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Abstract: Composing with the inclusion Set Ñ Cat, a graph G internal to Set

becomes a graph of discrete categories, the coinserter of which is the category freely
generated by G. Introducing a suitable definition of n-computad, we show that a
similar approach gives the n-category freely generated by an n-computad. Suitable
n-categories with relations on n-cells are presented by these pn ` 1q-computads,
which allows us to prove results on presentations of thin groupoids and thin cate-
gories. So motivated, we introduce a notion of deficiency of (a presentation of) a
groupoid via computads and prove that every small connected thin groupoid has
deficiency 0. We compare the resulting notions of deficiency and presentation with
those induced by monads. In particular, we find our notion of group deficiency
to coincide with the classical one. Finally, we study presentations of 2-categories
via 3-computads, focusing on locally thin groupoidal 2-categories. Under suitable
hypotheses, we give efficient presentations of some locally thin and groupoidal 2-
categories. A fundamental tool is a 2-dimensional analogue of the association of
a “topological graph” to every graph internal to Set. Concretely, we construct a
left adjoint FTop2

: 2-cmp Ñ Top associating a 2-dimensional CW-complex to each
small 2-computad. Given a 2-computad g, the groupoid it presents is equivalent to
the fundamental groupoid of FTop2

pgq. Finally, we sketch the 3-dimensional version
FTop3

.
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Introduction
The category of small categories cat is monadic over the category of small

graphs grph. The left adjoint F1 : grph Ñ cat is defined as follows: F1pGq has
the same objects of G and the morphisms between two objects are lists of
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composable arrows in G between them. The composition of such morphisms
is defined by juxtaposition of composable lists and the identities are the
empty lists.
Recall that a small graph is a functor G : Gop Ñ Set in which G is the

category with two objects and two parallel morphisms between them. If we
compose G with the inclusion Set Ñ cat, we get a diagram G1 : Gop Ñ cat.
The benefit of this perspective is that the category freely generated by G is
the coinserter of G1, which is a type of (weighted) 2-colimit introduced in
[17].
In the higher dimensional context, we have as primary structures the so

called n-computads, firstly introduced for dimension 2 in [31]. There are
further developments of the theory of computads [29, 5, 19, 27, 13], including
generalizations such as in [1] and the proof of the monadicity of the category
of the strict ω-categories over the category of ω-computads in [20].
In this paper, we give a concise definition of the classical (strict) n-computad

such that the (strict) n-category freely generated by a computad is the coin-
serter of this computad. More precisely, we define an n-computad as a graph
of pn ´ 1q-categories satisfying some properties (given in Remark 8.12) and,
then, we demonstrate that the n-category freely generated by it is just the
coinserter of this graph composed with the inclusion pn ´ 1q-Cat Ñ nCat,
getting in this way the free n-category functor whose induced monad is de-
noted by Fn. More generally, we show that this approach works for an n-
dimensional analogue of the notion of derivation scheme introduced in [34].
Since we are talking about coinserters, we of course consider a 2-category

of n-categories. Instead of n-natural transformations, we have to consider
the n-dimensional analogues of icons introduced in [23]. We get, then, 2-
categories nCat of n-categories, n-functors and n-icons. In dimension 2, this
allows to get the bicategories freely generated by a computad as a coinserter
of the 2-category Bicat of bicategories, pseudofunctors and icons as well.
Every monad T on a category X induces a notion of presentation of algebras

given in Definition 3.1, which we refer as T-presentation. If, furthermore, X
has a strong notion of measure µ of objects, we also get a (possibly naive)
notion of deficiency (of a presentation) of a T-algebra induced by µ (given in
Remark 6.16). In the case of algebras over Set (together with cardinality of
sets) given in 6.1, we get the classical notions of deficiency of a (presentation
of a) finitely presented group, deficiency of a (presentation of a) finitely
presented monoid and dimension of a finitely presented vector space.
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Higher computads also give notions of presentations of higher categories.
More precisely, using the description of n-computads of this paper, the co-
equalizer of an n-computad g : Gop Ñ pn ´ 1q-Cat, denoted by Ppn´1qpgq, is
what we call the pn ´ 1q-category presented by this n-computad in which
the n-cells of the computad correspond to “relations of the presentation”. In
this context, an n-computad gives a presentation of an pn´ 1q-category with
only equations between pn ´ 1q-cells.
We show that every presentation of pn ´ 1q-categories via n-computads

are indeed particular cases of Fn-presentations. Moreover, on one hand, the
notion of F1-presentation of a monoid does not coincide with the (classical)
notion of F0-presentation, since there are F1-presentations that are not F0-
presentations of a monoid. On the other hand, the notion of presentation of
a monoid via computads does coincide with the classical one.
We present, then, the topological aspects of this theory. In order to do

so, we construct two particular adjunctions. Firstly, we give the construc-
tion in Remark 5.1 of the left adjoint functor FTop1 : Grph Ñ Top which
gives the “topological graph” associated to each graph Gop Ñ Set via a
topological enriched version of the coinserter. Secondly, we show how the
usual concatenation of continuous paths in a topological space gives rise to
a monad functor/morphism F1 ÝÑ FTop1

between the free category monad
and the monad induced by the left adjoint FTop1

. Finally, using this monad
morphism, we construct a left adjoint functor FTop2 : 2-cmp Ñ Top.
The adjunction FTop2 % CTop2 gives a way of describing the fundamental

groupoid of a topological space: CTop2pXq presents the fundamental groupoid
of X. More precisely, it is clear that P1CTop2pXq – ΠpXq which we adopt
as the definition of the fundamental groupoid of a topological space X in
Section 5.
Denoting by L1 : cat Ñ gr the functor left adjoint to the inclusion of

the category of small groupoids into the category of small categories, we
show that the fundamental groupoid of a graph is equivalent to the groupoid
freely generated by this graph, proving that there is a natural transformation
which is objectwise an equivalence between L1F1 and ΠFTop1 – P1CTop2FTop1.
We also show that, given a small 2-computad g, there is an equivalence
P1FTop2

pgq » L1P1pgq, which means that there is an equivalence between the
fundamental groupoid of the CW-complex/topological space associated to a
small 2-computad g and the groupoid presented by g.
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In the context of presentation of groups via computads, the left adjoint
functor FTop2 formalizes the usual association of each classical (L0F0-)pre-
sentation of a group G with a 2-dimensional CW-complex X such that
π1pXq – G.
We study freely generated categories and presentations of categories via

computads, focusing on the study of thin groupoids and thin categories. By
elementary results on Euler characteristic of CW-complexes, the results on
FTop2 described above imply in Theorem 6.7 which, together with Theorem
6.13, motivate the definition of deficiency of a groupoid (w.r.t. presentations
via groupoidal computads). We compare this notion of deficiency with the
previously presented ones: for instance, in Remark 6.16, we compare with
the notion of deficiency induced by the free groupoid monad L1F1 together
with the “measure” Euler characteristic, while in Propostion 6.11 we show
that the classical concept of deficiency of groups coincides with the concept
of deficiency of the suspension of a group w.r.t. presentations via computads.
By Theorem 6.13 and Theorem 6.7, the deficiency of thin “finitely gener-

ated” groupoids are 0, what generalizes the elementary fact that the trivial
group has deficiency 0. Moreover, this implies that Theorem 6.13 gives ef-
ficient presentations, meaning that it has the least number of 2-cells (equa-
tions) of the finitely presented thin groupoids.
We lift some of these results to presentations of thin categories and give

some further aspects of presentations of thin categories as well. Finally, sup-
ported by these results and the characterization of thin categories that are
free F1-algebras, we give comments towards the deficiency of a thin finitely
presented category, considering a naive generalization of the concept of defi-
ciency of groupoid introduced previously.
The final topic of this paper is the study of presentations of locally thin

2-categories via 3-computads. Similarly to the 1-dimensional case, we firstly
describe aspects of freely generated 2-categories, including straightforward
sufficient conditions to conclude that a given (locally thin) 2-category is not
a free F2-algebra. We conclude that there are interesting locally thin 2-
categories that are not free, what gives a motivation to study presentations
of locally thin 2-categories. In order to study such locally thin 2-categories,
we study presentations of some special locally thin p2, 0q-categories which
are, herein, 2-categories with only invertible cells. With suitable conditions,
we can lift such presentations to presentations of locally thin and groupoidal
2-categories.
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We also give a sketch of the construction of a left adjoint functor FTop3 :
3-cmp Ñ Top which allows us to give a result (Corollary 10.16) towards a
3-dimensional version of Theorem 6.7. This result shows that the presen-
tations of p2, 0q-categories given previously have the least number of 3-cells
(equations): they are efficient presentations.
In [24, 25, 26], we introduce 2-dimensional versions of bicategorical re-

placements of the category 9∆1
3 of the ordinals 0, 1, 3 and order-preserving

functions between them without nontrivial morphisms 3 Ñ n. We apply our
theory to give an efficient presentation of the bicategorical replacement of the
category 9∆2 and study the presentation of the locally groupoidal 2-category
9∆

Str
introduced in [25].

This work was realized in the course of my PhD studies at University of
Coimbra. I wish to thank my supervisor Maria Manuel Clementino for giving
me useful pieces of advice, feedback and insightful lessons.

1. Preliminaries
The most important hypothesis is that Cat,CAT are cartesian closed cate-

gories of categories such that Cat is an internal category of CAT. So, herein, a
category X means an object of CAT. Moreover, if X, Y are objects of Cat, we
denote by CatrX, Y s its internal hom and by CatpX, Y q the discrete category
of functors between X and Y . We also assume that the category of sets Set
is an object of Cat. The category of small categories is cat :“ intpSetq, that
is to say, cat is the category of internal categories of the category of sets.
If V is a symmetric monoidal closed category, we denote by V -Cat the cat-

egory of V -enriched categories. We refer the reader to [16, 9, 3] for enriched
categories and weighted limits. It is important to ratify that herein the col-
lection of objects of a V -category X of V -Cat is a discrete category in Cat,
while V -cat denotes the category of small V -categories.
Inductively, we define the category n-Cat by pn ` 1q-Cat :“ pn-Catq -Cat

and 1-Cat :“ Cat. Therefore there are full inclusions pn`1q-Cat Ñ intpn-Catq
and n-Cat is cartesian closed, being an pn`1q-category which is not an object
of pn ` 1q-Cat. In particular, Cat is a 2-category which is not an object of
2-Cat.
We deal mainly with weighted limits in the Cat-enriched context, the so

called 2-categorical limits. The basic references are [31, 17]. Let W : S Ñ
Cat,W1 : Sop Ñ Cat and D : S Ñ A be 2-functors with a small domain. If it
exists, we denote the weighted limit of D with weight W by tW,Du. Dually,
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we denote by W
1 ˚ D the weighted colimit provided that it exists. Recall

that, by definition, there is a 2-natural isomorphism (in X)

ApW1 ˚ D, Xq – rSop,Cats pW1,ApD´, Xqq – tW1,ApD´, Xqu

in which rSop,Cats denotes the 2-category of 2-functorsSop Ñ Cat, 2-natural
transformations and modifications.
In the last section, we apply 2-monad theory to construct 2-categories nCat

for each natural number n. We refer the reader to [4] for the basics of 2-
monad theory. The category nCat is one of the possible higher dimensional
analogues of the 2-category of 2-categories, 2-functors and icons introduced
in [23].

The category 9∆ is the category of finite ordinals, denoted by 0, 1, 2, . . . , n, . . .,
and order-preserving functions between them. We denote by ∆ the full sub-
category of nonempty ordinals. There are full inclusions ∆ Ñ 9∆ Ñ cat Ñ
Cat. Often, we use n also to denote its image by these inclusions. Thereby
the category n is the category

0 Ñ 1 Ñ ¨ ¨ ¨ Ñ n ´ 1.

For each n of ∆, the n-truncated category of 9∆, denoted by 9∆n, is the full
subcategory of 9∆ with only 0, 1, . . . , n as objects. The truncated category
∆n is analogously defined. For instance, the category ∆2 is generated by the
faces d0, d1 and by the degeneracy s0 as follows:

1
d1 //

d0
// 2s0oo

in which, after composing with the inclusions ∆2 Ñ ∆ Ñ Cat, d0 and d1

are respectively the inclusions of the codomain and the domain of morphism
0 Ñ 1 of 2.
Moreover, the category G is, herein, the subcategory of ∆2 without the

degeneracy 2 Ñ 1 and with all the faces 1 Ñ 2 of ∆2 as it is shown below.
Again, considering G as a subcategory of Cat, d1 is the inclusion of the
domain and d0 is the inclusion of the codomain.

1
d1 //

d0
// 2

We denote by I : G Ñ Cat the inclusion given by the composition of the
inclusions G Ñ ∆2 Ñ Cat. The 2-functor I defines the weight of the limits
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called inserters, while I-weighted colimits are called coinserters. Also, we
have the weight U1L1I : G Ñ Cat which gives the notions of isoinserter and
isocoinserter, defined as follows:

1
//
// ∇2

in which ∇2 is the category with two objects and one isomorphism between
them and U1L1Ipd

0q,U1L1Ipd
1q are the inclusions of the two different objects.

Let 22 be the 2-category below with two parallel nontrivial 1-cells and only
one nontrivial 2-cell between them. We define the weight J22 by

J22 : 22 Ñ Cat

˚
--

ó 11 ˚
✤ // 1

..
ó 00 ∇2,

in which the image of the 2-cell is the only possible natural isomorphism
between the inclusion of the domain and the inclusion of the codomain. The
J22-weighted colimits are called coinverters.
Finally, let G2 be the 2-category with two parallel nontrivial 1-cells and

only two parallel nontrivial 2-cells between them. We define the weight JG2

by
JG2

: G2 Ñ Cat

˚
--

ó ó 11 ˚
✤ // 1

--
ó 11 2,

in which the images of the 2-cells are the only possible natural transformation
between the inclusion of the domain and the inclusion of the codomain. The
JG2

-weighted colimits are called coequifiers.

1.1. Thin Categories and Groupoids. A categoryX is a groupoid if every
morphism of X is invertible. The 2-category of groupoids of Cat is denoted
by Gr. The inclusion U1 : Gr Ñ Cat has a left 2-adjoint L1. Also, the category
of locally groupoidal 2-categories is, by definition, Gr-Cat and the previous
adjunction induces a left adjoint L2 to the inclusion U2 : Gr-Cat Ñ 2-Cat.

Definition 1.1. [Connected Category] A category X of Cat is connected if
every object of L1pXq is weakly terminal. In particular, a groupoid Y is
connected if and only if every object of Y is weakly terminal.

A category X of Cat is thin if between any two objects of X there is at
most one morphism. Again, we can consider locally thin 2-categories, which
are categories enriched over the category of thin categories of Cat. We denote
by Prd the category of thin categories. The inclusion M1 : Prd Ñ Cat has
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a left 2-adjoint M1. Again, it induces a left adjoint M2 to the inclusion
Prd-Cat Ñ 2-Cat.

Remark 1.2. The 2-functors U1 : Gr Ñ Cat,M1 : Prd Ñ Cat are 2-monadic
and the 2-monads induced by them are idempotent, since U1,M1 are fully
faithful. Therefore U1,M1 create 2-limits.
The functor U1 is left adjoint: hence, as U1 is monadic, U1 creates coequal-

izers and coproducts. But it does not preserve tensor with 2. Finally, Prd is
isomorphic to the 2-category of categories enriched over 2 and, hence, it is
2-cocomplete.

Proposition 1.3. Let X be an object of Gr or Cat. We have that X is a
thin category if and only if X is (isomorphic to) the coequifier of

pGop&Xq0
//

αó βó // X

in which CatpGop, Xq – pGop&Xq0 is the discrete category of internal graphs
of X, αG “ Gpd0q and βG “ Gpd1q.

Theorem 1.4. There are categories X, Y in Cat such that L1pXq and Y are
thin, but X and L1pY q are not thin. In particular, L1 is not faithful.

Proof : For instance, we define Y to be the category generated by the graph

˚ ,,// ˚ ˚oo // ˚ (example of weak tree)

in which there is no nontrivial composition and X can be defined as

˚ h // ˚ f //
g // ˚

satisfying the equation fh “ gh.

A category X satisfies the cancellation law if every morphism of X is a
monomorphism and an epimorphism.

Theorem 1.5. If X satisfies the cancellation law and L1pXq is a thin groupoid,
then X is a thin category.

Proof : The components of the unit on the categories that satisfy the cancel-
lation law of the adjunction L1 % U1 are faithful. Thereby, if X satifies the
cancellation law and L1pXq is thin, X is thin.

Theorem 1.6. Let X be an object of Prd or Cat. X is a groupoid if X is
the coinverter of

p2&Xq0
//

αó // X
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in which p2&Xq0 is the discrete category of morphisms in X and αf “ f .

Remark 1.7. As a consequence, since M1 preserves 2-colimits and, for each
Y in Prd, the induced functor Prdpp2&M1pXqq0, Y q Ñ PrdpM1p2&Xq0, Y q is
fully faithful, M1 preserves groupoids.

2. Graphs
We start studying aspects of graphs and freely generated categories. An

internal graph of a category X is a functor G : Gop Ñ X, while the category
of graphs internal to X, denoted by GrphpXq, is the category of functors and
natural transformations CATrGop,Xs.
Herein, a graph is an internal graph of discrete categories in Cat. That is

to say, a graph is a functor G : Gop Ñ Cat that factors through the inclusion
of the discrete categories SET Ñ Cat. This defines the category of graphs
Grph :“ GrphpSETq. Although the basic theory works for larger graphs and
computads in the setting of Section 1, the combinatorial part is of course
just suited for small graphs and computads. We define the category of small
graphs by grph :“ CatrGop, Sets, while the category of finite/countable graphs
is the full subcategory of small graphs G such that Gp1q is finite/countable.
If G : Gop Ñ Cat is a graph, Gp1q is the discrete category/collection of

objects of G, whileGp2q is the discrete category/collection of arrows (or edges)
of G. An arrow a of G is denoted by a : x Ñ z, if Gpd0qpaq “ z and
Gpd1qpaq “ x. As usual, in this case, z is called the codomain and x is called
the domain of the edge a.
We also consider the category of reflexive graphs RGrph :“ Cat r∆op

2 , SETs
and the category of small reflexive graphs Rgrph :“ Cat r∆op

2 , Sets. If G is
a reflexive graph, the collection in the image of Gps0q is called the collec-
tion/discrete category of trivial arrows/identity arrows/identities of G.
The inclusion Gop Ñ ∆op

2 induces a forgetful functor R : RGrph Ñ Grph

and the left Kan extensions along this inclusion provide a left adjoint to this
forgetful functor, denoted by E.

Lemma 2.1. The forgetful functor R : RGrph Ñ Grph has a left adjoint E.

Remark 2.2. The terminal object of RGrph is denoted by ‚. It has only one
object and its trivial arrow. It should be noted that RGrph is not equivalent
to Grph, since ‚ is also weakly initial in RGrph while the terminal graph
Rp‚q – © is not.
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The inclusion SET Ñ Cat has a right adjoint p´q0 : Cat Ñ SET, the
forgetful functor. The comonad induced by this adjunction is also denoted
by p´q0. On one hand, we define C1 : Cat Ñ Grph by C1pXq :“ CatpI´, Xq “
pCat rI´, Xsq0. On the other hand, if G : Gop Ñ Cat is any 2-functor, we
have:

CatrI ˚ G,Xs – rGop,Cats pG,CatrI´, Xsq,

since I ˚ G – G ˚ I. This induces an adjunction between the category of
categories and the category of internal graphs of Cat. If Gp2q is a set, this
shows how the coinserter encompasses the notion of freely adding morphisms
to a category Gp1q. In particular, if G is a graph, this induces a (natural)
bijection between natural transformations G ÝÑ CatpI´, Xq and functors
I ˚ G ÝÑ X. Therefore:

Lemma 2.3. F1 : Grph Ñ Cat,F1pGq “ I ˚ G gives the left adjoint to C1.

Informally, we get the result above once we realize that if X is a category in
Cat then a functor f : F1pGq Ñ X needs to correspond to a pair pf0, α

fq, in
which f0 : Gp1q Ñ pXq0 is a morphism of SET and αf : f0Gpd1q ÝÑ f0Gpd0q
is a natural transformation. This is precisely an object of the inserter of
CatpG´, Xq.

Remark 2.4. [Categories freely generated by reflexive graphs] We can also
consider the inclusion I

R : ∆2 Ñ Cat and this inclusion induces the functor
C
R
1 : Cat Ñ RGrph, CR

1 pXq “ CatpIR´, Xq. Analogously, this functor has a
left adjoint defined by FR

1 pGq “ IR ˚ G. It is easy to verify that there is a
natural isomorphism F1 – FR

1 E.
If G is a reflexive graph and x is an object of G, we say that Gps0qpxq is the

trivial arrow/identity arrow of x. In particular, the image of Gps0q is called
the discrete category/collection of the trivial arrows of G.

Remark 2.5. Since p1
š

1q – p2q0 in Cat and Cat is lextensive, recall that
X ˆ p2q0 – pX ˆ 1q

š
pX ˆ 1q for any object X of Cat.

If G is an object of Grph, we can construct F1pGq via the pushout of the
morphism Gp2q ˆ p2q0 Ñ Gp1q induced by pGpd0q, Gpd1qq along the functor
Gp2qˆp2q0 Ñ Gp2qˆ2 given by the product of the identity with the inclusion
p2q0 Ñ 2 induced by the counit of the comonad p´q0 : Cat Ñ Cat.

Remark 2.6. The functor C1 is monadic since it is right adjoint, reflects
isomorphisms, preserves coequalizers and Cat is cocomplete. Hence, each
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component of the counit of F1 % C1 gives a functor compX : F1C1pXq Ñ X

which is a regular epimorphism.

The forgetful functor C1U1 : Gr Ñ Grph has an obvious left adjoint given
by L1F1 : Grph Ñ Gr. If G : Gop Ñ Cat is a graph, L1F1pGq is called the
groupoid freely generated by G.
We denote respectively by F1 and L1F1 the monads induced by the ad-

junctions F1 % C1 and L1F1 % C1U1.The free F1-algebras are called free
categories, while we call free groupoids the free algebras of the monad L1F1.

Lemma 2.7. L1F1pGq – I˚ pL1Gq – pU1L1Iq ˚ pL1Gq gives the left adjoint
to C1.

Observe that L1G : Gop Ñ Gr is nothing but G itself as an internal graph
of discrete groupoids since L1 takes discrete categories to discrete groupoids.
Also, U1L1pF1pGqq – pU1L1Iq ˚G in Cat. That is to say, the groupoid freely
generated by G is its isocoinseter in Cat.

Remark 2.8. [Characterization of Free Categories [34]] The category Grph

has terminal object ©, namely the graph with only one object and only one
arrow. If we denote by ΣpNq the resulting category from the suspension of the
monoid of non-negative integers N, we have that F1p©q – ΣpNq. Therefore,
every graph G comes with a functor

ℓG : F1pGq Ñ ΣpNq

which is by definition the morphism F1pG Ñ ©q. The functor ℓG is called
length functor. It satisfies a property called unique lifting of factorizations,
usually refereed as ulf. In this case, this means in particular that, if ℓGpfq “
m, then there are unique morphisms fm, . . . , f1, f0 such that

– fm ¨ ¨ ¨ f1f0 “ f ;
– ℓGpftq “ 1 @t P t1, . . . , mu and f0 is the identity.

This property characterizes free categories. More precisely, X – F1pGq for
some graph G if and only if there is a functor ℓX : X Ñ ΣpNq satisfying the
unique lifting of factorizations property.
A morphism f has length m if ℓGpfq “ m. It is easy to see that the

morphisms of F1pGq with length 1 correspond to the edges of G. Roughly,
the unique lifting property of ℓG says that every morphism f : x Ñ z is a
composition f “ a1 . . . am of arrows with length 1 which corresponds to a list
of arrows in G satisfying Gpd1qpatq “ Gpd0qpat`1q for all t P t1, . . . , m ´ 1u,
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while the identities of F1pGq correspond to empty lists. Following this view-
point, the composition is given by juxtaposition of these lists. A morphism
of f : x Ñ z of F1pGq is often called a path (of length ℓGpfq) between x an z

in the graph G.
It is clear that the length functors reflect isomorphisms. More precisely, if

ℓG is a length functor, then ℓGpfq “ 0 implies that f “ id.

As a particular consequence of the characterization given in Remark 2.8,
we get that:

Theorem 2.9. For any graph G, F1pGq satisfies the cancellation law.

Remark 2.10. Let X be a category. By the natural isomorphism of Remark
2.4, we have that X – F1pGq for some graph G if and only if X – FR

1 EpGq.
Also, X – FR

1 pGq for some reflexive graph G if and only if X – F1pG
Eq, in

which GE : Gop Ñ Set has the same objects of G and the nontrivial arrows
of G. More precisely, GEp2q “ Gp2q ´ Gps0qpGp1qq, GEp1q “ Gp1q. There-
fore the characterization of categories freely generated by reflexive graphs is
equivalent to the characterization given in Remark 2.8.
It should be noted that p´qE is a functor between the subcategories of

monomorphisms of RGrph and Grph.

Remark 2.11. [Characterization of Free Groupoids] A natural extension of
the Remark 2.8 gives a characterization of free groupoids. More precisely,
for each graph G, there is functor

L1pℓ
Gq “ L1F1pG Ñ ©q : L1F1pGq Ñ ΣpZq

in which ΣpZq is the suspension of the group of integers. This functor has
the ulf property. In this case, this means that, if L1pℓ

Gqpfq “ m, then there
are unique morphisms fn, . . . , f1, f0 such that

– fn ¨ ¨ ¨ f1f0 “ f ;
– L1pℓ

Gqpftq P t´1, 1u, for all t P t1, . . . , nu and f0 is identity;
–
ř

L1pℓ
Gqpftq “ m.

This property characterizes free groupoids. That is to say, X – L1F1pGq
for some graph G if and only if X is a groupoid and there is a functor
ℓX : X Ñ ΣpZq satisfying the unique lifting of factorizations property.
It is easy to see that the morphisms of L1F1pGq with length 1 correspond

to the arrows of G, while the morphisms with length ´1 correspond to formal
inversions of arrows of G.
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Definition 2.12. A graph G is called:

– connected if F1pGq is connected;
– a weak forest if F1pGq is thin;
– a forest if L1F1pGq is thin;
– a tree/weak tree if G is a connected forest/weak forest.

Theorem 2.13. If G is a forest, then it is a weak forest as well.

Proof : By Theorem 1.5 and Theorem 2.9, if L1F1pGq is thin, then F1pGq is
thin as well.

The converse of Theorem 2.13 is not true. For instance, a counterexample
is given in Remark 2.16.

Remark 2.14. [Maximal Tree] By Zorn’s Lemma, every small connected
graph G has maximal trees and maximal weak trees. This means that, given
a small connected graph G, the preordered set of trees and the preordered
set of weak trees of G have maximal objects. Of course, these results do not
depend on Zorn’s Lemma if G is countable.

Lemma 2.15. Gmtree is a maximal tree of a connected graph G if and only
if the following properties are satisfied:

– Gmtree is a subgraph of G;
– Gmtree is a tree;
– Gmtree has every object of G.

Remark 2.16. By the last result, a tree in a small connected graph G is
maximal if and only if it has all the objects of G. Such a characterization
does not hold for maximal weak trees. For instance, the graph T given by the
example of weak tree is a weak tree which is not a tree. Hence, the maximal
tree of this graph is an example of a weak tree that has all the objects of the
graph T without being a maximal weak tree. However, one of the directions
holds. Namely, every maximal weak tree of a small connected graph G has
every object of G.

Remark 2.17. All definitions and results related to trees and forests have
analogues for reflexive graphs. In fact, for instance, a reflexive graph G is a
reflexive tree if FR

1 pGq is a connected thin category. Then, we get that G is a
reflexive tree if and only if the graph GE (defined in Remark 2.10) is a tree.
In particular, Gmtree is a maximal reflexive tree of a connected reflexive

graph G if and only if GE
mtree is a maximal tree of the graph GE.
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Definition 2.18. [Fair Graph] An object G of Grph is a fair graph if it has
a maximal weak tree which is a tree.

Remark 2.19. From Zorn’s Lemma, we also get that every small graph G

has a maximal fair subgraph which contains a maximal tree of G. Again, we
can avoid Zorn’s Lemma if we restrict our attention to countable graphs.

There are thin categories which are not free F1-algebras. For instance, as
a particular case of Lemma 2.20, the category ∇2 is thin and is not a free
category. Furthermore, by Theorem 2.22, R and Q are examples of small
thin categories without nontrivial isomorphisms that are not free categories.

Lemma 2.20. If X is a category and it has a nontrivial isomorphism, then
X is not a free category.

Proof : There is only one isomorphism in ΣpNq, namely the identity 0. If f
is an isomorphism of F1pGq, then ℓGpfq “ 0. Since ℓG reflects identities, we
conclude that f is an identity.

We can also consider the thin category freely generated by a graph G, since
M1F1 % C1M1. It is clear that C1M1 is fully faithful and, hence, it induces
an idempotent monad M1F1. In particular, every M1F1-algebra is a free
M1F1-algebra. That is to say, every thin category is a thin category freely
generated by a graph.

Proposition 2.21. If F1pGq is a totally ordered set then, for each object x
of F1pGq and each length m, there is at most one morphism of length m with
x as domain in F1pGq. Moreover, if x is not the terminal object, then there
is a unique morphism of length 1 with x as domain in F1pGq.

Proof : In fact, suppose there are morphisms b : x Ñ z1, a : x Ñ z of length
m. Since F1pGq is totally ordered, we can assume without loosing generality
that there is a morphism c : z ď z1 of some length n.
As F1pGq is thin, ca “ b. In particular, n ` m “ ℓGpcaq “ ℓGpbq “ m.

Hence n “ 0. This means that c is the empty path (identity) and z “ z1.
Again, since F1pGq is thin, a “ b.
It remains to prove the existence of a morphism of length 1 with x as

domain whenever x is not the top element. In this case, there is a morphism
x Ñ z2 of length m ą 0 By Remark 2.8, we conclude that there is a unique
list x ă z1 ă . . . ă zm´1 ă z2 such that zt ă zt`1 corresponds to a morphism
of length 1. In particular, x ă z1 has length 1.
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Theorem 2.22. If F1pGq is a totally ordered set, then it is isomorphic to
one of the following ordered sets:

– The finite ordinals 0, 1, . . . , n, . . .;
– The totally ordered sets N,Nop and Z.

Proof : – If F1pGq has bottom K and top J elements:
If 1 fl F1pGq fl 2, K Ñ J has a length, say m ´ 1 ě 2. This means that

F1pGq – tK ă 1 ă . . . ă m ´ 2 ă Ju – m.

– If F1pGq has a bottom element K but it does not have a top element:

We can define s : N Ñ F1pGq in which sp0q :“ K and spn`1q is the codomain
of the unique morphism of length 1 with spnq as domain. Of course, s is order
preserving.
It is easy to see by induction that K ă spnq has length n. Hence it is

obvious that s is injective. Also, given an object x of F1pGq, there is m1 such
that K Ñ x has length m1. By Proposition 2.21, it follows that spm1q “ x.
This proves that s is actually a bijection.

– If F1pGq has a top element J but it does not have a bottom element:

By duality, we get that Nop – F1pGq.

– If F1pGq does not have top nor bottom elements:

If F1pGq fl 0, given an object y of F1pGq, take the subcategories tx P F1pGq :
x ď yu and tx P F1pGq : y ď xu. By what we proved, these subcategories are
isomorphic respectively to Nop and N. By the uniqueness of pushouts, we get
F1pGq – Z.

Corollary 2.23. If F1pGq is a small thin category, then it is isomorphic to
a colimit of ordinals 0, 1, . . . , n, . . . or/and N,Nop,Z.

Remark 2.24. There are non-free categories which are subcategories of free
categories. But subgroupoids of freely generated small groupoids are freely
generated. In fact, this follows from:

Theorem 2.25. A small groupoid is free if and only if its skeleton is free.
In particular, freeness is a property preserved by equivalences of groupoids.
As a consequence, subgroupoids of free groupoids are free.

Proof : Since L1F1 creates coproducts and every groupoid is a coproduct
of connected groupoids, it is enough to prove the statement for connected
groupoids.
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If a connected groupoid is free, this means that it is isomorphic to L1F1pGq
for a connected graph G. It is easy to see that the skeleton of L1F1pGq is
isomorphic to L1F1pGq{L1F1pGmtreeq for any maximal tree Gmtree. Therefore
L1F1pG{Gmtreeq is isomorphic to the skeleton and, hence, the skeleton is free.
Reciprocally, if the skeleton of a connected groupoid X is free, it follows

that for any object y of X, the full subgroupoid with only x as object, often
denoted by πpX, yq, is free. We take πpX, yq – F1pHq and define the graph
G : Gop Ñ cat by:

´Gp2q :“ Hp2q
ž

pcatp1, Xq ´ tyuq ;

´Gpd1q is constant equal to y;

´Gpd0qpzq :“ z if z P catp1, Xq ´ tyu .

´Gp1q :“ catp1, Xq;

´Gpd0qpaq :“ y if a P Hp2q;

Of course, L1F1pGq – X. The consequence follows from Nielsen-Schreier
theorem for groups, since every small groupoid is equivalent to a coproduct
of groups.

3. Presentations
If T “ pT, m, ηq is a monad on a category X, we denote respectively by XT

and XT the category of Eilenberg-Moore T-algebras and the Kleisli category.
Every such monad comes with a notion of presentation of a T-algebra. More
precisely, a diagram in X

G2
//
// TpG1q (T-presentation diagram)

can be seen as a graph in XT and, hence, it can be seen as a graph Gop Ñ XT

of free T-algebras in XT. We say that the graph above is a presentation of the
T-algebra pG1,TpG1q Ñ G1q if this algebra is (isomorphic to) the coequalizer
of the corresponding diagram Gop Ñ XT of free T-algebras in XT. Every T-
algebra admits a presentation, since every T-algebra is a coequalizer of free T-
algebras. If XT has all coequalizers of free algebras, denoting by GrphpXTq “
Cat rGop,XTs the category of graphs internal to the Kleisli category, there is
a functor GrphpXTq Ñ XT which takes each graph to the category presented
by it.

Definition 3.1. [T-presentation] Let T “ pT, m, ηq be a monad on a cat-
egory X. Consider the comma category pIdX{Tq. We have a functor KT :
pIdX{Tq Ñ GrphpXTq given by the composition of the comparisons pIdX{Tq Ñ
GrphpXTq Ñ GrphpXTq.
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Consider also the full subcategory Grph1pXTq of GrphpXTq whose objects
are graphs G such that the coequalizer of G exists in XT. The category of
T-presentations, denoted by PrepTq, is the pullback of KT along the inclusion
Grph1pXTq Ñ GrphpXTq.
We get then a natural functor K 1

T
: PrepTq Ñ Grph1pXTq. The functor

presentation, denoted by PT : PrepTq Ñ XT, is the composition of the co-
equalizer Grph1pXTq Ñ XT with K 1

T
.

Lemma 3.2. PT is essentially surjective. This means that every T-algebra
has at least one presentation.

Remark 3.3. We ratify that if T is a monad such that XT has coequalizers of
free algebras, then the definition of PrepTq is easier. More precisely, PrepTq :“
pIdX{Tq.

We denote by L0F0 the free group monad on Set whose category of algebras
is the category of groups Group. A L0F0-presentation of a group is a pair
xS,Ry in which S is a set and R : Gop Ñ Set is a small graph such that
Rp1q “ L0F0pSq. This induces a graph R : Gop Ñ Group of free groups. The
coequalizer of this graph is precisely the group presented by xS,Ry. Analo-
gously, we get the notion of F0-presentation of monoids induced by the free
monoid monad F0 on Set.

Remark 3.4. Recall, for instance, the basics of presentations of groups [15].
The classical definition of a presentation of a group is not usually given
explicitly by a graph as it is described above. Instead, the usual definition
of a presentation of a group is given by a pair xS,Ry in which S is a set and
R is a “set of relations or equations”. However, this is of course the same as
an L0F0-presentation. That is to say, it is a graph

R
//
// L0F0pSq

in Set such that the first arrow gives one side of the equations and the second
arrow gives the other side of the equations. For instance, in computing the
fundamental group of a torus via the Van Kampen Theorem and the quotient
of the square [18], one usually gets it via the presentation xta, bu , ab “ bay.
This is the same as the graph

˚
//
// L0F0pta, buq
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in which the image of ˚ by the first arrow is the word ab and the image by
the second arrow is ba. Of course, this is the presentation of ZˆZ, as ZˆZ

is the coequalizer of the corresponding diagram of free groups in the category
of groups.

The free category monad F1 on Grph induces a notion of presentation of
categories. More precisely, an F1-presentation of a category X is a graph

g : G Ñ Grph
F1

such that, after composing g with Grph
F1

Ñ GrphF1 » Cat,
its coequalizer in Cat is isomorphic to X. Analogously, the free groupoid
monad L1F1 gives rise to the notion of L1F1-presentation of groupoids.

Remark 3.5. [Suspension] The forgetful functor u1 : Grph Ñ SET has left
and right adjoints. The left adjoint i1 : SET Ñ Grph is defined by i1pXqp2q “
H and i1pXqp1q “ X. The right adjoint σ1 “ Σ1 : SET Ñ Grph is defined by
Σ1pXqp2q “ X and Σ1pXqp1q “ ˚ is the terminal set.
Indeed, σ1 is part of monad (mono)morphisms F0 Ñ F1 and L0F0 Ñ

L1F1. We conclude that presentation of monoids are particular cases of
presentations of categories and presentations of groups are particular cases
of presentations of groupoids. More precisely, there are inclusions

PrepL0F0q //

��

PrepF0q

��

PrepL1F1q // PrepF1q

but it is important to note that they are not essentially surjective.

Roughly, F1-presentations and L1F1-presentations can be seen as freely
generated graphs with equations between 1-cells and equations between 0-
cells. More precisely, we have:

Definition 3.6. If g : Gop Ñ Grph
F1

is a presentation of a category, we denote

by gpd0q1 the component of the graph morphism gpd0q in 1. If gpd0q1 “ gpd1q1
and they are inclusions, g : Gop Ñ Grph

F1
is called an 1-cell presentation.

Theorem 3.7. If g : Gop Ñ Grph
F1

gp2q
gpd0q

//

gpd1q
// F1pg1q
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is a presentation of a category X, then there is an induced 1-cell presentation
g of X

gp2q
gpd0q

//

gpd1q
// F1pg1q

in which gp2qp1q is the coequalizer of the graph of objects induced by g.

Remark 3.8. We denote by p2 the graph such that F1pp2q “ 2. It is clear that

I can be lifted through C1. That is to say, there is a functor pI : G Ñ Grph

such that C1
pI “ I. Then F1

pI composed with the isomorphism Gop – G gives
a graph of free F1-algebras. Therefore it gives an F1-presentation

‚
//
// F1pp2q

of the category (suspension of the monoid) ΣpNq. Actually, the corresponding
1-cell presentation is just

H
//
// F1p©q – ΣpNq.

Remark 3.9. Of course, we also have the notion of FR
1 -presentations of

categories. Although the category of F1-presentations is not isomorphic to

the category of FR
1 -presentations, we have an obvious inclusion between these

categories which is essentially surjective.

4. Definition of Computads
In Section 8, we give the definition of the n-category freely generated by

an n-computad by induction. The starting point of the induction is the
definition of a category freely generated by a graph. Thereby graphs are
called 1-computads and we define respectively the category of 1-computads
and the category of small 1-computads by 1-Cmp :“ Grph and 1-cmp :“ grph.
In the present section, we give a concise definition of 2-computads and of

the category 2-Cmp. This concise definition is precisely what allows us to get
its freely generated 2-category via a coinserter. We also introduce the notion
of a category presented by a computad, which is going to be our canonical
notion of presentation of categories.

Definition 4.1. [Derivation Schemes and Computads] Consider the functor
p´ ˆ Gq : SET Ñ Cat, Y ÞÑ Y ˆ G and the functor F1 : Grph Ñ Cat. The
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category of derivation schemes is the comma category Der :“ p´ ˆ G{IdCatq.
The category of 2-computads is the comma category 2-Cmp :“ p´ ˆ G{F1q.
Considering the restrictions p´ ˆ Gq : Set Ñ cat and F1 : grph Ñ cat,

we define the category of small 2-computads as 2-cmp :“ p´ ˆ G{F1q. We
also define the category of small computads over reflexive graphs (or just
category of reflexive computads) as Rcmp :“ p´ˆG{FR

1 q. There is an obvious
left adjoint inclusion cmp Ñ Rcmp induced by E. We denote the induced
adjunction by Ecmp % Rcmp.

Derivations schemes were first defined in [10, 34]. Respecting the orig-
inal terminology of [31], the word computad without any index means 2-
computad. Also, we set the notation: Cmp :“ 2-Cmp and cmp :“ 2-cmp.
The pushout of the inclusion p2q0 Ñ 2 of Remark 2.5 along itself is (iso-

morphic to) G. Hence, by definition, a derivation scheme is pair pd, d2q in
which d2 is a discrete category and d : Gop Ñ Cat is an internal graph

d2 ˆ 2
//
// dp1q (d-diagram)

such that, for every α of d2:

dpd0qpα, 0q “ dpd1qpα, 0q dpd0qpα, 1q “ dpd1qpα, 1q.

In this direction, by definition, a computad is a triple pg, g2, Gq in which
pg, g2q is a derivation scheme and G : Gop Ñ Cat is a graph such that
gp1q “ F1pGq. We usually adopt this viewpoint.

Definition 4.2. [Groupoidal Computad] Consider the functor p´ ˆL1pGqq :
SET Ñ Gr, X ÞÑ XˆL1pGq and the functor L1F1 : Grph Ñ Gr. The category
of groupoidal computads is the comma category CmpGr :“ p´ˆL1pGq{L1F1q.
Analogously, the category of groupoidal computads over reflexive graphs is
defined by Rcmpgr :“ p´ ˆ L1pGq{L1F

R
1 q.

We denote by pG the graph below with two objects and two arrows between
them. It is clear that F1ppGq – G. Hence, there is a natural morphism
pG Ñ C1pGq induced by the unit of F1 % C1. Moreover, it is important to

observe that pG is not isomorphic to C1pGq.

˚
//
// ˚

Theorem 4.3. Consider the functor pi1p´q ˆ pGq : Set Ñ grph, X ÞÑ i1pXq ˆ
pG. There are isomorphisms of categories Cmp – pi1p´qˆ pG{F1q and CmpGr –

pi1p´q ˆ pG{L1F1q.
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Moreover, considering suitable restrictions of pi1p´q ˆ pGq and F1 (to Set

and grph respectively), we have that cmp – pi1p´q ˆ pG{F1q. Analogously,

cmpGr – pi1p´q ˆ pG{L1F1q.

Definition 4.4. [Presentation of a category via a computad] We say that a
computad pg, g2, Gq presents a category X if the coequalizer of g : Gop Ñ Cat

is isomorphic to X. We have, then, a functor P1 : Cmp Ñ Cat which gives the
category presented by each computad. Of course, there is also a presentation
functor PR

1 : Rcmp Ñ cat.
Analogously, we say that a groupoidal computad pg, g2, Gq presents a group-

oid X if the coequalizer of g : Gop Ñ Gr is isomorphic to X. Again, we have
presentation functors Pp1,0q : CmpGr Ñ Gr and PR

p1,0q : Rcmpgr Ñ gr.

Theorem 4.5. Every presentation via computads is an F1-presentation. That
is to say, there is a natural inclusion Cmp Ñ PrepF1q. Analogously, every
groupoidal computad is an L1F1-presentation.

Proof : By Theorem 4.3, Cmp – pi1p´q ˆ pG{F1q. So, it is enough to consider
the natural inclusion between comma categories

pi1p´q ˆ pG{F1q Ñ pIdGrph{F1q.

Every category admits a presentation via a computad and, analogously,
every groupoid admits a presentation via a groupoidal computad. These
results follow from Theorem 3.7 and:

Theorem 4.6. There is a functor Cmp Ñ PrepF1q, g ÞÑ C1g which is es-
sentially surjective in the subcategory of 1-cell presentations g : Gop Ñ Grph

of categories such that the graph gp2q has no isolated objects (that is to say,
every object is the domain or codomain of some arrow). Moreover, there is
a natural isomorphism

Cmp //

P1

❊❊
❊

""❊
❊❊

–

PrepF1q

P
F1

✉✉✉

zz✉✉✉

Cat
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Remark 4.7. The truncated category 9∆2 is usually presented by the com-

putad pg
9∆2, g

9∆2

2 , G 9∆2
q defined as follows:

G 9∆2
p1q :“ t0, 1, 2u

G 9∆2
pd1qpdiq :“ 1, @i

G 9∆2
pd0qpdiq :“ 2, @i

G 9∆2
pd1qpdq :“ 0, @i

G 9∆2
p2q :“

 
d, s0, d0, d1

(

G 9∆2
pd1qps0q :“ 2

G 9∆2
pd0qps0q :“ 1

G 9∆2
pd0qpdq :“ 1, @i

g
9∆
2 :“ tn0, n1, ϑu

g
9∆2pd1qpn0, 0 Ñ 1q :“ s0 ¨ d0

g
9∆2pd0qpn0, 0 Ñ 1q :“ id

1

g
9∆2pd0qpϑ, 0 Ñ 1q :“ d0 ¨ d

g
9∆2pd0qpn1, 0 Ñ 1q :“ s0 ¨ d1

g
9∆2pd1qpn1, 0 Ñ 1q :“ id

1

g
9∆2pd1qpϑ, 0 Ñ 1q :“ d1 ¨ d.

This computad can also be described by the graph

0 d // 1
d1 //

d0
// 2s0oo

with the following 2-cells:

n0 : s
0 ¨ d0 ñ id

1
, n1 : id1

ñ s0 ¨ d1, ϑ : d1 ¨ d ñ d0 ¨ d.

Lemma 4.8. The category 9∆2 is the coequalizer of the computad g
9∆2.

Remark 4.9. The usual presentation of the category 9∆ via faces and degen-

eracies is given by the computad pg
9∆, g

9∆
2 , G 9∆q which is defined by

g
9∆
2 ˆ 2

//
// F1pG 9∆q

in which G 9∆p1q :“ pNq0 is the discrete category of the non-negative integers
and

G 9∆p2q :“
 

pdi, mq : pi,mq P N2, i ď m
(

Y
 

psk, mq : pk,mq P N2, k ď m ´ 1 ě 0
(

G 9∆pd1qpdi, mq :“ m

G 9∆pd0qpdi, mq :“ m ` 1

G 9∆pd1qpsk, mq :“ m ` 1

G 9∆pd0qpsk, mq :“ m
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g
9∆
2 :“

 
pdk, di, mq : pi, k,mq P N3, m ě i ă k

(

Y
 

psk, si, mq : pi, k,mq P N3, 0 ď m ´ 1 ě k ě i
(

Y
 

psk, di, mq : pi, k,mq P N3, k ď m ´ 1 ě 0
(

g
9∆pd1qppdk, di, mq, 0 Ñ 1q :“ pdk, m ` 1q ¨ pdi, mq

g
9∆pd1qppsk, si, mq, 0 Ñ 1q :“ psk, mq ¨ psi, m ` 1q

g
9∆pd1qppsk, di, mq, 0 Ñ 1q :“ psk, m ` 1q ¨ pdi, mq

g
9∆pd0qppdk, di, mq, 0 Ñ 1q :“ pdi, m ` 1q ¨ pdk´1, mq

g
9∆pd0qppsk, si, mq, 0 Ñ 1q :“ psi, mq ¨ psk`1, m ` 1q

g
9∆pd0qppsk, di, mq, 0 Ñ 1q :“ pdi, m ´ 1q ¨ psk´1, mq, if k ą i

g
9∆pd0qppsk, di, mq, 0 Ñ 1q :“ id

m
, if i “ k or i “ k ` 1

g
9∆pd0qppsk, di, mq, 0 Ñ 1q :“ pdi´1, m ´ 1q ¨ psk, m ´ 1q, if i ą k ` 1.

Lemma 4.10. The category 9∆ is the coequalizer of the computad g
9∆.

Every computad induces a presentation of groupoids via a groupoidal com-
putad, since we have an obvious functor Cmp Ñ CmpGr induced by L1. More

precisely, the functor LCmp
1 : Cmp Ñ CmpGr is defined by g ÞÑ L1g. Observe

that the groupoidal computad L1g gives a presentation of the coequalizer of
L1g in Gr which is (isomorphic to) L1P1pgq. In this case, we say that the
computad g presents the groupoid L1P1pgq.

Proposition 4.11. There is a natural isomorphism Pp1,0qL
Cmp
1 – L1P1.

Remark 4.12. If P1pgq is a groupoid, there is no confusion between the
groupoid presented by g and the category presented by g, since, in this case,
they are actually isomorphic. More precisely, in this case, L1P1pgq – P1pgq.

Theorem 4.13. If the groupoid presented by a computad pg, g2, Gq is thin,
then pg, g2, Gq presents a thin category as well provided that P1pg, g2, Gq sat-
isfies the cancellation law.

Proof : By Theorem 1.5, if L1P1pgq is thin, then P1pgq is thin.

Definition 4.14. [2-cells of computads] Let pg, g2, Gq be a computad. The
discrete category g2 is called the discrete category of the 2-cells of the com-
putad g. Moreover, we say that α is a 2-cell between f and g, denoted by
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α : f ñ g, if gpd1qpα, 0 Ñ 1q “ f and gpd0qpα, 0 Ñ 1q “ g. In this case, the
domain of α is f while the codomain is g.
Sometimes, we need to be even more explicit and denote the 2-cell α by

α : f ñ g : x Ñ y whenever gpd1qpα, 0 Ñ 1q “ f , gpd0qpα, 0 Ñ 1q “ g,
gpd0qpα, 0q “ x and gpd0qpα, 1q “ y.

In the context of presentation of categories, the 2-cells of a computad
pg, g2, Gq correspond to the equations of the presentation induced by this
computad. If g has more than one 2-cell between two arrows of gp1q, then
it is a redundant presentation of the coequalizer of g. Yet, we also have
interesting examples of redundant presentations. For instance, in the next
section, we give the definition of the fundamental groupoid via a redundant
presentation.

Remark 4.15. [Sigma] There is an obvious forgetful functor u2 : cmp Ñ
grph. This forgetful functor has left and right adjoints. The left adjoint
i2 : grph Ñ cmp is defined by i2pGq “ pGi2,H, Gq. Sometimes, we denote Gi2

by i2pGq and, of course, it is defined as follows:

i2pGq : H
//
// F1pGq.

The right adjoint σ2 : grph Ñ cmp is defined by σ2pGq “ pGσ2, Gσ2

2 , Gq
in which σ2pGqp2q “ Gσ2

2 ˆ 2 and the set of 2-cells Gσ2

2 is the pullback of
pF1pGqpd1q,F1pGqpd0qq : F1pGqp2q Ñ F1pGqp1q ˆ F1pGqp1q along itself. Fi-
nally, the images of Gσ2pGqpd1q, Gσ2pd0q are induced by the obvious projec-
tions. Sometimes we write σ2pGq “ pσ2pGq, σ2pGq2, Gq as follows

σ2pGq : Gσ2

2 ˆ 2
//
// F1pGq.

Remark 4.16. [SigmaGr] Of course, we also have a forgetful functor uGr2 :

cmpGr Ñ grph. The left adjoint of this functor is defined by iGr2 :“ L
Cmp
1 i2,

while the right adjoint is defined by σGr
2 :“ L

Cmp
1 σ2.

Proposition 4.17. There is a natural isomorphism P1i2 – F1.

Definition 4.18. [Connected Computad] A computad pg, g2, Gq is connected
if u2pg, g2, Gq “ G is connected.

Remark 4.19. Let X be a group. We consider the full subcategory
PrepL0F0, Xq of PrepL0F0q consisting of the presentations of X. This sub-
category is isomorphic to the full subcategory of cmpGr consisting of the
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groupoidal computads which presents ΣpXq. This fact shows that presenta-
tions of groupoids by groupoidal computads generalizes the notion of L0F0-
presentations of groups. Moreover, unlike the case of L1F1-presentations, the
notion of presentations of (suspensions of) groups by groupoidal computads
is precisely the same of L0F0-presentations.
Analogously, given a monoid Y the category of F0-presentations PrepF0, Y q

is isomorphic to the category of computads which presents ΣpY q.

5. Topology and Computads
We introduce topological aspects of our theory. We refer the reader to

[28] for basic notions and results of algebraic topology, including the Van
Kampen theorem for fundamental groupoids.
We start with the relation between the fundamental groupoids and group-

oids freely generated by small graphs. By the classical Van Kampen theorem,
the fundamental group of a (topological) graph with only one object is the
group freely generated by the set of edges/arrows. We show that it also
holds for fundamental groupoids: roughly, the groupoid freely generated by
a small graph G is equivalent to its fundamental groupoid. Although this
is a straightforward result, this motivates the relation between topology and
small computads: that is to say, the association of each small computad with
a CW-complex presented in 5.1.
We always consider small computads, small graphs and small categories

throughout this section. Moreover, we use the appropriate restrictions of
the functors F1,L1,U1,C1. Finally, Top denotes any suitable cartesian closed
category of topological spaces: for instance, compactly generated spaces.
Then we can consider weighted colimits in Top w.r.t. the Top-enrichment.

Remark 5.1. [Topological Graph] There is an obvious left adjoint inclusion
D2 : cat Ñ Top-Cat induced by the fully faithful (discrete topology) functor
D : Set Ñ Top left adjoint to the forgetful functor Top Ñ Set. We denote by
G and Gop the images D2pGq and D2pG

opq respectively, whenever there is no
confusion. If I “ r0, 1s is the unit interval with the usual topology and ˚ is
the terminal topological space, then the Top-weight ITop1 : G Ñ Top defined
by

˚
1 //

0
// I

gives the definition of Top-isoinserters and Top-isocoinserters.
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If G : Gop Ñ Set is a small graph, DG : Gop Ñ Top is actually compatible
with the Top-enrichment. More precisely, since D2 is left adjoint, there is a
Top-functor D2pG

opq Ñ Top which is the mate of DG : Gop Ñ Top. Again,
by abuse of notation, the mate D2pG

opq Ñ Top is also denoted by DG :
Gop Ñ Top.
Any small graph G : Gop Ñ Set has an associated topological (undirected)

graph given by the Top-isocoinserter of the Top-functor DG. This gives a
functor FTop1 : grph Ñ Top which is left adjoint to the functor CTop1 : Top Ñ
grph, E ÞÑ ToppITop1´, Eq. We denote the monad induced by this adjunction

by FTop1
.

A path in a topological space E is an edge of CTop1pEq, that is to say, a path
in E is a continuous map a : I Ñ E.

Lemma 5.2. A small graph G is connected if and only if FTop1pGq is a path
connected topological space.

Remark 5.3. We also have an adjunction FR

Top1
% CR

Top1
in which CR

Top1
“

CTop1R. This adjunction is induced by a weight analogue of ITop1. Namely,
if we denote by ∆2 the image of itself by cat Ñ Top-Cat, the Top-functor
I
R

Top1
: ∆2 Ñ Top defined by

˚
1 //

0
// Ioo

in which IRTop1
composed with the inclusion G Ñ ∆2 is equal to ITop1. This

weight gives rise to the notion of reflexive Top-isoinserters and reflexive Top-
isocoinserters. Finally, FR

Top1
pGq “ IRTop1

˚DG and CTop1 : Top Ñ Rgrph, E ÞÑ

ToppIRTop1´, Eq.

Given an arrow f of F1CTop1pEq, we have that there is a unique finite list of

arrows af0 , . . . , a
f
m´1 of CTop1

pEq such that f “ a
f
m´1 ¨ ¨ ¨ af0 by the ulf property

of the length functor. Since, by definition, af0 , . . . , a
f
m´1 are continuous maps

I Ñ E, we can define a continuous map
P
f
T
E

: I Ñ E by
P
f
T
E

ptq “

afnpmt´ nq whenever t P rn{m, pn ` 1q{ms. This gives a morphism of graphs

r sE : C1F1CTop1
pEq Ñ CTop1

pEq

which is identity on objects and takes each arrow f “ a
f
m´1 ¨ ¨ ¨ af0 of length

m to the arrow
P
f
T
E
of CTop1pEq. These graph morphisms define a natural
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transformation

r s : F1CTop1 ÝÑ CTop1.

Remark 5.4. It is very important to observe that, if f is an arrow of
C1F1CTop1pEq of length m ą 1, then

P
f
T
E

: x Ñ z is not the same as the
morphism f : x Ñ z itself. The former is an edge of CTop1pEq, which means

that, as morphism of F1CTop1pEq, its length is 1.

Remark 5.5. We have also a natural transformation r sGr : L1F1CTop1 ÝÑ
CTop1. Observe that, by the ulf property of the length functor and by the

definition of CTop1
, if f is an arrow of L1F1CTop1

pEq of lenght k, then f “

a
f
m´1 ¨ ¨ ¨ af0 for a unique list pafm´1, . . . , a

f
0q of paths or formal inverses of paths

in E and we can define
P
f
TGr
E

: I Ñ E by:

P
f
TGr
E

ptq “

$
’’’&
’’’%

afnpmt ´ nq, if t P rn{m, pn ` 1q{ms and afn is a path in E,

bfnp´mt ` n ` 1q, if t P rn{m, pn ` 1q{ms and afn

is a formal inverse of an arrow bfn of CTop1pEq.

On one hand, this defines morphisms of graphs L1F1CTop1pEq ÝÑ CTop1pEq
for each topological space E. On the other hand, these morphisms define the
natural transformation r sGr : L1F1CTop1 ÝÑ CTop1.

Theorem 5.6. The mate of r s : F1CTop1 ÝÑ CTop1 under the adjunction
FTop1 % CTop1 and the identity adjunction is a natural transformation

r s : F1 ÝÑ FTop1

which is a part of a monad functor/morphism pId
Grph

, r sq : FTop1 Ñ F1. Anal-

ogously, the mate r sGr under the same adjunctions is a natural transforma-

tion r sGr which is part of a monad functor pId
Grph

, r sGrq : FTop1 Ñ L1F1.

Remark 5.7. It is also important to consider the mate r¨s : FTop1F1 ÝÑ FTop1

of the natural transformation r s : F1CTop1 ÝÑ CTop1 under the adjunction
FTop1 % CTop1 and itself. Again, we can consider the case of groupoids: the

mate of r sGr under FTop1 % CTop1 and itself is denoted by r¨sGr : FTop1L1F1 ÝÑ
FTop1.
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Let S1 be the circle (complex numbers with norm 1) and B2 the closed ball
(complex numbers whose norm is smaller than or equal to 1). We denote the
usual inclusion by h : S1 Ñ B2. We consider also the embeddings:

h0 : I Ñ B2, t ÞÑ eπit h1 : I Ñ B2, t ÞÑ eπip´tq.

Recall that, if E is a topological space and a, b : I Ñ E are continuous maps,
a homotopy of paths H : a » b is a continuous map H : B2 Ñ E such that
Hh0 “ a and Hh1 “ b. If there is such a homotopy, we say that a and b are
homotopic.
There is a functor CTop2 : Top Ñ cmp given by CTop2pEq “ pgE, gE2 , G

Eq in
which GE :“ CTop1pEq and

gE2 :“
!

pf, g,H :
P
f
T
E

»
P
g
T
E

q :

H is a homotopy of paths and f, g P F1CTop1pEqp2q
(
.

Also, gEpd1qpf, g,H :
P
f
T
E

»
P
g
T
E
, 0 Ñ 1q :“ f and gEpd0qpf, g,H :

P
f
T
E

»P
g
T
E
, 0 Ñ 1q :“ g. By an elementary result of algebraic topology, the image

of P1CTop2
: Top Ñ Cat is inside the category of small groupoids gr. More

precisely, there is a functor Π : Top Ñ gr such that U1Π – PCTop2. If E is
a topological space, ΠpEq is called the fundamental groupoid of E. Given a
point e P E, recall that the fundamental group π1pE, eq is by definition the
full subcategory of ΠpEq with only e as object.

Remark 5.8. The Van Kampen theorem [8] for groupoids (see, for instance,
[8, 6]) gives the fundamental groupoid ΠpS1q by the pushout of the inclu-
sion t0, 1u Ñ ΠpIq along itself. This is equivalent to the pushout of the
inclusion p2q0 Ñ 2 of Remark 2.5 along p2q0 Ñ 1, which is given by the
L1F1-presentation

‚ //
// L1F1pp2q

induced by the F1-presentation of Example 3.8. We conclude that this is
isomorphic to L1pΣpNqq – ΣpZq.

Proposition 5.9. There is a natural isomorphism CTop1
– u2CTop2

.

Remark 5.10. The groupoid freely generated by a given small graph is
equivalent to the fundamental groupoid of the respective topological graph.
To see that, since FR

1 E – F1 and FR

Top1
E – FTop1, it is enough to prove that,
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for each small reflexive graph G,

L1F
R

1 pGq » ΠFR

Top1
pGq.

On one hand, if G is a reflexive tree, then both L1F
R
1 pGq,ΠFR

Top1
pGq are

thin (and connected): therefore, they are equivalent. On the other hand, if
G is a reflexive graph with only one object, then L1F

R
1 pGq and ΠFR

Top1
pGq are

equivalent to the group freely generated by the set of nontrivial edges/arrows
of G.
If a reflexive graph G is not a reflexive tree and it has more than one

object, we can choose a maximal reflexive tree Gmtree of G. Then, if we de-
note by L1F

R
1 pGq{L1F

R
1 pGmtreeq the pushout of the inclusion L1F

R
1 pGmtreeq Ñ

L1F
R
1 pGq along the unique functor between L1F

R
1 pGmtreeq and the terminal

groupoid, we get:

L1F
R

1 pGq » L1F
R

1 pGq{L1F
R

1 pGmtreeq – L1F
R

1 pG{Gmtreeq,

in which, analogously,G{Gmtree denotes the pushout of the morphism induced
by the inclusion Gmtree Ñ G along the unique morphism Gmtree Ñ ‚ in the
category of reflexive graphs Rgrph.
Since the reflexive graph G{Gmtree has only one object, we have that

L1F
R

1 pG{Gmtreeq » ΠFR

Top1
pG{Gmtreeq – Π

´
F
R

Top1
pGq{FR

Top1
pGmtreeq

¯

in which the last isomorphism follows from the fact that FR

Top1
is left adjoint.

Since Π
´
FR

Top1
pGq{FR

Top1
pGmtreeq

¯
» ΠFR

Top1
pGq, the proof is complete. This

actually can be done in a pseudonatural equivalence as we show below.

Theorem 5.11. There is a natural transformation L1F1 ÝÑ ΠFTop1 which
is an objectwise equivalence.

Proof : Consider the unit of the adjunction FTop1 % CTop1, denoted in this
proof by η. We have that the horizontal composition Id

P1i2
˚ η gives a nat-

ural transformation P1i2 ÝÑ P1i2FTop1. We, then, compose this natural

transformation with the obvious isomorphism P1i2FTop1 ÝÑ P1i2u2CTop2FTop1

obtained from the isomorphism of Proposition 5.9
Now, we suitably past this natural transformation with the counit of i2 % u2

and get a natural transformation P1i2 ÝÑ P1CTop2FTop1, which, after com-
posing with the isomorphism of Proposition 4.17, gives F1 ÝÑ P1CTop2FTop1.
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The horizontal composition of this natural isomorphism with Id
L1

gives
our natural transformation L1F1 ÝÑ L1P1CTop2FTop1 – ΠFTop1. It is an
exercise of basic algebraic topology to show that, as a consequence of the
considerations of Remark 5.10, this natural transformation is an objectwise
equivalence.

5.1. Further on Topology. To get the relation between small computads
and topological spaces, we use the isomorphism of Theorem 4.3. In particular,
an object pg, g2, Gq of cmp is a diagram g : 2 Ñ grph

pG ˆ i1pg2q Ñ F1pGq,

in which g2 is a set and G is a small graph. We also fix the homeomorphism
cir´1 : FTop1p

pGq Ñ S1 which is the mate of the morphism of graphs cir1 : pG Ñ

CTop1pS
1q which takes the edges of pG to the continuous maps h1

1, h
1
0 : I Ñ S1,

h1
1ptq :“ h1ptq, h

1
0ptq :“ h0ptq (which are edges between 0 and 1 in CTop1pS

1q).
More generally, for each set g2, we fix the homeomorphism

cir ˆ g2 : S
1 ˆ Dpg2q Ñ FTop1

ppG ˆ i1pg2qq.

Analogously to the case of graphs, we can associate each computad with a
“topological computad”, which is a CW-complex of dimension 2. The functor
CTop2

: Top Ñ cmp is actually right adjoint to the functor FTop2
: cmp Ñ Top

defined as follows: if pg, g2, Gq is a small computad g : pG ˆ i1pg2q Ñ F1pGq,
then FTop2

pg, g2, Gq is the pushout of h ˆ Dpg2q : S
1 ˆ Dpg2q Ñ B2 ˆ Dpg2q

along the composition of the morphisms

S1 ˆ Dpg2q
pcirˆg2q

// FTop1
ppG ˆ i1pg2qq

pFTop1
gq
// FTop1

F1pGq
r¨sG // FTop1

pGq

in which r¨s : FTop1F1 ÝÑ FTop1 is the natural transformation of Remark 5.7.

Lemma 5.12. A small computad pg, g2, Gq is connected if and only if
FTop2pg, g2, Gq is a path connected topological space.

Let g “ pg, g2, Gq be a small connected computad. We denote by T the
maximal tree of u2pg, g2, Gq. Consider the pushout of FTop2i2pTq Ñ ˚ along
the composition

FTop2i2pTq Ñ FTop2i2u2pg, g2, Gq Ñ FTop2pg, g2, Gq

in which FTop2i2pTq Ñ FTop2pi2u2pg, g2, Gqq is induced by the inclusion of the
maximal tree of the graph u2pg, g2, Gq and FTop2pi2u2pg, g2, Gqq Ñ FTop2pg, g2, Gq
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is induced by the counit of i2 % u2. Since this is actually a pushout of a ho-
motopy equivalence along a cofibration (that is to say, this is a homotopy
pushout along a homotopy equivalence), we get that FTop2pg, g2, Gq has the
same homotopy type of the obtained pushout which is a wedge of spheres,
balls and circumferences.

Theorem 5.13. For each small computad pg, g2, Gq, there is an equivalence

ΠFTop2
pg, g2, Gq » L1P1pg, g2, Gq.

Remark 5.14. It is clear that the adjunction FTop2 % CTop2 can be lifted
to an adjunction F

Gr
Top2

% C
Gr
Top2

in which F
Gr
Top2

: cmpGr Ñ Top is defined as

follows: if pg, g2, Gq is a small groupoidal computad,

g : pG ˆ i1pg2q Ñ L1F1pGq,

then F
Gr
Top2

pg, g2, Gq is the pushout of h ˆ Dpg2q : S
1 ˆ Dpg2q Ñ B2 ˆ Dpg2q

along r¨sGrG ¨ pFTop1gq ¨ pcir ˆ g2q. We have an isomorphism F
Gr
Top2

L
cmp
1 – FTop2.

Theorem 5.15. For each small groupoidal computad pg, g2, Gq, there is an
equivalence

ΠFGr
Top2

pg, g2, Gq » Pp1,0qpg, g2, Gq.

6. Deficiency
In this section, we study presentations of small categories/groupoids, focus-

ing on thin groupoids and categories. Roughly, the main result of this section
computes the minimum of equations/2-cells necessary to get a presentation
of a groupoid generated by a given graph G with finite Euler characteris-
tic. This result motivates our definition of deficiency of a (finitely presented)
groupoid/category. We start by giving the basic definitions of deficiency of
algebras over Set.

6.1. Algebras over Set. Let T “ pT, m, ηq be a monad on Set. We denote
a T-presentation R : Gop Ñ Set,

Rp2q
//
// TpSq,

by xS,Ry. If S and Rp2q are finite, the presentation xS,Ry is called finite.
If a T-algebra pA,TpAq Ñ Aq has a finite presentation xS,Ry, it is called
finitely (T-)presented.
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In this context, the (T-)deficiency of a T-presentation xS,Ry is defined by

defTpxS,Ryq :“ |S| ´ |Rp2q|

in which |´| gives the cardinality of the set. The (T-)deficiency of a finitely
presented T-algebra pA,TpAq Ñ Aq, denoted by defTpA,TpAq Ñ Aq, is the
maximum of the set

tdefTpxS,Ryq : xS,Ry presents pA,TpAq Ñ Aqu .

Remark 6.1. Consider the free real vector space monad and the notion of
presentation of vector spaces induced by it. In this context, the notion of
finitely presented vector space coincides with the notion of finite dimensional
vector space and it is a consequence of the rank-nulity theorem that the
deficiency of a finite dimensional vector space is its dimension.
The notion of deficiency and finite presentations induced by the free group

monad L0F0 coincide with the usual notions (see [15]). Analogously, the
respective usual notions of deficiency and finite presentations are induced by
the free monoid monad and free abelian group monad.

It is well known that, if a (finitely presented) group has positive deficiency,
then this group is nontrivial (actually, it is not finite). Indeed, if H is a
group which has a presentation with positive deficiency, then GrouppH,Rq is
a vector space with a presentation with positive deficiency. This implies that
GrouppH,Rq has positive dimension and, then, H is not trivial. In particular,
we conclude that the trivial group has deficiency 0.
We present a suitable definition of deficiency of groupoids and, then, we

prove that thin groupoids have deficiency 0. Before doing so, we recall ele-
mentary aspects of Euler characteristics and define what we mean by finitely
presented category.

6.2. Euler characteristic. If X is a topological space, we denote by HipXq
its ordinary i-th cohomology group with coefficients in R. Assuming that
the dimensions of the cohomology groups of a topological space X are finite,
recall that the Euler characteristic of a topological space X is given by

χpXq :“
8ÿ

i“0

p´1qi dimHipXq

whenever all but a finite number of terms of this sum are 0.
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If G is a small graph, it is known that χpFTop1pGqq “ |Gp1q| ´ |Gp2q|
whenever the cardinality of the sets Gp1q, Gp2q are finite. Also, a connected
small graph G is a tree if and only if χpFTop1pGqq “ 1. As a corollary of
Theorem 2.13, we get:

Corollary 6.2. Let G be a connected small graph. If χpFTop1pGqq “ 1,
L1F1pGq and F1pGq are thin.

If pg, g2, Gq is a connected small computad, since FTop2
pg, g2, Gq has the

same homotopy type of a wedge of spheres, closed balls and circumferences,
H0

`
FTop2pgq

˘
“ R and Hi

`
FTop2pgq

˘
“ 0 for all i ą 2. Furthermore, assuming

that χpFTop1u2pg, g2, Gqq “ χpFTop1pGqq and g2 are finite, we have that:

χ
`
FTop2pg, g2, Gq

˘
“ χpFTop1pGqq ` |g2|.

Remark 6.3. All considerations about FTop2
have analogues for FGr

Top2
. In par-

ticular, if pg, g2, Gq is a connected small groupoidal computad FGr
Top2

pg, g2, Gq
is a CW-complex and has the same homotopy type of a wedge of spheres,

closed balls and circumferences. Moreover, χ
´
FGr
Top2

pg, g2, Gq
¯

“ χpFTop1
pGqq`

|g2| provided that χpFTop1pGqq and g2 are finite.

6.3. Deficiency of a Groupoid. Observe that σ2pGq gives a (natural)
presentation of the thin category freely generated by G. More precisely,
P1σ2 – M1F1. Yet, σ2pGq gives always a presentation of M1F1pGq with more
equations than necessary.

Remark 6.4. Let G be the graph below. In this case, the set of 2-cells σ2pGq2
is given by tpw,wq : w P F1pGqp2quYtpyx, bq, pyxa, baq, pba, yxaq, pb, yxquwith
obvious projections.

¨ a // ¨ b //

x
❂❂

❂

��❂
❂❂

¨

¨

y
✁✁✁

@@✁✁✁



34 FERNANDO LUCATELLI NUNES

On one hand, the computad σ2pGq induces the presentation of M1F1pGq with
the equations: $

’’’’’’&
’’’’’’%

w “ w if w P F1pGqp2q

yx “ b

yxa “ ba

b “ yx

ba “ yxa.

On the other hand, the computad

2
//
// F1pGq,

in which the image of one functor is the arrow yx while the image of the
other functor is b, gives a presentation of M1F1pGq with less equations than
σ2pGq.

The main theorem about presentations of thin groupoids in low dimension
is Theorem 6.7. This result gives a lower bound to the number of equations
we need to present a thin groupoid. We start with our first result, which is
a direct corollary of Theorem 5.15:

Corollary 6.5. Let pg, g2, Gq be a small connected groupoidal computad.
Pp1,0qpg, g2, Gq is thin if and only if FGr

Top2
pg, g2, Gq is 1-connected which means

that the fundamental group π1pF
Gr
Top2

pg, g2, Gqq is trivial.

Proof : The fundamental group π1pFTop2pg, g2, Gqq is trivial if and only if
ΠpFGr

Top2
pg, g2, Gqq is thin. By Theorem 5.15, we conclude that

π1pF
Gr
Top2

pg, g2, Gqq is trivial if and only if Pp1,0qpg, g2, Gq is thin.

Remark 6.6. Of course, last corollary applies also to the case of presentation
of groupoids via computads. More precisely, if pg, g2, Gq is a small connected
computad,

L1P1pg, g2, Gq – Pp1,0qL
Cmp
1 pg, g2, Gq

is thin if and only if the fundamental group of

F
Gr
Top2

L
Cmp
1 pg, g2, Gq – FTop2pg, g2, Gq

is trivial.
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Theorem 6.7. If pg, g2, Gq is a small connected groupoidal computad and

Z Q χ
´
F
Gr
Top2

pg, g2, Gq
¯

ă 1,

then Pp1,0qpg, g2, Gq is not thin.

Proof : Recall that

χ
´
F
Gr
Top2

pg, g2, Gq
¯

“ 1´dimH1
´
F
Gr
Top2

pg, g2, Gq
¯

`dimH2
´
F
Gr
Top2

pg, g2, Gq
¯
.

Therefore, by hypothesis,

dimH1
´
F
Gr
Top2

pg, g2, Gq
¯

ą dimH2
´
F
Gr
Top2

pg, g2, Gq
¯
.

In particular, we conclude that dimH1
´
FGr
Top2

pg, g2, Gq
¯

ą 0. By the Hurewicz

isomorphism theorem and by the universal coefficient theorem, this fact im-

plies that the fundamental group π1

´
FGr
Top2

pg, g2, Gq
¯
is not trivial. By Corol-

lary 6.5, we get that Pp1,0qpg, g2, Gq is not thin.

Corollary 6.8. If pg, g2, Gq is a small connected groupoidal computad which
presents a thin groupoid and χpFTop1pGqq is finite, then

χpFTop1pGqq ` |g2| ´ 1 ě 0.

In particular, Corollary 6.8 implies that, if G is such that χpFTop1pGqq is
finite, we need at least 1 ´ χpFTop1pGqq equations to get a presentation of

M1L1F1pGq.

Definition 6.9. [Finitely Presented Groupoids and Categories] A groupoid/
category X is finitely presented if there is a small connected groupoidal
computad/small connected computad pg, g2, Gq which presents X, such that
χpFTop1pGqq and |g2| are finite.

Recall the definition of deficiency of groups w.r.t. the free group monad
L0F0 given in 6.1. Definition 6.9 agrees with the definition of finitely L0F0-
presented groups. Moreover, as explained in Proposition 6.11, Definition 6.10
also agrees with the definition of L0F0-deficiency of groups.

Definition 6.10. [Deficiency of a Groupoid] Let X be a finitely presented
groupoid. The deficiency of a presentation of X by a small connected
groupoidal computad pg, g2, Gq is defined by def pg, g2, Gq :“ 1 ´ |g2| ´
χpFTop1pGqq, provided that |g2| and χpFTop1pGqq are finite.
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Moreover, the deficiency of the groupoid X is the maximum of the set
!´

1 ´ χ
´
F
gr
Top2

pg, g2, Gq
¯¯

P Z : Pp1,0qpg, g2, Gq – X and χpFTop1pGqq P Z

)
.

Proposition 6.11. If X is a finitely presented group, the deficiency of ΣpXq
w.r.t. presentations by groupoidal computads is equal to def

L0F0
pXq.

Proof : This result follows from Remark 4.19.

Theorem 6.8 is the first part of Corollary 6.15. The second part is Theorem
6.13 which is easy to prove: but we need to give some explicit constructions
to give further consequences in 6.4. To do that, we need the terminology
introduced in:

Remark 6.12. Given a small reflexive graph G, a morphism f of FR
1 pGq

determines a subgraph of G, namely, the smallest (reflexive) subgraph G1 of
G, called the image of f , such that f is a morphism of FR

1 pG1q. More generally,
given a small computad g “ pg, g2, Gq of Rcmp, it determines a subgraph G1

of G, called the image of the computad g in G, which is the smallest graph
G1 satisfying the following: there is a computad g1 : g2 ˆ G Ñ FR

1 pG1q such
that

g2 ˆ G

g %%❏❏
❏❏

❏❏
❏❏

❏❏

g1

// FR
1 pG1q

��

F
R
1 pGq

commutes. We also can consider the graph domain and the graph codomain
of a small computad g “ pg, g2, Gq, g : Gop Ñ Cat, which are respectively the

smallest subgraphs gd
1

and gd
0

of G such that gpd1qpg2 ˆ 2q and gpd0qpg2 ˆ 2q
are respectively in F

R
1 pgd

1

q and F
R
1 pgd

0

q.
Of course, we can consider the notions introduced above in the category of

computads or groupoidal computads as well.

Theorem 6.13. Let G be a small connected graph such that χpFTop1pGqq P Z

(equivalently, π1pFTop1pGqq is finitely generated). There is a groupoidal com-

putad ppg, g2, Gq which presents M1 L1F1pGq such that |g2| “ 1´χpFTop1
pGqq.

Proof : Without losing generality, in this proof we consider reflexive graphs,
and computads over reflexive graphs. Let G be a small reflexive connected
graph such that its fundamental group is finitely generated. If Gmtree is
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the maximal (reflexive) tree of G, we know that the image of the (natu-
ral) morphism of reflexive graphs G Ñ G{Gmtree by the functor L1F

R
1 is

an equivalence. That is to say, we have a natural equivalence L1F
R
1 pGq Ñ

L1F
R
1 pG{Gmtreeq which is in the image of L1F

R
1 .

In particular, each arrow f of G{Gmtree corresponds to a unique arrow pf of

G such that pf is not an arrow of Gmtree and the image of pf by G Ñ G{Gmtree

is f .
Recall that, since G{Gmtree has only one object, L1F

R
1 pG{Gmtreeq is the

suspension of the group freely generated by the set G{Gmtreep2q of arrows. By
hypothesis, this set is finite and has 1 ´ χpFTop1pGqq P N elements. Thereby
we have a computad g : Gop Ñ cat,

g2 ˆ 2 //
//
F
R
1 pG{Gmtreeq,

in which g2 :“ G{Gmtreep2q, gpd0qpf, 0 Ñ 1q “ f and gpd0qpf, 0 Ñ 1q “ id.

The computad L
Rcmp
1 pgq : Gop Ñ gr gives a presentation of the trivial group.

The computad g lifts through G Ñ G{Gmtree to a (small) groupoidal com-
putad pg : Gop Ñ cat over G. More precisely, we define pg “ pg, g2, Gq,

pgp1q “ L1F
R

1 pGq, pgp2q “ g2ˆ2, pgpd0qpf, 0 Ñ 1q “ pf and pgpd1qpf, 0 Ñ 1q “ 9f

in which 9f is the unique morphism of the (thin) subgroupoid L1F
R
1 pGmtreeq

of L1F
R
1 pGq such that the domain and codomain of 9f coincide respectively

with the domain and codomain of pf .
Of course, this construction provides a 2-natural transformation which is

pointwise an equivalence pg ÝÑ L
Rcmp
1 pgq,

g2 ˆ 2 //
//
L1F

R
1 pGq

��

g2 ˆ 2 //
//
L1F

R
1 pG{Gmtreeq.

It is easy to see that, in this case, it induces an equivalence between the
coequalizers. Thereby pg presents a thin groupoid, which is L1P1pσ

Gr
2 pGqq.

This completes the proof.

Remark 6.14. The graph domain and the graph codomain of the computad
pg constructed in the proof above are, respectively, inside and outside the
maximal tree Gmtree. More precisely, for every α P pg2 “ g2, the pgpd1qpα, 0 Ñ
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1q is a morphism of L1F
R
1 pGmtreeq and pgpd0qpα, 0 Ñ 1q is a morphism of length

one which is not an arrow of Gmtree.

By Theorem 6.13 and Theorem 6.7 we get:

Corollary 6.15. The deficiency of a finitely presented thin groupoid is 0.
In particular, this result generalizes the fact that the deficiency of the trivial
group is 0.

Remark 6.16. [Finite measure and deficiency] Let R`
8 be the category whose

structure comes from the totally ordered set of the non-negative real numbers
with a top element 8 with the usual order. The initial object is of course 0,
while the terminal object is 8.
Let X1 be the subcategory of monomorphisms of a category X. A finite

(strong/naive) measure on X is a functor µ : X1 Ñ R`
8 that preserves finite

coproducts (including the empty coproduct, which is the initial object).
A pair pX, µq together with a monad T on X give rise to a notion of finite

T-presentation: a presentation as in the T-presentation diagram is µ-finite
if µpG1q and µpG2q are finite. In this case, we define the pT, µq-deficiency
of such a µ-finite T-presentation by defpT,µq :“ µpG1q ´ µpG2q. If X is a T-
algebra which admits a finite presentation, X is called finitely T- presented.
For instance, cardinality is a measure on the category of sets Set which

induces the notions of finite T-presentation and T-deficiency of algebras over
sets given in 6.1.
Finally, consider the category of graphs GrphfinEu with finite Euler charac-

teristic: the measure Euler characteristic χ and the monad L1F1 induce the
notion of pL1F1, χq-deficiency of an L1F1-presentation. If we consider the
inclusion of Theorem 4.5, this notion of deficiency coincides with the notion
of deficiency of a presentation via groupoidal computad given in 6.3.

6.4. Presentation of Thin Categories. The results on presentations of
thin groupoids can be used to study presentations of thin categories. For
instance, if a presentation of a thin groupoid can be lifted to a presentation
of a category, then this category is thin provided that the lifting presents a
category that satisfies the cancellation law. To make this statement precise
(which is Proposition 6.18), we need:

Definition 6.17. [Lifting Groupoidal Computads] We denote by cmplift the
pseudopullback (iso-comma category) of Pp1,0q : cmpgr Ñ gr along L1P1 :
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cmp Ñ gr. A small computad g is called a lifting of the small groupoidal
computad g1 if there is an object ζ

g
g1 of cmplift such that the images of this

object by the functors

cmplift Ñ cmpgr, cmplift Ñ cmp

are respectively g1 and g.

Proposition 6.18. If g1 is a groupoidal computad that presents a thin groupoid
and P1pgq satisfies the cancellation law, then g presents a thin category.

Proof : By hypothesis, Pp1,0qpg
1q – L1P1pgq is a thin groupoid and P1pgq sat-

isfies the cancellation law. Hence P1pgq is a thin category.

Theorem 6.19. If G is small connected fair graph such that χpFTop1pGqq P Z,
then there is a computad pg, g2, Gq of cmp such that |g2| “ 1 ´ χpFTop1

pGqq

which presents the groupoid M1L1F1pGq.

Proof : Let Gmtree be a maximal weak tree of G which is also the maximal
tree. Let ppg, g2, Gq be the groupoidal computad constructed in the proof of
Theorem 6.13 using the maximal tree Gmtree.
We will prove that the groupoidal computad ppg, g2, Gq can be lifted to a

computad. In order to do so, we need to prove that, for each α P g2, the
restriction pg|α : Gop Ñ gr,

tαu ˆ 2 //
//
L1F1pGq,

can be lifted to a small computad. By Remark 6.14, we know that pgpd1qpα, 0 Ñ
1q is a morphism of L1F1pGmtreeq and pgpd0qpα, 0 Ñ 1q is a morphism of
length one which is not an arrow of Gmtree. Since Gmtree is a maximal weak
tree, we conclude that the image of pg|α is not a weak tree. Hence there
are parallel morphisms f0, f1 of F1pGq that determine the same graph de-
termined by the image of pg|α (see Remark 6.12) such that f0 is a mor-
phism of F1pGmtreeq. Therefore, pg can be lifted to pg|α, tαu , Gq given by
g|α : Gop Ñ cat, g|αpd0qpα, 0 Ñ 1q “ f0 and g|αpd1qpα, 0 Ñ 1q “ f1.

As a corollary of the proof, we get:

Corollary 6.20. If G is small connected fair graph such that χpFTop1pGqq P Z

and pg, g2, Gq is a small computad which presents M1F1pGq, then |g2| ě
1 ´ χpFTop1

pGqq.
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Proof : As consequence of the constructions involved in the last proof, for
each 2-cell of the computad g of Theorem 6.19, there are parallel morphisms
in F1pGq such that they can be represented by (completely) different lists of
arrows of G.

However, in the conditions of the result above, often we need more than
1 ´ χpFTop1

pGqqq equations. The point is that the lifting given in Theorem
6.19 often does not present a category that satisfies the cancellation law. As
consequence of the proof of Theorem 6.19, we get a generalization. More
precisely:

Corollary 6.21. Let G be a small connected graph such that χpFTop1pGqq P Z.
Consider the groupoidal computad ppg, g2, Gq constructed in Theorem 6.13.

There is a largest groupoidal computad of the type pph, h2, Gq which is a
subcomputad of pg and can be lifted to a computad ph, h2, Gq in the sense of
Definition 6.17. We have that min

 
|x2| : P1px, x2, Gq – M1F1pGq

(
ě |h2|.

Definition 6.22. A pair pG,Gmtreeq is called a monotone graph if G is a
small connected graph, χpFTop1pGqqq P Z, Gmtree is a maximal weak tree of G
and, whenever there exists an arrow f : x Ñ y in G, either x ď y or y ď x

in which ď is the partial order of the poset F1pGmtreeq.
If pG,Gmtreeq is a monotone graph and f : x Ñ y is an arrow such that

y ď x, f is called a nonincreasing arrow of the monotone graph. Finally, if
pG,Gmtreeq does not have nonincreasing arrows, pG,Gmtreeq is called a strictly
increasing graph.

Theorem 6.23. Let pG,Gmtreeq be a strictly increasing graph. There is a
computad pg, g2, Gq such that |g2| “ 1 ´ χpFTop1pGqqq which presents

M1F1pG,Gmtreeq.

Proof : For each arrow f : x Ñ y outside the maximal weak tree Gmtree, there
is a unique morphism 9f : x Ñ y in F1pGmtreeq. It is enough, hence, to define

g2 :“ tαf : f P Gp2q ´ Gmtreep2qu, gpd0qpαf , 0 Ñ 1q :“ 9f and gpd1qpαf , 0 Ñ
1q :“ f . It is clear that this is a lifting of the groupoidal computad pg of
Theorem 6.13. Actually, g is precisely the lifting given by Theorem 6.19.
Moreover, it is also easy to see that P1pgq satisfies the cancellation law.
Therefore the category presented by g is thin.

As a consequence of Corollary 6.20 and Theorem 6.23, we get:
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Corollary 6.24. Let pG,Gmtreeq be a strictly increasing graph. The minimum
of the set

 
|g2| : P1pg, g2, Gq – M1F1pGq

(
is equal to 1 ´ χpFTop1pGqq.

Theorem 6.25. Let pG,Gmtreeq be a monotone graph with precisely n non-
increasing arrows. There is a computad pg, g2, Gq such that |g2| “ 1 ´
χpFTop1pGqqq ` n which presents M1F1pG,Gmtreeq.

Proof : For each nonincreasing arrow f : x Ñ y outside the maximal weak
tree Gmtree, either there is a unique morphism 9f : y Ñ x in F1pGmtreeq or there

is a unique 9f : x Ñ y in F1pGmtreeq. We define A˚ the set of the nonincreasing
arrows of G outside Gmtree and A :“ Gp2q ´ Gmtreep2q ´ A˚. We define

g2 :“ tαf : f P Au Y
 
βpf,jq : f P A˚ and j P t´1, 1u

(
,

gpd0qpαf , 0 Ñ 1q :“ 9f, gpd1qpαf , 0 Ñ 1q :“ f,

gpd0qpβpf,1q, 0 Ñ 1q :“ 9ff, gpd1qpβpf,1q, 0 Ñ 1q :“ id,

gpd0qpβpf,´1q, 0 Ñ 1q :“ f 9f, gpd1qpβpf,´1q, 0 Ñ 1q :“ id.

It is clear that is a lifting of the groupoidal computad pg of Theorem 6.13.
Actually, the lifting given by Theorem 6.19 is a subcomputad of g. Moreover,
it is also easy to see that P1pgq satisfies the cancellation law. Therefore the
category presented by g is thin.

Remark 6.26. If we generalize the notion of deficiency of a groupoid and
define: the deficiency of a finitely presented category X (by presentations via
computads) is, if it exists, the maximum of the set
 `
1 ´ χ

`
FTop2 pg, g2, Gq

˘˘
P Z : P1pg, g2, Gq – X and χpFTop1pGqq P Z

(
,

then, given a strictly increasing graph pG,Gmtreeq, the deficiency of
M1F1pG,Gmtreeq is 0. However, for instance, the deficiency of the thin cate-
gory (by presentation of computads) ∇2 is not 0: it is ´1. More generally,
by Corollary 6.20 the deficiency of category freely generated by a tree (char-
acterized in Theorem 2.22 and Corollary 2.23) is 0, while the deficiency of
category freely generated by a weak tree G is χpGq ´ 1. Furthermore, if
pG,Gmtreeq is a monotone graph, the deficiency (by presentations via com-
putads) of M1F1pG,Gmtreeq is ´n in which n is the number of nontrivial
isomorphisms of X (see Theorem 6.25).
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7. Higher Dimensional Icons
Icons were originally defined in [23]. They were introduced as a way of

organizing bicategories in a 2-category, recovering information of the tricat-
egory of bicategories, pseudofunctors, pseudonatural/oplax natural transfor-
mations and modifications. Thereby, icons allow us to study aspects of these
2-categories of 2-categories/bicategories via 2-dimensional universal algebra.
There are examples of applications of this concept in [23, 22]. In this

setting, on one hand, we get a 2-category 2Cat which is the 2-category of 2-
categories, 2-functors and icons. On the other hand, we have the 2-category
Bicat of bicategories, pseudofunctors and icons.
The inclusion 2Cat Ñ Bicat can be seen as an inclusion of strict algebras in

the pseudoalgebras of a 2-monad. Therefore, we can apply 2-monad theory
to get results about these categories of algebras. The 2-monadic coherence
theorem [4, 21, 24] can be applied to this case and we get, in particular,
the celebrated result that states that “every bicategory is biequivalent to a
2-category”.
In Section 8, we show that the 2-categories 2Cat and Bicat provide a concise

way of constructing freely generated 2-categories as coinserters. We also show
analogous descriptions for n-categories. In order to do so, we give a definition
of higher dimensional icon and construct 2-categories nCat of n-categories in
this section. It is important to note that there are many higher dimensional
versions of icons and, of course, the best choice depends on the context. The
definition of 3-dimensional icon presented herein is similar to that of “ico-
icon” introduced in [11], but the scope herein is limited to strict n-categories.

Definition 7.1. [V -graphs] Let V be a 2-category. An object G of the 2-
category V Grph is a discrete category Gp1q “ G0 of Cat with a hom-object
GpA,Bq of V for each ordered pair pA,Bq of objects of Gp1q.
A 1-cell F : G Ñ H of V Grph is a functor F0 : Gp1q Ñ Hp1q with a

collection of 1-cells
 
FpA,Bq : GpA,Bq Ñ HpF0pAq, F0pBqq

(
pA,BqPG0ˆG0

of V .

The composition of 1-cells in V Grph is defined in the obvious way.
A 2-cell α : F ñ G is a collection of 2-cells

 
αpA,Bq : FpA,Bq ñ GpA,Bq

(
pA,BqPG2

0

in V . It should be noted that the existence of such a 2-cell implies, in par-
ticular, that F0 “ G0. The horizontal and vertical compositions of 2-cells in
V Grph come naturally from the horizontal and vertical compositions in V .

Let V be a 2-category with finite products and large coproducts (indexed
in discrete categories of Cat). Assume that V is distributive w.r.t. these large
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coproducts. We can define a 2-monad TV on V Grph such that TV pGq0 “ G0

and

TV pGqpA,Bq “
ÿ

jPN

ÿ

pC1,...,CjqPGj
0

GpCj, Bq ˆ ¨ ¨ ¨ ˆ GpC1, C2q ˆ GpA,C1q,

in which
ř

denotes coproduct and this coproduct includes the term for j “ 0
which is GpA,Bq. The actions of TV on the 1-cells and 2-cells are defined in
the natural way. The componentm

G
: T2

V pGq ÝÑ TV pGq of the multiplication
is identity on objects, while the 1-cells between the hom-objects are induced
by the isomorphisms given by the distributivity and identitiesGpCj, Bqˆ¨ ¨ ¨ˆ
GpA,C1q “ GpCj, Bq ˆ ¨ ¨ ¨ ˆ GpA,C1q. The component η

G
: G ÝÑ TV pGq of

the unit is identity on objects and the 1-cells between the hom-objects are
given by the natural morphisms GpA,Bq Ñ

ř
jPN

ř
pC1,...,CjqPGj

0

GpCj, Bq ˆ

¨ ¨ ¨ ˆ GpA,C1q which correspond to the “natural inclusions” for j “ 0.
In this context, we denote by V -Cat the category of V -enriched categories

(described in Section 1) w.r.t. the underlying cartesian category of V .

Lemma 7.2. Let V be a 2-category satisfying the properties above. The
underlying category of the 2-category of strict 2-algebras TV -Algs

is equivalent
to V -Cat.

Proof : This follows from a classical result that states that the enriched cate-
gories are the Eilenberg-Moore algebras of the underlying monad of TV . See,
for instance, [3].

Remark 7.3. We could consider the general setting of a 2-category V with
a monoidal structure which preserves (large) coproducts (see, for instance,
[30]), but this is not in our scope.

Corollary 7.4. The underlying category of the 2-category of strict 2-algebras
TCat-Algs

is equivalent to 2-Cat.

Definition 7.5. [nCat] We define 2Cat :“ TCat-Algs
and Bicat :“ Ps-T-Alg.

An icon is just a 2-cell of Bicat. More generally, we define

nCat :“ Tpn´1qCat-Algs
.

The 2-cells of nCat are called n-icons. Following this definition, icons are also
called 2-icons and 1-icons are just natural transformations between functors.

Proposition 7.6. The underlying category of nCat is the category of n-
categories and n-functors n-Cat.
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Remark 7.7. We say that an internal graph d : Gop Ñ n-Cat satisfies the
n-coincidence property if, whenever N Q m ď n, dpd1qpκq “ dpd0qpκq for every
m-cell κ of X.
If F,G : X Ñ Y are n-functors, n ą 1 and there is an n-icon α : F ñ G,

then, in particular, the pair pF,Gq defines an internal graph

X
F //

G
// Y

in nCat (or n-Cat) that satisfies the pn´2q-coincidence property. For instance,
if there is an icon α : F ñ G between 2-functors (or pseudofunctors), then
the internal graph defined by pF,Gq satisfies the 0-coincidence property: this
means that F pκq “ Gpκq for any 0-cell (object) κ of X.

Definition 7.8. [Universal n-cell] For each n P N, we denote by 2n the n-
category with a nontrivial n-cell pκ with the following universal property: if κ
is an n-cell of an n-category X, then there is a unique n-functor F : 2n Ñ X

such that F ppκq “ κ.

Remark 7.9. We have isomorphisms 21 – 2 and 20 – 1. Moreover, in
general, 2n is an n-category but we also denote by 2n the image of this n-
category by the inclusion n-Cat Ñ pn ` mq-Cat for m ě 1. Therefore, for
instance, we can consider inclusions 2n Ñ 2n`m which are pn ` mq-functors,
i.e. morphisms of pn ` mq-Cat.

Of course, 2n has a unique nontrivial n-cell. This n-cell is denoted herein
by pκn, or just pκ whenever it does not cause confusion.

Theorem 7.10. Let F,G : 2n Ñ Y be pn`1q-functors such that F pκq “ Gpκq
for all m-cell κ, provided that m ă n. There is a one-to-one correspondence
between the pn ` 1q-cells F ppκq ùñ Gppκq of Y and pn ` 1q-icons F ñ G.

8. Higher Computads
Recall that a derivation scheme is a pair pd, d2q in which d2 is a discrete

category and d : Gop Ñ Cat is an internal graph with the same format
of d-diagram (described in Section 4) satisfying the 0-coincidence property.
Roughly, the 2-category freely generated by a derivation scheme is the cat-
egory dp1q freely added with the 2-cells of d2 in the following way, for each
α P d2, we freely add a 2-cell

α : dpd1qpα, 0 Ñ 1q ñ dpd0qpα, 0 Ñ 1q.
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This construction is described in [34]. More precisely, it is constructed a
2-category F2-Derpdq with the following universal property: a 2-functor G :
F2-Derpdq Ñ X is uniquely determined by a pair pG1, G2q in which G1 :
dp1q Ñ X is a 2-functor (between categories) and G2 : d2 Ñ 2-Catp22, Xq is a
2-functor (between discrete categories) satisfying the codomain and domain
conditions, which means that, given α P d2, the 1-cell domain of G2pαq is
equal to dpd1qpα, 0 Ñ 1q and the codomain of G2pαq is equal to dpd0qpα, 0 Ñ
1q.

Theorem 8.1. There is a functor F2-Der : Der Ñ 2-Cat which gives the 2-
category freely generated by each derivation scheme. Furthermore, for each
derivation scheme pd, d2q,

F2-Derpdq – I ˚ d,

in which, by abuse of language, I ˚ d denotes the coinserter in 2Cat of the
internal graph d composed with the inclusion Cat Ñ 2Cat.

Proof : An object of the inserter

2Catpdp1q, Xq
//
// 2Catpd2 ˆ 2, Xq.

is a 2-functor G1 : dp1q Ñ X and an icon G1

`
dpd1q

˘
ñ G1

`
dpd0q

˘
which

means a 2-cell G2pαq for each α P d2 by Theorem 7.10 such that the 1-cell
domain of G2pαq is equal to dpd1qpα, 0 Ñ 1q and the codomain of G2pαq is
equal to dpd0qpα, 0 Ñ 1q. This proves that the coinserter is determined by
the universal properties of the 2-category freely generated by the derivation
scheme of d.

We already can construct the 2-category freely generated by a computad.
This is precisely the 2-category freely generated by its underlying derivation
scheme. More precisely, there is an obvious forgetful functor Cmp Ñ Der

and the functor F2 : Cmp Ñ 2-Cat is obtained from the composition of such
forgetful functor with F2-Der.

Definition 8.2. [2n] For each n P N, of course, there are precisely two
inclusions 2pn´1q Ñ 2n. This gives an n-functor

In : G Ñ n-Cat, 2pn´1q
//
// 2n.

Definition 8.3. [Gn] Consider the usual forgetful functor pn ` 1q-Cat Ñ
n-Cat. The image of 2pn`1q by this forgetful functor is denoted by Gn.
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Lemma 8.4. The internal graph of Definition 8.2 induces an n-functor
2pn´1q

š
2pn´1q Ñ 2n. The pushout in n-Cat of this n-functor along itself

is isomorphic to Gn.
Furthermore, there is an inclusion n-functor Gpn´1q Ñ 2n induced by the

counit of the adjunction with right adjoint being n-Cat Ñ pn ´ 1q-Cat. The
pushout in n-Cat of this inclusion along itself is isomorphic to Gn.

Definition 8.5. [Higher Derivation Schemes] Consider the functor p´ ˆ
Gn´1q : SET Ñ pn ´ 1q-Cat, Y ÞÑ Y ˆ G. The category of derivation n-
schemes is the comma category n-Der :“ p´ ˆ Gn´1{IdCatq.

Remark 8.6. Of course, Der “ 2-Der. Also, it is clear that the derivation
n-scheme is just a pair pd, d2q in which d2 is a discrete category and d : Gop Ñ
pn ´ 1q-Cat is an internal graph

d2 ˆ 2pn´1q
//
// dp1q

satisfying the pn ´ 2q-coincidence property.

We can define a forgetful functor Cn-Der : n-Cat Ñ n-Der where Cn-DerpXq :
Gop Ñ pn ´ 1q-Cat is an internal graph (derivation scheme)

n-Catp2n, Xq ˆ 2pn´1q
//
// X

in which n-Catp2n, Xq denotes the set of n-functors 2n Ñ X and, by abuse
of language, X is the underlying pn ´ 1q-category of X. This graph is
obtained from the graph n-CatrIn´, Xs : Gop Ñ n-Cat: firstly, we com-
pose each nontrivial morphism in the image of this graph with the inclusion
n-Catp2n, Xq Ñ n-Catr2n, Xs (induced by the counit of the adjunction given
by the inclusion and underlying set) as follows:

Catp2n, Xq // n-Catr2n, Xs //
// n-Catr2pn´1q, Xs

and, then, we take the mates:

n-Catp2n, Xq ˆ 2pn´1q
//
// X. (Cn-DerpXq-diagram)

Finally, we compose this internal graph Gop Ñ n-Cat with the underlying
functor n-Cat Ñ pn ´ 1q-Cat.
The universal property that defines F2-Der is precisely the universal property

of being left adjoint to C2-Der, namely a morphism of derivation schemes
G : d Ñ C2-DerpXq corresponds to a pair of 2-functors pG1, G2q with the
universal property described in the proof of Theorem 8.1.
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Theorem 8.7. There is an adjunction F2-Der % C2-Der. More generally, there
is an adjunction Fn-Der % Cn-Der in which Fn-Derpdq :“ I ˚ d where, by abuse
of language, I ˚ d denotes the coinserter in nCat of the derivation n-scheme
d : Gop Ñ pn ´ 1q-Cat with the inclusion pn ´ 1q-Cat Ñ nCat.

Proof : Similarly to the proof of Theorem 8.1, this result follows from the
universal property of the coinserter and from Theorem 7.10.

Proposition 8.8. In this proposition, we denote by In the functor In : G Ñ
n-Cat composed with the isomorphism Gop Ñ G. In this case, In is itself a
higher derivation scheme. Then Fpn`1q-DerpInq is isomorphic to 2pn`1q.

Remark 8.9. The inclusion Cmp Ñ Der has a right adjoint p´qCmp : Der Ñ
Cmp such that, given a derivation scheme d : d2 ˆ G Ñ X, pdqCmp is the
pullback comp˚

Xpdq in Cat of the morphism d along compX . It is clear that
this adjunction is induced by the adjunction F1 % C1.

Theorem 8.10. There is an adjunction F2 % C2 such that F2 : Cmp 2-Cat
gives the 2-category freely generated by each computad. More precisely, given
a computad g : Gop Ñ Cat in the format of the d-diagram, F2pgq is the
coinserter in 2Cat of g composed with the inclusion Cat Ñ 2Cat.

Proof : It is enough to define the adjunction F2 % C2 as the composition of
the adjunctions ´ % p´qCmp and F2-Der % C2-Der.

Definition 8.11. [n-computads] For each n P N, consider the functor p´ ˆ
Gnq : SET Ñ n-Cat, Y ÞÑ Y ˆ Gn. The category of pn ` 1q-computads is
defined by the comma category

pn ` 1q-Cmp :“ p´ ˆ Gn{Fnq

in which Fn is the composition of the inclusion n-Cmp Ñ n-Der with Fn-Der.

Remark 8.12. By Lemma 8.4, it is easy to see that an n-computad is just
a triple pg, g2, Gq in which g2 is a discrete category, G is a pn ´ 1q-computad
and g : Gop Ñ pn ´ 1q-Cat is an internal graph

g2 ˆ 2pn´1q
//
// Fpn´1qpGq (n-computad diagram)

satisfying the pn ´ 2q-coincidence property. Or, more concisely, by Remark
8.6, an n-computad is just a derivation n-scheme pg, g2q with a pn ´ 1q-
computad G such that gp1q “ Fpn´1qpGq.
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Theorem 8.13 (Freely Generated n-Categories). For each n P N, there is
a functor Fn : n-Cmp Ñ n-Cat such that, given an n-computad as in the
n-computad diagram, Fnpgq is given by the coinserter in nCat of g : Gop Ñ
pn ´ 1q-Cat composed with the inclusion pn ´ 1q-Cat Ñ nCat. This functor
is left adjoint to a functor Cn : n-Cat Ñ n-Cmp which gives the underlying
n-computad of each n-category.

Proof : Of course, Fn coincides with the functor Fn of Definition 8.11. We
prove by induction that Fn is left adjoint. It is clear that F1 % C1. We
assume by induction that we have an adjunction Fm % Cm.
We have that Fm % Cm induces an adjunction p´q % p´qpm`1q-Cmp in which

the left adjoint is the inclusion m-Cmp Ñ m-Der similarly to what is de-
scribed in Remark 8.9. That is to say, pdqpm`1q-Cmp is the pullback of d along
the component of the counit of Fm % Cm on dp1q.
Finally, we compose the adjunction Fpm`1q-Der % Cpm`1q-Der with the adjunc-

tion p´q % p´qpm`1q-Cmp to get the desired adjunction Fpm`1q % Cpm`1q.

Remark 8.14. Recall that Bicat is herein the 2-category of bicategories,
pseudofunctors and icons. In the 2-dimensional case, the coinserter success-
fully gives the bicategory freely generated by a 2-computad. Namely, the
functor FBicat : Cmp Ñ Bicat is given by FBicatpgq is the coninserter of g

composed with the inclusion Cat Ñ Bicat.

An n-category X is a free n-category if there is an n-computad g : Gop Ñ
pn ´ 1q-Cat such that Fnpgq – X.

Definition 8.15. Let g “ pg, g2, Gq be an n-computad. The objects of g2
are called n-cells of g, while, whenever n ě m ą 0, an pn´ mq-cell of g is an
pn´mq-cell of the pn´1q-computad G. In this context, we use the following
terminology for graphs in Grph: the 0-cells of a graph are the objects and its
1-cells are the arrows.
Similarly to the 2-dimensional case, we denote an n-cell by ι : α ùñ α1 if

gpd0qpα,pκq “ α1 and gpd1qpα,pκq “ α.

Remark 8.16. For each n P N such that n ą 1, there is a forgetful functor
un : n-Cmp Ñ pn ´ 1q-Cmp, pg, g2, Gq ÞÑ G. This forgetful functor has a left
adjoint in : pn ´ 1q-Cmp Ñ n-Cmp such that

inpgq : H ˆ 2pn´1q
// // Fpn´1qpgq
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and a right adjoint σn : pn ´ 1q-Cmp Ñ n-Cmp, defined by σnpGq “
pGσn, Gσn

2 , Gq in which there is precisely one n-cell ιpα,α1q : α ùñ α1 for each
ordered pair pα, α1q with same domain and codomain of Fpn´1qpGq. Actually,
it should be observed that the description of these functors are similar to
those given in Remark 4.15.

9. Freely Generated 2-Categories
Recall the adjunction ECmp % RCmp in which ECmp : Cmp Ñ RCmp is the

inclusion (see Definition 4.1). We also can consider the 2-category freely gen-
erated by computad over a reflexive graph. More precisely, given a computad
g of RCmp, FR

2 pgq is the coinserter of g : Gop Ñ 2Cat. It is clear that FR
2 is left

adjoint to a forgetful functor CR
2 . Moreover, RCmpC

R
2 – C2 and F

R
2 ECmp – F2.

In this section, following our approach of the 1-dimensional case, we give
some results relating free 2-categories with locally thin categories and locally
groupoidal categories. In order to do so, we also consider the (strict) con-
cept of p2, 0q-category given in Definition 9.6 and the p2, 0q-category freely
generated by a computad which provides a way of studying some elementary
aspects of free 2-categories. We start by giving some sufficient conditions to
conclude that a 2-category is not free.

Remark 9.1. [Length [34]] Recall that σ2 : Grph Ñ Cmp is right adjoint
and © is the terminal graph in Grph. Therefore σ2p©q : Gop Ñ Cat is the
terminal computad. If g is a computad, the length 2-functor is defined by
ℓg :“ F2pg Ñ σ2p©qq. It should be noted that ℓg reflects identity 2-cells.
The 2-category F2σ2p©q is described in [34]. The unit of the adjunction

F2 % C2 induces a morphism of computads σ2p©q Ñ C2F2σ2p©q. The image
of the 2-cells of σ2p©q are called herein simple 2-cells. If α is a composition
in F2σ2p©q of a simple 2-cell with (only) 1-cells (identity 2-cells), α is called
a whiskering of a simple 2-cell. It is clear that every 2-cell of σ2p©q is given
by successive vertical compositions of whiskering of simple 2-cells. It is also
easy to see that σ2p©q does not have nontrivial invertible 2-cells.
The counit of the adjunction F2 % C2 induces a 2-functor pastX : F2C2pXq Ñ

X for each 2-category X, called pasting.

Remark 9.2. Similarly to the 1-dimensional case, the terminal reflexive
computad of Rcmp is the computad with only one 0-cell, the trivial 1-cell
and only one 2-cell. That is to say, the computad G Ñ F

R
1 p‚q which is

the unique functor between G and the terminal category F
R
1 p‚q. If h is a
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subcomputad of g in Rcmp, we denote by g{h the pushout of the inclusion
h Ñ g along the unique morphism of reflexive computads between h and the
terminal reflexive computad in Rcmp.

As a particular case of Proposition 9.3, if a 2-category X has a nontrivial
invertible 2-cell, then X is not a free 2-category. Consequently, any locally
thin 2-category that has a nontrivial invertible 2-cell is not a free 2-category.

Proposition 9.3. Let α be an invertible 2-cell of a 2-category X in 2-Cat.
If we can write α as pasting of 2-cells in which at least one of the 2-cells is
nontrivial, then X is not free.

Proof : Let α be a pasting of 2-cells in F2pgq. We have that ℓgpαq is a pasting
of 2-cells of F2σ2p©q with at least one nontrivial 2-cell. Therefore ℓgpαq is
not identity and, hence, α is not invertible.

Recall that there is an adjunction M2 % M2 which induces a monad M2,
in which M2 : Prd-Cat Ñ 2-Cat is the inclusion.

Corollary 9.4. Let X be a 2-category in 2-Cat. Assume that β : f ñ g is a
2-cell of X such that f ­“ g. If the pasting of β with another 2-cell is a 2-cell
α : h ñ h, then M2pXq is not a free 2-category.

Proof : The unit of the monad M2 gives, in particular, a 2-functor X Ñ
M2pXq. Therefore, the image of α : h ñ h by this 2-functor is also the
pasting of a nontrivial 2-cell with other 2-cells, but, since M2pXq is locally
thin, α is the identity. Therefore M2pXq is not free by Proposition 9.3.

Proposition 9.5. Consider the computad g
9∆2 : Gop Ñ Cat defined in Exam-

ple 4.7. The locally thin 2-category M2F2pg
9∆2q is not a free 2-category. In

particular, F2pg
9∆2q and L2F2pg

9∆2q are not locally thin.
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Proof : Since M2F2pg
9∆2q is locally thin, we conclude that:

0
d //

d

��

1

d1

��

n1ðùù

0

d

��

“ d

��

ϑ
ðùù “

1
d0

//

n0ðùù

2

s0
❂❂

❂

��❂
❂❂

1 1

(identity descent diagram)

Therefore, by Corollary 9.4, the proof is complete.

If a 2-category X is locally groupoidal and free, then every 2-cell of X is
identity. Hence, in this case, X is locally discrete, that is to say, it is a free
1-category.
We call M2F2pgq the locally thin 2-category freely generated by g. But we

often consider such a 2-category as an object of 2-Cat, that is to say, we often
consider M2F2pgq.

Definition 9.6. [pn,mq-Categories] If m ă n, an pn,mq-category X is an
n-category of n-Cat such that, whenever n ě r ą m, all r-cells of X are
invertible. The full subcategory of n-Cat consisting of the pn,mq-categories
is denoted by pn,mq-Cat.

For instance, groupoids are p1, 0q-categories and locally groupoidal cate-
gories are p2, 1q-categories. The adjunction L1 % U1 also induces an ad-
junction Lp2,0q % Up2,0q in which Up2,0q : p2, 0q-Cat Ñ 2-Cat is the inclusion.
Thereby, given a computad g of Cmp, we can consider the locally groupoidal
2-category L2F2pgq freely generated by the computad g, as well as the p2, 0q-
category Lp2,0qF2pgq freely generated by g.
Sometimes, we denote Lp2,1q :“ L2 and Up2,1q :“ Up2,1q.

Remark 9.7. Let X be a p2, 0q-category of p2, 0q-Cat and assume that Y

is a sub-2-category of X. We denote by X{Y the pushout of the inclusion
Y Ñ X along the unique 2-functor between Y and the terminal 2-category.
If Y is locally discrete and thin (that is to say, a thin category), then X{Y
is isomorphic to X.
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Definition 9.8. A 2-category X satisfies the p2, 1q-cancellation law if it
satisfies the cancellation law w.r.t. the vertical composition of 2-cells (that
is to say, it satisfies the cancellation law locally).
A 2-category X satisfies the p2, 0q-cancellation law if it satisfies the p2, 1q-

cancellation law and, whenever X has 1-cells f, g and 2-cells α, β such that
id

f
˚ α ˚ id

g
“ id

f
˚ β ˚ id

g
, α “ β.

It is clear that, if a 2-category X satisfies the p2, 0q-cancellation law, in
particular, the underlying category of X satisfies the cancellation law. More-
over, every p2, 1q-category satisfies the p2, 1q-cancellation law and every p2, 0q-
category satisfies the p2, 0q-cancellation law.
Finally, the components of the units of the adjunctions L2 % U2 and

Lp2,0q % Up2,0q are locally faithful on 2-categories satisfying respectively the
p2, 1q-cancellation law and the p2, 0q-cancellation law. Thereby:

Theorem 9.9. Let X be a 2-category. If X satisfies the p2, 1q-cancellation
law and L2pXq is locally thin, then X is locally thin as well. Analogously, if
X satisfies the p2, 0q-cancellation law and Lp2,0qpXq is locally thin, then X is
locally thin as well

Corollary 9.10. Let g be an object of Cmp. Consider the following state-
ments:

(a): Lp2,0qF2pgq is locally thin;
(b): L2F2pgq is locally thin;
(c): F2pgq is locally thin.

We have that (a) implies (b) implies (c).

Proof : It is clear that F2pgq and L2F2pgq satisfies the p2, 0q-cancellation law.
Therefore we get the result by Theorem 9.9.

Definition 9.11. A 2-category X satisfies the underlying terminal property
or u.t.p. if the underlying category of X is the terminal category.

On one hand, by the Eckman-Hilton argument, given any small 2-category
X with only one object ˚, the vertical composition of 2-cells id ñ id coin-
cides with the horizontal one and they are commutative. Therefore, in this
context, the set of 2-cells id ñ id endowed with the vertical composition is
a commutative monoid, denoted by Ω2pXq :“ Xp˚, ˚qpid, idq.
On the other hand, given a commutative monoid Y , the suspension ΣpY q

is naturally a monoidal category (in which the monoidal structure coincides
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with the composition). This allows us to consider the double suspension
Σ2pY q which is a 2-category satisfying u.t.p. and the set of 2-cells id ñ id
is the underlying set of Y , while the vertical and horizontal compositions
of Σ2pY q are given by the operation of Y . More precisely, there is a fully
faithful functor

Σ2 : AbGroup Ñ p2, 1q-cat

between the category of abelian groups and the category of small locally
groupoidal 2-categories which is essentially surjective on the full subcategory
of 2-categories satisfying u.t.p. such that Ω2Σ2 – IdAbGroup.
If pg, g2, Gq is a small 2-computad in which G “ ‚E is the connected graph

without arrows, then Lp2,0qF2pg, g2, Gq is isomorphic to the double suspension
of a free abelian group.

Theorem 9.12. If pg, g2, ‚q is a small reflexive computad, then Lp2,0qF
R
2 pgq –

L2F
R
2 pgq – Σ2π2pFTop2

pgqq.

Proof : Since FR
1 p‚q is the terminal category, Ω2

`
L2F

R
2 pgq

˘
is the abelian

group freely generated by the set g2 that is also isomorhic to π2pFTop2pgqq.
To complete the proof, it is enough to observe that Lp2,0qpXq – L2pXq

whenever X does not have nontrivial 1-cells.

We say that a computad g is 1-connected if FTop2pgq is simply connected.
By Corollary 6.5, a computad g is 1-connected if and only if L1P1pgq is
connected and thin.

Definition 9.13. [f.c.s.] Let g “ pg, g2, Gq be a computad of Rcmp with
only one 0-cell and let h be a subcomputad of g.
We call gb :“ h a full contractible subcomputad of g or, for short, f.c.s. of

g, if Lp2,0qF
R
2 pgbq has a unique 2-cell f ñ id or a 2-cell id ñ f for each 1-cell

f of g. In particular, if gb is an f.c.s. of g, gb has every 1-cell of g.
It should be noted that, if gb is an f.c.s. of g, we are already assuming that

g is an object of Rcmp.

There are small (reflexive) computads with only one 0-cell and no full
contractible subcomputad. For instance, consider the computad x with two
1-cells f, g and with 2-cells α : gf ñ id and β : id ñ g. The number of 2-cells
of any subcomputad belongs to t0, 1, 2u. It is clear that the subcomputads
with only one 2-cell are not full contractible subcomputads. It remains to
prove that the whole computad is not an f.c.s. of itself. Indeed, the 2-cells
id

g´1
˚ pβ ¨ αq and α ¨

`
β ˚ id

f

˘
below are both 2-cells f ñ id of Lp2,0qF

R
2 pxq.
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˚

β

ùùñ

f
// ˚ ˚

α

ùùñ
β

ùùñ g

rr

gf

,,α

ùùñ ˚

g´1

��
˚

id
//

g

]]

˚

id

OO

˚

Theorem 9.14. If gb is an f.c.s., then the 2-categories FR
2 pgbq, L2F

R
2 pgbq

and Lp2,0qF
R
2 pgbq are locally thin.

Proposition 9.15. If gb “ pgb, gb2, Gq is an f.c.s., then F
R

Top2
pgbq is con-

tractible. In particular, it is simply connected and, hence, gb is 1-connected.

Proof : It is enough to see that FR

Top2
pgbq is a wedge of (closed) balls.

Theorem 9.16. Assume that gb is an f.c.s. of pg, g2, Gq. The following
statements are equivalent:

– Lp2,0qF
R
2

`
g{gb

˘
is locally thin;

– Lp2,0qF
R
2 pgq is locally thin;

– L2F
R
2 pgq is locally thin;

– F
R
2 pgq is locally thin.

Proof : g{gb is the computad ph, h2, ‚q in which h2 “ g2 ´ gb2. Therefore
Lp2,0qF

R
2

`
g{gb

˘
is locally thin if and only if g2 “ gb2, which means that g “ gb.

Since Lp2,0qF
R
2 pgbq is locally thin, the proof is complete.

Let g “ pg, g2, Gq be a small connected computad of Rcmp. Assume that
Gmtree is a maximal tree of G. We have that the computad

g2 ˆ 2
//
// FR

1 pGq // FR
1 pG{Gmtreeq

obtained from the composition of the morphisms in the image of g with the
natural morphism FR

1 pGq Ñ FR
1 pG{Gmtreeq is the pushout of the mate of the

inclusion Gmtree Ñ uR2 pgq under the adjunction iR2 % uR2 along the unique
functor between iR2 pGmtreeq and the terminal reflexive computad. That is to
say, it is the quotient g{iR2 pGmtreeq.

Definition 9.17. [f.c.s. triple] We say that pg, Gmtree, h
bq is an f.c.s. triple

if g is a small connected reflexive computad, Gmtree is a maximal tree of the
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underlying graph of g and hb is an f.c.s. of g{iR2 pGmtreeq. In this case, we

denote by ȟb the reflexive computad

`
g{iR2 pGmtreeq

˘
{hb.

Corollary 9.18. Let pg, Gmtree, h
bq be an f.c.s. triple. The p2, 0q-category

Lp2,0qF
R
2 pgq is locally thin if and only if Lp2,0qF

R
2 pȟbq is locally thin.

Proof : By Remark 9.7, Lp2,0qF
R
2 pg{iR2 pGmtreeqq is locally thin if and only if

Lp2,0qF
R
2 pgq is locally thin. By Theorem 9.16, the former is locally thin if and

only if Lp2,0qF
R
2 pȟbq is locally thin.

As a consequence of Corollary 9.18 and Theorem 9.12, we get:

Corollary 9.19. Let pg, Gmtree, h
bq be an f.c.s. triple. The p2, 0q-category

Lp2,0qF
R
2 pgq is locally thin if and only if π2F

R

Top2
pgq is trivial.

Proof : By Theorem 9.12, Lp2,0qF
R
2 pȟbq is isomorphic to Σ2π2F

R

Top2
pȟbq. There-

fore, by Corollary 9.18 we conclude that Lp2,0qF
R
2 pgq is locally thin if and only

if Σ2π2F
R

Top2
pȟbq is trivial.

To complete the proof, it remains to prove that π2F
R

Top2
pȟbq – π2F

R

Top2
phq.

Indeed, since FR

Top2
preserves colimits and the terminal reflexive computad,

we get that

F
R

Top2
pg{iR2 pGmtreeqq – F

R

Top2
pgq{FR

Top2
iR2 pGmtreeq

and, since FR

Top2
iR2 pGmtreeq Ñ FR

Top2
pgq is a cofibration which is an inclusion of

a contractible space, we conclude that FR

Top2
pg{iR2 pGmtreeqq has the same homo-

topy type of FR

Top2
pgq. Analogously, we conclude that FR

Top2
pȟbq has the same

homotopy type of FR

Top2
pg{iR2 pGmtreeqq, since FR

Top2
phbq Ñ FR

Top2
pg{iR2 pGmtreeqq

is a cofibration which is an inclusion of a contractible space.

Remark 9.20. The study of possible higher dimensional analogues of the
isomorphisms given in Remark 5.10 and in Theorem 5.11 would depend
on the study of notions of higher fundamental groupoids, higher homotopy
groupoids and higher Van Kampen theorems [6, 7, 12]. This is outside of the
scope of this paper.
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10. Presentations of 2-categories
As 2-computads give presentations of categories with equations between

1-cells, pn ` 1q-computads give presentations of n-categories with equations
between n-cells. Contrarily to the case of presentations of categories via
computads, it is clear that, for n ą 1, there are n-categories that do not
admit presentations via pn ` 1q-computads.

Definition 10.1. [Presentation of n-categories via pn`1q-computads] Given
n P N, an pn ` 1q-computad g : Gop Ñ n-Cat as the n-computad diagram of
8.12 presents the n-category X if the coequalizer of g in n-Cat is isomorphic
to X. There is a functor Pn : pn ` 1q-Cmp Ñ n-Cat which, for each pn ` 1q-
computad g, gives the category Pnpgq presented by g.

The underlying pn´ 1q-category of every n-category that admits a presen-
tation via a pn ` 1q-computad is a free pn ´ 1q-category. Thereby:

Proposition 10.2. Let X be an n-category in n-Cat. If the underlying pn´
1q-category of X is not free, then X does not admit a presentation via an
pn ` 1q-computad.

In this section, as the title suggests, our scope is restricted to presenta-
tions of 2-categories. Similarly to the 1-dimensional case, we are mainly
interested on presentations of locally thin 2-categories, p2, 1q-categories or
p2, 0q-categories.
We consider (reflexive) small p2, 0q-categorical and p2, 1q-categorical (re-

flexive) small 3-computads which are 3-dimensional analogues of groupoidal
computads, called respectively p3, 0,Rq-computads and p3, 1,Rq-computads.
More precisely, for each m P t0, 1u, we define the category of p3, m,Rq-
computads by the comma category p3, 2, mq-Rcmp :“ p´ˆLp2,mqpG2q{Lp2,mqF

R
2 q

in which

p´ ˆ Lp2,mqpG2qq : Set Ñ p2, mq-cat, Y ÞÑ Y ˆ Lp2,mqpG2q.

Whenever 2 ą m ě 0, we have a functor PR

p2,mq : p3, 2, mq-Rcmp Ñ

p2, mq-cat that gives the p2, mq-category presented by each p3, 2, m,Rq-com-
putad. More precisely, for each 2 ą m ě 0, a p3, 2, m,Rq-computad is a
functor g : Gop Ñ p2, mq-cat

g2 ˆ Lp2,mqp22q
//
// Lp2,mqF

R
2 pGq (p3, 2, m,Rq-computad diagram)
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and P
R

p2,mqpgq is the coequalizer of g in p2, mq-cat. For short, by abuse of

language, by i3 the functors Rcmp Ñ p3, 2, mq-Rcmp induced by i3.

Theorem 10.3. Assume that Gb is an f.c.s. of the small reflexive 2-computad
G. If pg, g2, Gq is a small p3, 2, 0,Rq-computad, then the following statements
are equivalent:

– P
R

p2,0q

`
g{i3pG

bq
˘
is locally thin;

– P
R

p2,0q pgq is locally thin.

Proof : We have that PR

p2,0qi3pG
bq – Lp2,0qF2pG

bq is locally thin. Therefore

P
R

p2,0q pgq and P
R

p2,0q

`
g{i3pG

bq
˘

– P
R

p2,0q pgq {PR

p2,0q

`
i3pG

bq
˘

are biequivalent. Thereby the result follows.

In the setting of the result above, since we are assuming that the 2-
computad G has only one 0-cell, we get that there is a p3, 2, 0,Rq-computad
pg, g2, Gq such that |g2| is precisely the number of 2-cells ofG{Gb and PR

p2,0q pgq
is locally thin.

Theorem 10.4. Assume that Gb is an f.c.s. of a 2-computad G in Rcmp.
There is a p3, 2, 0,Rq-computad pg, g2, Gq such that g2 “ G2´Gb

2 and P
R

p2,0q pgq

is locally thin. In other words, g presents the locally thin p2, 0q-category
M2Lp2,0qF

R
2 pGq freely generated by G.

Proof : Recall, by Theorem 9.16, that we can consider that pG{Gbq2 “ G2 ´
Gb

2. Also, by hypothesis, for each nontrivial 1-cell f of G, Lp2,0qF
R
2 pGbq has a

unique 2-cell βf : f ñ id or βf : id ñ f .
We define the p3, 2, 0,Rq-computad pg, g2, Gq

g2 ˆ Lp2,0qp22q
//
// Lp2,0qF

R
2 pGq.

For each α P g2 “ G2´Gb
2, we put gpd1qpα,pκq :“ α : f ñ g and gpd0qpα,pκq :“

9α in which 9α is the composition of (possibly the inverse) of βf and (possibly
the inverse) of βg in Lp2,0qF

R
2 pGq, that is to say, in other words, 9α is the

unique 2-cell with same domain and codomain of α in Lp2,0qF
R
2 pGbq.

It is clear that PR

p2,0q

`
g{i3pG

bq
˘
is locally thin. Therefore the result follows

from Theorem 10.3.
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Corollary 10.5. Let pG, T, Hbq be an f.c.s. triple. There is a p3, 2, 0,Rq-

computad ph, h2, Gq such that h2 “ Ȟb
2 “ G2 ´ Hb

2 “ pG{Tq2 ´ Hb
2 and

PR

p2,0q phq is locally thin.

Proof : We denote G{iR2 pTq by H. Consider the p3, 2, 0,Rq-computad g “
pg, g2, Hq as constructed in Theorem 10.4. Since each 2-cell of H corresponds
to a unique 2-cell of G, we can lift g to a p3, 2, 0,Rq-computad pg, g2, Gq. We
get this lifting pg, g2, Gq

g2 ˆ Lp2,0qp22q
//
// Lp2,0qF

R
2 pHq // Lp2,0qF

R
2 pGq

after composing each morphism in the image of g with Lp2,0qF
R
2 pHq »

Lp2,0qF
R
2 pGq. Moreover, since

P
R

p2,0q pgq – P
R

p2,0q

`
h{i3i

R

2 pTq
˘

– P
R

p2,0q phq {PR

p2,0q

`
i3i

R

2 pTq
˘

is locally thin, the result follows from Remark 9.7.

Analogously to Definition 6.17, we have:

Definition 10.6. [Lifting of 3-Computads] We denote by p3, 2, 1q-Rcmplift
the pseudopullback (iso-comma category) of PR

p2,0q along Lp2,0qUp2,1qP
R

p2,1q. A

p3, 2, 1,Rq-computad g is called a lifting of the p3, 2, 0,Rq-computad g1 if there
is an object ζgg1 of p3, 2, 1q-Rcmplift such that the images of this object by the
functors

p3, 2, 1q-Rcmplift Ñ p3, 2, 0q-Rcmp, p3, 2, 1q-Rcmplift Ñ p3, 2, 1q-Rcmp

are respectively g1 and g. Analogously, we say that a (reflexive) 3-computad
h is a lifting of a p3, 2, m,Rq-computad h1 if Lp2,mqUp2,mqP

R

p2,mqph
1q – PR

2 phq.

Proposition 10.7. If a p3, 2, 1,Rq-computad g is a lifting of a p3, 2, 0,Rq-
computad g1 such that PR

p2,0qpg
1q is locally thin, then P

R

p2,1qpgq is locally thin

provided that PR

p2,1qpgq satisfies the p2, 0q-cancellation law.

Analogously, if a 3-computad h is a lifting of a p3, 2, m,Rq-computad h1

and PR

p2,mqph
1q is locally thin, then PR

2 phq is locally thin provided that PR
2 pgq

satisfies the p2, mq-cancellation law.

Proof : By hypothesis, PR

p2,1qpgq – Lp2,0qUp2,1qP
R

p2,1qpgq and Up2,1qP
R

p2,1q satisfies

the p2, 0q-cancellation law. Therefore PR

p2,1qpgq is locally thin.
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10.1. The 2-category 9∆
Str
. In [24, 25, 26], we consider 2-dimensional ver-

sions of a subcategory 9∆1
3 of

9∆3. For instance, the bicategorical replacement

of the category 9∆1
3. Here, we study the presentations of this locally thin

p2, 1q-category, including the application of our results to the presentation of

the bicategorical replacement of 9∆2. Following the terminology of [25], we
have:

Definition 10.8. The 2-computad 9d
Str

“ pg
9∆3, g

9∆3

2 , G 9∆3
q is defined by the

graph

0
d // 1

d0 //

d1
//
2s0oo

B0

//

B1 //

B2

//
3

with the 2-cells:

σ01 : B1d0 ñ B0d0

σ02 : B2d0 ñ B0d1

σ12 : B2d1 ñ B1d1

n0 : s0d0 ñ id
1

n1 : id
1

ñ s0d1

ϑ : d1d ñ d0d

We denote by 9∆
Str

the locally thin p2, 1q-category M2L2F2p 9d
Str

q freely gen-
erated by the 2-computad 9d

Str
. We also define the subcomputad d

Str
of

9d
Str

such that ∆
Str

“ M2L2F2pdStr
q is the full sub-2-category of 9∆

Str
and

objp∆
Str

q “ t1, 2, 3u.

Lemma 10.9. Let g∆2 “ pg∆2, g∆2

2 , G∆2
q be the full subcomputad of 9d

Str
de-

fined by

1

d0 //

d1
//
2s0oo

with the 2-cells: n0 : s0d0 ñ id
1
, n1 : id

1
ñ s0d1. The p2, 0q-category

freely generated by g∆2 is locally thin. In particular, the full sub-2-category
∆

Str2
:“ M2L2F2

`
g∆2

˘
of the 2-category 9∆

Str
is isomorphic to L2F2

`
g∆2

˘
.

Proof : We should prove that Lp2,0qF2pg
∆2q is locally thin. By abuse of lan-

guage, we denote by Ecmppg
∆2q the 2-computad g∆2. We, then, take the

maximal tree of the underlying graph of g∆2 defined by 2
s0
Ñ 1 and denote it

by Gs0.
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By Remark 9.7, Lp2,0qF
R
2

`
g∆2{iR2 pGs0q

˘
is locally thin if and only if

Lp2,0qF
R
2

`
g∆2

˘
is locally thin. The quotient g∆2{iR2 pGs0q is a computad with

1-cells rd0, rd1 and 2-cells rn0 : rd0 ñ id and rn1 : id ñ rd1. It is clear, then, that
g∆2{iR2 pGs0q is an f.c.s of itself. Thereby the proof is complete.

Furthermore, the full sub-2-category ∆
Str

of 9∆
Str

is a free p2, 1q-category as
proved in:

Theorem 10.10 (∆
Str
). There is an isomorphism of 2-categories ∆

Str
–

L2F2pdStr
q.

Proof : Since ∆
Str2

is a full sub-2-category and locally thin, it is enough to
prove that ∆

Str
p1, 3q and ∆

Str
p2, 3q are thin.

It is clear that the nontrivial 2-cells of ∆
Str

p1, 3q are horizontal composi-
tions of 2-cells of ∆

Str
p1, 1q with σ01, σ02 and σ12. More precisely, the set of

nontrivial 2-cells of ∆
Str

p1, 3q is equal to

tσ01 ˚ α, σ02 ˚ α, σ12 ˚ α| pα : f ñ g : 1 Ñ 1q P ∆
Str

p1, 1qu .

This proves that ∆
Str

p1, 3q is thin. Moreover, since the set of 2-cells of
∆

Str
p2, 1q “ ∆

Str2
p2, 1q is equal to

 
α ˚ id

s0
| pα : f ñ g : 1 Ñ 1q P ∆

Str
p1, 1q

(
,

it follows that the set of 2-cells of ∆
Str

p2, 3q is equal to

 
β ˚ id

s0
| pβ : f ñ g : 1 Ñ 3q P ∆

Str
p1, 3q

(
.

Since we already proved that ∆
Str

p1, 3q is thin, we conclude that ∆
Str

p2, 3q
is thin. Hence, as ∆

Str
p3, 2q is the initial (empty) category, the proof is

complete.

As proved in Proposition 9.5, L2F2pg
9∆2q is not locally thin. We prove below

that 9∆
Str2

:“ M2L2F2pg
9∆2q can be presented by a 3-computad with only one

3-cell that corresponds to the equation given in the identity descent diagram.
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Theorem 10.11 ( 9∆
Str2

). The 3-computad h
9∆2 defined by the 2-computad g

9∆2

with only the 3-cell

0
d //

d

��

1

d1

��

n1ðùù ùùùùñ

0

d

��

“ d

��

ϑ
ðùù

1
d0

//

n0ðùù

2

s0
❂❂

❂

��❂
❂❂

1 1
(identity descent 3-cell)

presents the locally thin p2, 1q-category 9∆
Str2

. In other words, L2P2ph
9∆2q –

9∆
Str2

.

Proof : By abuse of language, we denote Ecmppg
9∆2q by g

9∆2. We denote by T

the maximal tree

0
d // 1 2

s0
oo

of the underlying graph of g
9∆2.

The (reflexive) 2-computad g
9∆2{iR2 pTq is defined by the 1-cells rd0, rd1 and 2-

cells rϑ : rd1 ñ rd0, rn0 : rd0 ñ id and rn1 : id ñ rd1, while the 2-computad g
9∆2

fcs :“

g∆2{iR2 pGs0q, defined in the proof of Lemma 10.9, is an f.c.s. of g
9∆2{iR2 pTq.

By the proof of Theorem 10.4, we get a presentation ofM2Lp2,0qF
R
2 pg

9∆2{iR2 pTqq

by a p3, 2, 0,Rq-computad j1 such that j12 “ g
9∆2

2 ´ g
9∆2

fcs2
. This p3, 2, 0,Rq-

computad is defined by the 2-computad g
9∆2{iR2 pTq with the 3-cell rϑ ùñ

rn0
´1 ¨ rn1

´1.
Thereby Up2,0qP

R

p2,0qph
1q – M2Lp2,0qF

R
2 pg

9∆2{iR2 pTqq. Furthermore, by Corol-

lary 10.5, composing each morphism in the image of j1 with the equivalence

Lp2,0qF
R

2 pg
9∆2q – Lp2,0qF

R

2 pg
9∆2{iR2 pTqq,

we get a p3, 2, 0,Rq-computad j which presents M2Lp2,0qF
R
2 pg

9∆2q. This

p3, 2, 0,Rq-computad j is defined by the 2-computad g
9∆2 with the 3-cell

id
s0

˚ ϑ ùñ
`
n´1
0 ¨ n´1

1

˘
˚ id

d
.
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It is clear that the (reflexive) computad g
9∆2 together with the identity

descent 3-cell define a (reflexive) 3-computad h1 which is a lifting of j. Since
L2P

R
2 phq clearly satisfies the p2, 0q-cancellation law, this completes the proof.

Theorem 10.12 ( 9∆
Str
). The 3-computad h

9∆ defined by the 2-computad g
9∆2

with the 3-cell identity descent 3-cell and the 3-cell below

0
d //

d
��

ϑ

ùñ

1

d0
��

d0 //

σ01ùùñ

2

B0

��

ùùùñ

3
σ02ùùñ

2
B0

oo

ϑ

ùñ

2

1 d1 //

d1
��

σ12ùùñ

2 B1 // 3

id
3

��

2
ϑ

ùñ

B2

OO

1d0oo

d1

OO

2
B2

// 3 1

d1

OO

0
d

oo

d

OO

d
// 1

d0

OO (associativity descent 3-cell)

presents the locally thin p2, 1q-category 9∆
Str
. That is to say, L2P2ph

9∆q – 9∆
Str
.

Proof : Recall that 9∆
Str2

Ñ 9∆
Str

is a full inclusion of a locally thin 2-category

and 9∆
Str

p3, nq is thin for any object n of 9∆
Str
. Hence it only remains to prove

that 9∆
Str

p0, 3q is thin.

Since the set of 2-cells of 9∆
Str

p0, 2q is given by

tϑu Y
 
id

di
˚ α|i P t0, 1u and pα : f ñ g : 0 Ñ 1q P ∆

Str
p0, 1q

(
,

we conclude that 9∆
Str

p0, 3q is the thin groupoid freely generated by the graph
S defined by the morphisms 0 Ñ 3 as objects and the set of arrows (2-cells)
T Y T1 in which

T1 :“ tσij ˚ α|i, j P t0, 1u , i ă j and pα : f ñ g : 0 Ñ 1q P ∆
Str

p0, 1qu

and T :“ tσij ˚ id
d
|i, j P t0, 1u and i ă ju Y tidBi ˚ ϑ|i P t0, 1, 2uu.

We consider the full subgraph of S with objects in the set

O “
 

Bi ¨ dj ¨ d|i, j P t0, 1, 2u and j ­“ 2
(
.

The set of arrows of S is precisely T and, by abuse of language, we also denote
the graph by T.
The set of the arrows (2-cells) T1 defines a subgroupoid of 9∆

Str
p0, 3q, also

denoted by T1. Since 9∆
Str

p0, 1q is thin, it is clear that T1 is thin. Moreover, it
is clear that T1 is the coproduct of T1

12, T
1
02 and T1

01 which are respectively the
subgroupoids defined by the sets of 2-cells tσ12 ˚ α| pα : f ñ gq P ∆

Str
p0, 1qu,
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tσ02 ˚ α| pα : f ñ gq P ∆
Str

p0, 1qu and tσ01 ˚ α| pα : f ñ gq P ∆
Str

p0, 1qu. In
particular, there is not any 2-cell in T1 between any object of T1

ij and any
object T1

xy whenever pi, jq ­“ px, yq. For instance, there is no arrows (2-cells)

f ñ B2 ¨ d1 ¨ d, g ñ B2 ¨ d0 ¨ d ñ and h ñ B1 ¨ d0 ¨ d ñ in T for every f, g, h

objects of T such that f is outside T1
12, g is outside T1

02 and h is outside T1
01.

Therefore, it is enough to study the thin groupoid freely generated by T.
More precisely, we have only to observe that the equation given by the 3-cell
associativity descent 3-cell indeed presents the thin groupoid freely generated
by the graph:

B0 ¨ d0 ¨ d B0 ¨ d1 ¨ d
id

B0
˚ϑ

oo

B1 ¨ d0 ¨ d

σ01˚id
d

OO

B2 ¨ d0 ¨ d

σ02˚id
d

OO

B1 ¨ d1 ¨ d

id
B1

˚ϑ

OO

B2 ¨ d1 ¨ d

id
B2

˚ϑ

OO

σ12˚id
d

oo

(T)

10.2. Topology. Analogously to the 1-dimensional case, we denote by
xG2 the 2-computad such that F2pxG2q – G2. We also have higher dimen-
sional analogues for Theorem 4.3. This isomorphism gives an embedding
pn ` 1q-cmp Ñ PrepFnq which shows that pn ` 1q-computads are indeed
Fn-presentations.
If we denote i1! “ i1 and ipn`1q! “ ipn`1qin!, we have:

Theorem 10.13. More generally, there is an isomorphism pn ` 1q-cmp –

pin!p´q ˆ xGn{Fnq in which

in!p´q ˆ xGn : Set Ñ cmp, Y ÞÑ in!pY q ˆ xGn.

In particular, there is an isomorphism 3-cmp – pi2i1p´q ˆ xG2{F2q.

Observe that, analogously to the 2-dimensional case presented in 5.1, we
have a homeomorphism

g2 ˆ cir2 : Dpg2q ˆ S2 Ñ FTop2
pi2i1pg2q ˆ xG2q.

for each set g2.
There are higher dimensional analogues of the association of each small

computad with a CW-complex given in 5.1. Nevertheless, again, analogously
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to Remark 9.20, we do not have higher dimensional analogues of the results
given in Remark 5.10, Theorem 5.11 and Theorem 5.13.
We sketch a 2-dimensional version of the natural transformation r s :

F1CTop1 ÝÑ CTop1 to get the association of each small 3-computad with a
3-dimensional CW-complex.
Given a 2-cell α of F2CTop2pEq, we have that there is a unique way of getting

α as pasting of 2-cells of CTop2pEq. That is to say, it is a “formal pasting” of
homotopies. We can glue these homotopies to get a new homotopy, which is
what we define to be rαs2E : B2 Ñ E. This defines a natural transformation

r s2 : F2CTop2 ÝÑ CTop2. We denote by r¨s2 the mate under the adjunction
FTop2 % CTop2 and itself.

Given a small 3-computad, seen as a morphism g : i2i1pg2q ˆ xG2 Ñ F2pGq
of small 2-computads, FTop3pg, g2, Gq is the pushout of the inclusion S2 ˆ
Dpg2q Ñ B3 ˆ Dpg2q along the composition of the morphisms

Dpg2q ˆ S2
pcir2ˆg2q

// FTop2pi2i1pg2q ˆ xG2q
FTop2

pgq
// FTop2F2pGq

r¨s
2

G // FTop2pGq .

The topological space FTop3pg, g2, Gq is clearly a CW-complex of dimension
3. Furthermore, of course, we have groupoidal and reflexive versions of FTop3

as well, such as FR

Top3
: 3-Rcmp Ñ Top.

Lemma 10.14. If pg, g2, Gq has only one 0-cell and only one 1-cell and
π2FTop3pg, g2, Gq is not trivial, then Lp2,0qP2pg, g2, Gq is not locally thin.

Thereby, by Theorem 10.3, we get:

Theorem 10.15. Assume that Gb is an f.c.s. of the small reflexive 2-computad
G. If pg, g2, Gq is a small (reflexive) 3-computad such that π2F

R

Top3
pg, g2, Gq

is not trivial, Lp2,0qP
R
2 pgq is not locally thin.

Proof : It follows from Theorem 10.3 and from the fact that F
R

Top3
i3pG

bq is

contractible and its inclusion in FR

Top3
pg, g2, Gq is a cofibration.

Since FTop3pg, g2, Gq has the same homotopy type of a wedge of circum-
ferences, 2-dimensional balls, 3-dimensional balls and spheres, we know that
Euler characteristic χ

`
FTop3

pg, g2, Gq
˘
is equal to

χ
`
FTop2pGq

˘
´ |g2| ,

whenever both χ
`
FTop2pGq

˘
and |g2| are finite.
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Corollary 10.16. Assume that Gb is an f.c.s. of the small reflexive 2-
computad G. If pg, g2, Gq is a small (reflexive) 3-computad such that

Z Q χ
´
F
R

Top3
pg, g2, Gq

¯
ą 1,

then Lp2,0qP2pg, g2, Gq is not locally thin.

Proof : Recall that

χ
´
F
R

Top3
pgq

¯
“ 1´dimH1

´
F
R

Top3
pgq

¯
`dimH2

´
F
R

Top3
pgq

¯
´dimH3

´
F
R

Top3
pgq

¯
.

Since F
R

Top3
pg, g2, Gq is clearly 1-connected, dimH1

´
F
R

Top3
pg, g2, Gq

¯
“ 0.

Therefore, by hypothesis,

dimH2
´
F
R

Top3
pg, g2, Gq

¯
ą dimH3

´
F
R

Top3
pg, g2, Gq

¯
ě 0.

In particular, we conclude that dimH2
´
FR

Top3
pg, g2, Gq

¯
ą 0. By the Hurewicz

isomorphism theorem and by the universal coefficient theorem, this fact im-

plies that the fundamental group π2

´
FR

Top3
pg, g2, Gq

¯
is not trivial. By The-

orem 10.15, we get that Lp2,0qP
R
2 pgq is not locally thin.

Assume that pg, g2, Gq is a small (reflexive) 3-computad such that there is
an f.c.s. triple pG, T, Hbq. Then FR

Top3
i3i2pTq Ñ FTop3

pg, g2, Gq is an cofibrant

inclusion of a contractible space. Thereby, π2F
R

Top3
pg, g2, Gq is trivial if and

only if

π2

´
F
R

Top3
pgq{FR

Top3
i3i2pTq

¯
– π2

`
FTop3pg{i3i2pTqq

˘

is trivial. Therefore, since Lp2,0qP2pg{i3i2pTqq is locally thin if and only if
Lp2,0qP2pgq is locally thin, it follows from Theorem 10.15 and Corollary 10.16
the result below:

Corollary 10.17. Assume that pg, g2, Gq is a small (reflexive) 3-computad
such that there is an f.c.s. triple pG, T, Hbq. If π2F

R

Top3
pg, g2, Gq is not trivial,

Lp2,0qP
R
2 pgq is not locally thin. Furthermore,

Z Q χ
´
F
R

Top3
pg, g2, Gq

¯
ą 1,

then Lp2,0qP2pg, g2, Gq is not locally thin.
In particular, we get that, whenever such a 3-computad presents a locally

thin p2, 0q-category, |g2| ě χ
´
FR

Top2
pGq

¯
´ 1.
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This also works for the p3, 2, 0,Rq-version of FTop3 which would show that
the presentation by p3, 2, 0,Rq-computads given in Corollary 10.5 is in a
sense the best presentation via p3, 2, 0,Rq-computads of the locally thin p2, 0q-
category generated by the reflexive computad G if FR

Top2
pGq has finite Euler

characteristic. For instance, by Corollary 10.17, since χ
´
FR

Top2
pg

9∆2q
¯

“ 2, the

presentation via 3-computad given in Theorem 10.11 has the least number
of 3-cells.
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