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Abstract: In order to be provably convergent towards a second-order stationary
point, optimization methods applied to nonconvex problems must necessarily exploit
both first and second-order information. However, as revealed by recent complexity
analyzes of some of these methods, the overall effort to reach second-order points
is significantly larger when compared to the one of approaching first-order ones. In
addition, there are other algorithmic schemes, initially designed with first-order con-
vergence in mind, that do not appear to maintain the same first-order performance
when modified to take second-order information into account.

In this paper, we propose a technique that separately computes first and second-
order steps, and that globally converges to second-order stationary points. Our
approach is shown to lead to an improvement of the corresponding complexity bound
with respect to the first-order optimality tolerance. Although the applicability of
our ideas is wider, we focus the presentation on trust-region methods with and
without derivatives.
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1. Introduction
1.1. Problem description and motivation. We consider a smooth un-
constrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is assumed to satisfy the following assumptions.

Assumption 1.1. The function f is twice continuously differentiable, with
Lipschitz continuous gradient and Hessian (and let L∇2f be the Lipschitz
constant of the Hessian).
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Assumption 1.2. The objective function f is bounded below by a value flow

on the level-set Lf(x0) = {x ∈ Rn : f(x) ≤ f(x0)}.

When the objective function is nonconvex, algorithms may exploit both
first and second-order information at a given point in order to make progress
towards a (local) minimum, at which it is known that the gradient must
be zero and the Hessian matrix must be positive semidefinite. Therefore,
exploiting directions making an acute angle with a non-zero negative gradient
or negative curvature directions corresponding to negative eigenvalues of the
Hessian matrix is essential in guaranteeing convergence to such a point. That
is also instrumental to the derivation of complexity results, which consists in
estimating the worst-case number of iterations (and, often as a by-product,
the amount of calls to f and its derivatives) needed to reach an iterate xk at
which

‖∇f(xk)‖ < εC and

[
−λmin(∇2f(xk))

]
+

= max
{
−λmin(∇2f(xk)), 0

}
< εE

(2)

hold, for some given tolerances εC, εE ∈ (0, 1).
As complexity analyses were originally proposed in a convex setting, most

of the recently developed results for nonconvex optimization have focused on
the worst-case complexity of reaching approximate optimality conditions of
only first order (i.e., ‖∇f(xk)‖ < εC). Still, several algorithms were studied
from a second-order complexity viewpoint and results related to the satis-
faction of (2) have been obtained [5, 6, 3, 11, 18, 14, 19] (see also [7] for a
generalization to even higher orders)1.

These algorithms can be classified in two categories. The first one en-
compasses classes of second-order globally convergent trust-region methods
(with derivatives [6] and without [14, 20]), direct-search algorithms [19] for
derivative-free optimization, and the general nonlinear stepsize control frame-
work of [18]. In those methods, the complexity bounds for the sole satisfac-
tion of the first criterion in (2) are generally of the form O(ε−2

C ). When both
criteria in (2) are considered, the bound is typically the maximum of two
quantities related to the corresponding criteria: O

(
max

{
ε−2
C ε−1

E , ε−3
E

})
for

derivative-based trust-region methods; O
(
max

{
ε−3
C , ε−3

E

})
for direct search.

1We also mention here the recent development of new frameworks inspired by accelerated gradi-
ent techniques that provide second-order guarantees while aiming at satisfying approximate first-
order optimality [1, 4], despite the fact that these methods cannot be viewed as full second-order
schemes.
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In the remaining cases ([18] and [14, 20]), only the case εC = εE is considered,
and a bound of O

(
ε−3
E

)
was derived. The presence of a maximum in the

above bounds is related to the satisfaction of both conditions in (2). In that
sense, one may view the first term as characteristic of first-order optimality
(related to the gradient norm), and the second as relevant for second-order
consideration (tailored to the minimum Hessian eigenvalue). One then ob-
serves that the part related to the first-order term worsens in each of those
frameworks compared to the case in which only first-order aspects are con-
sidered. It indeed becomes O(ε−2

C ε−1
E ) for trust-region methods and O(ε−3

C )
for direct search.

This phenomenon is not endemic in second-order globally convergent meth-
ods. In fact, the second class of algorithms we review here, essentially based
upon the cubic regularization analysis derived in [5], does not suffer from
this deterioration. Although those frameworks may not explicitly require
the minimization of a cubic model [3, 11, 21], they all exhibit complexity
bounds of O(ε−1.5

C ) in terms of first-order optimality and O(max{ε−1.5
C , ε−3

E })
for second-order optimality. Such results incite to investigate further the
reasons for this discrepancy.

A partial explanation may be found in the theory established for second-
order convergent (derivative-based) line-search methods [2, 15, 22, 23]. In
such studies, it has been identified that an algorithm exploiting both direc-
tions of descent and of negative curvature should not necessarily associate
those with the same step length. Indeed, it may be that one of the two criteria
of interest (namely the gradient norm or the minimum Hessian eigenvalue)
is several orders of magnitude smaller than the other. In that situation, a
method based on a unique step length may compute a very small step to
cope with the magnitude of one criterion, even though more improvement
could have been realized by performing a moderate step if one would focus
on the other one.

In trust-region methods, one may also face those issues as any computed
step is limited in norm by the trust-region radius. It may be that this radius
is forced to shrink in order to provide second-order guarantees. Such aspects
are also present in derivative-free optimization, where neither first nor second
order derivatives are available. In that setting, the step size (in direct search)
or the trust-region radius (in derivative-free trust regions) are often the only
available tools to simultaneously estimate both optimality measures. As a
result, the cost of the second-order guarantees often overcomes the first-order
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ones (see [14, 20] and [19]). On the contrary, any technique with a first-order
complexity in O(ε−1.5

C ) directly relates the norm of the computed step(s) and
both criteria of interest in an independent manner.

1.2. Contribution and structure of the paper. Our main motivation is
thus the study of algorithms that preserve the original first-order guarantees
while additionally taking second-order properties into account, so that the
exponent of the first-order power remains unchanged in the overall complexity
bound. For this purpose, we present a decoupling technique that dissociates
the first and second-order aspects of a given optimization method. Another
goal is to address the potential scaling differences that may arise between the
optimality measures by using different step sizes.

Our study revolves around the separate treatment of gradient-type and
Hessian-type properties of the function at a given iterate. The introduced
decoupling technique relies on duplicating elements of the algorithm that
intervene in the treatment of both properties, so as to treat each of them
separately. In doing so, we will reach a worst-case complexity bound of
O(max{ε−2

C , ε−3
E }).

As we will see, the idea is general enough to be embedded in a wide range
of optimization algorithms. We will however focus on trust-region methods,
covering both the derivative-based and the derivative-free cases. The struc-
ture of the paper is the following. We present the decoupling concept within
a trust-region framework in Section 2. The complexity analysis is derived in
Section 3. Some numerical experiments are reported in Section 4 to indicate
the potential of our approach. The paper is concluded with a discussion in
Section 5.

1.3. Notation. Multiple quantities (models, steps, constants) will be fea-
tured in two contexts, respectively related to first and second-order aspects.
To avoid confusion, we adopt the superscripts and subscripts C for first-order
quantities, and E to second-order ones.

The notation O(A) stands for a scalar times A, with this scalar depending
solely on the problem considered or constants from the algorithm. Norms
are meant to be Euclidean although we do not directly use this fact.
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2. A trust-region method based on decoupled steps
Our presentation of the decoupling technique will be carried on using a

basic trust-region paradigm. In the commonly adopted definition of a trust-
region method [8, 26], the optimization process consists in the construction a
model of the function around the current iterate, followed by a minimization
of this model within a trust region (typically defined as a Euclidean ball). If
the resulting decrease on the function value is sufficiently large compared to
the decrease predicted by the model, the step is accepted and the size of the
trust region may be increased. Otherwise, the iterate does not change but
the trust-region radius is decreased in an attempt to improve the accuracy
of the model by looking at a closer neighborhood [8, 26].

Trust-region methods with second-order guarantees are typically based on
the computation of a step which provides a decrease on the model within the
trust region comparable to that obtained along the direction of the negative
gradient (also called Cauchy decrease) and along the direction of an eigen-
vector corresponding to the most negative Hessian eigenvalue, if any (also
called eigendecrease) [8, Chapter 6]. The optimal solution of the trust-region
subproblem also satisfies such a property, and is sometimes considered in
second-order global convergence proofs [24, 25].

When one aims to derive complexity results for such methods, it is nec-
essary to relate the function decrease and the step size to the optimality
criteria, namely the gradient norm and the minimum Hessian eigenvalue.
More specifically, a typical trust-region scheme such as the one analyzed
in [6] guarantees that a successful step at iteration k satisfies

f(xk+1)− f(xk) ≥ O
(

min
{
‖∇f(xk)‖δk,

[
−λmin

(
∇2f(xk)

)]
+
δ2
k

})
, (3)

where δk is the current trust-region radius. It can be additionally established
that as long as ‖∇f(xk)‖ ≥ εC or λmin

(
∇2f(xk)

)
≤ −εE holds, this radius is

bounded away from zero as follows

δk ≥ O (min{εC, εE}) . (4)

This results in an iteration complexity of order O(max{ε−2
C ε−1

E , ε−3
E }). If only

the first-order criterion is taken into account, a similar reasoning yields a
complexity bound in O(ε−2

C ). The introduction of second-order information
appears to worsen the first-order properties of the method, which is not the
case for cubic regularization frameworks [5, 6]. This is actually due to the
trust-region radius accounting for both optimality criteria, resulting in (4).
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The goal of our decoupling technique is thus to dissociate the two properties
in order to recover O(ε−2

C ) in the second-order complexity bound.

2.1.Algorithmic framework. Algorithm 2.1 describes a decoupled version
of the traditional second-order globally convergent trust-region method. The
critical difference to the classical method is the use of two models,

mC
k(xk + s) = fk + (gCk)

>s+
1

2
s>HC

ks, mE
k(xk + s) = fk + (gEk)

>s+
1

2
s>HE

ks,

each devoted to capturing information related to the corresponding derivative
and approximately minimized within its own trust region. At each iteration,
the algorithm thus independently computes two steps that are only connected
by a common trust-region parameter δk. As a result, we will see later that
each trust-region radius will converge to zero if the method converges to a
(true or model) second-order stationary point. In that respect, Algorithm 2.1
follows the same idea than [13] in that it explicitly connects trust-region radii
to optimality criteria of interest so as to force the convergence of the trust-
region radii sequences. Similar ideas are adopted in the context of derivative-
free trust-region methods by the application of the so-called criticality step
(see [10]).

After the double step computation, the method chooses the best point with
respect to the function value and then computes the maximum of two de-
crease ratios (where in the numerator one has the actual variation in function
value and in denominator the decrease predicted by each step in its model).
This significantly differs from the classical approach whose complexity has
been analyzed in [6].

Algorithm 2.1. decoupled Steps in a Trust-REgionS Strategy (DESTRESS).
Choose x0 ∈ Rn, 0 < δ0 < δmax, 0 < γ1 < 1 ≤ γ2, and η > 0.
For k = 0, 1, 2, . . . do

(1) First-order trust-region step
(a) Compute a model mC

k of the function f , and a step sCk that
approximately solves the first-order trust-region subproblem{

mins m
C
k(xk + s)

‖s‖ ≤ δCk
def
= δk ‖gCk‖ .

(5)

(b) Set xCk = xk + sCk and compute f(xCk).
(2) Second-order trust-region step
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(a) Compute a model mE
k of the function f . If λEk < 0, compute a step

sEk that
approximately solves the second-order trust-region subproblem{

mins m
E
k(xk + s)

‖s‖ ≤ δEk
def
= δk [−λEk]+ .

(6)

If λEk ≥ 0, no second-order step is computed.
(b) Set xEk = xk + sEk and compute f(xEk).

(3) Decrease ratio and iterate update
(a) If a second-order step was computed, choose sk ∈ arg min {f(xk+

sCk), f(xk + sEk)} and set

ρk = max
{
ρCk, ρ

E
k

}
with

ρCk =
f(xk)− f(xk + sk)

mC
k(xk)−mC

k(xk + sCk)
and ρEk =

f(xk)− f(xk + sk)

mE
k(xk)−mE

k(xk + sEk)
.

Otherwise, sk = sCk and ρk = ρCk.
(b) If ρk ≥ η, set xk+1 = xk+sk and declare the iteration as successful,

otherwise declare the iteration as unsuccessful.
(4) Trust-region parameter update

Set

δk+1 =

{
min {γ2δk, δmax} if ρk ≥ η,
γ1δk otherwise.

2.2. Models. Our first-order model aims to capture gradient information.
For this reason, we first require a Taylor-type bound on function values,
which will be trivially satisfied in the derivative-based case gCk = ∇f(xk)
with FC = (L∇f +BC)/2, where BC is an upper bound on HC

k .
In the derivative-free case this is achieved by the use of a fully linear model

in a ball of radius δEk. The second assumption tightens the accuracy of the
model gradient gCk to its size. Again, it is trivally satisfied when gCk = ∇f(xk),
this time with CC = 0. In the derivative-free setting this is achieved by means
of a criticality step where a fully linear model is computed in a ball of radius
proportional to ‖gCk‖ (see [9]).
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Assumption 2.1. For every index k, the corresponding first-order model mC
k

satisfies ∣∣mC
k(xk + s)− f(xk + s)

∣∣ ≤ FC(δ
C
k)

2, ∀s ∈ B(0, δCk),∣∣gCk −∇f(xk)
∣∣ ≤ CC‖gCk‖,

where FC > 0 and CC ≥ 0 are constants independent of k.

As in the classical case with or without derivatives, we will also need an
uniform upper on the model Hessians.

Assumption 2.2. There exists BC > 0 such that the first-order model Hes-
sian sequence satisfies

∀k, ‖HC
k‖ ≤ BC. (7)

Similarly, our second-order model aims to capture Hessian information.
Now we require the use of a fully quadratic model and tighten the accuracy
of the minimum eigenvalue λEk of the model Hessian (when negative) to its
magnitude.

Assumption 2.3. For every index k, the corresponding second-order model
mE
k satisfies∣∣mE

k(xk + s)− f(xk + s)
∣∣ ≤ FE(δ

E
k)

3, ∀s ∈ B(0, δEk),∣∣∣[−λEk]+ − [−λk]+
∣∣∣ ≤ CE

[
−λEk

]
+

if λEk < 0,

where FE > 0 and CE ≥ 0 are positive constants independent of k.

When using a Taylor model (gEk = ∇f(xk), H
E
k = ∇2f(xk)), one trivially

has FE = L∇2f/6 and CE = 0.
In the derivative-free case the first assumption is achieved by the use of

a fully quadratic model in a ball of radius δEk and the second one by a crit-
icality step where a fully quadratic model is computed in a ball of radius
proportional to [−λEk]+ when λEk is negative (as in [9]). We must point out
here that the strict satisfaction of the second assumption in a derivative-
free context would be hard to do in a finite number of iterations within a
criticality-type step. However, we observe that in order to still garantee the
result (Lemma 3.2) where such assumption is used, one can relax it as∣∣∣[−λEk]+ − [−λk]+

∣∣∣ ≤ CE

[
−λEk

]
+

+
εE
2

if λEk ≤ εE,
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where εE > 0 is the second-order tolerance for the derivation of the complexity
bound.

In the derivative-based case, where again the models are quadratic func-
tions based on the first and second-order Taylor expansions of f around the
current iterate, an iteration of the DESTRESS algorithm requires one gra-
dient and one Hessian evaluation, together with two calls to the objective
function.

2.3. Subproblem solution. On the first-order side, we impose on the ap-
proximate subproblem solution the classical requirement of first-order con-
vergent trust-region methods.

Assumption 2.4. At each iteration k of Algorithm 2.1, the approximate
solution of the trust-region subproblem (5) satisfies a fraction of Cauchy de-
crease, i.e., the first-order step sCk satisfies

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖min

{
‖gCk‖
‖HC

k‖
, δCk

}
, (8)

where τC ∈ (0, 1
2 ] and we set ‖gCk‖/‖HC

k‖ =∞ whenever ‖HC
k‖ = 0.

Note that with our specific definition of the first-order trust-region radius,
(8) reduces to

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖2 min

{
1

‖HC
k‖
, δk

}
. (9)

A similar requirement is imposed on the second-order side.

Assumption 2.5. At each iteration k of Algorithm 2.1, the approximate so-
lution of the trust-region subproblem (6) satisfies a fraction of eigendecrease,
i.e., when [−λEk]+ > 0 the second-order step sEk satisfies

mE
k(xk)−mE

k(xk + sEk) ≥ τE
[
−λEk

]
+

[
−δEk

]2
, (10)

where τE ∈ (0, 1].

As before, we observe that our definition of δEk yields

mE
k(xk)−mE

k(xk + sEk) ≥ τE
[
−λEk

]3
+
δ2
k. (11)

Assumptions 2.4 and 2.5 are typically satisfied, respectively, by a step
along the direction of the negative gradient (also called Cauchy step) and a
step along the direction of an eigenvector associated to λEk > 0 (also called
eigenstep).
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2.4. Basic results for step acceptance. The model properties we enforced
are instrumental to guarantee progress towards a solution of problem (1). In-
deed, when the models are chosen to be sufficiently accurate approximations
of the objective function and the trust-region radii are sufficiently small, steps
associated with the subproblems will produce satisfying decrease in the func-
tion value and be accepted as new iterates. This is the sense of the following
lemmas.

Lemma 2.1. Let Assumptions 1.1, 2.1, 2.2, and 2.4 hold. If ‖gCk‖ > 0 and

δCk < min

{
1

BC

,
τC(1− η)

FC

}
‖gCk‖, (12)

then the k-th iteration is first-order successful and the first-order trust-region
parameter is not decreased.

Proof : Since we have ρk ≥ ρCk, it suffices to prove that ρCk ≥ η. One has:

|ρCk − 1| =

∣∣∣∣f(xk)− f(xk + sCk)−mC
k(xk) +mC

k(xk + sCk)

mC
k(xk)−mC

k(xk + sCk)

∣∣∣∣
=
|mC

k(xk + sCk)− f(xk + sCk)|
|mC

k(xk)−mC
k(xk + sk)|

≤ FC [δCk]
2

τC‖gCk‖min
{
‖gCk‖
‖HC

k‖
, δCk

}
≤ FC [δCk]

2

τC‖gCk‖min
{
‖gCk‖
BC
, δCk

}
≤ FCδ

C
k

τC‖gCk‖
≤ 1− η,

where the last two inequalities are direct consequences of (12).

Lemma 2.2. Let Assumptions 1.1, 2.3, and 2.5 hold. Suppose that at itera-
tion k, λEk < 0 and Step 2 of Algorithm 2.1 is reached with

δEk ≤
τE(1− η)

FE

[
−λEk

]
+
. (13)

Then, the k-th iteration is second-order successful and the second-order trust-
region parameter is not decreased.
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Proof : Similarly to the proof of Lemma 2.1, one then has:

|ρEk − 1| =

∣∣∣∣f(xk)− f(xk + sEk)−mE
k(xk) +mE

k(xk + sEk)

mE
k(xk)−mE

k(xk + sEk)

∣∣∣∣
=
|mE

k(xk + sEk)− f(xk + sEk)|
|mE

k(xk)−mE
k(xk + sk)|

≤ FE [δEk]
3

τE[−λEk]+ [δEk]
2

≤ FE [δEk]

τE[−λEk]+
≤ 1− η,

hence ρk ≥ ρEk ≥ η.

3.Worst case complexity
As an auxiliary result, we can exploit the results of Lemmas 2.1 and 2.2

to provide lower bounds on the trust-region parameter at points sufficiently
away from second-order stationarity (or model stationarity in the derivative-
free case).

Lemma 3.1. Let Assumptions 1.1, 2.1, 2.3, 2.4, and 2.5 hold. Suppose that
by the k-th iteration, the method has not reached a (true or model) second-
order stationary point, meaning that ∀l ≤ k either ‖gCl ‖ > 0 or [−λEl ]+ > 0.

Then, for every l ≤ k, one has

δl ≥
γ1

γ2
min

{
1

BC

,
τC(1− η)

FC

,
τE(1− η)

FE

}
. (14)

Proof : For the purpose of deriving a contradiction, suppose that l is the first
iterate such that

δl+1 < γ1 min

{
1

BC

,
τC(1− η)

FC

,
τE(1− η)

FE

}
. (15)

By the updating rules on the trust-region parameter, we have that δl+1 ≥ γ1δl,
so

δl < min

{
1

BC

,
τC(1− η)

FC

,
τE(1− η)

FE

}
also holds. Given that we have not reached a model second-order stationary
point by assumption, we know that either ‖gCl ‖ > 0 or [−λEl ]+ > 0.
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Suppose first that ‖gCl ‖ > 0. Then one has

δCl = δl‖gCl ‖ ≤ min

{
1

BC

,
τC(1− η)

LC

}
‖gCl ‖. (16)

We thus have from Lemma 2.1 that iteration l is successful and the trust-
region parameter is not decreased. As a result, δl+1 ≥ δl, which contradicts
the assumption that l is the first iteration index satisfying (15).

Suppose now that [−λEl ]+ > 0. In that case,

δEl ≤
τE(1− η)

LE

[
−λEl

]
+

(17)

and by Lemma 2.2, iteration l is successful without decreasing the trust-
region parameter. One then draws the same contradiction than in the first
case. From both cases we conclude that (15) cannot hold, and thus for every
l ≤ k,

γ1 min

{
1

BC

,
τC(1− η)

FC

,
τE(1− η)

FE

}
≤ δl+1 ≤ γ2δl,

hence the result.

Our goal is now to bound the number of iterations that Algorithm 2.1
needs to reach an (εC, εE)-approximate second-order stationary point, that is
a point at which both

‖∇f(xk)‖ < εC (18)

and
[λk]+ < εE, (19)

hold, with (εC, εE) ∈ (0, 1)2. To establish such a worst-case complexity bound,
we define kε as the first integer such that both (18) and (19) hold. Besides,
we let Sε and Uε denote the set of successful iterations and unsuccessful
iterations, i.e., the set of iterations of index less than or equal to kε for which
ρk ≥ η and ρk < η, respectively.

Lemma 3.2. Let Assumptions 1.1, 1.2, 2.1, 2.3, 2.4, and 2.5 hold. Then,

|Sε| ≤
f(x0)− flow

C
max

{
ε−2
C , ε−3

E

}
, (20)

where
C = ηmin

{
τCκδ

(1+CC)2
,

τEκ
2
δ

(1+CE)3

}
,

κδ = γ1
γ2

min
{

1
BC
, τC(1−η)

FC
, τE(1−η)

FE

}
.

(21)
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Proof : Let k ≤ kε be the index of a successful iteration. Then, either (18)
or (19) does not hold.

In the first case,

−
∥∥gCk −∇f(xk)

∥∥+ ‖∇f(xk)‖ ≤
∥∥gCk∥∥ ,

which by Assumption 2.2 implies then∥∥gCk∥∥ ≥ εC
1 + CC

.

Hence, using (9),

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖2 min

{
1

BC

, δk

}
≥ τCε

2
Cκδ

(1 + CC)2
,

where we also applied the result of Lemma 3.1 together with the fact that
κδ < 1/BC.

In the second case, we know from Assumption 2.2 that λEk < 0. Hence, we
obtain

−
∣∣∣[−λEk]+ − [−λk]+

∣∣∣+ [−λk]+ ≤
[
−λEk

]
+
,

which by Assumption 2.2 implies then[
−λEk

]
+
≥ εE

1 + CE

.

As a result,

mE
k(xk)−mE

k(xk + sEk) ≥ τE [−λk]3+ δ
2
k ≥

τEε
3
Eκ

2
δ

(1 + CE)3
.

Putting the two bounds together, we obtain that the function decrease at
the k-th iteration satisfies

f(xk)− f(xk+1) ≥ ηmin

{
τCε

2
Cκδ

(1 + CE)2
,
τEε

3
Eκ

2
δ

(1 + CE)3

}
. (22)
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By considering the sum of the decreases across all iterations and using As-
sumption 1.2, we obtain:

f(x0)− flow ≥
∑
k≤kε

f(xk)− f(xk+1)

=
∑
k∈Sε

f(xk)− f(xk+1)

≥ |Sε| ηmin

{
τCε

2
Cκδ

(1 + CE)2
,
τEε

3
Eκ

2
δ

(1 + CE)3

}
≥ |Sε| Cmin

{
ε2
C, ε

3
E

}
,

hence the result.

Lemma 3.3. Under the assumptions of Lemma 3.2, one has

|Uε| ≤ logγ1
(
δ−1

0 κδ
)
− logγ1(γ2)|Sε|. (23)

Proof : From the update formulas on δk, one has

δkε ≤ δ0γ
|Uε|
1 γ

|Sε|
2 .

Taking logarithms, one obtains

− log(γ1)|Uε| ≤ log(δ0)− log(δkε) + log(γ2)|Sε|.

After division by − log(γ1) > 0, this becomes:

|Uε| ≤ − logγ1(δ0) + logγ1(δkε)− logγ1(γ2)|Sε|.

Since δkε satisfies (14) and κδ is given by (21), we obtain the desired result

We finally obtain our complexity bound by applying kε = |Sε|+ |Uε|. The
result is given below in Theorem 3.1.

Theorem 3.1. Let Assumptions of Lemma 3.2 hold. Then, the number of
iterations needed to attain an (εC, εE)-approximate second-order stationary
point is

O
(
max

{
ε−2
C , ε−3

E

})
, (24)

where the constant in O(·) does not depend on εC or εE, but on flow, f(x0),
FC, FE, CC, CE, τC, τE, γ1, γ2, η, and δ0.
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To end this section, we point out that Theorem 3.1 implies a liminf-type
global convergence result of the form

lim inf
k→∞

max
{
‖∇f(xk)‖,−λmin(∇2f(xk))

}
.

4. A numerical illustration
In order to illustrate the effect of our approach, we selected a benchmark of

58 nonconvex problems from the CUTEst collection [16] for which negative
curvature was detected around the initial point (see [2]). We implemented
a standard trust-region method (denoted by trdb) and Algorithm 2.1 in
MATLAB. For both methods, we used exact second-order Taylor models,
and we computed Cauchy steps and steps along eigenvectors corresponding
to the most negative eigenvalue (if any): as pointed above, those steps satisfy
the necessary requirements for our complexity analysis. We set the initial
trust-region parameter to δ0 = 1 (note that in the case of the classical trust-
region framework, this represents the value of the trust-region radius). In
addition, we set γ1 = γ−1

2 = 0.5, η = 0.25, and δmax =∞.
We build performance profiles [12] using the number of iterations as perfor-

mance metric. Note that it also corresponds to the number of gradient and
Hessian evaluations. In order to enlighten the specificities of our method, we
adopt the standard approach of removing from the profiles the problems for
which both methods had the same performance.

During our experiments, we found out that both methods quickly reached a
region where the second-order criterion was satisfied for all iterates (the Hes-
sian had no negative eigenvalues or a slightly nonpositive one): the variation
in our profiles was thus essentially caused by a change upon the tolerance on
the norm of the gradient. Therefore, we will restrict the presentation of the
results to a single choice of the second-order tolerance, namely εE = 10−3.

Figure 1 and 2 correspond to the profiles obtained by considering the tol-
erances (εC, εE) as used in our convergence analysis. One observes that the
destress algorithm is generally more efficient than the trdb method in that
it requires less iterations to reach an approximate stationary point (therefore
the destress curve lies above the trdb curve on the y-axis). However, the
classical trust-region approach is the highest curve as the ratio gets larger,
indicating that it is able to solve more problems within the given budget.
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Figure 1. Performance of standard and decoupled trust-region
methods given a budget of 500 iterations.

This trend is more noticeable using a large budget of 10000 iterations (Fig-
ure 2); when the budget is relatively moderate (500 iterations, Figure 1), the
two curves eventually coincide for large values of the iteration ratio.

From our results, we can infer that the decoupled approach takes advantage
of the iterations for which one optimality measure has a large value. In that
situation, a large step can be taken within the appropriate trust-region, and
this step is guaranteed to yield a decrease if the trust-region parameter (as
opposed to the trust-region radius) is small. However, when high accuracy
is required, the situation might be the opposite in that the trust-region radii
of the decoupled strategy would then inevitably shrink, restricting the steps
to be small. Although the resulting decrease would be acceptable from a
complexity point of view, it could limit the progress made by the method on
a single iteration.
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Figure 2. Performance of standard and decoupled trust-region
methods given a budget of 10000 iterations.

To confirm this idea, we modified the destress method so that the trust-
region radii are given by δCk = δk max {‖gCk‖, εC} and δEk = δk max {[−λEk]+, εE}.
Note that our complexity analysis using the tolerances (εC, εE) is not affected
by these changes, since it relies on iterations for which either ‖gCk‖ ≥ εC
or [−λEk]+ ≥ εE, in which case the corresponding trust-region radius is still
proportional to the optimality measure. Figures 3 and 4 depict these new
results. The new destress method yields a better profile when compared
to the standard trust-region approach on large ratios, while the efficiency
gain can still be observed for small ratios. In view of such results, it appears
that the use of a decoupling technique must be carefully thought, in order to
both retain the characteristics on the traditional approach and improve upon
them using decoupled steps when beneficial. For the trust-region framework,
it seems that the parameters influencing the trust-region radii must be chosen
according to the importance and tolerance related to each criterion.
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Figure 3. Performance of standard and decoupled (with alter-
native rule) trust-region methods given a budget of 500 iterations.

5. Discussion
Let us focus this discussion on the derivative-based case. The result of

Theorem 3.1 improves over the bound known [6] for a standard trust-region
approach, which we recall is

O
(
max

{
ε−2
C ε−1

E , ε−3
E

})
.

For instance, such a bound is worse than (24) whenever ε−2
E < ε−2

C < ε−3
E ,

e.g., εC = 10−4 and εE = 10−3.
In terms of calls to the objective function and its derivatives, we observe

that the iteration cost of Algorithm 2.1 can be comparable to that of a
classical trust-region method enforcing second-order convergence. Indeed,
such a scheme would also require the computation of two steps satisfying the
same properties. If we compute our two models based on one gradient and one
Hessian evaluation per iteration and thus set mC

k = mE
k, the method performs
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Figure 4. Performance of standard and decoupled (with alter-
native rule) trust-region methods given a budget of 10000 itera-
tions.

only one more function evaluation per iteration compared to classical second-
order convergent frameworks (see [8] and [6]). Therefore, the evaluation
complexity also benefits from our approach in terms of the dependence on
the tolerances εC and εE.

Our method can be viewed as a second-order decoupled variant of the trust-
region method by Fan and Yuan [13]. We point out that the complexity
of this algorithm was only analyzed in the general framework of nonlinear
stepsize control, where worst-case complexity bounds of O

(
ε−3
C

)
for first-

order optimality and O
(
ε−3
E

)
for a mixed criterion of first and second-order

optimality were derived [17, 18]. Although we believe, as the authors of [17],
that their first-order result can be improved to O

(
ε−2
C

)
, we claim that the

use of a decoupling technique is most likely necessary to achieve a bound as
the one established Theorem 3.1.
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We observe that the generic nonlinear stepsize control framework could be
equipped with a decoupling phase, and that this would potentially lead to
improved complexity results. In fact, many algorithms appear to be prone to
“decoupling”, and extensions of this concept to such schemes is an interesting
perspective of the present work.
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