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Abstract: First we characterize a noncrossing permutation, in terms of the lengths
(number of inversions) of its cycles. Then we use derivative formulas for the q-
permanent, a polynomial that interpolates the determinant and the permanent of
a matrix, to characterize several structures of noncrossing kind, for example: the
digraphs with noncrossing permutation subdigraphs, the noncrossing graphs [with
eventual restrictions on cycles and edges], noncrossing forests. We use the derivative
formulas to prove two particular cases of a conjecture on the q-monotonicity of the
q-permanent of a Hermitian positive definite matrix A.
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1. Introduction
Since the pioneering work of G. Kreweras [15], research on noncrossing

partitions and other noncrossing structures had a remarkable development,
well documented in the excellent survey [21] by R. Simion, where it is shown
the ubiquitous character of the concepts involved. Besides those referenced
in [21], we refer, e.g., [11, 19, 20] on the enumerative side of the problem, and
[1, 4] which are closer to our work. All this is well known in combinatorics;
not so noted tough is the other protagonist of this paper, the q-permanent
of an n-square matrix A = (aij) given by

perq A =
∑

σ∈Sn
q`(σ)a1σ(1)a2σ(2) · · · anσ(n), (1)

where Sn is the symmetric group of order n, and `(σ) is the number of inver-
sions of the permutation σ, here called length of σ according to the tradition
in the theory of Coxeter groups [5, 13]. The permanent and the determinant
are specializations of the q-permanent, which, by way of the quantum pa-
rameter q, interpolates the former two well-known functions. Contrarily to
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determinant and permanent, the q-permanent does not show up so frequently
in combinatorics. Nevertheless, when A’s entries are independent variables,
perq A may be seen as a table of the length function in Sn; moreover, perq J ,
where J is the matrix with all entries 1, is the generating function enumerat-
ing the permutations with respect to their length [6, 22]. The q-permanent
(also known as q-determinant and µ-permanent) appeared around the 1990’s
in the area of quantum groups and quantum algebras [18, 23, 26]. In [24, 25]
the reader will find a generalization to multiple quantum parameters. In rela-
tion to a problem of mathematical physics, it has been proved by M. Bozejko
and R. Speicher [7, 8], that σ  q`(σ) is a positive definite function on Sn, for
q ∈]− 1, 1[; it follows that perq A > 0 if A is positive definite and q ∈ [−1, 1];
this lead R. Bapat [2] to an interesting conjecture, to be considered in sec-
tion 6, asserting that the perq A is strictly increasing for q ∈ [−1, 1], if A
is positive definite and non-diagonal. For other interesting results on the
q-permanent we refer [16, 3, 17]. Here, we focus on formulas of the kind

∂
∂q perq A =

∑
c `(c) q

`(c)−1
∏

i acici+1
perq A(c), (2)

inspired by a theorem of A. Lal [16], whose terms will be explained later;
the sum is extended to cycles c, and A(c) denotes the principal submatrix
obtained by elimination of the rows and columns of A corresponding to c.
Such formulas were designed to eventually produce a positive q-derivative of
perq A whenever A is positive definite. Equation (2) does not hold for all
matrices, so it is tempting to characterize the graphs G such that it holds for
any matrix A with graph G. In this sense (2) characterizes the noncrossing
graphs with no edge-under-edge (an expression to be explained in section 4).
In section 5 we alter A(c) in a natural manner, and show that the modified
(2) characterizes the family of noncrossing graphs. Moreover, if the right
hand side of (2) is truncated to sum only over transpositions, we enter the
realm of forests, and characterize those that are noncrossing (and with no
edge-under-edge).

2. Basic concepts and notations
For the basics on graphs, digraphs and matrices we follow mainly the tra-

ditions as can be seen in [9, 12], for example. Here, graphs and digraphs have
vertex set [n] = {1, . . . , n}, so they are labeled, and labeling is crucial. By
an interval, with notations as [r, s], ]r, s[, etc., we mean an integer interval.



NONCROSSING PARTITIONS 3

Two subsets P,Q of [n] are said to be crossing sets if there exist i, j ∈ P
and r, s ∈ Q, satisfying i < r < j < s or r < i < s < j; otherwise we say
they are noncrossing sets. We say that G is a noncrossing graph if no pair of
distinct edges cross. A partition of [n] is said to be a noncrossing partition
if no two distinct parts of it cross. σ ∈ Sn is said to be a noncrossing
permutation if the orbits of σ form a noncrossing partition of [n].

All our matrices are square over a field F of characteristic zero. The digraph
of A, denoted D(A), has (i, j) as arc iff aij 6= 0. The graph of A, denoted
G(A), has {i, j} as edge iff i 6= j and either aij 6= 0 or aji 6= 0. Note that
G(A) has no loops, so it tells nothing about the diagonal entries of A. The
underlying digraph of a graph G is the digraph DG of which (i, j) is an arc
iff i = j or {i, j} is an edge of G. So an underlying digraph is a symmetric
digraph with loops at all vertices.

A matrix A is said to be generic if its nonzero entries are independent
variables over the base field. A is said to be a generic matrix with graph G if
A is generic and aij 6= 0 iff: i = j or {i, j} is an edge of G. When we say that
a given system of algebraic equations holds for every matrix (over F) with
a given digraph D, this is equivalent to saying that the generic matrix with
digraph D satisfies the given system over the ring F[q, {aij}]. This principle
holds for infinite fields, which is the case of F. (See [14, pp. 235 ff] for a proof
and refinements for finite fields.)

A cyclic permutation, or cycle c ∈ Sn may be represented in cycle notation,
c = (c1c2 . . . ck), where k is the order of c, the ci are distinct vertices, and
c(ci) = ci+1, with i read modulo k. We denote by Cn the set of all (oriented)
cycles of the complete digraph on [n]; the number of vertices of such cycle
is called the order of the cycle. The cycles of Cn and those of Sn, of orders
> 1 will be naturally identified, and the cyclic notation will be used in both
cases. Given a matrix A, the weight of a cycle c in A and the total weight of
a permutation σ in A are defined by

wtc(A) =
∏k

i=1 acici+1
and twtσ(A) =

∏n
i=1 aiσi.

This may be simplified to wtc, twtσ. Clearly twtc(A)/wtc(A) is a product of
diagonal entries of A, whenever twtc 6= 0. Define Mov(σ) as the set of indices
moved by a permutation σ, that is, the complement of the set of fixed points
of σ. Let

σ = ω1 · · ·ωr
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be the factorization of σ into (pairwise) disjoint cycles, called the cycles of
σ; in such expression 1-cycles are not considered. For a cycle ω, the smallest
integer interval containing Mov(ω) will be denoted byMω. With this notation
define

Mσ =
⋃r
i=1Mωi

.

For a cycle c, A(c) denotes the submatrix obtained by eliminating the rows
and columns of A with indices in Mov(c). And we let AXc be the n×n matrix
obtained from A by zeroing out all A’s rows and columns with indices in
Mov(c), except the diagonal entries acici which are replaced by 1’s. Note that
the digraph of AXc is obtained from D by removing all arcs incident on c’s
vertices, and adding a loop at each vertex of c. An example for n = 5:

AX(14) =



1 0 0 0 0

0 a22 a23 0 a25

0 a32 a33 0 a35

0 0 0 1 0

0 a52 a53 0 a55


.

3. Noncrossing permutations
In this section we borrow some expressions from the theory of Coxeter

groups, e.g., [1, 5, 13]. To my knowledge, [4] is the first to study in detail the
noncrossing permutations as related to the absolute order in Sn, as described
in [1]; the results of [4, 1] seem to not interfere with this section, because
here we are working with the traditional Bruhat order.

Denote by T the set of all transpositions and, for a permutation σ, let
TL(σ) = {t ∈ T : `(tσ) < `(σ)} and TR(σ) = {t ∈ T : `(σt) < `(σ)}. It is
well-known that

`(στ) = `(σ) + `(τ) ⇔ TR(σ) and TL(τ) are disjoint. (3)

There are other statements equivalent to `(στ) = `(σ) + `(τ); one of such
statements is σ 6R στ , where 6R denotes the weak right Bruhat order in Sn;
another one is TL(σ) ⊆ TL(στ) [5, pp. 23-ff], but we choose to work with (3).
We let Lσ [Rσ] be the set of all j, such that (ji) ∈ TL(σ) [resp., (ji) ∈ TR(σ)]
for some i.

Lemma 3.1. (a) For σ ∈ Sn consider the indices u,w, such that u < w
and σ(u) > σ(w). Then TR(σ) is the set of the corresponding transpositions
(uw), and TL(σ) is the set of the transpositions (σ(u) σ(w)).
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(b) Lσ = Rσ = Mσ.

Proof : (a) Let σ := σ(uw). In complete notation, write σ = σ1σ2 . . . σn, and
σ = σ1σ2 . . . σn. We show that `(σ) > `(σ) by a simple inversions counting.
We have σu = σw, σw = σu, and σi = σi otherwise.

Define `k(σ) := ]{i : i > k, σi < σk}. Clearly `(σ) =
∑

k `k(σ). Omitting
some details we have

`k(σ) = `k(σ), for k 6∈ [u,w];

`u(σ) = `u(σ) + ]{i ∈]u,w[: σi ∈]σw, σu[}+ ]{i > w : σi ∈]σw, σu[}+ 1;

`w(σ) = `w(σ)− ]{i > w : σi ∈]σw, σu[};∑
k∈]u,w[

(
`k(σ)− `k(σ)

)
= ]{k ∈]u,w[: σk ∈]σw, σu[}.

Therefore `(σ) − `(σ) = 2]{i ∈]u,w[: σi ∈]σw, σu[} + 1 > 0. This proves
(uw) ∈ TR(σ). That no other transpositions lie in TR(σ) is a consequence
of ]TR(σ) = `(σ), a well-known fact of Coxeter theory. The claim on TL(σ)
follows from TL(σ) = σTR(σ)σ−1.

(b) Clearly σ has an expression σ = s1s2 . . . sm, where each si is a Coxeter
generator (i.e., a transposition of consecutive indices) which transposes in-
dices of Mσ. As any such expression contains a reduced subword, we may
assume that s1s2 . . . sm is already reduced. If t is a transposition such that
`(σt) < `(σ), then t is a product of some of the sk’s, and therefore t moves
two indices of Mσ. See [5, p. 16-17]. This proves Rσ ⊆Mσ.

To prove the reverse inclusion pick any m in Mσ. Then m ∈ Mω for some
cycle ω of σ. Represent σ in complete (one-line) notation σ = σ1σ2 · · ·σn,
and let Mov(σ) = {σi1, . . . , σik}, with i1 < · · · < ik. In case m ∈ Mov(σ)
there obviously exists ir ∈ Mov(σ) such that the pair (m, ir) is inverted by
σ. In case m is fixed by σ, the word σ1 · · ·σn has a σir > m on the left of m,
otherwise, all σ1, . . . , σm−1 would be smaller than m, and so [m] ∩Mov(ω)
would be a σ-invariant, nonempty, proper subset of Mov(ω), in violation of
the fact that Mov(ω) is an orbit of σ. So in any case we have a transposition
t = (m σir), where m and σir are inverted by σ. This implies t ∈ TR(σ), and
hence m ∈ Rσ. We just proved that Rσ = Mσ. As TL(σ) = TR(σ−1) and
Mσ = Mσ−1, the lemma follows.

Theorem 3.2. For disjoint permutations σ and τ , `(στ) = `(σ) + `(τ) if
and only if no orbit of σ crosses an orbit of τ .
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Proof : Assume `(στ) < `(σ) + `(τ). By (3), choose (vw) ∈ TR(σ) ∩ TL(τ).
The indices v, w cannot be both fixed by σ, otherwise (vw) would not lie
in TR(σ); therefore, one of v, w, say v, is moved by σ; and the other, w,
is moved by τ by a similar reason. Then v is fixed by τ and w is fixed
by σ. Assume that v < w (the case v > w is similar). The condition
`(σ(vw)) < `(σ) means that in the word σ1 . . . σn, the symbols σv, σw occur
inverted, i.e., σ(v) > σ(w) = w; and `((vw)τ) < `(τ) means that, in τ1 . . . τn,
the indices v, w occur inverted, that is τ−1(w) < τ−1(v) = v. So we have
τ−1(w) < v < w < σ(v), and therefore the orbit of σ containing v crosses the
orbit of τ containing w.

For the converse, assume that an orbit of σ crosses an orbit of τ ; so there ex-
ists a cycle ω of σ and a cycle ν of τ such that Mov(ω) crosses Mov(ν). Write
ω and ν in cycle notation, ω = (· · ·ωi ωi+1 · · · ), and ν = (· · · νj νj+1 · · · ),
where ωi+1 = σ(ωi) and νj+1 = τ(νj), the indices i and j being read modulo
the orders of ω and ν, respectively. By the crossing condition one of the
following configurations occurs:

(I) νj1 < ωi1 < νj2 < ωi2 or (II) ωi1 < νj1 < ωi2 < νj2.

Let maxω and minω be the maximum and minimum of Mov(ω), and define
maxν and minν likewise. As the roles of σ and τ may be interchanged, we
shall assume that maxν < maxω. Any of (I)-(II) gives rise to a configuration
of type (I)

minν < ωi < maxν < maxω .

Not all elements ωi, ωi+1, ωi+2, . . . lie in the interval [minν,maxν]; so let m be
the largest integer > i such that ωi, ωi+1, . . . , ωm all lie in [minν,maxν]; then
we have one of the following two cases

ωm+1 < minν < ωm < maxν < maxω (4)

minν < ωm < maxν < ωm+1 6 maxω . (5)

In case (4), choose k so that νk = maxν, and let j be the largest index > k
such that all νk, νk+1, . . . , νj are greater than ωm; then we get

ωm+1 < νj+1 < ωm < νj. (6)

Let t be the transposition (νj+1 ωm). On one hand the inequality[
σ(νj+1)− σ(ωm)

]
(νj+1 − ωm) = (νj+1 − ωm+1)(νj+1 − ωm) < 0
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and lemma 3.1 show that t ∈ TR(σ). On the other hand, we have[
τ−1(νj+1)− τ−1(ωm)

]
(νj+1 − ωm) = (νj − ωm)(νj+1 − ωm) < 0;

therefore, from lemma 3.1 we get t ∈ TR(τ−1) = TL(τ). In the current case
TR(σ) ∩ TL(τ) 6= ∅, and (3) implies `(στ) < `(σ) + `(τ).

In case (5), choose p so that νp = minν, and let s be the largest index > p
such that all νp, νp+1, . . . , νs are less than ωm. We obtain the inequalities

νs < ωm < νs+1 < ωm+1,

which are kind of dual to (6). The same argument used in case (4), now
applied to t = (ωm νs+1), leads to the same conclusion of that case, namely
`(στ) < `(σ) + `(τ).

Corollary 3.3. Let ω1, . . . , ωr be the disjoint cycles of σ. Then σ is a non-
crossing permutation if and only if `(σ) = `(ω1) + · · ·+ `(ωr).

4. Submatrices and restricted noncrossing graphs
Given σ factorized into disjoint cycles, say σ = ω1 · · ·ωr, and a generic

matrix A with digraph D, the condition a1σ1a2σ2 · · · anσn 6= 0, means that the
ωi are cycles of D, and D has a loop at each vertex fixed by σ; we follow
[9, §9.1] in saying that σ determines a permutation subdigraph of D. (So
a permutation subdigraph is a spanning collection of disjoint cycles, includ-
ing loops, called linear sub[di]graph in [10].) A permutation digraph is said
to be noncrossing if the permutation itself is noncrossing. Figure 1 depicts

Figure 1. The permutation digraph of (1392)(467).

a permutation digraph in the two traditional ways [21], namely, in circu-
lar presentation and in linear presentation. The permutation (1392)(467) is
noncrossing; the crossings inside each cycle are irrelevant, as for the crossing
property only the orbits matter. Besides crossings, we wish to forbid another
kind of configuration in a permutation subdigraph. When two disjoint cycles
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of σ, say ω1, ω2, of orders > 2, satisfy the property Mω1
⊂ Mω2

, we say that
ω1 lies under ω2, and that σ has a cycle-under-cycle configuration. The term
under is suggested by the linear representation of figure 1, where the cycle
(467) lies under (1392). Note that while the “crossing” property is invari-
ant under cyclic relabeling (to replace i by i+ 1 modulo n), the “lie under”
relation depends heavily on the position of label 1.

The disjoint cycles of σ determine the set of intervals Mσ = {Mω1
, . . . ,Mωr

}
partially ordered by inclusion.

Proposition 4.1. (a) σ is noncrossing if and only if incomparable elements
of Mσ are disjoint, and Mωi

⊂ Mωj
implies Mωi

∩Mov(ωj) = ∅. (b) σ is
noncrossing with no cycle-under-cycle if and only if all elements of Mσ are
pairwise disjoint.

Proof : The only if part of (a). If two incomparable intervals I, J intersect
and have no common extreme points, then obviously {min I,max I} and
{min J,max J} are crossing sets. On the other hand, if Mωi

⊂ Mωj
and

v ∈ Mωi
∩ Mov(ωj), then Mov(ωi) and Mov(ωj) cross, because minMωi

<
v < maxMωi

< maxMωj
.

The if part of (a). Assume σ is a crossing permutation, and incompara-
ble elements of Mσ are disjoint. There exist ωi, ωj such that Mov(ωi) and
Mov(ωj) cross; therefore Mωi

and Mωj
are comparable, say Mωi

⊂Mωj
. There

exists v ∈ Mov(ωj) that lies in between two elements of Mov(ωi); therefore
v ∈ Mωi

∩Mov(ωj), and so this set in nonempty, which finishes this proof
part. Item (b) is now trivial.

Lemma 4.2. Let α ∈ Sn, and let W ⊆ [n] be a set of points which are
individually fixed by α. Let α′ be the restriction of α to [n] r W . Then
`(α) = `(α′) + 2JW , where JW is the cardinality of {(i, w) : w ∈ W, i < w <
α(i)}.

Proof : Note that JW =
∑

w∈W J{w}. In a linear presentation as that of figure
1 (where J{5} = 2 and J{8} = 1), J{w} is the number of jumps that α shows
from the left to the right of w; clearly J{w} is also the number of jumps from
the right to the left of w. So 2J{w} is the number of inversions of α involving
the vertex w. The lemma follows by simple induction, extracting from [n]
the vertices of W one after another.

Theorem 4.3. D is a digraph in which all permutation subdigraphs are non-
crossing and have no cycle-under-cycle, if and only if any matrix A with
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digraph D satisfies

∂

∂q
perq A =

∑
c∈Cn

`(c) q`(c)−1 wtc(A) perq A(c). (7)

Proof : The if part. Suppose that (7) holds. We may assume that A is
a generic matrix with digraph D. We shall get a contradiction from the
existence of a permutation α such that twtα 6= 0 and one of the following
conditions holds: (i) α is a crossing permutation, or (ii) α has a cycle-under-
cycle. For that purpose, consider the permutation matrix Pα defined by[

Pα
]
ij

= δα(i) j — so that perq Pα = q`(α). (8)

Note that Pα is a specialization of A, (i.e., it is the result of replacing some
of the nonzero entries of A). So we replace A with Pα, and compare the right
hand side of (7) with the value of the left hand side which is ∂

∂q perq Pα =

`(α)q`(α)−1.
Case (i): α is crossing. Let α = ω1 · · ·ωr be the factorization of α into

disjoint cycles. The sum in (7) has r relevant terms, one for each cycle ωi.
As A(ωi) is a permutation matrix, perq A(ωi) = qzi for some integer zi > 0.
Therefore, (7) reads

`(α)q`(α)−1 =
∑r

i=1 `(ωi) q
`(ωi)−1+zi. (9)

But this is impossible since, by corollary 3.3, `(α) < `(ω1) + · · ·+ `(ωr).
Case (ii): α has a cycle-under-cycle. By (i) we assume α is noncrossing.

Two of α’s cycles, say ωu, ωv, satisfy Mωu
⊂Mωv

. We may assume that Mωv

is maximal in Mα. By proposition 4.1, Mωu
∩Mov(ωv) is empty (as in figure

1, where (467) plays the role of ωu). Equation (9) still holds, and we take a
closer look at the values zu, zv. We have

zu = `((ω1 · · · ω̂u · · ·ωr)′) = `(ω1 · · · ω̂u · · ·ωr)− 2Ju (10)

zv = `((ω1 · · · ω̂v · · ·ωr)′) = `(ω1 · · · ω̂v · · ·ωr)− 2Jv (11)

where the following notations are used: ω̂i expresses the elimination of ωi
from the product ω1 · · ·ωr; (χ)′ denotes, in (10), the restriction of χ to [n]r
Mov(ωu), and in (11) the restriction of χ to [n] r Mov(ωv); and the Ji’s
denote numbers of inversions according to lemma 4.2. Clearly Ju is positive
because Mov(ωu) ⊂ Mωv

. Suppose Jv > 0; then for some a 6= v we would
have a configuration of the kind i < w < ωa(i), with w ∈ Mov(ωv). So
Mωa
∩Mωv

6= ∅ and, by proposition 4.1 and the maximality of Mωv
, we would
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have Mωa
∩Mov(ωv) = ∅. This contradicts the fact that w ∈Mωa

∩Mov(ωv).
Therefore Jv = 0. So (9) transforms into

`(α)q`(α)−1 = `(ωv) q
`(α)−1 + `(ωu) q

`(α)−1−2Ju +
∑

i6=u,v `(ωi) q
`(ωi)−1+zi, (12)

which is clearly impossible. This finishes the if part of the proof.

The only if part. Suppose twtσ(A) 6= 0. In both sides of (7) all monomials
are of the kind twtτ ; so we are supposed to show that twtσ occurs in both sides
with the same coefficient. In the left hand side, the coefficient is `(σ)q`(σ)−1.
If ω1, . . . , ωr are the cycles of σ, in the right hand side of (7) twtσ occurs
in r summands, corresponding to c = ωs for s = 1, . . . , r. To find the
summand corresponding to ωs, we must search in the defining expansion of
perq A(ωs) for the occurrence of the monomial ms := twtσ /wtωs

. It turns out
that ms is precisely the total weight of (ω1 · · · ω̂s · · ·ωr)′ (notation as in (10)-
(11)) as a permutation of the set [n] rMωs

, with respect to the submatrix
A(ωs). The disjointness of the elements of Mσ (cf. proposition 4.1) implies
`((ω1 · · · ω̂s · · ·ωr)′) = `(ω1 · · · ω̂s · · ·ωr). So the contribution of ωs to the
right hand side of (7) is `(ωs)q

`(σ)−1 twtσ. Therefore, twtσ occurs in the right
hand side with coefficient `(σ)q`(σ)−1, because `(σ) = `(ω1) + · · ·+ `(ωr).

Given a graph G, a permutation subdigraph of the underlying digraph DG

is called a permutation subgraph of G. We call edge-under-edge to a configura-
tion of two edges of G, {i, j}, {r, s}, such that: r < i < j < s. The reduction
from digraphs to graphs comes with pleasant obvious simplifications, due to
the presence of a generous supply of loops in DG:

All permutation subgraphs of G are noncrossing if and only if G is a
noncrossing graph.
All permutation subgraphs of G have no cycle-under-cycle if and only
if G has no edge-under-edge.

The application of theorem 4.3 to a graph G will be handled by bounding
the sum in (7), to a symmetric set of cycles of the complete digraph on [n].
More precisely, we say that Ω ⊆ Cn is symmetric if all elements of Ω have
orders > 1, and Ω is closed for inversion when envisaged as a subset of Sn.
When we say that an edge {i, j} lies in Ω we of course mean that (i, j) and
(j, i) are members of Ω, and when we say that a (non-oriented) cycle of G lies
in Ω, we mean that the two corresponding oriented cycles of DG are members
of Ω.
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Theorem 4.4. G is a noncrossing graph, with no edge-under-edge and has
all cycles and edges in Ω, if and only if any [symmetric, Hermitian] matrix
A with graph G satisfies (7), with the summation extended to c ∈ Ω.

In this and in other statements to come, the expression “any [symmetric, Hermitian]
matrix” means we have three statements: one with any matrix, another with any
symmetric matrix, and a third one with any Hermitian matrix.

Proof : The only if part follows trivially from theorem 4.3.
The if part. Let ϕ be a cycle of DG (ϕ may represent an edge or a cycle

of G). Suppose that (7), with summation over c ∈ Ω, holds for a generic
matrix A with graph G. As twtϕ(A) 6= 0 occurs in the left hand side of (7),
it also occurs on the right hand side. So there exists c ∈ Ω such that twtϕ(A)
occurs in wtc(A) perq A(c), that is twtϕ(A) = wtc(A) twtη(A(c)), for some
permutation η of [n] r Mov(c). Of course we may view η as an element of
Sn disjoint from c, and we get

twtϕ(A) = twtcη(A). (13)

This implies ϕ = cη, and therefore ϕ = c. So ϕ lies in Ω.
Next let A be a generic symmetric matrix with graph G. The proof that

ϕ ∈ Ω may go the previous way until (13). However, while in the case of
a generic A the identity twtσ(A) = twtτ(A) implies σ = τ , for a generic
symmetric matrix this is no longer true; the reader may enjoy solving on the
fly the following neat exercise, where A is understood as a generic symmetric
matrix:

Exercise
1. twtσ has the form ai1j1ai2j2 · · · ainjn where (i1, . . . , in, j1, . . . , jn) has all members of

[n] repeated; and any such form is a twtτ for some τ .
2. twtσ = twtτ if and only if τ results from σ by inverting some of σ’s cycles. So the

number of τ ’s such that twtσ = twtτ is 2k, where k is the number of cycles of σ of
orders > 3.
Hint. Paint a copy of [n] red, and another blue; use {i1, j1}, . . . , {in, jn} to build a
perfect matching from blue to red; then switch colors in chosen cycles.

This being secured, (13) implies ϕ = c or ϕ = c−1. Hence ϕ lies in Ω.
In case (7) (with c ∈ Ω) holds for all Hermitian matrices, then it holds for

all real symmetric matrices, and the previous argument shows that all cycles
and edges of G lie in Ω.

Assume now that G has edges {v, w}, {v̄, w̄}, satisfying (i) v < v̄ < w < w̄,
or (ii) v < v̄ < w̄ < w. Then let α be (vw)(v̄w̄), and define Pα as in (8).
Clearly Pα is a symmetric permutation and, as we have seen above, the
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transpositions (vw) and (v̄w̄) lie in Ω. Therefore, we may follow the path in
the proof of theorem 4.3 (with easier details) to get contradictions in both
cases (i) and (ii). So G is a noncrossing graph with no edge-under-edge.

If in theorem 4.4 we let Ω = T , the set of all transpositions, we get:

Corollary 4.5. G is a noncrossing forest with no edge-under-edge if and
only if any [symmetric, Hermitian] matrix A having G as graph satisfies

∂

∂q
perq A =

∑
i<j

`((ij)) q`((ij))−1 aijaji perq A((ij)). (14)

Formula (14) appears in [C. Fonseca, On a conjecture about the µ-permanent,
Linear and Multilinear Algebra, 53(2005), pp. 225-230] as valid for Hermitian
matrices and any tree, which we proved is not true. The flaw resides in the
proof of p. 228 of that paper, when it is assumed that in the first row of A,
all zero entries may be pushed to the right. This is usually achieved by a
permutation similarity, but the q-permanent is not invariant for this kind of
transformation.

If in theorem 4.4 we let Ω be the set of edges of a given graph H, we get:

Corollary 4.6. G is a noncrossing forest, with no edge-under-edge and is a
subgraph of H, if and only if any [symmetric, Hermitian] matrix A having G
as graph satisfies (14) with the sum restricted to the edges of H.

5. Characterizations of noncrossing graphs and forests
Theorem 5.1. D is a digraph in which all permutation subdigraphs are non-
crossing, if and only if any matrix A with digraph D satisfies

∂
∂q perq A =

∑
c∈Cn

`(c) q`(c)−1 wtc(A) perq A
X
c . (15)

Proof : The if part follows the method used for case (i) of the proof of theorem
4.3. The only if part is a bit easier than the only if part of the proof of theorem
4.3. We use the same notation. If twtσ 6= 0, we determine the contribution
of c = ωs in the right hand side of (15). The monomial twtσ /wtωs

is the
total weight of the permutation ω1 · · · ω̂s · · ·ωr in AXωs

. So the summand
corresponding to ωs is

`(ωs)q
`(ωs)−1q`(σ)−`(ωs) twtσ = `(ωs)q

`(σ)−1 twtσ .
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To end up the proof, we sum this expression for s = 1, . . . , r, and apply
corollary 3.3.

The following two corollaries are given with no proofs. For such proofs
the reader may adapt the techniques introduced in previous results. The
technical differences arising upon the change from A(c) to AXc have already
been treated in the proofs of the main theorems 4.3 and 5.1. We adopt
the perspective of the previous section of considering graphs with cycles and
edges in a symmetric set Ω.

Corollary 5.2. A graph G is noncrossing and has all cycles and edges in
Ω, if and only if any [symmetric, Hermitian] matrix A having G as graph
satisfies the identity (15), with the summation extended to c ∈ Ω.

Split Ω into a set E of transpositions (2-cycles) and a set C of cycles of
orders k > 3. As C is closed for inversion, C is a union of doubletons {c, c−1}.
We let R be a set of representatives of those doubletons; thus C = R ∪R−1,
R ∩ R−1 = ∅. With this notation, the identity (15), with the summation
extended to c ∈ Ω, may be expanded as follows in case A is Hermitian:

∂

∂q
perq A =

∑
i<j, {i,j}∈E

`((ij)) q`((ij))−1 |aij|2 perq A
X
(ij) + (16)

2
∑
c∈R

`(c) q`(c)−1 Re[wtc(A)] perq A
X
c ,

because `(c−1) = `(c), AXc−1 = AXc and wtc−1 = wtc.

Corollary 5.3. A graph G is a noncrossing forest if and only if any [sym-
metric, Hermitian] matrix A having G as graph satisfies

∂

∂q
perq A =

∑
i<j

`((i j)) q`((i j))−1 aijaji perq A
X
(ij). (17)

6. The case of Hermitian matrices
In [7, 8], M. Bozejko and R. Speicher proved, for q ∈]− 1, 1[, that σ  q`(σ)

is a positive definite function on Sn. Then, in [2], R. Bapat showed how
that result implies perq A > 0, for q ∈ [−1, 1], if A is positive definite;
he conjectured that perq A is strictly increasing with q ∈ [−1, 1], if A is a
non-diagonal positive definite matrix, and proved his conjecture for n 6 3. In
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[16], A. Lal proved that conjecture for tridiagonal matrices. More specifically,
A. Lal established the formula

∂

∂q
perq A =

n−1∑
i=1

|ai,i+1|2 perq A((i i+ 1)), (18)

for a Hermitian tridiagonal matrix. On a closer look, Lal has in fact proved
(14) for the graph with edges {i, i+ 1}, for i ∈ [n− 1].

The following two theorems are based on the derivative formulas of section
5, specially (16) (those of section 4 give weaker results, due to the severe
cycle-under-cycle restriction). The techniques of the omitted proofs use the
following simple facts: if a cycle c of G has even order, then `(c) is odd and
so q`(c)−1 > 0 for q ∈ [−1, 1], q 6= 0; and the same happens with the edges
{i, j} of G, together with |aij|2 > 0. To get Re[wtc(A)] > 0 the easy way
is to postulate A > 0 entrywise. Finally, as AXc is positive definite, Bapat’s
corollary to the cited Bozejko-Speicher result [7, 2] guarantees perq A

X
c > 0.

Theorem 6.1. Let G is a noncrossing forest with at least one edge. For
any positive definite matrix A with graph G, perq A is strictly increasing with
q ∈ [−1, 1].

Theorem 6.2. Let A be a non-diagonal real symmetric matrix, which is
positive definite and entrywise nonnegative. If G(A) is a noncrossing graph
and all its cycles have even order, then perq A is strictly increasing with
q ∈ [−1, 1].
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12(1975), pp. 333-336.

[11] Ph. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math-
ematics, 204(1999), pp. 203-229.

[12] C. Godsil and G. Royle, Algebraic graph theory, GTM 207, Springer-Verlag, New York, 2001.
[13] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cam-

bridge, 1990.
[14] S. Jukna, Extremal combinatorics, with applications in Computer Science, Texts in Theoretical

Computer Science, Springer-Verlag, 2011 (Second Edition).
[15] G. Kreweras, Sur les partitions noncroisées d’un cycle, Discrete Mathematics, 1(1972), pp. 333-

350.
[16] A. Lal, Coxeter Groups and Positive Matrices, [Ph.D. Thesis], Indian Statistical Institute,

1992.
[17] A. Lal, Inequalities for the q-Permanent, II, Linear Algebra and its Applications, 274(1998),

pp. 1-16.
[18] Yu I. Manin, Quantum Groups and Non-Commutative Geometry, Publications du C.R.M., Uni-

versite de Montreal, 1988.
[19] M. Noy, Enumeration of noncrossing trees on a circle, Discrete Mathematics, 180(1998),

pp. 301-313.
[20] A. Panholzer, Non-crossing trees revisited: cutting down and spanning subtrees, Discrete

Mathematics and Theoretical Computer Science AC, 2003, pp. 265-276.
[21] R. Simion, Noncrossing partitions, Discrete Mathematics 217(2000), pp. 367-409.
[22] R. Stanley, Enumerative combinatorics, Cambridge University Press, 1997.
[23] E. Taft and J. Towber, Quantum Deformation of Flag Schemes and Grassmann Schemes, I. A

q-Deformation of the Shape-Algebra for GL(n), Journal of Algebra, 142(1991), pp. l-36
[24] H. Tagawa, A multivariable quantum determinant over a commutative ring, RIMS Kōkyūroku,
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