that G(s°)(z) is the
trivial arrow/identity arrow of x. In particular, the image of G(s°) is called
the discrete category/collection of the trivial arrows of G.

Remark 2.5. Since (1]]1) = (2)y in Cat and Cat is lextensive, recall that
X x (2)g= (X x1)[[(X x 1) for any object X of Cat.

If G is an object of Grph, we can construct F1(G) via the pushout of the
morphism G(2) x (2)g — G(1) induced by (G(d"), G(d')) along the functor
G(2) x (2)g — G(2) x 2 given by the product of the identity with the inclusion
(2)o — 2 induced by the counit of the comonad (—), : Cat — Cat.

Remark 2.6. The functor C; is monadic since it is right adjoint, reflects
isomorphisms, preserves coequalizers and Cat is cocomplete. Hence, each
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component of the counit of F; - €; gives a functor compy : F1C1(X) — X
which is a regular epimorphism.

The forgetful functor C;U; : Gr — Grph has an obvious left adjoint given
by £1F1 : Grph — Gr. If G : &°? — Cat is a graph, £1F1(G) is called the
groupoid freely generated by G.

We denote respectively by F; and £;F; the monads induced by the ad-
junctions F; < €, and £,;F; - C,U;.The free JF;-algebras are called free
categories, while we call free groupoids the free algebras of the monad £;77.

Lemma 2.7. £:F,(G) = T % (£1G) = (U1 £17) *k (L1G) gives the left adjoint
to 61.

Observe that £,G : °P? — Gr is nothing but G itself as an internal graph
of discrete groupoids since £ takes discrete categories to discrete groupoids.
Also, U1 £1(F1(G)) = (U1£17) %k G in Cat. That is to say, the groupoid freely
generated by G is its isocoinseter in Cat.

Remark 2.8. [Characterization of Free Categories [34]] The category Grph
has terminal object (), namely the graph with only one object and only one
arrow. If we denote by 3 (N) the resulting category from the suspension of the
monoid of non-negative integers N, we have that F1(()) =~ 3(N). Therefore,
every graph GG comes with a functor

(% 7,(G) — L(N)

which is by definition the morphism F;(G — (). The functor ¢¢ is called
length functor. It satisfies a property called unique lifting of factorizations,
usually refereed as ulf. In this case, this means in particular that, if /(f) =
m, then there are unique morphisms f,,,..., fi, fo such that

—JmSifo=1;

~l9(f;) =1Vte{l,...,m} and f; is the identity.
This property characterizes free categories. More precisely, X =~ F(G) for
some graph G if and only if there is a functor £y : X — X(N) satisfying the
unique lifting of factorizations property.

A morphism f has length m if (¢(f) = m. It is easy to see that the

morphisms of F1(G) with length 1 correspond to the edges of G. Roughly,
the unique lifting property of ¢“ says that every morphism f : z — z is a

composition f = ay ...a, of arrows with length 1 which corresponds to a list
of arrows in G satisfying G(d')(a;) = G(d°)(azy1) for all t € {1,...,m — 1},
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while the identities of F1(G) correspond to empty lists. Following this view-
point, the composition is given by juxtaposition of these lists. A morphism
of f:x — 2z of F1(Q) is often called a path (of length £°(f)) between x an z
in the graph G.

It is clear that the length functors reflect isomorphisms. More precisely, if
(% is a length functor, then ¢“(f) = 0 implies that f = id.

As a particular consequence of the characterization given in Remark 2.8,
we get that:

Theorem 2.9. For any graph G, F1(G) satisfies the cancellation law.

Remark 2.10. Let X be a category. By the natural isomorphism of Remark
2.4, we have that X = F1(G) for some graph G if and only if X =~ FRE(Q).
Also, X = FR(G) for some reflexive graph G if and only if X =~ F;(G¢), in
which G¢ : &P — Set has the same objects of G and the nontrivial arrows
of G. More precisely, G¢(2) = G(2) — G(s")(G(1)), G¥(1) = G(1). There-
fore the characterization of categories freely generated by reflexive graphs is
equivalent to the characterization given in Remark 2.8.

It should be noted that (—)® is a functor between the subcategories of
monomorphisms of RGrph and Grph.

Remark 2.11. [Characterization of Free Groupoids] A natural extension of
the Remark 2.8 gives a characterization of free groupoids. More precisely,
for each graph G, there is functor

L1(€G> = ngjl(G - O) . Ll\rfrl(G) - Z(Z)

in which ¥(Z) is the suspension of the group of integers. This functor has
the ulf property. In this case, this means that, if £,(¢%)(f) = m, then there
are unique morphisms f,, ..., f1, fo such that

—foifo=1;

— L1(09)(f,) e {—1,1}, for all t € {1,...,n} and f, is identity;

= 2L () (fr) = m.
This property characterizes free groupoids. That is to say, X =~ £,F(G)
for some graph G if and only if X is a groupoid and there is a functor
lx : X — 3(Z) satisfying the unique lifting of factorizations property.

It is easy to see that the morphisms of £,F(G) with length 1 correspond

to the arrows of GG, while the morphisms with length —1 correspond to formal
inversions of arrows of G.
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Definition 2.12. A graph G is called:

— connected if F1(G) is connected;

— a weak forest if F1(G) is thin;

— a forest if £1F1(G) is thin;

— a tree/weak tree if G is a connected forest/weak forest.

Theorem 2.13. If G is a forest, then it is a weak forest as well.

Proof: By Theorem 1.5 and Theorem 2.9, if £,F1(G) is thin, then F1(G) is
thin as well. ]

The converse of Theorem 2.13 is not true. For instance, a counterexample
is given in Remark 2.16.

Remark 2.14. [Maximal Tree] By Zorn’s Lemma, every small connected
graph G has maximal trees and maximal weak trees. This means that, given
a small connected graph G, the preordered set of trees and the preordered
set of weak trees of G have maximal objects. Of course, these results do not
depend on Zorn’s Lemma if G is countable.

Lemma 2.15. Giree %S a mazimal tree of a connected graph G if and only
iof the following properties are satisfied:

— Ghtree 1S a subgraph of G;

— Gutree 18 a tree;

— Ghtree has every object of G.

Remark 2.16. By the last result, a tree in a small connected graph G is
maximal if and only if it has all the objects of G. Such a characterization
does not hold for maximal weak trees. For instance, the graph T given by the
example of weak tree is a weak tree which is not a tree. Hence, the maximal
tree of this graph is an example of a weak tree that has all the objects of the
graph T without being a maximal weak tree. However, one of the directions
holds. Namely, every maximal weak tree of a small connected graph G has
every object of G.

Remark 2.17. All definitions and results related to trees and forests have
analogues for reflexive graphs. In fact, for instance, a reflexive graph G is a
reflexive tree if T3 (G) is a connected thin category. Then, we get that G is a
reflexive tree if and only if the graph G¢ (defined in Remark 2.10) is a tree.

In particular, Guee 1S a maximal reflexive tree of a connected reflexive
graph G if and only if G¢, ... is a maximal tree of the graph G¥¢.

mtree
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Definition 2.18. [Fair Graph| An object G of Grph is a fair graph if it has
a maximal weak tree which is a tree.

Remark 2.19. From Zorn’s Lemma, we also get that every small graph G
has a maximal fair subgraph which contains a maximal tree of G. Again, we
can avoid Zorn’s Lemma if we restrict our attention to countable graphs.

There are thin categories which are not free F;-algebras. For instance, as
a particular case of Lemma 2.20, the category V2 is thin and is not a free
category. Furthermore, by Theorem 2.22, R and Q are examples of small
thin categories without nontrivial isomorphisms that are not free categories.

Lemma 2.20. If X s a category and it has a nontrivial isomorphism, then
X s not a free category.

Proof: There is only one isomorphism in ¥(N), namely the identity 0. If f
is an isomorphism of F1(G), then ¢“(f) = 0. Since (¢ reflects identities, we
conclude that f is an identity. |

We can also consider the thin category freely generated by a graph G, since
MF; H C M. It is clear that C; M is fully faithful and, hence, it induces
an idempotent monad M;JF;. In particular, every M;Fi-algebra is a free
M, F;-algebra. That is to say, every thin category is a thin category freely
generated by a graph.

Proposition 2.21. If F1(G) is a totally ordered set then, for each object x
of F1(G) and each length m, there is at most one morphism of length m with
x as domain in F1(G). Moreover, if x is not the terminal object, then there
is a unique morphism of length 1 with x as domain in F1(G).

Proof: In fact, suppose there are morphisms b : ¢ — 2',a : © — z of length
m. Since F1(G) is totally ordered, we can assume without loosing generality
that there is a morphism ¢ : z < 2’ of some length n.

As F1(Q) is thin, ca = b. In particular, n +m = (%(ca) = (9(b) = m.
Hence n = 0. This means that ¢ is the empty path (identity) and z = 2/.
Again, since F1(G) is thin, a = b.

It remains to prove the existence of a morphism of length 1 with x as
domain whenever x is not the top element. In this case, there is a morphism
x — 2" of length m > 0 By Remark 2.8, we conclude that there is a unique
list x < 21 <...< zp_1 < 2" such that z; < 2,1 corresponds to a morphism
of length 1. In particular, x < z; has length 1. u
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Theorem 2.22. If F1(G) is a totally ordered set, then it is isomorphic to
one of the following ordered sets:

— The finite ordinals 0,1,...,n,...;

— The totally ordered sets N, N°? and Z.

Proof — If F1(G) has bottom L and top T elements:
If 1 2 3(G) 22, L - T has a length, say m — 1 > 2. This means that
FG ={l<l<...<m-2<T}=m

— If F1(G) has a bottom element L but it does not have a top element:

We can define s : N — F1(G) in which s(0) := L and s(n+1) is the codomain
of the unique morphism of length 1 with s(n) as domain. Of course, s is order
preserving.

It is easy to see by induction that | < s(n) has length n. Hence it is
obvious that s is injective. Also, given an object x of F1(G), there is m’ such
that | — x has length m/. By Proposition 2.21, it follows that s(m') = x.
This proves that s is actually a bijection.

— If F1(G) has a top element T but it does not have a bottom element:
By duality, we get that NP ~ F(G).
— If F1(G) does not have top nor bottom elements:

If F1(G) #£ 0, given an object y of F1(G), take the subcategories {z € F1(G) :
r <y} and {x € F1(G) : y < z}. By what we proved, these subcategories are
isomorphic respectively to N°? and N. By the uniqueness of pushouts, we get

F1(G) = Z. |

Corollary 2.23. If F1(G) is a small thin category, then it is isomorphic to
a colimit of ordinals 0,1,...,n,... or/and N,N°P 7.

Remark 2.24. There are non-free categories which are subcategories of free
categories. But subgroupoids of freely generated small groupoids are freely
generated. In fact, this follows from:

Theorem 2.25. A small groupoid is free if and only if its skeleton is free.
In particular, freeness is a property preserved by equivalences of groupoids.
As a consequence, subgroupoids of free groupoids are free.

Proof: Since L£1JF; creates coproducts and every groupoid is a coproduct
of connected groupoids, it is enough to prove the statement for connected
groupoids.
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If a connected groupoid is free, this means that it is isomorphic to £1F(G)
for a connected graph G. It is easy to see that the skeleton of £1F1(G) is
isomorphic to £1F1(G)/L1F1(Gutree) for any maximal tree Gpiee. Therefore
L£1F1(G/Grtree) 1s isomorphic to the skeleton and, hence, the skeleton is free.

Reciprocally, if the skeleton of a connected groupoid X is free, it follows
that for any object y of X, the full subgroupoid with only x as object, often
denoted by 7(X,y), is free. We take (X, y) = F1(H) and define the graph
G : B°? — cat by:

—G(2):= H(2) H (cat(1, X) — {y}); —G(1) := cat(1, X);
— G(d") is constant equal to y; —G(d")(a) ==y if a e H(2);
—G(d°)(2) := zif z e cat(1, X) — {y} .

Of course, £1F1(G) = X. The consequence follows from Nielsen-Schreier
theorem for groups, since every small groupoid is equivalent to a coproduct
of groups. n

3. Presentations

If T = (T,m,n) is a monad on a category X, we denote respectively by X7
and Xg the category of Eilenberg-Moore T-algebras and the Kleisli category.
Every such monad comes with a notion of presentation of a J-algebra. More
precisely, a diagram in X

Go —ZT(Gh) (T-presentation diagram)

can be seen as a graph in X7 and, hence, it can be seen as a graph & — X7
of free T-algebras in X7. We say that the graph above is a presentation of the
T-algebra (G', T(G'") — G') if this algebra is (isomorphic to) the coequalizer
of the corresponding diagram &P — X7 of free T-algebras in X”. Every TJ-
algebra admits a presentation, since every J-algebra is a coequalizer of free J-
algebras. If X7 has all coequalizers of free algebras, denoting by Grph(Xy) =
Cat [B°P, Xg| the category of graphs internal to the Kleisli category, there is
a functor Grph(Xy) — X7 which takes each graph to the category presented
by it.

Definition 3.1. [T-presentation] Let T = (T,m,n) be a monad on a cat-
egory X. Consider the comma category (Idx/T). We have a functor Ky :
(Idx/T) — Grph(XY) given by the composition of the comparisons (Idx/T) —
Grph(Xg) — Grph(XY).
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Consider also the full subcategory Grph'(X7) of Grph(X”) whose objects
are graphs G such that the coequalizer of G exists in ¥”7. The category of
T-presentations, denoted by Pre(T), is the pullback of K¢ along the inclusion
Grph'(X7) — Grph(X7).

We get then a natural functor K% : Pre(T) — Grph'(X7). The functor

presentation, denoted by Py : Pre(T) — X7, is the composition of the co-
equalizer Grph'(X7) — X7 with K.

Lemma 3.2. Py is essentially surjective. This means that every T-algebra
has at least one presentation.

Remark 3.3. We ratify that if T is a monad such that X7 has coequalizers of
free algebras, then the definition of Pre(T) is easier. More precisely, Pre(T) :=

(Idx /7).

We denote by £,F, the free group monad on Set whose category of algebras
is the category of groups Group. A LoFy-presentation of a group is a pair
(S, R) in which S is a set and R : °? — Set is a small graph such that
R(1) = £oFo(S). This induces a graph R : &°° — Group of free groups. The
coequalizer of this graph is precisely the group presented by (S, R). Analo-
gously, we get the notion of Fy-presentation of monoids induced by the free
monoid monad Fy on Set.

Remark 3.4. Recall, for instance, the basics of presentations of groups [15].
The classical definition of a presentation of a group is not usually given
explicitly by a graph as it is described above. Instead, the usual definition
of a presentation of a group is given by a pair (S, R) in which S is a set and
R is a “set of relations or equations”. However, this is of course the same as
an £oJFo-presentation. That is to say, it is a graph

R—= ﬂo?@(S)

in Set such that the first arrow gives one side of the equations and the second
arrow gives the other side of the equations. For instance, in computing the
fundamental group of a torus via the Van Kampen Theorem and the quotient
of the square [18], one usually gets it via the presentation ({a, b}, ab = ba).
This is the same as the graph



18 FERNANDO LUCATELLI NUNES

in which the image of = by the first arrow is the word ab and the image by
the second arrow is ba. Of course, this is the presentation of Z x Z, as Z x 7Z
is the coequalizer of the corresponding diagram of free groups in the category
of groups.

The free category monad F; on Grph induces a notion of presentation of
categories. More precisely, an F;-presentation of a category X is a graph
g : & — Grphg; such that, after composing g with Grphz — Grph”* ~ Cat,
its coequalizer in Cat is isomorphic to X. Analogously, the free groupoid
monad £1F; gives rise to the notion of £;F;-presentation of groupoids.

Remark 3.5. [Suspension] The forgetful functor u; : Grph — SET has left
and right adjoints. The left adjoint i; : SET — Grph is defined by i;(X)(2) =
& and 41 (X)(1) = X. The right adjoint o1 = X' : SET — Grph is defined by
¥(X)(2) = X and ¥'(X)(1) = = is the terminal set.

Indeed, oy is part of monad (mono)morphisms Fy — F; and LT, —
£,F,. We conclude that presentation of monoids are particular cases of
presentations of categories and presentations of groups are particular cases
of presentations of groupoids. More precisely, there are inclusions

Pre(LoTFy) — Pre(TFy)

| |

Pre(L£,F,) — Pre(TF;)
but it is important to note that they are not essentially surjective.

Roughly, J)-presentations and £;J,-presentations can be seen as freely
generated graphs with equations between 1-cells and equations between 0-
cells. More precisely, we have:

Definition 3.6. If g : &°° — Grphgz; is a presentation of a category, we denote
by g(d°); the component of the graph morphism g(d") in 1. If g(d°); = g(d');
and they are inclusions, g : °* — Grphz is called an 1-cell presentation.

Theorem 3.7. If g : °° — Grphz-



FREELY GENERATED n-CATEGORIES, COINSERTERS AND PRESENTATIONS 19

18 a presentation of a category X, then there is an induced 1-cell presentation
gof X

in which g(2)(1) is the coequalizer of the graph of objects induced by g.

Remark 3.8. We denote by 2 the graph such that F(2) = 2. It is clear that
J can be lifted through €;. That is to say, there is a functor J:6 — Grph
such that C1J = J. Then F;J composed with the isomorphism &°P =~ & gives
a graph of free F-algebras. Therefore it gives an F;-presentation

« —ZTF1(2)

of the category (suspension of the monoid) ¥(N). Actually, the corresponding
1-cell presentation is just

@ —=51(0) = (N).

Remark 3.9. Of course, we also have the notion of F¥-presentations of
categories. Although the category of TF-presentations is not isomorphic to
the category of F*-presentations, we have an obvious inclusion between these
categories which is essentially surjective.

4. Definition of Computads

In Section 8, we give the definition of the n-category freely generated by
an n-computad by induction. The starting point of the induction is the
definition of a category freely generated by a graph. Thereby graphs are
called 1-computads and we define respectively the category of 1-computads
and the category of small 1-computads by 1-Cmp := Grph and 1-cmp := grph.

In the present section, we give a concise definition of 2-computads and of
the category 2-Cmp. This concise definition is precisely what allows us to get
its freely generated 2-category via a coinserter. We also introduce the notion
of a category presented by a computad, which is going to be our canonical
notion of presentation of categories.

Definition 4.1. [Derivation Schemes and Computads] Consider the functor
(— x®):SET — Cat,Y — Y x & and the functor F; : Grph — Cat. The
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category of derivation schemes is the comma category Der := (— x &/Idcat).
The category of 2-computads is the comma category 2-Cmp := (— x &/3).

Considering the restrictions (— x &) : Set — cat and F; : grph — cat,
we define the category of small 2-computads as 2-cmp = (— x &/F;). We
also define the category of small computads over reflexive graphs (or just
category of reflexive computads) as Rcmp := (— x & /FF). There is an obvious
left adjoint inclusion cmp — Rcmp induced by €. We denote the induced
adjunction by Ecmp 4 Remp.

Derivations schemes were first defined in [10, 34]. Respecting the orig-
inal terminology of [31], the word computad without any index means 2-
computad. Also, we set the notation: Cmp := 2-Cmp and cmp := 2-cmp.

The pushout of the inclusion (2); — 2 of Remark 2.5 along itself is (iso-
morphic to) &. Hence, by definition, a derivation scheme is pair (9,02) in
which 0, is a discrete category and 0 : &°? — Cat is an internal graph

09 x2—20(1) (0-diagram)
such that, for every a of 0s:
2(d”) (v, 0) = 0(d")(ar, 0) 2(d")(a, 1) = 0(d") (v, 1).

In this direction, by definition, a computad is a triple (g, g2, G) in which
(g,92) is a derivation scheme and G : &°° — Cat is a graph such that
g(1) = F1(G). We usually adopt this viewpoint.

Definition 4.2. [Groupoidal Computad] Consider the functor (— x £1(®)) :
SET — Gr, X — X x £1(®) and the functor £1F; : Grph — Gr. The category
of groupoidal computads is the comma category Cmpg, := (— x £1(8)/L,F7).
Analogously, the category of groupoidal computads over reflexive graphs is
defined by Rempy, := (— x £1(8)/£,F7).

We denote by & the graph below with two objects and two arrows between
them. It is clear that F,(®) = &. Hence, there is a natural morphism
& - C1(®) induced by the unit of F; - €;. Moreover, it is important to
observe that & is not isomorphic to €;(&).

—_—
* *

Theorem 4.3. Consider the functor (iy(—) x ®) : Set — grph, X — i;(X) x
®. There are isomorphisms of categories Cmp = (i;(—) x &/F;) and Cmpg, =
(il(—) X @/ngjl)
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~

Moreover, considering suitable restrictions of (i1(—) x &) and F; (to Set

and grph respectively), we have that cmp =~ (i;(—) x 65/9’1). Analogously,
cmpg, = (i1(—) x 6/L,F).

Definition 4.4. [Presentation of a category via a computad] We say that a
computad (g, g2, G) presents a category X if the coequalizer of g : &°? — Cat
is isomorphic to X. We have, then, a functor P; : Cmp — Cat which gives the
category presented by each computad. Of course, there is also a presentation
functor P : Remp — cat.

Analogously, we say that a groupoidal computad (g, go, G) presents a group-
oid X if the coequalizer of g : &P — Gr is isomorphic to X. Again, we have
presentation functors P(; o) : Cmpg, — Gr and j)?{l,()) : Remp,, — gr.

Theorem 4.5. Lvery presentation via computads is an F1-presentation. That
is to say, there is a natural inclusion Cmp — Pre(Fy). Analogously, every
groupoidal computad is an L1F1-presentation.

Proof: By Theorem 4.3, Cmp = (i;(—) X 5\5/?1) So, it is enough to consider
the natural inclusion between comma categories

(i1(=) x &/F7) — (Idgrpn/T7)-
[ |

Every category admits a presentation via a computad and, analogously,
every groupoid admits a presentation via a groupoidal computad. These
results follow from Theorem 3.7 and:

Theorem 4.6. There is a functor Cmp — Pre(F),g — Cig which is es-
sentially surjective in the subcategory of 1-cell presentations g : &°® — Grph
of categories such that the graph g(2) has no isolated objects (that is to say,
every object is the domain or codomain of some arrow). Moreover, there is
a natural isomorphism

Cmp Pre(T;)
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Remark. 4.7. The truncated category A, is usually presented by the com-
putad (g°2, gQAQ, G,) defined as follows:

A, (1) :={0,1,2} G4, (2):={d " d" d"}
GA2( N(d') :==1,Vi G A, (d")(s") :=2
G, (d)(d) :=2,Vi G, (d)(s") =1
G, (d")(d) :==0,Vi Ga, (d")(d) == 1,Vi

g22(dY) (ng,0 — 1) := 5" - @° g22(d") (n1,0 > 1) 1= s - "
g22(d) (ng, 0 — 1) := id, g2 (dY) (n1,0 — 1) := id,
g2 (d) (9,0 > 1) :=d" - d g2 (d)(9,0 > 1) :=d" - d.
This computad can also be described by the graph
g
0 —d>1~<— 2
2
with the following 2-cells:
0 d" = id,, ny :id, = s - d, J:d - d=d°-d.

Lemma 4.8. The category A, is the coequalizer of the computad gA2

Remark 4.9. The usual presentation of the category A via faces and degen-
eracies is given by the computad (g*, g5, G ;) which is defined by

g5 x 2 == F1(GR)

in which G4 (1) := (N)o is the discrete category of the non-negative integers
and

GA(2) =={(d',m) : (i,m) e N*[i <m}u{(s",m): (k,m)e N>k <m—12>0}

Gi(d)(d',m) :==m Gi(d)(s",m) :=m + 1
GA(d)(d',m) :=m +1 GA(d")(s",m) :=m
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g5 = {(d d\m): (i,k,m)e N m =i <k}
u{(sk,si,m) : (i,k,m)eN3,0<m—1>k>i}
u{(sk,dl,m) : (i,k,m)eN3,k<m—1>0}

(@ (@, d'm), 0 > 1) = (d*,m+1)-(d,m)

gé(dl)((sk, s''m),0 > 1) := (sk,m) - (Si,m + 1)
g.A(dl)((sk,a”,m),O — 1) := (sk,m + 1) (d',m)

g (d)(d*, d',m), 0 > 1) = (d\m+1)-(d*,m)
gﬁfmﬁﬁmmoan = (s',m)- (s, m + 1)
gA(dO)((sk,di,m),O — 1) := (di,m - 1) (sk_l,m), if k>1

g (d)((s*,d',m),0 > 1) = id , ifi=kori=Fk+1

g (d)((s",d',m),0 > 1) = (@ m—1) (s m—1), ifi>k+1.

Lemma 4.10. The category A is the coequalizer of the computad gA.

Every computad induces a presentation of groupoids via a groupoidal com-
putad, since we have an obvious functor Cmp — Cmpg, induced by £;. More
precisely, the functor Lfmp : Cmp — Cmpg, is defined by g — £1g. Observe
that the groupoidal computad £g gives a presentation of the coequalizer of
L1g in Gr which is (isomorphic to) £1P1(g). In this case, we say that the
computad g presents the groupoid £1P1(g).

Proposition 4.11. There is a natural isomorphism TP(LO)Lfmp ~ L,P;.

Remark 4.12. If Pi(g) is a groupoid, there is no confusion between the
groupoid presented by g and the category presented by g, since, in this case,
they are actually isomorphic. More precisely, in this case, £1P1(g) = P1(g).

Theorem 4.13. If the groupoid presented by a computad (g, go, G) is thin,
then (g, g2, G) presents a thin category as well provided that P1(g, g2, G) sat-
isfies the cancellation law.

Proof: By Theorem 1.5, if £1P1(g) is thin, then P;(g) is thin. m

Definition 4.14. [2-cells of computads| Let (g, g2, G) be a computad. The
discrete category gs is called the discrete category of the 2-cells of the com-
putad g. Moreover, we say that « is a 2-cell between f and g, denoted by
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a: f=g, if g(d)(a,0 > 1) = f and g(d°)(e,0 — 1) = g. In this case, the
domain of « is f while the codomain is g.

Sometimes, we need to be even more explicit and denote the 2-cell o by
a: f=g:x — y whenever g(d')(a,0 — 1) = f, g(d°)(a,0 — 1) = g,
g(d")(a,0) = z and g(d’) (e, 1) = y.

In the context of presentation of categories, the 2-cells of a computad
(g, 92, G) correspond to the equations of the presentation induced by this
computad. If g has more than one 2-cell between two arrows of g(1), then
it is a redundant presentation of the coequalizer of g. Yet, we also have
interesting examples of redundant presentations. For instance, in the next
section, we give the definition of the fundamental groupoid via a redundant
presentation.

Remark 4.15. [Sigma]| There is an obvious forgetful functor uy : cmp —
grph. This forgetful functor has left and right adjoints. The left adjoint
iy : grph — cmp is defined by i3(G) = (G2, &, G). Sometimes, we denote G
by i2(G) and, of course, it is defined as follows:

b(G): @ —ZF1(G).

The right adjoint oy : grph — cmp is defined by 02(G) = (G”,G3*, G)
in which 09(G)(2) = G5* x 2 and the set of 2-cells G3* is the pullback of
(F1(G)(dY), FL(G)(d)) : F1(G)(2) — F1(G)(1) x F1(G)(1) along itself. Fi-
nally, the images of G°2(G)(d'), G?*(d") are induced by the obvious projec-
tions. Sometimes we write o9(G) = (02(G), 02(G)2, G) as follows
02(G) : G* x 2 —Z F1(G).

Remark 4.16. [Sigma®] Of course, we also have a forgetful functor u$" :
cmpe, — grph. The left adjoint of this functor is defined by i§™ := L£5™Pi,,
while the right adjoint is defined by o§" := £5™q,.

Proposition 4.17. There is a natural isomorphism Piip = F7.

Definition 4.18. [Connected Computad] A computad (g, g2, G) is connected
if us(g, g2, G) = G is connected.

Remark 4.19. Let X be a group. We consider the full subcategory
Pre(LoFo, X) of Pre(LyFy) consisting of the presentations of X. This sub-
category is isomorphic to the full subcategory of cmp® consisting of the
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groupoidal computads which presents ¥(X). This fact shows that presenta-
tions of groupoids by groupoidal computads generalizes the notion of £yJFy-
presentations of groups. Moreover, unlike the case of £1F1-presentations, the
notion of presentations of (suspensions of) groups by groupoidal computads
is precisely the same of LyF-presentations.

Analogously, given a monoid Y the category of Fy-presentations Pre(F,, Y)
is isomorphic to the category of computads which presents 3(Y).

5. Topology and Computads

We introduce topological aspects of our theory. We refer the reader to
[28] for basic notions and results of algebraic topology, including the Van
Kampen theorem for fundamental groupoids.

We start with the relation between the fundamental groupoids and group-
oids freely generated by small graphs. By the classical Van Kampen theorem,
the fundamental group of a (topological) graph with only one object is the
group freely generated by the set of edges/arrows. We show that it also
holds for fundamental groupoids: roughly, the groupoid freely generated by
a small graph G is equivalent to its fundamental groupoid. Although this
is a straightforward result, this motivates the relation between topology and
small computads: that is to say, the association of each small computad with
a CW-complex presented in 5.1.

We always consider small computads, small graphs and small categories
throughout this section. Moreover, we use the appropriate restrictions of
the functors &1, £1, Uy, €;. Finally, Top denotes any suitable cartesian closed
category of topological spaces: for instance, compactly generated spaces.
Then we can consider weighted colimits in Top w.r.t. the Top-enrichment.

Remark 5.1. [Topological Graph] There is an obvious left adjoint inclusion
Dy : cat — Top-Cat induced by the fully faithful (discrete topology) functor
D : Set — Top left adjoint to the forgetful functor Top — Set. We denote by
® and &P the images Dy(®) and Dy(B°P) respectively, whenever there is no
confusion. If I = [0, 1] is the unit interval with the usual topology and = is
the terminal topological space, then the Top-weight Jro, : & — Top defined
by

gives the definition of Top-isoinserters and Top-isocoinserters.
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If G: B — Set is a small graph, DG : 8°P — Top is actually compatible
with the Top-enrichment. More precisely, since D- is left adjoint, there is a
Top-functor Dy(®°P) — Top which is the mate of DG : &°? — Top. Again,
by abuse of notation, the mate Dy(®°P) — Top is also denoted by DG :
BP — Top.

Any small graph G : 8P — Set has an associated topological (undirected)
graph given by the Top-isocoinserter of the Top-functor DG. This gives a
functor Frep, : grph — Top which is left adjoint to the functor Crop, : Top —
grph, E — Top(J1ep,—, /). We denote the monad induced by this adjunction
by ‘{}HTOPl'

A path in a topological space E is an edge of Ctop, (&), that is to say, a path
in F/ is a continuous map a : [ — F.

Lemma 5.2. A small graph G is connected if and only if F1op (G) is a path
connected topological space.

Remark 5.3. We also have an adjunction gﬂqupl — G$opl in which €$0p1 =

C1op,R. This adjunction is induced by a weight analogue of Jr,, . Namely,
if we denote by A, the image of itself by cat — Top-Cat, the Top-functor

J%pl : Ay — Top defined by

in which J$Opl composed with the inclusion & — A is equal to Jyp,. This

weight gives rise to the notion of reflexive Top-isoinserters and reflexive Top-

isocoinserters. Finally, Sr'"%)pl(G) = ﬁopl*DG and Crop, : Top — Rgrph, £ —
Top(ﬂopl—, E).

Given an arrow f of iGTopl (F), we have that there is a unique finite list of
ArrOws ag, . a{%fl of Crop, (&) such that f = af;fl . -ag by the ulf property
of the length functor. Since, by definition, ag e afn_l are continuous maps
I — E, we can define a continuous map [ﬁE . I — E by [ﬂE (t) =

al(mt —n) whenever t € [n/m, (n + 1)/m]. This gives a morphism of graphs
|-l ©1F1Crop, (E) — Crop, (E)

which is identity on objects and takes each arrow f = af;fl = -ag of length

m to the arrow | ﬂ 5 Of Crop, (E). These graph morphisms define a natural
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transformation
|| ieTom - eTopl-

Remark 5.4. It is very important to observe that, if f is an arrow of
C1F1Crop, (E) of length m > 1, then [ﬂE . x — z 1s not the same as the

morphism f : x — z itself. The former is an edge of C1op, (£), which means
that, as morphism of FCrop, (E), its length is 1.

Remark 5.5. We have also a natural transformation [_]Gr : £151Crop, —
C1op,- Observe that, by the ulf property of the length functor and by the
definition of Crop,, if f is an arrow of £1F1Crop, (£) of lenght k, then f =

az%l e ag for a unique list (az%l, e ag ) of paths or formal inverses of paths

in £/ and we can define [ﬂg : [ — E by:

(al (mt —n), if t € [n/m, (n +1)/m]and a/ is a path in E,

bl(—mt+n+1), ifte[n/m,(n+1)/m]and af
is a formal inverse of an arrow b{ of Crop, (E).

\

On one hand, this defines morphisms of graphs £FCop, (E) — Crop, ()
for each topological space E. On the other hand, these morphisms define the
natural transformation [_]Gr : £151Crop, — CTop,-

Theorem 5.6. The mate of [_| : EGTopl —> Crop, under the adjunction
FTop, = Crop, and the identity adjunction is a natural transformation

[]:?1—)9:’1—0[31

which is a part of a monad functor/morphism (I1d,, ., [ |) : Frop, — F1. Anal-
ogously, the mate [_]Gr under the same adjunctions is a natural transforma-
tion [ 1% which is part of a monad functor (Idg,. [ 19 : Frop, = L1F1.

Remark 5.7. It is also important to consider the mate |-] : ?Topl?l — Fop,
of the natural transformation [ | : F1Cop, —> Crop, under the adjunction
FTop, 1 C1op, and itself. Again, we can consider the case of groupoids: the
mate of [_]Gr under Frop, = Crop, and itself is denoted by HGr : Frop, L1F1 —
9:’Topl-
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Let S! be the circle (complex numbers with norm 1) and B? the closed ball
(complex numbers whose norm is smaller than or equal to 1). We denote the
usual inclusion by h : S! — B2. We consider also the embeddings:

hy: I — B% tse™ hy: [ — B2 tw— ™1,

Recall that, if E' is a topological space and a,b : I — E are continuous maps,
a homotopy of paths H : a ~ b is a continuous map H : B> — E such that
Hhy = a and Hhy = b. If there is such a homotopy, we say that a and b are
homotopic.

There is a functor Crop, : Top — cmp given by Crop, (E) = (g%, g5, G¥) in
which G* := Crop, (E) and

of = {(fo.H:[f],~gl,):
H is a homotopy of paths and f, g € iGTopl(E)Q)} .

Also, g¥(dY)(f, g, H : [ﬁE ~ [Q]E’O — 1) := f and g€(d")(f, g, H : [ﬂE ~
[g] 50— 1) := g. By an elementary result of algebraic topology, the image
of P1Crep, : Top — Cat is inside the category of small groupoids gr. More
precisely, there is a functor II : Top — gr such that U;Il = PCrp,. If E is
a topological space, I1(E) is called the fundamental groupoid of E. Given a
point e € E, recall that the fundamental group m1(F,e) is by definition the
full subcategory of II(F) with only e as object.

Remark 5.8. The Van Kampen theorem [8] for groupoids (see, for instance,
8, 6]) gives the fundamental groupoid II(S') by the pushout of the inclu-
sion {0,1} — II(/) along itself. This is equivalent to the pushout of the
inclusion (2) — 2 of Remark 2.5 along (2)y — 1, which is given by the
m—presentation

o 51?1(/2\)

induced by the Fi-presentation of Example 3.8. We conclude that this is
isomorphic to £1(X(N)) = X(Z).

Proposition 5.9. There is a natural isomorphism Crop, = U3Crqp, .

Remark 5.10. The groupoid freely generated by a given small graph is
equivalent to the fundamental groupoid of the respective topological graph.
To see that, since F*E =~ F; and 9’1330[)18 =~ Frop,, it is enough to prove that,
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for each small reflexive graph G,

L:FXG) ~ IFE_(G).

Top,

On one hand, if G is a reflexive tree, then both £;F}(G), Hﬂopl(G) are
thin (and connected): therefore, they are equivalent. On the other hand, if
G is a reflexive graph with only one object, then £;F%(G) and Hﬂom (G) are
equivalent to the group freely generated by the set of nontrivial edges/arrows
of G.

If a reflexive graph G is not a reflexive tree and it has more than one
object, we can choose a maximal reflexive tree Gnree 0f G. Then, if we de-
note by £1FR(G)/L1FF(Gmiree) the pushout of the inclusion £1FF(Gree) —
L1FR(G) along the unique functor between £;FR(Giiee) and the terminal
groupoid, we get:

£1FHG) = £1F(G) /L1 (Crntree) = £1FT(G/Cratree),

in which, analogously, G /G ytree denotes the pushout of the morphism induced
by the inclusion Gee — G along the unique morphism Gyt — @ in the
category of reflexive graphs Rgrph.

Since the reflexive graph G/Gpee has only one object, we have that

L1FR(GCrored) ~ TIFE (GG ntree) gn(sf32 (@) T (Gmtree)>

Top, Top; Top,

in which the last isomorphism follows from the fact that FF _ is left adjoint.

0Py
Since 11 <S"$OPI(G)/S"$OP1(GHM%)> ~ Hﬂopl(G), the proof is complete. This

actually can be done in a pseudonatural equivalence as we show below.

Theorem 5.11. There is a natural transformation £ — T 1o, which
15 an objectwise equivalence.

Proof: Consider the unit of the adjunction Frop, - Crop,, denoted in this
proof by 7. We have that the horizontal composition Id, , =7 gives a nat-
ural transformation Py — Tﬂg?opl. We, then, compose this natural
transformation with the obvious isomorphism TliQm — P1igusCrop, Frop,
obtained from the isomorphism of Proposition 5.9

Now, we suitably past this natural transformation with the counit of iy — us
and get a natural transformation Piiy — P1Crop,Frop,, Which, after com-
posing with the isomorphism of Proposition 4.17, gives F1 — P1Crop, F1op, -
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The horizontal composition of this natural isomorphism with Id, gives
our natural transformation £1F; — £1P1Crop,FT0p, = ITF70p,. It is an
exercise of basic algebraic topology to show that, as a consequence of the
considerations of Remark 5.10, this natural transformation is an objectwise
equivalence. n

5.1. Further on Topology. To get the relation between small computads
and topological spaces, we use the isomorphism of Theorem 4.3. In particular,
an object (g, g2, G) of cmp is a diagram g : 2 — grph

& x i (g2) — F1(G),
in Wthh g2 is a set and G is a small graph. We also fix the homeomorphlsm

L Frop, (®) — S* which is the mate of the morphism of graphs cir’ : & —

GTopl(Sl) which takes the edges of & to the continuous maps b}, hf: I — S,
h)(¢) := hy(t), hj(t) := ho(¢) (which are edges between 0 and 1 in Crop, (Sh)).
More generally, for each set go, we fix the homeomorphism

cir x go : S* x D(go) — ?Topl(@ x i1(g2))-

Analogously to the case of graphs, we can associate each computad with a
“topological computad”, which is a CW-complex of dimension 2. The functor
Ctop, : Top — cmp is actually right adjoint to the functor Frop, : cmp — Top
defined as follows: if (g, g2, G) is a small computad g : & x i1(g2) — F1(G),
then Frop, (g, g2, G) is the pushout of h x D(gs) : S* x D(g2) — B* x D(ga)
along the composition of the morphisms

(cirxgo) (SFToplg []

S % D(g2) — Frop, (B x 11(82)) = Frop, T1(G) —> Frop, (G)

in which [-] : Frop, F, — FTop, is the natural transformation of Remark 5.7.

Lemma 5.12. A small computad (g,g2,G) is connected if and only if
FTop, (8, 82, G) s a path connected topological space.

Let g = (g,92, G) be a small connected computad. We denote by T the
maximal tree of uy(g, g2, G). Consider the pushout of F7op,ia2(T) — * along
the composition

FTop,i2(T) — Frop,iatia(g, 92, G) — F1op, (9, 92, G)

in which F7op,i2(T) — Frop, (i2u2(g, 92, G)) is induced by the inclusion of the
maximal tree of the graph us(g, g2, G) and F1op, (2u12(g, g2, G)) — F1op, (9, 92, G)
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is induced by the counit of iy - us. Since this is actually a pushout of a ho-
motopy equivalence along a cofibration (that is to say, this is a homotopy
pushout along a homotopy equivalence), we get that Jrop, (g, g2, G) has the
same homotopy type of the obtained pushout which is a wedge of spheres,
balls and circumferences.

Theorem 5.13. For each small computad (g, g2, G), there is an equivalence

H?Top2<gv 92, G) = Ll?l(g’ 92, G)

Remark 5.14. It is clear that the adjunction Ftep, - Crop, can be lifted

to an adjunction SF%IDQ — G%% in which SF%IDQ : cmpg, — Top is defined as

follows: if (g, g2, G) is a small groupoidal computad,
g: & xiy(g2) — L1F1(G),

(9,92, G) is the pushout of h x D(gs) : St x D(g2) — B? x D(gs)
along [-]o - (Frop,8) - (cir x go). We have an isomorphism Er'"%sz;mp ~ Frop,.-

then 9’%%

Theorem 5.15. For each small groupoidal computad (g, ge, G), there is an
equivalence

H?‘ﬁ;’gpz (ga g2, G) = T(I,O) (ga g2, G)

6. Deficiency

In this section, we study presentations of small categories/groupoids, focus-
ing on thin groupoids and categories. Roughly, the main result of this section
computes the minimum of equations/2-cells necessary to get a presentation
of a groupoid generated by a given graph G with finite Euler characteris-
tic. This result motivates our definition of deficiency of a (finitely presented)
groupoid/category. We start by giving the basic definitions of deficiency of
algebras over Set.

6.1. Algebras over Set. Let T = (T, m,n) be a monad on Set. We denote
a J-presentation R : &°P — Set,

R(2) —=T(5),

by (S, R). If S and R(2) are finite, the presentation (S, R) is called finite.
If a T-algebra (A,T(A) — A) has a finite presentation (S, R), it is called
finitely (T-)presented.
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In this context, the (T-)deficiency of a T-presentation (S, R) is defined by
defs((S, R)) := |S| — |R(2)]

in which |—| gives the cardinality of the set. The (T-)deficiency of a finitely
presented T-algebra (A, T(A) — A), denoted by defs(A, T(A) — A), is the
maximum of the set

{def5((S, R)) : (S, R) presents (A,T(A) — A)}.

Remark 6.1. Consider the free real vector space monad and the notion of
presentation of vector spaces induced by it. In this context, the notion of
finitely presented vector space coincides with the notion of finite dimensional
vector space and it is a consequence of the rank-nulity theorem that the
deficiency of a finite dimensional vector space is its dimension.

The notion of deficiency and finite presentations induced by the free group
monad £yFy coincide with the usual notions (see [15]). Analogously, the
respective usual notions of deficiency and finite presentations are induced by
the free monoid monad and free abelian group monad.

It is well known that, if a (finitely presented) group has positive deficiency,
then this group is nontrivial (actually, it is not finite). Indeed, if H is a
group which has a presentation with positive deficiency, then Group(H,R) is
a vector space with a presentation with positive deficiency. This implies that
Group(H, R) has positive dimension and, then, H is not trivial. In particular,
we conclude that the trivial group has deficiency 0.

We present a suitable definition of deficiency of groupoids and, then, we
prove that thin groupoids have deficiency 0. Before doing so, we recall ele-
mentary aspects of Euler characteristics and define what we mean by finitely
presented category.

6.2. Euler characteristic. If X is a topological space, we denote by H'(X)
its ordinary i-th cohomology group with coefficients in R. Assuming that
the dimensions of the cohomology groups of a topological space X are finite,
recall that the Fuler characteristic of a topological space X is given by
e}
X(X) := > (~1)' dim H'(X)
i=0

whenever all but a finite number of terms of this sum are 0.
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If G is a small graph, it is known that x(J7ep,(G)) = |G(1)] — |G(2)]
whenever the cardinality of the sets G(1), G(2) are finite. Also, a connected
small graph G is a tree if and only if x(Frop,(G)) = 1. As a corollary of
Theorem 2.13, we get:

Corollary 6.2. Let G be a connected small graph. If x(Frop,(G)) = 1,
L£1F1(G) and F1(G) are thin.

If (g,92,G) is a connected small computad, since Frop,(g, g2, G) has the
same homotopy type of a wedge of spheres, closed balls and circumferences,
H” (Frop,(9)) = R and H' (Frop,(g)) = Ofor alli > 2. Furthermore, assuming
that x(Frop,u2(g, 92, G)) = X(Fop, (G)) and g» are finite, we have that:

X (?T0p2<97927 G)) = X(SFTOm(G)) + [ g2l

Remark 6.3. All considerations about Fr,p,, have analogues for 9’%p2.

In par-
ticular, if (g, g2, G) is a connected small groupoidal computad Sr'"%pg(g, g2, G)
is a CW-complex and has the same homotopy type of a wedge of spheres,
closed balls and circumferences. Moreover, x <3"%p2(g, g2, G)) = X(F70p, (G)) +

|g2| provided that x(J7op,(G)) and go are finite.

6.3. Deficiency of a Groupoid. Observe that o9(G) gives a (natural)
presentation of the thin category freely generated by (. More precisely,
Pioy = M, F;. Yet, 02(G) gives always a presentation of M;F;(G) with more
equations than necessary.

Remark 6.4. Let G be the graph below. In this case, the set of 2-cells o5(G)o
is given by {(w, w) : w e F1(G)(2)}o{(yz,b), (yza, ba), (ba, yxa), (b, yx)} with
obvious projections.

._ae.—b%.

\(E
\_//
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On one hand, the computad o5(G) induces the presentation of M;F;(G) with
the equations:

(w = w if we F1(G)(2)
yr =0

< yxra = ba
b=uyx

\ba=yxa.

On the other hand, the computad
2 < Srl(G),

in which the image of one functor is the arrow yx while the image of the
other functor is b, gives a presentation of M;F;(G) with less equations than

0'2(G>.

The main theorem about presentations of thin groupoids in low dimension
is Theorem 6.7. This result gives a lower bound to the number of equations
we need to present a thin groupoid. We start with our first result, which is
a direct corollary of Theorem 5.15:

Corollary 6.5. Let (g,92,G) be a small connected groupoidal computad.

Pa,0)(9, 92, G) is thin if and only z'ffr'"%%(g, g2, G) is 1-connected which means

that the fundamental group m (FE_ (g, g0, G)) is trivial.

Top,

Proof: The fundamental group mi(Fop,(g,92,G)) is trivial if and only if

H(Sr'"%%(g,gg, G)) is thin. By Theorem 5.15, we conclude that
771(9’$gp2(g, g2, )) is trivial if and only if P(; (g, g2, G) is thin. |

Remark 6.6. Of course, last corollary applies also to the case of presentation
of groupoids via computads. More precisely, if (g, g2, G) is a small connected
computad,

ng)l(g) g2, G) = UD(1,0)'£’§mp(g7 g2, G)

is thin if and only if the fundamental group of

?$gp2L§:mp(ga 92, G) = 5L~T0p2 (ga g2, G)

is trivial.
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Theorem 6.7. If (g, g2, G) is a small connected groupoidal computad and
Z > x (?TOP (9, 92, G)) <1,
then P1.0)(g, g2, G) is not thin.
Proof: Recall that
(3"T0p2( g, 0o, G)) —1—dimH! (?Top (g, 0o, G)) + dim H2 (?Top (g, 9. G)) .
Therefore, by hypothesis,

dim H* (S"Top (g,gg,G)> > dim H? (S"Top (g,gg,G)> :

In particular, we conclude that dim H* (3"%0 (g, g2, G)) > (. By the Hurewicz
isomorphism theorem and by the universal coefficient theorem, this fact im-
(g, g2, G)> is not trivial. By Corol-
lary 6.5, we get that P(1 (g, g2, G) is not thin. |

plies that the fundamental group m (S’Top

Corollary 6.8. If (g, g2, G) is a small connected groupoidal computad which
presents a thin groupoid and x(F1op, (G)) is finite, then

X(gj‘rom(G)) + ‘gg‘ —1>=0.

In particular, Corollary 6.8 implies that, if G is such that x(Frop, (G)) is
finite, we need at least 1 — x(Jrop,(G)) equations to get a presentation of

My £191(G).

Definition 6.9. [Finitely Presented Groupoids and Categories] A groupoid/
category X is finitely presented if there is a small connected groupoidal
computad /small connected computad (g, g2, G) which presents X, such that
X(Fop, (G)) and |go| are finite.

Recall the definition of deficiency of groups w.r.t. the free group monad
LT, given in 6.1. Definition 6.9 agrees with the definition of finitely £yF-
presented groups. Moreover, as explained in Proposition 6.11, Definition 6.10
also agrees with the definition of £ Fy-deficiency of groups.

Definition 6.10. [Deficiency of a Groupoid] Let X be a finitely presented
groupoid. The deficiency of a presentation of X by a small connected
groupoidal computad (g, go, G) is defined by def (g,g2,G) = 1 — |go| —
X (F1op, (G)), provided that |gs| and x(F7op, (G)) are finite.
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Moreover, the deficiency of the groupoid X is the maximum of the set

{(1=x (9%, (0.02:0)) ) € Z: Puoy (8,92, G) = X and (I, (G)) € 2}

Proposition 6.11. If X is a finitely presented group, the deficiency of ¥(X)
w.r.t. presentations by groupoidal computads is equal to def m(X)

Proof: This result follows from Remark 4.19. ]

Theorem 6.8 is the first part of Corollary 6.15. The second part is Theorem
6.13 which is easy to prove: but we need to give some explicit constructions
to give further consequences in 6.4. To do that, we need the terminology
introduced in:

Remark 6.12. Given a small reflexive graph G, a morphism f of F3(G)
determines a subgraph of GG, namely, the smallest (reflexive) subgraph G’ of
G, called the image of f, such that f is a morphism of FF(G’). More generally,
given a small computad g = (g, g2, G) of Recmp, it determines a subgraph G’
of GG, called the image of the computad g in GG, which is the smallest graph
G’ satisfying the following: there is a computad g’ : go x & — F*(G") such
that

0 x 6 1 FR(G)

S

FH(G)

commutes. We also can consider the graph domain and the graph codomain
of a small computad g = (g, g2, G), g : 8P — Cat, which are respectively the
smallest subgraphs g and g% of G such that g(d")(gs x 2) and g(d°)(ga x 2)
are respectively in FX(g?) and FR(g®).

Of course, we can consider the notions introduced above in the category of
computads or groupoidal computads as well.

Theorem 6.13. Let G be a small connected graph such that x(F1ep,(G)) € Z
(equivalently, m1(F1op, (G)) is finitely generated). There is a groupoidal com-
putad (§, g2, G) which presents My £1F1(G) such that |gs| = 1 — X (Frop, (G))-

Proof: Without losing generality, in this proof we consider reflexive graphs,
and computads over reflexive graphs. Let GG be a small reflexive connected
graph such that its fundamental group is finitely generated. If Gigree i
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the maximal (reflexive) tree of G, we know that the image of the (natu-
ral) morphism of reflexive graphs G — G/Gutree by the functor LlﬂfiR is
an equivalence. That is to say, we have a natural equivalence £;F5(G) —
L1FR(G/Gmiree) Which is in the image of £;TF.

In partlcular each arrow f of G/Guyree corresponds to a umque arrow f of
G such that f is not an arrow of Gee and the image of f by G — G/Gutree
is f.

Recall that, since G/Guee has only one object, £1FF(G/Ghuiree) is the
suspension of the group freely generated by the set G /G ree(2) of arrows. By
hypothesis, this set is finite and has 1 — x(JF7op,(G)) € N elements. Thereby
we have a computad g : &P — cat,

g2 X 2

gz{lR(G/GmtreJ )

in which gy 1= G/Guree(2), 9(d°)(f,0 — 1) = f and g(d")(f,0 — 1) = id.
The computad Lﬁcmp(g) : B°P — gr gives a presentation of the trivial group.

The computad g lifts through G — G/Gytree to a (small) groupoidal com-
putad g : &°° — cat over G. More precisely, we define g = (g, g2, G),

(1) = L,IR(G), 3(2) = gox2, (d")(f,0 > 1) = f and §(d")(f,0 > 1) = f

in which f is the unique morphism of the (thin) subgroupoid £1F5%(Gmtree)
of £,FF(G) such that the domain and codomain of f coincide respectively
with the domain and codomain of ]?

Of course, this construction provides a 2-natural transformation which is
pointwise an equivalence § — L5 (g),

go X 2 L,FRG)
go X 2 g{f(G/Gmtree)

It is easy to see that, in this case, it induces an equivalence between the
coequalizers. Thereby g presents a thin groupoid, which is £;P1(c$7(G)).
This completes the proof. u

Remark 6.14. The graph domain and the graph codomain of the computad
g constructed in the proof above are, respectively, inside and outside the
maximal tree Gpee. More precisely, for every a € gy = g, the g(d*)(a,0 —
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1) is a morphism of £1FF(Giuiree) and g(d®)(a, 0 — 1) is a morphism of length
one which is not an arrow of Gpyiree.

By Theorem 6.13 and Theorem 6.7 we get:

Corollary 6.15. The deficiency of a finitely presented thin groupoid is 0.
In particular, this result generalizes the fact that the deficiency of the trivial
group 1s 0.

Remark 6.16. [Finite measure and deficiency| Let R, be the category whose
structure comes from the totally ordered set of the non-negative real numbers
with a top element oo with the usual order. The initial object is of course 0,
while the terminal object is co.

Let X’ be the subcategory of monomorphisms of a category X. A finite
(strong/naive) measure on X is a functor p : X’ — R that preserves finite
coproducts (including the empty coproduct, which is the initial object).

A pair (X, u) together with a monad T on X give rise to a notion of finite
T-presentation: a presentation as in the T-presentation diagram is pu-finite
if u(Gy1) and p(Go) are finite. In this case, we define the (T, pu)-deficiency
of such a p-finite T-presentation by defs ) 1= u(G1) — p(G2). If X is a T-
algebra which admits a finite presentation, X is called finitely J- presented.

For instance, cardinality is a measure on the category of sets Set which
induces the notions of finite T-presentation and T-deficiency of algebras over
sets given in 6.1.

Finally, consider the category of graphs Grphg g, with finite Euler charac-
teristic: the measure Fuler characteristic xy and the monad L£1F, induce the
notion of (E, X )-deficiency of an £;F;-presentation. If we consider the
inclusion of Theorem 4.5, this notion of deficiency coincides with the notion
of deficiency of a presentation via groupoidal computad given in 6.3.

6.4. Presentation of Thin Categories. The results on presentations of
thin groupoids can be used to study presentations of thin categories. For
instance, if a presentation of a thin groupoid can be lifted to a presentation
of a category, then this category is thin provided that the lifting presents a
category that satisfies the cancellation law. To make this statement precise
(which is Proposition 6.18), we need:

Definition 6.17. [Lifting Groupoidal Computads| We denote by cmpyy the
pseudopullback (iso-comma category) of P ) : cmp,, — gr along £;P; :
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cmp — gr. A small computad g is called a lifting of the small groupoidal
computad g if there is an object Cg, of cmpjie such that the images of this
object by the functors

CMpyg — Cmpgm CMpPjg — CMP
are respectively g’ and g.

Proposition 6.18. If g’ is a groupoidal computad that presents a thin groupoid
and P1(g) satisfies the cancellation law, then g presents a thin category.

Proof: By hypothesis, P(10)(g') = £1P1(g) is a thin groupoid and P;(g) sat-
isfies the cancellation law. Hence P;(g) is a thin category. |

Theorem 6.19. If G is small connected fair graph such that x(F1op, (G)) € Z,
then there is a computad (g, g2, G) of cmp such that |ga| = 1 — x(F1op, (G))

which presents the groupoid M1L,F(G).

Proof: Let Guee be a maximal weak tree of G which is also the maximal
tree. Let (g, g2, G) be the groupoidal computad constructed in the proof of
Theorem 6.13 using the maximal tree G ree.

We will prove that the groupoidal computad (g, g2, G) can be lifted to a
computad. In order to do so, we need to prove that, for each o € go, the
restriction g|, : P — gr,

{a} x 2 2 L1F1(G),

can be lifted to a small computad. By Remark 6.14, we know that g(d*)(ca, 0 —
1) is a morphism of £1F1(Guree) and g(d®)(a,0 — 1) is a morphism of
length one which is not an arrow of Giyiree. Since Guree 1S & maximal weak
tree, we conclude that the image of g|, is not a weak tree. Hence there
are parallel morphisms fy, fi of F1(G) that determine the same graph de-
termined by the image of g|, (see Remark 6.12) such that fy is a mor-
phism of F1(Guee). Therefore, g can be lifted to (g|a, {a},G) given by
gla 1 B°P — cat, glo(d°)(a,0 > 1) = fo and g|o(d')(a,0 — 1) = fi. m

As a corollary of the proof, we get:

Corollary 6.20. If G is small connected fair graph such that x(Frop, (G)) € Z
and (g, 92, G) is a small computad which presents My F1(G), then |go| =

1= X(T70p, (G)).
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Proof: As consequence of the constructions involved in the last proof, for
each 2-cell of the computad g of Theorem 6.19, there are parallel morphisms
in F1(G) such that they can be represented by (completely) different lists of
arrows of G. |

However, in the conditions of the result above, often we need more than
1 — X(F7op, (G))) equations. The point is that the lifting given in Theorem
6.19 often does not present a category that satisfies the cancellation law. As
consequence of the proof of Theorem 6.19, we get a generalization. More
precisely:

Corollary 6.21. Let G be a small connected graph such that x(Frop, (G)) € Z.
Consider the groupoidal computad (g, g2, G) constructed in Theorem 6.13.
There is a largest groupoidal computad of the type (b,bs, G) which is a

subcomputad of g and can be lifted to a computad (b, f)g;G) in the sense of
Definition 6.17. We have that min {|to] : P1(x, 12, G) = MuF1(G)} = |hal.

Definition 6.22. A pair (G, Guee) is called a monotone graph if G is a
small connected graph, x(Frop, (G))) € Z, Griree is a maximal weak tree of G
and, whenever there exists an arrow f : x — y in G, either x < yory < x
in which < is the partial order of the poset F1(Gpree)-

If (G,Guee) 18 @ monotone graph and f : x — y is an arrow such that
y < z, f is called a nonincreasing arrow of the monotone graph. Finally, if
(G, Gtree) does not have nonincreasing arrows, (G, Gugree) is called a strictly
increasing graph.

Theorem 6.23. Let (G, Gutree) be a strictly increasing graph. There is a
computad (g, 82, G) such that |ga] = 1 — x(Frop,(G))) which presents
Mlﬁtl(Ga Gmtree) .

Proof: For each arrow f : x — y outside the maximal weak tree Giygree, there
is a unique morphism f : z — y in F1(Guiree)- It is enough, hence, to define
go = {Oéf . f € G(2) - Gmtree(2)}7 g(do)(@fao - 1) = f and g<d1)<04f,0 -
1) := f. It is clear that this is a lifting of the groupoidal computad g of
Theorem 6.13. Actually, g is precisely the lifting given by Theorem 6.19.
Moreover, it is also easy to see that Pi(g) satisfies the cancellation law.
Therefore the category presented by g is thin. u

As a consequence of Corollary 6.20 and Theorem 6.23, we get:
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Corollary 6.24. Let (G, Gmtree)_be a strictly increasing graph. The minimum
of the set {|ga| : P1(g, 92, G) = My F1(G)} is equal to 1 — x(Frop, (G)).

Theorem 6.25. Let (G, Guree) be a monotone graph with precisely n non-
increasing arrows. There is a computad (g, g2, G) such that |go| = 1 —

X(F1op, (G))) + n which presents M F1(G, Gratree) -

Proof: For each nonincreasing arrow f : x — y outside the maximal weak
tree Ggree, €ither there is a unique morphism f : y — x in F;(Ggree) OF there

is a unique f: z — y in F1(Guytree). We define A* the set of the nonincreasing
arrows of G outside Gpee and A := G(2) — Gtree(2) — A*. We define

go:={ay: feAU{B ) : feA and je {-1,1}},
g(do)(@f,O—’l) = fa g(dl)(@fvo_)w = fa
g(d)(By1,0 = 1) == ff,  a(d) (B, 0 — 1) :=id,

g(do)(ﬁ(f,—l)v 0— 1) = ff7 g(d1><6(f,—l)’ 0— 1) = 1id.

It is clear that is a lifting of the groupoidal computad g of Theorem 6.13.
Actually, the lifting given by Theorem 6.19 is a subcomputad of g. Moreover,
it is also easy to see that P;(g) satisfies the cancellation law. Therefore the
category presented by g is thin. u

Remark 6.26. If we generalize the notion of deficiency of a groupoid and
define: the deficiency of a finitely presented category X (by presentations via
computads) is, if it exists, the maximum of the set

{(1 =X (Frop, (8:92.G))) €Z : P1(g, 92, G) = X and x(Frop, (G)) € Z}

then, given a strictly increasing graph (G, Gutee), the deficiency of
M F1(G, Guiree) is 0. However, for instance, the deficiency of the thin cate-
gory (by presentation of computads) V2 is not 0: it is —1. More generally,
by Corollary 6.20 the deficiency of category freely generated by a tree (char-
acterized in Theorem 2.22 and Corollary 2.23) is 0, while the deficiency of
category freely generated by a weak tree G is x(G) — 1. Furthermore, if
(G, Guree) 18 @ monotone graph, the deficiency (by presentations via com-
putads) of M;F1(G, Guree) is —n in which n is the number of nontrivial
isomorphisms of X (see Theorem 6.25).
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7. Higher Dimensional Icons

Icons were originally defined in [23]. They were introduced as a way of
organizing bicategories in a 2-category, recovering information of the tricat-
egory of bicategories, pseudofunctors, pseudonatural /oplax natural transfor-
mations and modifications. Thereby, icons allow us to study aspects of these
2-categories of 2-categories/bicategories via 2-dimensional universal algebra.

There are examples of applications of this concept in [23, 22]. In this
setting, on one hand, we get a 2-category 2Cat which is the 2-category of 2-
categories, 2-functors and icons. On the other hand, we have the 2-category
Bicat of bicategories, pseudofunctors and icons.

The inclusion 2Cat — Bicat can be seen as an inclusion of strict algebras in
the pseudoalgebras of a 2-monad. Therefore, we can apply 2-monad theory
to get results about these categories of algebras. The 2-monadic coherence
theorem [4, 21, 24] can be applied to this case and we get, in particular,
the celebrated result that states that “every bicategory is biequivalent to a
2-category”.

In Section 8, we show that the 2-categories 2Cat and Bicat provide a concise
way of constructing freely generated 2-categories as coinserters. We also show
analogous descriptions for n-categories. In order to do so, we give a definition
of higher dimensional icon and construct 2-categories nCat of n-categories in
this section. It is important to note that there are many higher dimensional
versions of icons and, of course, the best choice depends on the context. The
definition of 3-dimensional icon presented herein is similar to that of “ico-
icon” introduced in [11], but the scope herein is limited to strict n-categories.

Definition 7.1. [V-graphs| Let V' be a 2-category. An object G of the 2-
category V Grph is a discrete category G(1) = G of Cat with a hom-object
G(A, B) of V for each ordered pair (A, B) of objects of G(1).

A l-cell F: G — H of VGrph is a functor Fy : G(1) — H(1) with a
collection of 1-cells {F(4 p) : G(A, B) — H<FO(A)’FO(B))}(A,B)GGOXGO of V.
The composition of 1-cells in V' Grph is defined in the obvious way.

A 2-cell &« : F = (is a collection of 2-cells {&(A’B) : Flap = G(AvB)}(A,B)eG%
in V. It should be noted that the existence of such a 2-cell implies, in par-
ticular, that Fy = Gy. The horizontal and vertical compositions of 2-cells in

V Grph come naturally from the horizontal and vertical compositions in V.

Let V' be a 2-category with finite products and large coproducts (indexed
in discrete categories of Cat). Assume that V' is distributive w.r.t. these large
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coproducts. We can define a 2-monad Ty on V Grph such that Ty (G)y = Gy
and

R R e
..... C))eG)

in which )] denotes Coproduct and this coproduct includes the term for j = 0
which is G(A, B). The actions of Ty on the 1-cells and 2-cells are defined in
the natural way. The component m,, : T5(G) — Ty (G) of the multiplication
is identity on objects, while the 1-cells between the hom-objects are induced
by the isomorphisms given by the distributivity and identities G(C}, B) x
G(A,Cy) = G(Cj,B) x --- x G(A,Cy). The component 7, : G — Ty(G) of
the unit is identity on objects and the 1-cells between the hom-objects are
given by the natural morphisms G(A, B) — > icn 2c,,.cpeqi G(C, B) %

- x G(A, C}) which correspond to the “natural 1nclu81ons for j =0.

In this context, we denote by V-Cat the category of V-enriched categories
(described in Section 1) w.r.t. the underlying cartesian category of V.

.....

Lemma 7.2. Let V be a 2-category satisfying the properties above. The
underlying category of the 2-category of strict 2-algebras Ty -Alg_ is equivalent
to V-Cat.

Proof: This follows from a classical result that states that the enriched cate-
gories are the Eilenberg-Moore algebras of the underlying monad of Ty. See,
for instance, [3]. |

Remark 7.3. We could consider the general setting of a 2-category V with
a monoidal structure which preserves (large) coproducts (see, for instance,
[30]), but this is not in our scope.

Corollary 7.4. The underlying category of the 2-category of strict 2-algebras
Tcat-Alg, 1s equivalent to 2-Cat.

Definition 7.5. [nCat] We define 2Cat := Tc,-Alg, and Bicat := Ps-T-Alg.
An icon is just a 2-cell of Bicat. More generally, we define

nCat := ‘I(n—l)Cat_AIgs-

The 2-cells of nCat are called n-icons. Following this definition, ¢cons are also
called 2-icons and 1-icons are just natural transformations between functors.

Proposition 7.6. The underlying category of nCat is the category of n-
categories and n-functors n-Cat.



44 FERNANDO LUCATELLI NUNES

Remark 7.7. We say that an internal graph 0 : &°? — n-Cat satisfies the
n-coincidence property if, whenever N 3 m < n, 9(d")(x) = 0(d°)(k) for every
m-cell k of X.

If F,G : X — Y are n-functors, n > 1 and there is an n-icon o : F' = G,
then, in particular, the pair (F, G) defines an internal graph

F
XY
G
in nCat (or n-Cat) that satisfies the (n—2)-coincidence property. For instance,
if there is an icon « : F' = G between 2-functors (or pseudofunctors), then
the internal graph defined by (F, ) satisfies the O-coincidence property: this
means that F'(k) = G(k) for any O-cell (object) k of X.

Definition 7.8. [Universal n-cell] For each n € N, we denote by 2,, the n-
category with a nontrivial n-cell K with the following universal property: if
18 an n-cell of an n-category X, then there is a unique n-functor F : 2, — X

such that F(K) = k.

Remark 7.9. We have isomorphisms 2; =~ 2 and 25 = 1. Moreover, in
general, 2, is an n-category but we also denote by 2, the image of this n-
category by the inclusion n-Cat — (n + m)-Cat for m > 1. Therefore, for
instance, we can consider inclusions 2,, — 2,,,,, which are (n + m)-functors,
i.e. morphisms of (n + m)-Cat.

Of course, 2,, has a unique nontrivial n-cell. This n-cell is denoted herein
by K,, or just K whenever it does not cause confusion.

Theorem 7.10. Let F,G : 2,, —» Y be (n+1)-functors such that F(k) = G(k)
for all m-cell k, provided that m < n. There is a one-to-one correspondence
between the (n + 1)-cells F(k) = G(R) of Y and (n + 1)-icons F' = G.

8. Higher Computads

Recall that a derivation scheme is a pair (0,05) in which 05 is a discrete
category and 0 : &% — C(Cat is an internal graph with the same format
of 0-diagram (described in Section 4) satisfying the 0-coincidence property.
Roughly, the 2-category freely generated by a derivation scheme is the cat-
egory 0(1) freely added with the 2-cells of 05 in the following way, for each
a € 09, we freely add a 2-cell

a:0(d")(a,0 - 1) = 9(d")(a,0 — 1).
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This construction is described in [34]. More precisely, it is constructed a
2-category Fo.per(0) with the following universal property: a 2-functor G :
Foper(0) — X is uniquely determined by a pair (Gy,Gs) in which Gy :
0(1) — X is a 2-functor (between categories) and Gy : 05 — 2-Cat(2,, X) is a
2-functor (between discrete categories) satisfying the codomain and domain
conditions, which means that, given a € 0y, the 1-cell domain of Ga(«) is
equal to 0(d!)(a,0 — 1) and the codomain of Go() is equal to 9(d")(c, 0 —
1).

Theorem 8.1. There is a functor Fope : Der — 2-Cat which gives the 2-
category freely generated by each derivation scheme. Furthermore, for each
derivation scheme (9,02),

?2-Der<0) ~J %0,

in which, by abuse of language, J %k 0 denotes the coinserter in 2Cat of the
internal graph 0 composed with the inclusion Cat — 2Cat.

Proof: An object of the inserter
2Cat(0(1), X)) —= 2Cat(d2 x 2, X).

is a 2-functor Gy : 9(1) — X and an icon G; (9(d")) = G (9(d")) which
means a 2-cell Go(«v) for each a € 99 by Theorem 7.10 such that the 1-cell
domain of Gy(c) is equal to 9(d')(c,0 — 1) and the codomain of Gy(a) is
equal to 9(d°)(c,0 — 1). This proves that the coinserter is determined by
the universal properties of the 2-category freely generated by the derivation
scheme of 0. ]

We already can construct the 2-category freely generated by a computad.
This is precisely the 2-category freely generated by its underlying derivation
scheme. More precisely, there is an obvious forgetful functor Cmp — Der
and the functor F5 : Cmp — 2-Cat is obtained from the composition of such
forgetful functor with Fy pe,.

Definition 8.2. [2,] For each n € N, of course, there are precisely two
inclusions 2(,,_1y — 2,. This gives an n-functor
J, : & — n-Cat, 2(n,1) —Z2,.

Definition 8.3. [8,] Consider the usual forgetful functor (n + 1)-Cat —
n-Cat. The image of 2(,,,1) by this forgetful functor is denoted by &,,.
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Lemma 8.4. The internal graph of Definition 8.2 induces an n-functor
200-1) [ [2(n-1) — 2n. The pushout in n-Cat of this n-functor along itself
15 1somorphic to G,,.

Furthermore, there is an inclusion n-functor &,_1) — 2, induced by the
counit of the adjunction with right adjoint being n-Cat — (n — 1)-Cat. The
pushout in n-Cat of this inclusion along itself is isomorphic to &,,.

Definition 8.5. [Higher Derivation Schemes] Consider the functor (— x
&, 1) : SET — (n —1)-Cat,Y — Y x &. The category of derivation n-
schemes is the comma category n-Der := (— x &,,_1/Idcat).

Remark 8.6. Of course, Der = 2-Der. Also, it is clear that the derivation
n-scheme is just a pair (9, 03) in which 95 is a discrete category and 9 : &P —
(n — 1)-Cat is an internal graph

09 X 2(n,1) —_ 0(1)
satisfying the (n — 2)-coincidence property.

We can define a forgetful functor €, pe : n-Cat — n-Der where €, _pe (X) :
&P — (n — 1)-Cat is an internal graph (derivation scheme)

n—Cat(2n, X) X 2(71*1) —— X

in which n-Cat(2,, X) denotes the set of n-functors 2,, — X and, by abuse
of language, X is the underlying (n — 1)-category of X. This graph is
obtained from the graph n-Cat[J,—, X| : &°° — n-Cat: firstly, we com-
pose each nontrivial morphism in the image of this graph with the inclusion
n-Cat(2,, X) — n-Cat[2,,, X] (induced by the counit of the adjunction given
by the inclusion and underlying set) as follows:

Cat(2,, X) — n-Cat[2,, X| —= n-Cat[2(,_1), X]
and, then, we take the mates:
n-Cat(2,, X) x 24,-1) —= X. (C-per (X )-diagram)

Finally, we compose this internal graph &°° — n-Cat with the underlying
functor n-Cat — (n — 1)-Cat.

The universal property that defines Fy_pe, is precisely the universal property
of being left adjoint to Co.pe, namely a morphism of derivation schemes
G : 0 — Cope(X) corresponds to a pair of 2-functors (G, Gy) with the
universal property described in the proof of Theorem 8.1.
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Theorem 8.7. There is an adjunction Foper 4 Coper. More generally, there
is an adjunction F, per = Cpper 1 which F,, per(0) := T 5k 0 where, by abuse
of language, J 5k 0 denotes the coinserter in nCat of the derivation n-scheme
0: B8P — (n — 1)-Cat with the inclusion (n — 1)-Cat — nCat.

Proof: Similarly to the proof of Theorem 8.1, this result follows from the
universal property of the coinserter and from Theorem 7.10. u

Proposition 8.8. In this proposition, we denote by J,, the functorJ, : & —
n-Cat composed with the isomorphism &°°? — &. In this case, J,, is itself a
higher derivation scheme. Then JF g, 1).per(Jn) is isomorphic to 2, 1.

Remark 8.9. The inclusion Cmp — Der has a right adjoint (—)cmp : Der —
Cmp such that, given a derivation scheme d : 93 x & — X, (9)cmp is the
pullback comp’ (9) in Cat of the morphism 9 along compy. It is clear that
this adjunction is induced by the adjunction F; H C;.

Theorem 8.10. There 1s an adjunction Fo — Co such that Fo : Cmp 2-Cat
gives the 2-category freely generated by each computad. More precisely, given
a computad g : &°° — Cat in the format of the d-diagram, Fo(g) is the
coinserter in 2Cat of g composed with the inclusion Cat — 2Cat.

Proof: It is enough to define the adjunction F5 H €, as the composition of
the adjunctions — — (—)cmp and Fo.per = Co per- [

Definition 8.11. [n-computads| For each n € N, consider the functor (— x
®,) : SET — n-Cat,Y — Y x &,,. The category of (n + 1)-computads is
defined by the comma category

(n+ 1)-Cmp := (— x &,/F,)
in which &,, is the composition of the inclusion n-Cmp — n-Der with F,_per.

Remark 8.12. By Lemma 8.4, it is easy to see that an n-computad is just
a triple (g, g2, G) in which g, is a discrete category, G is a (n — 1)-computad
and g : 8P — (n — 1)-Cat is an internal graph

g2 X 2(n—1) —Z F(n-1)(G) (n-computad diagram)

satisfying the (n — 2)-coincidence property. Or, more concisely, by Remark
8.6, an n-computad is just a derivation n-scheme (g, g2) with a (n — 1)-
computad G such that g(1) = F,_1)(G).
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Theorem 8.13 (Freely Generated n-Categories). For each n € N, there is
a functor F, : n-Cmp — n-Cat such that, given an n-computad as in the
n-computad diagram, F,(g) is given by the coinserter in nCat of g : &P —
(n — 1)-Cat composed with the inclusion (n — 1)-Cat — nCat. This functor
i1s left adjoint to a functor €, : n-Cat — n-Cmp which gives the underlying
n-computad of each n-category.

Proof: Of course, F,, coincides with the functor &, of Definition 8.11. We
prove by induction that &, is left adjoint. It is clear that 3 - C;. We
assume by induction that we have an adjunction &,, - C,,.

We have that F,, - C,, induces an adjunction (=) - (=) (m-+1)-cmp in Which
the left adjoint is the inclusion m-Cmp — m-Der similarly to what is de-
scribed in Remark 8.9. That is to say, (9)(m+1)-cmp is the pullback of 9 along
the component of the counit of F,, 4 €, on 9(1).

Finally, we compose the adjunction F,,;1).per = C41)-per With the adjunc-
tion (—) = (=) (m+1)-cmp to get the desired adjunction F,, 1) = Cni)- |

Remark 8.14. Recall that Bicat is herein the 2-category of bicategories,
pseudofunctors and icons. In the 2-dimensional case, the coinserter success-
fully gives the bicategory freely generated by a 2-computad. Namely, the
functor Fgicat : Cmp — Bicat is given by Fpicat(g) is the coninserter of g
composed with the inclusion Cat — Bicat.

An n-category X is a free n-category if there is an n-computad g : &P —
(n — 1)-Cat such that F,(g) =~ X.

Definition 8.15. Let g = (g, g2, G) be an n-computad. The objects of go
are called n-cells of g, while, whenever n = m > 0, an (n — m)-cell of g is an
(n —m)-cell of the (n —1)-computad G. In this context, we use the following
terminology for graphs in Grph: the 0-cells of a graph are the objects and its
1-cells are the arrows.

Similarly to the 2-dimensional case, we denote an n-cell by ¢ : @« = o' if
g(d’)(a, R) = o and g(d')(a, K) = a.

Remark 8.16. For each n € N such that n > 1, there is a forgetful functor
u, : n-Cmp — (n — 1)-Cmp, (g, g2, G) — G. This forgetful functor has a left
adjoint i, : (n — 1)-Cmp — n-Cmp such that

in(g): D x24-1

Sr(n—l)(g>
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and a right adjoint o, : (n — 1)-Cmp — n-Cmp, defined by o,(G) =
(G, G5, G) in which there is precisely one n-cell (o, : @ = o' for each
ordered pair (o, @) with same domain and codomain of F,,_1)(G). Actually,
it should be observed that the description of these functors are similar to
those given in Remark 4.15.

9. Freely Generated 2-Categories

Recall the adjunction Ecmp - Remp in which Ecmp : Cmp — RCmp is the
inclusion (see Definition 4.1). We also can consider the 2-category freely gen-
erated by computad over a reflexive graph. More precisely, given a computad
g of RCmp, F3(g) is the coinserter of g : °° — 2Cat. It is clear that F is left
adjoint to a forgetful functor G%{. Moreover, RCmpG§ ~ G, and EF%%ICmP ~ F.

In this section, following our approach of the 1-dimensional case, we give
some results relating free 2-categories with locally thin categories and locally
groupoidal categories. In order to do so, we also consider the (strict) con-
cept of (2,0)-category given in Definition 9.6 and the (2,0)-category freely
generated by a computad which provides a way of studying some elementary
aspects of free 2-categories. We start by giving some sufficient conditions to
conclude that a 2-category is not free.

Remark 9.1. [Length [34]] Recall that oy : Grph — Cmp is right adjoint
and () is the terminal graph in Grph. Therefore oo(()) : 8°? — Cat is the
terminal computad. If g is a computad, the length 2-functor is defined by
09 := Fy(g — 02(())). It should be noted that ¢9 reflects identity 2-cells.

The 2-category Fo09(()) is described in [34]. The unit of the adjunction
F5 -4 €y induces a morphism of computads o5((O)) — C2F205((). The image
of the 2-cells of 05(()) are called herein simple 2-cells. If « is a composition
in F209(Q) of a simple 2-cell with (only) 1-cells (identity 2-cells), « is called
a whiskering of a simple 2-cell. 1t is clear that every 2-cell of o9(()) is given
by successive vertical compositions of whiskering of simple 2-cells. It is also
easy to see that 02((0)) does not have nontrivial invertible 2-cells.

The counit of the adjunction F5 — € induces a 2-functor pasty : FoCo(X) —
X for each 2-category X, called pasting.

Remark 9.2. Similarly to the 1-dimensional case, the terminal reflexive
computad of Rcmp is the computad with only one 0-cell, the trivial 1-cell
and only one 2-cell. That is to say, the computad & — JF(e) which is
the unique functor between & and the terminal category FR(e). If b is a
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subcomputad of g in Remp, we denote by g/b the pushout of the inclusion
h — g along the unique morphism of reflexive computads between § and the
terminal reflexive computad in Rcmp.

As a particular case of Proposition 9.3, if a 2-category X has a nontrivial
invertible 2-cell, then X is not a free 2-category. Consequently, any locally
thin 2-category that has a nontrivial invertible 2-cell is not a free 2-category.

Proposition 9.3. Let o be an invertible 2-cell of a 2-category X in 2-Cat.
If we can write o as pasting of 2-cells in which at least one of the 2-cells is
nontrivial, then X is not free.

Proof: Let a be a pasting of 2-cells in F5(g). We have that ¢#(«) is a pasting
of 2-cells of Foo9(()) with at least one nontrivial 2-cell. Therefore ¢9(«) is
not identity and, hence, « is not invertible. u

Recall that there is an adjunction My 4 My which induces a monad Ma,
in which M, : Prd-Cat — 2-Cat is the inclusion.

Corollary 9.4. Let X be a 2-category in 2-Cat. Assume that B: f = g is a
2-cell of X such that | = g. If the pasting of 8 with another 2-cell is a 2-cell
a:h = h, then My(X) is not a free 2-category.

Proof: The unit of the monad M, gives, in particular, a 2-functor X —
My(X). Therefore, the image of a : h = h by this 2-functor is also the
pasting of a nontrivial 2-cell with other 2-cells, but, since Ms(X) is locally
thin, a is the identity. Therefore My(X) is not free by Proposition 9.3. m

Proposition 9.5. Consider the computad gA? : B8P — Cat defined in Exam-
ple 4.7. The locally thin 2-category MoTFo(g?) is not a free 2-category. In
particular, Fo(g>?) and LF5(g>?) are not locally thin.
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Proof: Since M2?2(9A2) is locally thin, we conclude that:

0 d 1 0 (identity descent diagram)
0
d —= & =
d| = |d
1 2
dO
2
1
Therefore, by Corollary 9.4, the proof is complete. n

If a 2-category X is locally groupoidal and free, then every 2-cell of X is
identity. Hence, in this case, X is locally discrete, that is to say, it is a free
1-category.

We call MyFs(g) the locally thin 2-category freely generated by g. But we
often consider such a 2-category as an object of 2-Cat, that is to say, we often

consider MyF5(g).

Definition 9.6. [(n, m)-Categories| If m < n, an (n,m)-category X is an
n-category of n-Cat such that, whenever n = r > m, all r-cells of X are
invertible. The full subcategory of n-Cat consisting of the (n,m)-categories
is denoted by (n, m)-Cat.

For instance, groupoids are (1,0)-categories and locally groupoidal cate-
gories are (2, 1)-categories. The adjunction £; - U; also induces an ad-
junction L0y 4 Uz0) in which U ) @ (2,0)-Cat — 2-Cat is the inclusion.
Thereby, given a computad g of Cmp, we can consider the locally groupoidal
2-category LoFo(g) freely generated by the computad g, as well as the (2,0)-
category L0 F2(g) freely generated by g.

Sometimes, we denote L9 1) := Lo and Ug,1) := Ua,1).

Remark 9.7. Let X be a (2,0)-category of (2,0)-Cat and assume that Y
is a sub-2-category of X. We denote by X /Y the pushout of the inclusion
Y — X along the unique 2-functor between Y and the terminal 2-category.
If Y is locally discrete and thin (that is to say, a thin category), then X /Y
is isomorphic to X.
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Definition 9.8. A 2-category X satisfies the (2,1)-cancellation law if it
satisfies the cancellation law w.r.t. the vertical composition of 2-cells (that
is to say, it satisfies the cancellation law locally).

A 2-category X satisfies the (2, 0)-cancellation law if it satisfies the (2,1)-
cancellation law and, whenever X has 1-cells f, g and 2-cells «, 5 such that
id, xa=id =id, = B+id , a = .

It is clear that, if a 2-category X satisfies the (2,0)-cancellation law, in
particular, the underlying category of X satisfies the cancellation law. More-
over, every (2, 1)-category satisfies the (2, 1)-cancellation law and every (2, 0)-
category satisfies the (2, 0)-cancellation law.

Finally, the components of the units of the adjunctions £, - U, and
L0y 7 U0 are locally faithful on 2-categories satisfying respectively the
(2, 1)-cancellation law and the (2, 0)-cancellation law. Thereby:

Theorem 9.9. Let X be a 2-category. If X satisfies the (2, 1)-cancellation
law and Lo(X) is locally thin, then X is locally thin as well. Analogously, if
X satisfies the (2,0)-cancellation law and L20)(X) is locally thin, then X is
locally thin as well

Corollary 9.10. Let g be an object of Cmp. Consider the following state-
ments:

(a): L0 Fa(g) is locally thin,

(b): L£2F2(g) is locally thin,

(c): Fa(g) is locally thin.
We have that (a) implies (b) implies (c).

Proof: 1t is clear that F5(g) and LoF5(g) satisfies the (2, 0)-cancellation law.
Therefore we get the result by Theorem 9.9. u

Definition 9.11. A 2-category X satisfies the underlying terminal property
or u.t.p. if the underlying category of X is the terminal category.

On one hand, by the Eckman-Hilton argument, given any small 2-category
X with only one object *, the vertical composition of 2-cells id = id coin-
cides with the horizontal one and they are commutative. Therefore, in this
context, the set of 2-cells id = id endowed with the vertical composition is
a commutative monoid, denoted by Q%(X) := X (x, =)(id, id).

On the other hand, given a commutative monoid Y, the suspension > (Y)
is naturally a monoidal category (in which the monoidal structure coincides
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with the composition). This allows us to consider the double suspension
»¥2(Y) which is a 2-category satisfying w.t.p. and the set of 2-cells id = id
is the underlying set of Y, while the vertical and horizontal compositions
of ¥2(Y) are given by the operation of Y. More precisely, there is a fully
faithful functor
32 : AbGroup — (2, 1)-cat

between the category of abelian groups and the category of small locally
groupoidal 2-categories which is essentially surjective on the full subcategory
of 2-categories satisfying u.t.p. such that Q%2 =~ IdapGroup-

If (g, g2, G) is a small 2-computad in which G' = ¢ is the connected graph
without arrows, then £ 0)F2(g, g2, G) is isomorphic to the double suspension
of a free abelian group.

Theorem 9.12. If (g, ga, ®) is a small reflexive computad, then £ 0)F3(g) =
L255(9) = X275(T70p,(9)).

Proof: Since FF(e) is the terminal category, Q% (£2F5(g)) is the abelian

group freely generated by the set g that is also isomorhic to mo(Frop,(9))-
To complete the proof, it is enough to observe that L) (X) = Lo(X)

whenever X does not have nontrivial 1-cells. ]

We say that a computad g is 1-connected if Frop,(g) is simply connected.
By Corollary 6.5, a computad g is 1-connected if and only if £;P(g) is
connected and thin.

Definition 9.13. [f.c.s.] Let g = (g,92,G) be a computad of Rcmp with
only one 0-cell and let h be a subcomputad of g.

We call g° := b a full contractible subcomputad of g or, for short, f.c.s. of
g, if 5(270)975(95) has a unique 2-cell f = id or a 2-cell id = f for each 1-cell
f of g. In particular, if g° is an f.c.s. of g, g° has every 1-cell of g.

It should be noted that, if g° is an f.c.s. of g, we are already assuming that
g is an object of Rcmp.

There are small (reflexive) computads with only one 0-cell and no full
contractible subcomputad. For instance, consider the computad ¢ with two
1-cells f, g and with 2-cells a : gf = id and 8 : id = ¢g. The number of 2-cells
of any subcomputad belongs to {0, 1,2}. It is clear that the subcomputads
with only one 2-cell are not full contractible subcomputads. It remains to
prove that the whole computad is not an f.c.s. of itself. Indeed, the 2-cells

id _, +(f-a)and a- (B *1id,) below are both 2-cells f = id of L0 F5(x).
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*4>f *
¥ ——mM8M8M8MM > %
id

Theorem 9.14. If g° is an f.c.s., then the 2-categories Fo(g®), LoF3(g®)
and £2,0)F3(g") are locally thin.

Proposition 9.15. If g* = (g% ¢5,G) is an f.c.s., then Sr%qopz

tractible. In particular, it is simply connected and, hence, g° is 1-connected.

(g°) is con-

Proof: It is enough to see that F%

Top2(gb> is a wedge of (closed) balls. |

Theorem 9.16. Assume that g° is an f.c.s. of (g,92,G). The following
statements are equivalent:

~ L20)F5 (9/8°) is locally thin;

— L20)F3 (9) is locally thin,

— LyF% (g) is locally thin;

— F%(g) is locally thin.

Proof: g/g® is the computad (h,by,e) in which by = gy — g5. Therefore
L0005 (g/g°) is locally thin if and only if go = g5, which means that g = g°.
Since £2,0)F5(g°) is locally thin, the proof is complete. |

Let g = (g, g2, G) be a small connected computad of Rcmp. Assume that
Gmtree 1s @ maximal tree of G. We have that the computad

go x 2 =2 FHG) — THG/Gtrec)

obtained from the composition of the morphisms in the image of g with the
natural morphism FR(G) — FF(G/Guutree) is the pushout of the mate of the
inclusion Gpiee — U3 (g) under the adjunction iy — u3 along the unique
functor between i3 (Guree) and the terminal reflexive computad. That is to

say, it is the quotient g/i3 (Gmtree)-

Definition 9.17. [f.c.s. triple] We say that (g, G, b°) is an f.c.s. triple
if g is a small connected reflexive computad, G ee iS @ maximal tree of the
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underlying graph of g and h® is an f.c.s. of g/i}(Gumiree). In this case, we
denote by h° the reflexive computad

(g/i%{(Gmtree)) /hb

Corollary 9.18. Let (g, Guiree, B°) be an f.c.s. triple. The (2,0)-category
Lo.0F3(g) is locally thin if and only if £2.0)F5(H®) is locally thin.

Proof: By Remark 9.7, £(20)F5 (/i3 (Gmtree)) is locally thin if and only if
L(Zo)ﬁ(g) is locally thin. By Theorem 9.16, the former is locally thin if and
only if £50)F3(h?) is locally thin. u

As a consequence of Corollary 9.18 and Theorem 9.12, we get:

Corollary 9.19. Let (g, Guree, B°) be an fc s. triple. The (2,0)-category
L0 FR(g) is locally thin if and only if mF Top (g) is trivial.

(b®). There-
fore, by Corollary 9.18 we conclude that L(Q’O)Sr'"gz(g) is locally thin if and only
if X2 T, (B°) is trivial.

To complete the proof, it remains to prove that 7T2§F1330p (65) ~ 7T2§F1330p (h).

Proof: By Theorem 9.12, £ 5,0 F5(h®) is isomorphic to XmF5,

Indeed, since 9’1330p2 preserves colimits and the terminal reflexive computad,
we get that

Top (9/12( mtree)) = Top( )/ Top‘ (Gutree)

and, since ﬂop i (Gtree) — FX _ (g) is a cofibration which is an inclusion of

Top,
a contractible space, we conclude that F Top (9/i%(Gmiree)) has the same homo-
topy type of 9’%) (hb) has the same

homotopy type of & Top (9/12( mtree))a since Sri']lgop (h ) T0p2 (g/ig(Gmtree))
is a cofibration which is an inclusion of a contractible space. |

(g ) Analogously, we conclude that Sr’%?op

Remark 9.20. The study of possible higher dimensional analogues of the
isomorphisms given in Remark 5.10 and in Theorem 5.11 would depend
on the study of notions of higher fundamental groupoids, higher homotopy
groupoids and higher Van Kampen theorems [6, 7, 12]. This is outside of the
scope of this paper.
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10. Presentations of 2-categories

As 2-computads give presentations of categories with equations between
1-cells, (n + 1)-computads give presentations of n-categories with equations
between n-cells. Contrarily to the case of presentations of categories via
computads, it is clear that, for n > 1, there are n-categories that do not
admit presentations via (n + 1)-computads.

Definition 10.1. [Presentation of n-categories via (n+ 1)-computads] Given
n e N, an (n + 1)-computad g : &°? — n-Cat as the n-computad diagram of
8.12 presents the n-category X if the coequalizer of g in n-Cat is isomorphic
to X. There is a functor P, : (n + 1)-Cmp — n-Cat which, for each (n + 1)-
computad g, gives the category P, (g) presented by g.

The underlying (n — 1)-category of every n-category that admits a presen-
tation via a (n + 1)-computad is a free (n — 1)-category. Thereby:

Proposition 10.2. Let X be an n-category in n-Cat. If the underlying (n —
1)-category of X is not free, then X does not admit a presentation via an
(n + 1)-computad.

In this section, as the title suggests, our scope is restricted to presenta-
tions of 2-categories. Similarly to the 1-dimensional case, we are mainly
interested on presentations of locally thin 2-categories, (2,1)-categories or
(2,0)-categories.

We consider (reflexive) small (2,0)-categorical and (2, 1)-categorical (re-
flexive) small 3-computads which are 3-dimensional analogues of groupoidal
computads, called respectively (3,0, R)-computads and (3, 1, R)-computads.
More precisely, for each m € {0,1}, we define the category of (3, m,R)-
computads by the comma category (3,2, m)-Remp := (—=x L 2,)(82)/L 2,mF5)
in which

(— x Lom)(B2)) : Set — (2,m)-cat, Y =Y x L9,,)(S2).

Whenever 2 > m > 0, we have a functor T?sz) : (3,2, m)-Rcmp —

(2, m)-cat that gives the (2, m)-category presented by each (3,2, m, R)-com-
putad. More precisely, for each 2 > m > 0, a (3,2, m,R)-computad is a
functor g : 8P — (2,m)-cat

g2 % Lo.m)(22) =2 Lo FH(G) ((3,2,m,R)-computad diagram)
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and ng (@) is the coequalizer of g in (2,m)-cat. For short, by abuse of
language, by i3 the functors Rcmp — (3,2, m)-Rcmp induced by is.

Theorem 10.3. Assume that G° is an f.c.s. of the small reflexive 2-computad
G. If (8,92, G) is a small (3,2,0,R)-computad, then the following statements
are equivalent:
P (9/i3(G®)) is locally thin;
- T:(Rz’o) (g) is locally thin.

Proof: We have that ﬂ’ao)ig(Gb) >~ L(2,0F2(G") is locally thin. Therefore

Pl (9) and Pl (8/i3(G°)) = Pl (8) /P (3(G7))
are biequivalent. Thereby the result follows. u

In the setting of the result above, since we are assuming that the 2-
computad G has only one 0-cell, we get that there is a (3,2, 0, R)-computad
(g, g2, G) such that |go] is precisely the number of 2-cells of G/G® and ngo) (9)

is locally thin.

Theorem 10.4. Assume that G° is an f.c.s. of a 2-computad G in Rcmp.
There is a (3,2,0, R)-computad (g, g2, G) such that go = Go—GS and iPiRZO) (9)
s locally thin. In other words, g presents the locally thin (2,0)-category
M, 5(270)3"5 (G) freely generated by G.

Proof: Recall, by Theorem 9.16, that we can consider that (G/G%)y = Gy —
GS. Also, by hypothesis, for each nontrivial 1-cell f of G, 5(270)9“'%%((?[’) has a
unique 2-cell B¢ : f =id or B :id = f.

We define the (3,2,0,R)-computad (g, g2, G)

g2 X L(?,O)(22) = [»(270)97%%((;).

For each o € gy = Go—G8, we put g(d')(a, 8) := o : f = gand g(d")(o, &) :=
& in which & is the composition of (possibly the inverse) of 3 and (possibly
the inverse) of (3, in L(gvo)fr'"gz(G), that is to say, in other words, « is the
unique 2-cell with same domain and codomain of « in L(Q’O)SF%{(G[’).

It is clear that TR ( /i3(G")) is locally thin. Therefore the result follows
from Theorem 10. 3 ]
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Corollary 10.5. Let (G,T, H®) be an f.c.s. triple. There is a (3,2,0,R)-
computad (h,b2, G) such that by = H® = Gy — HY = (G/T), — HS and
ngo) (B) is locally thin.

Proof: We denote G/iX(T) by H. Consider the (3,2,0,R)-computad g =
(g, g2, H) as constructed in Theorem 10.4. Since each 2-cell of H corresponds
to a unique 2-cell of G, we can lift g to a (3,2,0, R)-computad (g, g2, G). We
get this lifting (g, g2, G)

g2 X L2.0)(22) == L00)FX(H) — L0y FH(G)

after composing each morphism in the image of g with L(2,0>§§(H ) ~
L2.0F3(G). Moreover, since

P (@) = Pl (0/isi(T)) = PR (0) /Pl (isiy (T))
is locally thin, the result follows from Remark 9.7. u

Analogously to Definition 6.17, we have:

Definition 10.6. [Lifting of 3-Computads] We denote by (3,2, 1)-Rcmpjg
the pseudopullback (iso-comma category) of Ti(Rz’O) along L@’O)u(g,l)?g’l). A
(3,2,1,R)-computad g is called a lifting of the (3, 2,0, R)-computad ¢ if there
is an object ng, of (3,2, 1)-Rcmpy such that the images of this object by the
functors

(37 27 1)_Rcrnplift - (37 27 0)_Rcmp7 (37 27 1)_Rcrnplift - (37 27 1)_Rcmp

are respectively g’ and g. Analogously, we say that a (reflexive) 3-computad
h is a lifting of a (3,2, m, R)-computad b’ if L(z,m)u@,m)?g’m)(h’) ~ PX(B).

Proposition 10.7. If a (3,2,1,R)-computad g is a lifting of a (3,2,0,R)-
computad g’ such that UD%,O)(Q/) is locally thin, then TPg’l)(g) is locally thin
provided that ngl)(g) satisfies the (2,0)-cancellation law.

Analogously, if a 3-computad b is a lifting of a (3,2, m,R)-computad b’
and TP:(RQ’m)(h’) is locally thin, then P3() is locally thin provided that PX(g)
satisfies the (2, m)-cancellation law.

Proof: By hypothesis, 9’?;1)(9) ~ L(Q’O)u(z’l)Tg’l)(g) and u(z,l)?g” satisfies
the (2,0)-cancellation law. Therefore ﬂ’gl)(g) is locally thin. u
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10.1. The 2-category A, . In [24, 25, 26], we consider 2-dimensional ver-
sions of a subcategory A’3 of A;. For instance, the bicategorical replacement
of the category A’3 Here, we study the presentations of this locally thin
(2, 1)-category, including the application of our results to the presentation of
the bicategorical replacement of A,. Following the terminology of [25], we
have:

Definition 10.8. The 2-computad 0, = (gA3,92A3, Gj,) is defined by the
graph

d° o0
0—4 1 0 2 o 3
! 5
with the 2-cells:
oo : '’ = d no: s%d’ = id,
o2 : 02d° = Od? ny: id, = U
oo O2db = otd! 9 d'd= d’d

We denote by A, the locally thin (2,1)-category My LoFo(d,, ) freely gen-
erated by the 2-computad 0, . We also define the subcomputad 0, of
0, such that A, = My LyF5(0, ) is the full sub-2-category of A and
obj(A,,,) = {1,2, 3}

Lemma 10.9. Let g™ = (g”, 952, Ga,) be the full subcomputad of D, de-
fined by
(iO
1 50 2
dl
with the 2-cells: ny : $°d° = id,, id, = sd'.  The (2,0)-category

freely generated by g2 is locally thm [n partzcular the full sub-2- category
A = My L5, ( 2) of the 2-category A .. s 1somorphic to LT, ( )

Stro *
Proof: We should prove that 5(270)3‘2(9&) is locally thin. By abuse of lan-
guage, we denote by Ecmp(g™?) the 2-computad g2. We, then, take the

maximal tree of the underlying graph of g defined by 2 %, 1 and denote it
by Go.
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By Remark 9.7, L20F5 (9°2/i5(Gy)) is locally thin if and only if
L2005 (g°?) is locally thln The quotient g®2/ix(Gy) is a computad with

1-cells d°, d' and 2-cells ny : d = id and Ay : id = dl. Tt is clear, then, that
g2 /i}(Gy) is an f.c.s of itself. Thereby the proof is complete. |

Furthermore, the full sub-2-category A of ASM is a free (2, 1)-category as
proved in:

Theorem 10.10 (A,,). There is an isomorphism of 2-calegories Ay =
L2F5(0g,,)-

Proof: Since Ay, is a full sub-2-category and locally thin, it is enough to
prove that A, (1,3) and A, (2,3) are thin.

It is clear that the nontrivial 2-cells of A (1,3) are horizontal composi-
tions of 2-cells of A (1,1) with g1, og2 and o12. More precisely, the set of
nontrivial 2-cells of A, (1, 3) is equal to

{0’01*&,0’02*0&,012*0&‘ (Ckif:>gil—>1>€AStr(1,1)}.

This proves that A (1,3) is thin. Moreover, since the set of 2-cells of
Ag,(2,1) = A, (2,1) is equal to {axid,|(a: f=g:1-1)eA, (1,1)},
it follows that the set of 2-cells of A (2, 3) is equal to

{Brid | (B: f=g:1—>3)eA,(1,3)}.

Since we already proved that A, (1,3) is thin, we conclude that A, (2,3)
is thin. Hence, as A, (3,2) is the initial (empty) category, the proof is
complete. u

As proved in Proposition 9.5, L_2?2(9A2) is not locally thin. We prove below

that ASMQ := My £5F5(g>?) can be presented by a 3-computad with only one
3-cell that corresponds to the equation given in the identity descent diagram.
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Theorem 10.11 (ASW). The 3-computad h™2 defined by the 2-computad g
with only the 3-cell

(identity descent 3-cell)
presents the locally thin (2,1)-category A, . In other words, Ly Po(h22) =
AStrz'

Proof: By abuse of language, we denote Ecmp(gA2) by gA2. We denote by T

the maximal tree
d

0 1 2

of the underlying graph of g.
The (reﬂexwe) 2- Computad gA2 JiX(T) is defined by the 1-cells 4, d1 and 2-

~

cells 9 : d! = dO no : d9 = id and ny :id = d1 while the 2-computad gfcs =
g2 /i}(G ), defined in the proof of Lemma 10.9, is an f.c.s. of gA2/1 (T).
By the proof of Theorem 10.4, we get a presentatlon of Mg L2.0F5(g A, J(T))
by a (3,2,0,R)-computad j’ such that j; = 92 9f052~ This (3,2,0,R)-

computad is defined by the 2-computad gA2/i§(T) with the 3-cell J =
~—1 o~
o ‘ny . '

Thereby u(gvo)ﬂ’ao)(h’) ~ My £(20)F5(g%2/iX(T)). Furthermore, by Corol-

lary 10.5, composing each morphism in the image of j with the equivalence
L0F5(8™) = Lo (05 (1),
we get a (3,2,0,R)-computad j which presents Emﬂ?(g&). This
(3,2,0,R)-computad j is defined by the 2-computad g2 with the 3-cell
id , =0 = (nal : nl_l) +1d,,.
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It is clear that the (reflexive) computad gAz together with the identity
descent 3-cell define a (reflexive) 3-computad b’ which is a lifting of j. Since
LoP3(h) clearly satisfies the (2, 0)-cancellation law, this completes the proof.

|

Theorem 10.12 (A, ). The 3-computad b2 defined by the 2-computad g
with the 3-cell identity descent 3-cell and the 3-cell below

041 %o 3-2 20— (associativity descent 3-cell)
S G =
l-—a>2-0>3 —— 2-<—1
N
2——3 1—0—1
o2 d d

presents the locally thin (2, 1)-category ASM. That is to say, L_ng(hA) ~

Proof: Recall that ASHQ — A

and AS“(3, n) is thin for any object n of A__. Hence it only remains to prove
that A,_(0,3) is thin. |
Since the set of 2-cells of A (0,2) is given by

{9} U{id, *ali€{0,1} and (a: f=g:0—->1)e A, (0,1)},

Str *

o, 1s a full inclusion of a locally thin 2-category

we conclude that ASH(O, 3) is the thin groupoid freely generated by the graph
S defined by the morphisms 0 — 3 as objects and the set of arrows (2-cells)
T o T’ in which
- {O-ij *Oé‘i?j € {071}72 <] and (Oé : f =g 0— 1) € AStr(()? 1>}

and T := {o;; *id,|i,7 € {0,1} and i < j} U {idy = V] € {0,1,2}}.

We consider the full subgraph of S with objects in the set

O={0 & di,je{0,1,2} and j =2}.

The set of arrows of S is precisely T and, by abuse of language, we also denote
the graph by T. .

The set of the arrows (2-cells) T defines a subgroupoid of A (0, 3), also
denoted by T’. Since A, (0, 1) is thin, it is clear that T’ is thin. Moreover, it

is clear that T is the coproduct of T, T, and Tf; which are respectively the
subgroupoids defined by the sets of 2-cells {012 *a| (a: f = g) € A, (0,1)},
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fonval(a: f=g)e AL(0.1)} and {on=al(a: f=g)eA, (0,1} In
particular, there is not any 2-cell in T’ between any object of T;; and any
object T/, whenever (i, j) = (x,y). For instance, there is no arrows (2-cells)
f=0*d-d g=0d -d=andh=0"-d"-d= in T for every f,g,h
objects of T such that f is outside TY,, g is outside T{, and h is outside Tf;

Therefore, it is enough to study the thin groupoid freely generated by T.
More precisely, we have only to observe that the equation given by the 3-cell
associativity descent 3-cell indeed presents the thin groupoid freely generated
by the graph:

id Ao #0)
- d-d <" o -d-d (T)
UOl*idd T TO’OQ*idd
ol-d’-d ?-d’-d
idal*ﬁT Tidag*’l?
81d1d<7d§2d1d
o12%id,
|

10.2. Topology. Analogously to the l-dimensional case, we denote by
952 the 2-computad such that 9’2(952) ®5. We also have higher dimen-
sional analogues for Theorem 4.3. This isomorphism gives an embedding
(n + 1)-cmp — Pre(F,) which shows that (n + 1)-computads are indeed
F,,-presentations.

If we denote iy = 11 and i, 1)1 = i(p+1)l, We have:

Theorem 10.13. More generally, there is an isomorphism (n + 1)-cmp =
(i (=) x &,/F,) in which

(=) X Q/5\n :Set > cmp, Y —iy(Y) x Q/S:L
In particular, there is an isomorphism 3-cmp = (igi;(—) X @/?2)

Observe that, analogously to the 2-dimensional case presented in 5.1, we
have a homeomorphism

g2 X cirg @ D(go) X 52 S’Topg(igil(gz) X Q/5\2)

for each set gs.
There are higher dimensional analogues of the association of each small
computad with a CW-complex given in 5.1. Nevertheless, again, analogously
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to Remark 9.20, we do not have higher dimensional analogues of the results
given in Remark 5.10, Theorem 5.11 and Theorem 5.13.

We sketch a 2-dimensional version of the natural transformation [_| :
ﬁ@Topl — Crop, to get the association of each small 3-computad with a
3-dimensional CW-complex.

Given a 2-cell a of F5Crop, (E), we have that there is a unique way of getting
« as pasting of 2-cells of Crop, (E). That is to say, it is a “formal pasting” of
homotopies. We can glue these homotopies to get a new homotopy, which is
what we define to be [g]zE : B2 — E. This defines a natural transformation
[_]2 : ?QGTOP2 — Crop,- We denote by H2 the mate under the adjunction
FTop, = Crop, and itself.

Given a small 3-computad, seen as a morphism g : isi;(g2) X 0/5\2 — ?Q(G)
of small 2-computads, F7op,(g, g2, G) is the pushout of the inclusion S? %
D(gs) — B? x D(gs) along the composition of the morphisms

Cirg X gs L. —~ FTop,(9) — HQ
D(g2) % S¥ B (i (g2) X B2) 2 Frop, Fo(G) % Frop (G)

The topological space F1qp,(g, g2, G) is clearly a CW-complex of dimension
3. Furthermore, of course, we have groupoidal and reflexive versions of Ftop,
as well, such as S"%pg : 3-Rcmp — Top.

Lemma 10.14. If (g,g2,G) has only one 0-cell and only one 1-cell and
T2 T Top, (8, 82, G) is not trivial, then L(20)Po(g, g2, G) is not locally thin.
Thereby, by Theorem 10.3, we get:

Theorem 10.15. Assume that G® is an f.c.s. of the small reflexive 2-computad
G. If (8,92, G) is a small (reflexive) 3-computad such that 7729’1330[)3(9,92, G)

is not trivial, £.0)P3 () is not locally thin.

Proof: 1t follows from Theorem 10.3 and from the fact that ﬂopgig(Gb) is
contractible and its inclusion in ?$0p3(g, g2, G) is a cofibration, |

Since Fop, (g, 92, G) has the same homotopy type of a wedge of circum-
ferences, 2-dimensional balls, 3-dimensional balls and spheres, we know that
Euler characteristic x (Frop, (g, g2, G)) is equal to

X (?TOPQ(G>) - ‘g2| )
whenever both x (Frop,(G)) and |go| are finite.
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Corollary 10.16. Assume that G° is an f.c.s. of the small reflexive 2-
computad G. If (g, g2, G) is a small (reflexive) 3-computad such that

Z 3 x (SrTop (9,92,@) > 1,

then L(9,0)P2(9, g2, G) is not locally thin.
Proof: Recall that

(?Top (g)) — 1—dim H! (s—fTop( ))+dimH2 (?Top( ))—dimH3< R )
0.

Since SF%SOP (9,92, G) is clearly 1-connected, dim H! (SF%SOP (9,92,G>) =

Therefore, by hypothesis,
dim H2 (?Top (97927 G)) > dim H3 (?Top (97927 G)) = 0.

In particular, we conclude that dim H? (ﬂopg (g, g2, G)) > 0. By the Hurewicz
isomorphism theorem and by the universal coefficient theorem, this fact im-
(g, gg,G)> is not trivial. By The-

orem 10.15, we get that 5(270)935 (g) is not locally thin. ]

plies that the fundamental group s (S’Top

Assume that (g, g2, G) is a small (reflexive) 3-computad such that there is

an f.c.s. triple (G, T, H®). Then ﬂop i312(T) — J7op, (9, 92, G) is an cofibrant
inclusion of a contractible space. Thereby, 7r23'$0p (g, g2, G) is trivial if and

only if
2 (Fop, (8)/Fhop 512(T) ) = 72 (Frop, (9/isia(1)))

is trivial. Therefore, since £(90)P2(g/i3i2(T)) is locally thin if and only if
L2,0)P2(g) is locally thin, it follows from Theorem 10.15 and Corollary 10.16
the result below:

Corollary 10.17. Assume that (g, g2, G) is a small (reflexive) 3-computad
such that there is an f.c.s. triple (G, T, H®). If moFR Tops (g, 92, G) is not trivial,

L2.0)P% (g) is not locally thin. Furthermore,

Z>x (S"%pg(g,gz, G)) > 1,

then L(9,0)P2(9, g2, G) is not locally thin.
In particular, we get that, whenever such a 3-computad presents a locally

thin (2,0)-category, |gz| = (ﬂop (G )> L.
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This also works for the (3,2,0,R)-version of Fop, which would show that
the presentation by (3,2,0,R)-computads given in Corollary 10.5 is in a
sense the best presentation via (3, 2, 0, R)-computads of the locally thin (2, 0)-
category generated by the reflexive computad G if ﬂOPQ(G) has finite Euler

(9A2)> = 2, the
presentation via 3-computad given in Theorem 10.11 has the least number
of 3-cells.

characteristic. For instance, by Corollary 10.17, since x (S’"’%QOPQ
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