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CHARACTERIZATION OF TRIEBEL-LIZORKIN-TYPE
SPACES WITH VARIABLE EXPONENTS VIA MAXIMAL

FUNCTIONS, LOCAL MEANS AND NON-SMOOTH
ATOMIC DECOMPOSITIONS
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Abstract: In this paper we study the maximal function and local means charac-
terization and the non-smooth atomic decomposition characterization of the Triebel-

Lizorkin-type spaces with variable exponents F
s(·),φ
p(·),q(·)(R

n). These spaces were re-

cently introduced by Yang et all and cover the Triebel-Lizorkin spaces with variable

exponents F
s(·)
p(·),q(·)(R

n) as well as the classical Triebel-Lizorkin spaces F sp,q(Rn), even

the case when p =∞, and also the Triebel-Lizorkin-type spaces F s,τp,q (Rn) with con-
stant exponents which, in turn covers the Triebel-Lizorkin-Morrey spaces. As an
application we obtain a pointwise multiplier assertion for those spaces.

Keywords: Triebel-Lizorkin spaces, variable exponents, Peetre maximal operator,
local means, atoms, pointwise multipliers.

1. Introduction
Spaces of variable integrability, also known as variable exponent function

spaces Lp(·)(Rn), can be traced back to Orlicz [20] 1931, but the modern
development started with the papers [12] of Kováčik and Rákosńık as well
as [4] of Diening. The interest on these spaces comes not only from the
theoretically point of view but also in view of their applications: in the
theory and modeling of electrorheological fluids, in differential equations and
in image restoration, for instance. We refer to [5] and the references therein
for a more complete overview.

The concept of function spaces with variable smoothness and the concept of
variable integrability were firstly mixed up by Diening, Hästö and Roudenko
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in [6], where the authors defined Triebel-Lizorkin spaces with variable expo-

nents F
s(·)
p(·),q(·)(R

n). From the trace theorem on Rn−1 proved there and stated

as follows ([6, Theorem 3.13])

Tr F
s(·)
p(·),q(·)(R

n) = F
s(·)− 1

p(·)
p(·),p(·) (Rn−1), with s(·)− 1

p(·)
> (n−1) max

(
1

p(·)
− 1, 0

)
,

one can easily understand the necessity of taking s and q variable if p is not
constant. A similar interplay between smoothness and integrability can also
be verified in [33], where Vyb́ıral established Sobolev embeddings for these
spaces. Moreover, Almeida and Hästö also introduced in [3] Besov spaces

B
s(·)
p(·),q(·)(R

n) with all three indices variable and showed a Sobolev embedding

for these spaces.
More generally, 2-microlocal Besov and Triebel-Lizorkin spaces with vari-

able integrability were introduced in [9, 10] and provide a unified approach
that covers not only the classical Besov and Triebel-Lizorkin spaces, but also
many spaces related with variable smoothness and generalized smoothness.
Many results have been studied regarding these spaces, such as characteriza-
tions by local means, smooth and non-smooth atoms, molecules, ball means
of differences and Peetre maximal functions (we refer to [1], [2], [11], [8]).

On the other hand, another class of generalized Besov and Triebel-Lizorkin
spaces, the Besov-type spaces Bs,τ

p,q (Rn) and the Triebel-Lizorkin-type spaces
F s,τ
p,q (Rn), were introduced in [34]. Within this class of function spaces one

can find the classical Besov and Triebel-Lizorkin spaces as well as the Triebel-
Lizorkin-Morrey spaces introduced by Tang and Xu in [27]. These function
spaces, including some of their special cases related to Q spaces, have been
used to study the existence and the regularity of solutions of some partial
differential equations such as (fractional) Navier-Stokes equations; see, for
example [13].

Based on Bs,τ
p,q (Rn) and F s,τ

p,q (Rn), recently Yang, Zhuo and Yuan introduced
in [37, 36] a generalized scale of function spaces considering variable expo-
nents s(·), p(·) and q(·) and a measurable function φ on Rn+1

+ . Denoted

by B
s(·),φ
p(·),q(·)(R

n) and F
s(·),φ
p(·),q(·)(R

n), these spaces then include the Besov and

Triebel-Lizorkin-type spaces (with constant exponents) and also Besov and
Triebel-Lizorkin spaces with variable exponents. They characterized those
function spaces by means of atomic decompositions and derived the trace on
hyperplanes.
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In this paper we characterize F
s(·),φ
p(·),q(·)(R

n) by maximal functions and, as a

corollary, we also get a characterization by local means. Moreover, we use
these results to derive a non-smooth atomic decomposition for the spaces in
consideration.

Our characterization by maximal functions and local means extends results
from [11] and [35]. Regarding the non-smooth atomic decomposition, as far
as we know the result is new for this scale of function spaces, even in the
case of constant exponents, in particular to F s,τ

p,q (Rn). The idea is to show
that the usual atoms used in smooth atomic decompositions as in [36] or [37]
can be replaced by more general ones, meaning weaker assumptions on the
smoothness, and, nevertheless, we keep all the crucial information when com-
paring to smooth atomic decompositions. This modification appeared first
in [31], where Triebel and Winkelvoß suggested the use of these more relaxed
conditions to define classical Besov and Triebel-Lizorkin spaces intrinsically
on domains. More recently, Scharf in [24] defined even more general atoms
and proved a non-smooth atomic characterization for the spaces Bs

p,q(Rn) and
F s
p,q(Rn). As far as the scale of spaces with variable exponents is concerned,

we refer to [8], where the authors showed the corresponding result for the
scale of 2-microlocal spaces with variable integrability. Following [8], we then
make use of the characterizations via smooth atoms and local means to de-
rive the more general atomic decomposition result for Triebel-Lizorkin-type
spaces with variable exponents.

Having the non-smooth atomic decomposition theorem, we are able to deal

easily with pointwise multipliers in the function spaces F
s(·),φ
p(·),q(·)(R

n), as stated

in the last section.

2. Notation and definitions
We start by collecting some general notation used throughout the paper.
As usual, we denote by N the set of all natural numbers, N0 = N ∪ {0},

and Rn, n ∈ N, the n-dimensional real Euclidean space with |x|, for x ∈ Rn,
denoting the Euclidean norm of x. By Zn we denote the lattice of all points
in Rn with integer components. For β := (β1, · · · , βn) ∈ Zn, let |β| :=
|β1| + · · · + |βn|. If a, b ∈ R, then a ∨ b := max{a, b}. We denote by c a
generic positive constant which is independent of the main parameters, but
its value may change from line to line. The expression A . B means that
A ≤ cB. If A . B and B . A, then we write A ∼ B.
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Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and
the natural embedding is bounded.

If E is a measurable subset of Rn, we denote by χE its characteristic func-
tion and by |E| its Lebesgue measure. By supp f we denote the support of
the function f .

For each cube Q ⊂ Rn we denote its center by cQ and its side length by
`(Q) and, for a ∈ (0,∞) we denote by aQ the cube concentric with Q having
the side length a`(Q). For x ∈ Rn and r ∈ (0,∞), we denote by Q(x, r) the
cube centered at x with side lenght r, whose sides are parallel to the axes of
coordinates.

Given k ∈ N0, C
k(Rn) is the space of all functions f : Rn → C which are

k-times continuously differentiable (continuous in k = 0) such that

‖f | Ck(Rn)‖ :=
∑
|α|≤k

sup
x∈Rn
|Dαf(x)| <∞.

The Hölder space C s(Rn) with index s > 0 is defined as the set of all functions

f ∈ Cbsc
−
(Rn) with

‖f | C s(Rn)‖ := ‖f | Cbsc
−
(Rn)‖+

∑
|α|={s}+

sup
x,y∈Rn,x6=y

|f(x)− f(y)|
|x− y|{s}+

<∞,

where bsc− ∈ N0 and {s}+ ∈ (0, 1] are uniquely determined numbers so that
s = bsc− + {s}+. If s = 0 we set C 0(Rn) := L∞(Rn).

By S (Rn) we denote the usual Schwartz class of all infinitely differentiable
rapidly decreasing complex-valued functions on Rn and S ′(Rn) stands for the
dual space of tempered distributions. The Fourier transform of f ∈ S (Rn)

or f ∈ S ′(Rn) is denoted by f̂ while its inverse transform is denoted by f∨.

Now we give a short survey on variable exponents. For a measurable func-
tion p : Rn → (0,∞), let

p− := ess inf
x∈Rn

p(x) and p+ := ess sup
x∈Rn

p(x).

In this paper we denote by P(Rn) the set of all measurable functions
p : Rn → (0,∞) (called variable exponents) such that 0 < p− ≤ p+ < ∞.
For p ∈ P(Rn) and a measurable set E ⊂ Rn, the space Lp(·)(E) is defined to
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be the set of all (complex or real-valued) measurable functions f such that

‖f | Lp(·)(E)‖ := inf

{
λ ∈ (0,∞) :

∫
E

(
|f(x)|
λ

)p(x)

≤ 1

}
<∞.

It is known that Lp(·)(E) is a quasi-Banach space, a Banach space when
p− ≥ 1. If p(·) ≡ p is constant, then Lp(·)(E) = Lp(E) is the classical
Lebesgue space.

For later use we recall that Lp(·)(E) has the lattice property. Moreover, we
have

‖f | Lp(·)(E)‖ =
∥∥|f |r∣∣Lp(·)

r
(E)
∥∥ 1
r , r ∈ (0,∞),

and

‖f + g | Lp(·)(E)‖r ≤ ‖f | Lp(·)(E)‖r + ‖g | Lp(·)(E)‖r, r ∈
(
0,min{1, p−}

)
.

In the setting of variable exponent function spaces it is needed to require
some regularity conditions to the exponents. We recall now the standard
conditions used.

We say that a continuous function g : Rn → R is locally log-Hölder con-
tinuous, abbreviated g ∈ C log

loc (Rn), if there exists a positive constant clog(g)
such that

|g(x)− g(y)| ≤ clog(g)

log(e+ 1/|x− y|)
for all x, y ∈ Rn. (1)

We say that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if

g ∈ C log
loc (Rn) and there exists g∞ ∈ R and a positive constant c∞ such that

|g(x)− g∞| ≤
c∞

log(e+ |x|)
for all x ∈ Rn.

Note that all functions in C log
loc (Rn) are bounded and if g ∈ C log(Rn) then

g∞ = lim|x|→∞ g(x). Moreover, for g ∈ P(Rn), we have that g ∈ C log(Rn) if

and only if 1/g ∈ C log(Rn). The notation P log(Rn) is used for those variable
exponents p ∈ P(Rn) with p ∈ C log(Rn).

Let G(Rn+1
+ ) be the set of all measurable functions φ : Rn× [0,∞)→ (0,∞)

having the following properties: there exist positive constants c1(φ) and c̃1(φ)
such that

1

c̃1(φ)
≤ φ(x, r)

φ(x, 2r)
≤ c1(φ) for all x ∈ Rn and r ∈ (0,∞), (2)
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and there exists a positive constant c2(φ) such that, for all x, y ∈ Rn and
r ∈ (0,∞) with |x− y| ≤ r,

1

c2(φ)
≤ φ(x, r)

φ(y, r)
≤ c2(φ). (3)

The conditions (2) and (3) are called doubling condition and compatibility
condition, respectively, and have been used by Nakai [17, 18] and Nakai
and Sawano [19]. Examples of functions in G(Rn+1

+ ) are provided in [36,
Remark 1.3].

In what follows, for φ ∈ G(Rn+1
+ ) and all cubes Q := Q(x, r) with center

x ∈ Rn and radius r ∈ (0,∞), we define φ(Q) := φ(Q(x, r)) := φ(x, r).
The following is our convention for dyadic cubes: For j ∈ Z and k ∈ Zn,

denote by Qjk the dyadic cube 2−j([0, 1)n + k) and xQjk its lower left corner.
Let Q := {Qjk : j ∈ Z, k ∈ Zn}, Q∗ := {Q ∈ Q : `(Q) ≤ 1} and jQ :=
− log2 `(Q) for all Q ∈ Q. When the dyadic cube Q appears as an index,
such as

∑
Q∈Q and (· · · )Q∈Q, it is understood that Q runs over all dyadic

cubes in Rn.
For the function spaces under consideration in this paper, the following

modified mixed-Lebesgue sequence spaces are of special importance. Let
p, q ∈ P(Rn) and φ ∈ G(Rn+1

+ ). We denote by Lφp(·)(`q(·)) the set of all

sequences (gj)j∈N0
of measurable functions on Rn such that

‖(gj)j∈N0
| Lφp(·)(`q(·))‖ := sup

P∈Q

1

φ(P )

∥∥∥( ∞∑
j=jP∨0

|gj(·)|q(·)
) 1
q(·) | Lp(·)(P )

∥∥∥ <∞,
where the supremum is taken over all dyadic cubes P in Rn. We remark that
Lφp(·)(`q(·)) is a quasi-normed space that coincides with the mixed Lebesgue-

sequence space Lp(·)(`q(·)) when φ ≡ 1. The case of q(·) = q constant and
φ(Q) := |Q|τ for all cubes Q and τ ∈ [0,∞), has also been considered in [15].

We say that a pair (ϕ, ϕ0) of functions in S (Rn) is admissible if

supp ϕ̂ ⊂ {ξ ∈ Rn :
1

2
≤ |ξ| ≤ 2} and |ϕ̂(ξ)| > 0 when

3

5
≤ |ξ| ≤ 5

3
(4)

and

supp ϕ̂0 ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and |ϕ̂0(ξ)| > 0 when |ξ| ≤ 5

3
. (5)

Throughout the article, for all ϕ ∈ S (Rn), j ∈ N and x ∈ Rn, we set
ϕj(x) := 2jnϕ(2jx).
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Definition 2.1. Let (ϕ, ϕ0) be a pair of admissible functions on Rn. Let

p, q ∈ P log(Rn), s ∈ C log
loc (Rn) and φ ∈ G(Rn+1

+ ). Then the Triebel-Lizorkin-

type space with variable exponents F
s(·),φ
p(·),q(·)(R

n) is defined to be the set of all

f ∈ S ′(Rn) such that

‖f | F s(·),φ
p(·),q(·)(R

n)‖ :=
∥∥(2js(·)(ϕj ∗ f)(·)

)
j∈N0
| Lφp(·)(`q(·))

∥∥ <∞.
Remarks 2.2. (i) These spaces were introduced by Yang et al. in [36], where

the authors have proved the independence of the spaces on the admissible
pair.

(ii) When φ ≡ 1, then F
s(·),φ
p(·),q(·)(R

n) = F
s(·)
p(·),q(·)(R

n) is the Triebel-Lizorkin

space with variable smoothness and integrability introduced and investi-
gated by Diening et al. in [6]. There s is assumed to be non-negative,

which was later generalised to the case s ∈ C log
loc (Rn) by Kempka in [10].

(iii) When p(·) = p, q(·) = q, and s(·) = s are constant exponents and

φ(Q) := |Q|τ for all cubes Q and τ ∈ [0,∞), then F
s(·),φ
p(·),q(·)(R

n) = F s,τ
p,q (Rn)

are the Triebel-Lizorkin-type spaces introduced by Yuan et al. in [34],
which in turn coincide with the classical Triebel-Lizorkin spaces F s

p,q(Rn)
when τ = 0 and p < ∞. Moreover, also the spaces F s

∞,q(Rn) and the
Triebel-Lizorkin-Morrey spaces Esu,p,q(Rn) are included, as F s

∞,q(Rn) =

F
s,1/p
p,q (Rn) for p ∈ (0,∞), and Esu,p,q(Rn) = F

s,1/p−1/u
p,q (Rn) if 0 < p ≤ u <

∞, cf. [23].
(iv) When q, s are constant exponents and φ(Q) := |Q|τ for all cubes Q and

τ ∈ [0,∞), then F
s(·),φ
p(·),q(·)(R

n) = F s,τ
p(·),q(R

n) which was investigated in [15].

(v) The condition p+ < ∞, included in p ∈ P(Rn), is quite natural since it
also exists in the case of constant exponents, cf. [34]. This is not the
case for the assumption q+ <∞ as the case q =∞ is included is the case
of constant exponents. This restriction comes from technical reasons as
explained in [36, Remark 1.5(iv)].

3. Maximal functions and local means characterization
Let (ψj)j∈N0

be a sequence in S (Rn). For each f ∈ S ′(Rn) and a > 0, the
Peetre’s maximal functions were defined by Peetre in [21] by

(ψ∗jf)a(x) := sup
y∈Rn

|ψj ∗ f(y)|
(1 + |2j(x− y)|)a

, x ∈ Rn, j ∈ N0.

The following result coincides with [36, Theorem 3.11].
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Theorem 3.1. Let p, q ∈ P log(Rn), s ∈ C log
loc (Rn) and φ ∈ G(Rn+1

+ ). Let

a >
n

min{p−, q−}
+ log2 c̃1(φ) + clog(s),

where c̃1(φ) is the constant in (2) and clog(s) comes from condition (1) on s.

Then f ∈ F s(·),φ
p(·),q(·)(R

n) if and only if f ∈ S ′(Rn) and

‖f | F s(·),φ
p(·),q(·)(R

n)‖∗ :=
∥∥(2js(·)(ϕ∗jf)a

)
j∈N0

∣∣Lφp(·)(`q(·))∥∥ <∞.
Moreover, ‖· | F s(·),φ

p(·),q(·)(R
n)‖∗ and ‖· | F s(·),φ

p(·),q(·)(R
n)‖ are equivalent quasi-

norms in F
s(·),φ
p(·),q(·)(R

n).

In the above theorem the sequence (ϕj)j∈N0
is the same as in Definition 2.1,

which is built upon an admissible pair (ϕ, ϕ0). One of the aims of this section
is to prove that such a characterization still holds if we consider more general
pairs of functions. Moreover we also show that the same happens for the

definition of F
s(·),φ
p(·),q(·)(R

n), i.e. the admissible pairs used to define the spaces

can be indeed replaced by more general ones. The main theorem of this
section reads then as follows.

Theorem 3.2. Let p, q ∈ P log(Rn), s ∈ C log
loc (Rn) and φ ∈ G(Rn+1

+ ). Let
R ∈ N0 with R > s+ + log2 c̃1(φ), where c̃1(φ) is the constant in (2), and let
ψ0, ψ ∈ S (Rn) be such that

(Dβψ̂)(0) = 0 for 0 ≤ |β| < R (6)

and

|ψ̂0(ξ)| > 0 on {ξ ∈ Rn : |ξ| ≤ kε}, (7)

|ψ̂(ξ)| > 0 on
{
ξ ∈ Rn :

ε

2
≤ |ξ| ≤ kε

}
, (8)

for some ε > 0 and k ∈]1, 2]. For

a >
n

min{p−, q−}
+ log2 c̃1(φ) + clog(s),

we have

‖f | F s(·),φ
p(·),q(·)(R

n)‖ ∼
∥∥(2js(·)(ψ∗jf)a

)
j∈N0
| Lφp(·)(`q(·))

∥∥
∼
∥∥(2js(·)(ψj ∗ f)

)
j∈N0
| Lφp(·)(`q(·))

∥∥
for all f ∈ S ′(Rn).
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Remarks 3.3. (i) The conditions (6) are usually called moment conditions
while (7) and (8) are the so-called Tauberian conditions. If R = 0
then no moment conditions (6) on ψ are required. This is possible when
s+ < − log2 c̃1(φ).

(ii) The case φ ≡ 1 is covered by [1, Theorem 3.1(ii)], where we can find also
a discussion on the importance of having a k in the conditions (7) and
(8) in contract with the case k = 2 usually found in the literature in such
type of result, cf. e.g. [9, 11, 22].

(iii) When p(·) = p, q(·) = q, s(·) = s are constant exponents and
φ(Q) := |Q|τ for all cubes Q and τ ∈ [0,∞), then log2 c̃1(φ) = nτ and
such a characterization with k = 2 has been already established in the
homogeneous case by Yang and Yuan, cf. [35, Theorem 2.1(ii)].

(iv) In [36] the authors proved the independence of the spaces from the ad-
missible pair as a consequence of the ϕ-transform characterization. The
above theorem provides an alternative proof, since an admissible pair
satisfies conditions (7) and (8) with ε = 6

5 and k = 25
18 . Moreover, it

becomes clear that F
s(·),φ
p(·),q(·)(R

n) can be defined using more general pairs

than the admissible ones (in the sense of equivalent quasi-norms). We
refer in particular to the case stated in Corollary 3.8 below.

The proof of Theorem 3.2 relies in the proof done by Rychkov [22] in the
classical case, and will be given after some auxiliar results, for what we follow
the same structure as in [9, 11] in the context of 2-microlocal spaces with
variable exponents.

The first theorem provides an inequality between two different sequences
of Peetre maximal functions.

Theorem 3.4. Let p, q ∈ P log(Rn), s ∈ C log
loc (Rn) and φ ∈ G(Rn+1

+ ). Let a > 0
and R ∈ N0 with R > s+ + log2 c̃1(φ). Further, let µ0, µ, ψ0, ψ ∈ S (Rn) be
such that

(Dβµ̂)(0) = 0 if 0 ≤ |β| < R

and
|ψ̂0(x)| > 0 for |x| ≤ kε (9)

|ψ̂(x)| > 0 for
ε

2
≤ |x| ≤ kε, (10)

for some ε > 0 and k ∈]1, 2]. Then there exists c > 0 such that∥∥(2js(·)(µ∗jf)a
)
j∈N0
| Lφp(·)(`q(·))

∥∥ ≤ c
∥∥(2js(·)(ψ∗jf)a

)
j∈N0
| Lφp(·)(`q(·))

∥∥
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holds for every f ∈ S ′(Rn).

Proof : We only give a sketch of the proof as it is based in [22]. There k is
restricted to k = 2, but the extension to k ∈]1, 2] follows easily. Indeed, by
(9) and (10), there exist λ0, λ ∈ S (Rn) such that

λ̂0(x)ψ̂0(x) +
∞∑
j=1

λ̂(2−j+1x)ψ̂(2−jx) = 1 for all x ∈ Rn.

Therefore we can carry on parallel pointwise estimates as those in [22] to
arrive at

2js(x)(µ∗jf)a(x) .
j∑

ν=0

2−(j−ν)(R−s+)2νs(x)(ψ∗νf)a(x)

+
∞∑

ν=j+1

2−(ν−j)2νs(x)(ψ∗νf)a(x),

where we also used the fact that

2js(x) ≤ 2νs(x) ×
{

2(j−ν)s+

, j ≥ ν

2(j−ν)s−, j ≤ ν.
(11)

See also the proof of Theorem 3.8 in [9]. The proof then is completed by
applying Lemma 3.5 below.

Lemma 3.5. Let p, q ∈ P(Rn) and φ ∈ G(Rn+1
+ ). Let D1, D2 ∈ (0,∞) with

D2 > log2 c̃1(φ). For any sequence (gj)j∈N0
of measurable functions on Rn,

consider

Gj(x) :=

j∑
ν=0

2−(j−ν)D2gν(x) +
∞∑

ν=j+1

2−(ν−j)D1gν(x), x ∈ Rn, j ∈ N0.

Then
‖(Gj)j∈N0

| Lφp(·)(`q(·))‖ . ‖(gj)j∈N0
| Lφp(·)(`q(·))‖.

Proof : Step 1. Assume that p, q ≥ 1. Let P ∈ Q be arbitrarily chosen and

I(P ) :=
1

φ(P )

∥∥∥( ∞∑
j=jP∨0

|Gj(·)|q(·)
) 1
q(·)
∣∣∣Lp(·)(P )

∥∥∥.
We need to show that

I(P ) . ‖(gj)j∈N0
| Lφp(·)(`q(·))‖
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with implicit constant independent of P and (gj)j∈N0
.

By the triangle inequality, we have

I(P ) ≤ 1

φ(P )

∥∥∥∥( ∞∑
j=jP∨0

( j∑
ν=0

2−(j−ν)D2|gν(·)|
)q(·)) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
+

1

φ(P )

∥∥∥∥( ∞∑
j=jP∨0

( ∞∑
ν=j+1

2−(ν−j)D1|gν(·)|
)q(·)) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
=: I1(P ) + I2(P ).

Denoting by q′(·) the conjugate exponent of q(·), that is 1
q(x) + 1

q′(x) = 1,

for x ∈ Rn, we use Hölder’s inequality and, with ε such that 0 < ε <
min{D2, D2 − log2 c̃1(φ)}, we get

I1(P ) ≤ 1

φ(P )

∥∥∥∥( ∞∑
j=jP∨0

( j∑
ν=0

2−(j−ν)(D2−ε)q(·)|gν(·)|q(·)
)

·
( j∑
ν=0

2−(j−ν)εq′(·)
) q(·)
q′(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
.

1

φ(P )

∥∥∥∥( ∞∑
j=jP∨0

j∑
ν=0

2−(j−ν)(D2−ε)q(·)|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
=

1

φ(P )

∥∥∥∥( ∞∑
ν=0

∞∑
j=jP∨0∨ν

2−(j−ν)(D2−ε)q(·)|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥.
Then we split the sum in ν and, since we are assuming p, q ≥ 1, it follows

I1(P ) .
1

φ(P )

∥∥∥∥(jP∨0∑
ν=0

∞∑
j=jP∨0

2−(j−ν)(D2−ε)q(·)|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
+

1

φ(P )

∥∥∥∥( ∞∑
ν=jP∨0

∞∑
j=ν

2−(j−ν)(D2−ε)q(·)|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
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.
1

φ(P )

∥∥∥∥ jP∨0∑
ν=0

∞∑
j=jP∨0

2−(j−ν)(D2−ε)|gν(·)|
∣∣∣Lp(·)(P )

∥∥∥∥
+

1

φ(P )

∥∥∥∥( ∞∑
ν=jP∨0

|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
.

1

φ(P )

jP∨0∑
ν=0

2(ν−jP∨0)(D2−ε)‖gν(·)|Lp(·)(P )‖

+ ‖(gj)j∈N0
| Lφp(·)(`q(·))‖.

Now condition (2) allows us to get the desired estimate as follows:

I1(P ) .
jP∨0∑
ν=0

2(ν−jP∨0)(D2−ε)c̃1(φ)jP∨0−ν 1

φ(2jP∨0−νP )
‖gν(·)|Lp(·)(2jP∨0−νP )‖

+ ‖(gj)j∈N0
| Lφp(·)(`q(·))‖

.
jP∨0∑
ν=0

2−(jP∨0−ν)(D2−ε−log2 c̃1(φ)) ‖(gj)j∈N0
| Lφp(·)(`q(·))‖

+ ‖(gj)j∈N0
| Lφp(·)(`q(·))‖

. ‖(gj)j∈N0
| Lφp(·)(`q(·))‖.

Now we estimate I2(P ), using again Hölder’s inequality and choosing ε ∈
(0, D1):

I2(P ) ≤ 1

φ(P )

∥∥∥∥( ∞∑
j=jP∨0

( ∞∑
ν=j+1

2−(ν−j)(D1−ε)q(·)|gν(·)|q(·)
)

·
( ∞∑
ν=j+1

2−(ν−j)εq′(·)
) q(·)
q′(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
.

1

φ(P )

∥∥∥∥( ∞∑
j=jP∨0

∞∑
ν=j+1

2−(ν−j)(D1−ε)q(·)|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
≤ 1

φ(P )

∥∥∥∥( ∞∑
ν=jP∨0

ν∑
j=jP∨0

2−(ν−j)(D1−ε)q(·)|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
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.
1

φ(P )

∥∥∥∥( ∞∑
ν=jP∨0

|gν(·)|q(·)
) 1

q(·) ∣∣∣Lp(·)(P )

∥∥∥∥
≤ ‖(gj)j∈N0

| Lφp(·)(`q(·))‖.

Step 2. We consider now the case when p, q ∈ P(Rn) have no more restric-
tions. Let r ∈

(
0,min{1, p−, q−}

)
. We have

‖(Gj)j∈N0
| Lφp(·)(`q(·))‖ = sup

P∈Q

1

φ(P )

∥∥∥( ∞∑
j=jP∨0

|Gj(·)|r
q(·)
r

) r
q(·) | Lp(·)

r
(P )
∥∥∥ 1
r

≤ sup
P∈Q

1

φ(P )

∥∥∥( ∞∑
j=jP∨0

|Fj(·)|
q(·)
r

) r
q(·) | Lp(·)

r
(P )
∥∥∥ 1
r

= ‖(Fj)j∈N0
| Lφ

r

p(·)
r

(` q(·)
r

)
∥∥∥ 1
r

(12)

where

Fj(x) :=

j∑
ν=0

2−(j−ν)D2r|gν(x)|r +
∞∑

ν=j+1

2−(ν−j)D1r|gν(x)|r, x ∈ Rn, j ∈ N0.

Note that c̃1(φ
r) = c̃1(φ)r and by the hypothesis on D2, we then have D2r >

log2 c̃1(φ
r). Since p

r ,
q
r ≥ 1 we can use the result from Step 1 in (12) to obtain

‖(Gj)j∈N0
| Lφp(·)(`q(·))‖ . ‖(|gj|

r)j∈N0
| Lφ

r

p(·)
r

(` q(·)
r

)
∥∥∥ 1
r

= ‖(gj)j∈N0
| Lφp(·)(`q(·))‖,

which completes the proof.

Remark 3.6. The case where q(·) = q is constant and φ(Q) := |Q|τ for all
cubes Q and τ ∈ [0,∞) is covered by [15, Lemma 2.9]. If p(·) = p is also
constant we refer to [35, Lemma 2.3] and [14, Lemma 2.1].

The next theorem generalizes Theorem 3.4.

Theorem 3.7. Let p, q ∈ P log(Rn), s ∈ C log
loc (Rn) and φ ∈ G(Rn+1

+ ). Further,
let ψ0, ψ ∈ S (Rn) be such that

|ψ̂0(x)| > 0 for |x| ≤ kε

|ψ̂(x)| > 0 for
ε

2
≤ |x| ≤ kε,



14 H.F. GONÇALVES AND S.D. MOURA

or some ε > 0 and k ∈]1, 2]. For

a >
n

min{p−, q−}
+ log2 c̃1(φ) + clog(s),

there exists c > 0 such that∥∥(2js(·)(ψ∗jf)a
)
j∈N0

∣∣Lφp(·)(`q(·))∥∥ ≤ c
∥∥(2js(·)(ψj ∗ f)

)
j∈N0

∣∣Lφp(·)(`q(·))∥∥
holds for all f ∈ S ′(Rn).

Proof : We are in conditions to apply formula (2.66) from [32], in particular,
for f ∈ S ′(Rn), N ∈ N, a ∈ (0, N ], j ∈ N0 and x ∈ Rn, we have[

(ψ∗jf)a(x)
]r ≤ c

∞∑
ν=0

2−νNr2(ν+j)n

∫
Rn

|(ψν+j ∗ f)(y)|r

(1 + 2j|x− y|)ar
dy,

where r is an arbitrarily fixed positive number and c is a positive constant
independent of ψ0, ψ, f , x and j. Using this inequality, for what is not
necessary that (ψ0, ψ) is an admissible pair, then the proof is the same as
the one of Theorem 3.11 in [36].

Proof of Theorem 3.2: Observe that |(αj ∗ f)(x)| ≤ (α∗jf)a(x) for any
x ∈ Rn, j ∈ N0 and αj ∈ S (Rn). Using this observation together with the
lattice property of the Lp(·) spaces, and applying Theorems 3.4, 3.7, and 3.1,
we obtain the following chain of inequalities

‖f |F s(·),φ
p(·),q(·)(R

n)‖ =
∥∥(2js(·)(ϕj ∗ f)

)
j∈N0
| Lφp(·)(`q(·))

∥∥
≤
∥∥(2js(·)(ϕ∗jf)a

)
j∈N0
| Lφp(·)(`q(·))

∥∥ . ∥∥(2js(·)(ψ∗jf)a
)
j∈N0
| Lφp(·)(`q(·))

∥∥
.
∥∥(2js(·)(ψj ∗ f)

)
j∈N0
| Lφp(·)(`q(·))

∥∥ ≤ ∥∥(2js(·)(ψ∗jf)a
)
j∈N0
| Lφp(·)(`q(·))

∥∥
.
∥∥(2js(·)(ϕ∗jf)a

)
j∈N0
| Lφp(·)(`q(·))

∥∥ . ‖f | F s(·),φ
p(·),q(·)(R

n)‖.
�

We finish this section by presenting an important application of Theorem
3.2, that is when ψ0 and ψ, satisfying (6)-(8), are local means. The name
comes from the compact support of ψ0 := k0 and ψ := k, which is admitted
in the following statement.
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Corollary 3.8. Let p, q ∈ P log(Rn), s ∈ C log
loc (Rn) and φ ∈ G(Rn+1

+ ). For
given N ∈ N0 and d > 0, let k0, k ∈ S (Rn) with supp k0, supp k ⊂ dQ0,0,

(Dβk̂)(0) = 0 if 0 ≤ |β| < N, (13)

k̂0(0) 6= 0 and k̂(x) 6= 0 if 0 < |x| < ε, for some ε > 0. If N > s++log2 c̃1(φ),
then

‖f | F s(·),φ
p(·),q(·)(R

n)‖ ∼
∥∥(2js(·)(kj ∗ f)

)
j∈N0
| Lφp(·)(`q(·))

∥∥
for all f ∈ S ′(Rn).

Proof : It is clear the existence of k0, k
0 ∈ S (Rn) with supp k0, supp k ⊂

dQ0,0, k̂0(0) 6= 0 and k̂0(0) 6= 0. Then, following [30, 11.2] and taking M ∈ N0

with 2M ≥ N define k := ∆Mk0. Since k̂(x) = (−
∑n

i=1 |xi|2)M k̂0(x), we

immediately have (13) and k̂(x) 6= 0 if 0 < |x| < ε, for a small enough ε > 0.
The rest is a direct consequence of Theorem 3.2.

Remark 3.9. The Triebel-Lizorkin spaces with variable exponents F
s(·)
p(·),q(·)(R

n),

which coincide with F
s(·),φ
p(·),q(·)(R

n) when φ ≡ 1 (cf. Remark 4.11(ii)), are also

included in the class of 2-microlocal Triebel-Lizorkin spaces Fw
p(·),q(·)(R

n) de-

fined in [9]. There w = (wj(x))j∈N0
is an admissible weight sequence, i.e.

a sequence of non-negative measurable functions in Rn belonging to a class
Wα

α1,α2
(Rn), where α ≥ 0, α1, α2 ∈ R with α1 ≤ α2, satisfying the conditions:

(i) there exists a constant c > 0 such that

0 < wj(x) ≤ cwj(y) (1 + 2j|x− y|)α for all j ∈ N0 and all x, y ∈ Rn;

(ii) for all j ∈ N0 it holds

2α1 wj(x) ≤ wj+1(x) ≤ 2α2 wj(x) for all x ∈ Rn.

In fact, it holds F
s(·)
p(·),q(·)(R

n) = Fw
p(·),q(·)(R

n) when wj(x) := 2js(x), j ∈ N0, and

in this case α1 = s−, α2 = s+ and α = clog(s). Replacing the weight sequence
(2js(·))j∈N0

in the quasi-norm from Definition 2.1 by a general admissible
weight sequence w = (wj(x))j∈N0

leads to the definition of a more general

scale of functions spaces Fw,φ
p(·),q(·)(R

n). These cover all the particular cases

described in Remark 4.11 as well as the 2-microlocal Triebel-Lizorkin spaces
studied in [9].
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It can be easily seen that Theorem 3.2 as well as Corollary 3.8 hold more
generally for Fw,φ

p(·),q(·)(R
n) with the conditions R > s+ + log2 c̃1(φ) and a >

n
min{p−,q−} + log2 c̃1(φ) + clog(s) replaced by

R > α2 + log2 c̃1(φ) and a >
n

min{p−, q−}
+ log2 c̃1(φ) + α.

Indeed, for a general weight we have, in replacement of (3.9),

wj(x) ≤ wν(x)×
{

2(j−ν)α2, j ≥ ν
2(j−ν)α1. j ≤ ν,

Furthermore, the counterpart of [11, Lemma 19] for a general weight sequence
also holds and is a variant of [16, Lemma 2.2].

4. Non-smooth atomic decomposition

In [36] the authors obtained a characterization of the spaces F
s(·),φ
p(·),q(·)(R

n)

by smooth atomic decompositions, generalizing previous results obtained in
[7, 10, 34] for the particular cases described in Remark 4.11. We recall the
result from [36] and start by defining smooth atoms and appropriate sequence
spaces, where we opted here for a different normalization.

Definition 4.1. Let K,L ∈ N0. A function aQ ∈ CK(Rn) is called a [K,L]-
smooth atom centered at Q := Qνk ∈ Q, where ν ∈ N0 and k ∈ Zn, if

supp aQ ⊂ 3Q,

‖aQ(2−ν·) | CK(Rn)‖ ≤ 1, (14)

and, when ν ∈ N, ∫
Rn
xγaQ(x)dx = 0, (15)

for all multi-indices γ ∈ Nn
0 with |γ| < L.

Remark 4.2. As usual when L = 0 no moment conditions are required by
(15).

Definition 4.3. Let p, s, and φ as in Definition 2.1. Let q be either as in

Definition 2.1 or q(·) ≡ ∞. Then the sequence space f
s(·),φ
p(·),q(·)(R

n) is defined

as the set of all sequences t := {tQ}Q∈Q∗ ⊂ C such that

‖t | f s(·),φp(·),q(·)(R
n)‖ := sup

P∈Q

1

φ(P )

∥∥∥( ∑
Q⊂P,Q∈Q∗

[
|Q|−

s(·)
n |tQ|χQ

]q(·)) 1
q(·) | Lp(·)(P )

∥∥∥
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is finite (with the usual modification if q(·) ≡ ∞).

The following atomic decomposition characterization was obtained in
[36, Theorem 3.18].

Theorem 4.4. Let p, q, s, φ as in Definition 2.1.

(i) Let K,L ∈ N0 with

K > s+ + max{0, log2 c̃1(φ)} and L >
n

min{1, p−, q−}
− n− s−.

Suppose that {aQ}Q∈Q∗ is a family of [K,L]-smooth atoms and that

{tQ}Q∈Q∗ ∈ f s(·),φp(·),q(·)(R
n). Then f :=

∑
Q∈Q∗ tQ aQ converges in S ′(Rn)

and

‖f | F s(·),φ
p(·),q(·)(R

n)‖ ≤ c ‖t | f s(·),φp(·),q(·)(R
n)‖

with c being a positive constant independent of t.

(ii) Conversely, if f ∈ F
s(·),φ
p(·),q(·)(R

n), then, for any given K,L ∈ N0, there

exists a sequence {tQ}Q∈Q∗ ∈ f
s(·),φ
p(·),q(·)(R

n) and a sequence {aQ}Q∈Q∗ of

[K,L]-smooth atoms such that f =
∑

Q∈Q∗ tQ aQ in S ′(Rn) and

‖t | f s(·),φp(·),q(·)(R
n)‖ ≤ c ‖f | F s(·),φ

p(·),q(·)(R
n)‖

with c being a positive constant independent of f .

Next we present the notion of non-smooth atoms already used in [8] in
the context of 2-microlocal spaces with variable exponents and which were
slightly adapted from [24]. Note that the usual parameters K and L are now
non-negative real numbers instead of non-negative integer numbers.

Definition 4.5. Let K,L ≥ 0. A function aQ : Rn → C is called a [K,L]-
non-smooth atom centered at Q := Qνk ∈ Q, with ν ∈ N0 and k ∈ Zn,
if

supp aQ ⊂ 3Q, (16)

‖aQ(2−ν·) | CK(Rn)‖ ≤ 1, (17)

and for every ψ ∈ C L(Rn) it holds∣∣∣ ∫
Rn
ψ(x)aQ(x)dx

∣∣∣ ≤ c 2−ν(L+n)‖ψ | C L(Rn)‖. (18)
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Remark 4.6. Since Ck(Rn) ↪→ C k(Rn) for k ∈ N0, it is clear that condition
(17) follows from (14). Moreover, using a Taylor expansion, (18) can be
derived from (15) when L ∈ N, cf. [24, Remark 3.4]. Therefore, when
K,L ∈ N0 any [K,L]-smooth atom is a [K,L]-non-smooth atom. Moreover,
both conditions (17) and (18) are ordered in K and L, i.e. the conditions are
stricter for increasing K and L, see [24, Remark. 3.4].

For the next two auxiliary results we refer to [8, Lemmas 3.6,3.7].

Lemma 4.7. Let kj be the local means according to Corollary 3.8 with d = 3.
Then c2−jn kj is a non-smooth [K,L]-atom centered at Qj0, for some constant
c > 0 independently of j and for arbitrary large K > 0 and L ≤ N + 1.

Lemma 4.8. Let kj be the local means according to Corollary 3.8 with d = 3.
Let also (aQ)Q∈Q∗ be non-smooth [K,L]-atoms. Then, with Q = Qν,k, ν ∈ N0,
k ∈ Zn, it holds∣∣∣∣∫

Rn
kj(y)aQ(x− y) dy

∣∣∣∣ ≤ c 2−(j−ν)Kχ(cQ)(x), for j ≥ ν

and ∣∣∣∣∫
Rn
kj(x− y)aQ(y) dy

∣∣∣∣ ≤ c 2−(ν−j)(L+n)χ(c 2ν−jQ)(x), for j < ν.

Remark 4.9. We would like to highlight that the results in [8] are not properly
written. There the authors used a sequence (ψj)j∈N0

built upon a pair of
functions defined as in Theorem 3.2, with k = 2. However, these functions
are not required to have compact support, crucial condition in the proof of
these two results. Therefore, the correct formulation reads as we present
here, where we use the local means from Corollary 3.8.

Theorem 4.10. Let p, q, s, φ as in Definition 2.1.

(i) Let K,L ≥ 0 with

K > s+ + max{0, log2 c̃1(φ)} and L >
n

min{1, p−, q−}
− n− s−. (19)

Suppose that {aQ}Q∈Q∗ is a family of [K,L]-non-smooth atoms and that

{tQ}Q∈Q∗ ∈ f s(·),φp(·),q(·)(R
n). Then f :=

∑
Q∈Q∗ tQ aQ converges in S ′(Rn)

and
‖f | F s(·),φ

p(·),q(·)(R
n)‖ ≤ c ‖t | f s(·),φp(·),q(·)(R

n)‖
with c being a positive constant independent of t.
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(ii) Conversely, if f ∈ F
s(·),φ
p(·),q(·)(R

n), then, for any given K,L ≥ 0, there

exists a sequence {tQ}Q∈Q∗ ∈ f
s(·),φ
p(·),q(·)(R

n) and a sequence {aQ}Q∈Q∗ of

[K,L]-non-smooth atoms such that f =
∑

Q∈Q∗ tQ aQ in S ′(Rn) and

‖t | f s(·),φp(·),q(·)(R
n)‖ ≤ c ‖f | F s(·),φ

p(·),q(·)(R
n)‖

with c being a positive constant independent of f .

Proof : Step 1. We start by proving (ii) for what we fix K,L ≥ 0 and assume

that f ∈ F
s(·),φ
p(·),q(·)(R

n) is given. Then, by Theorem 4.4(ii), we know that f

can be written as an atomic decomposition with [K1, L1]-smooth-atoms with
K1, L1 ∈ N0 chosen so that K1 ≥ K and L1 ≥ L. Since those atoms are
[K,L]-non-smooth-atoms, cf. Remark 4.6, part (ii) is proved.

Step 2. In this step we show that f =
∑

Q∈Q∗ tQ aQ converges in S ′(Rn) if

{tQ}Q∈Q∗ ∈ f s(·),φp(·),q(·)(R
n) and {aQ}Q∈Q∗ is a family of [K,L]-non-smooth atoms

with K,L ≥ 0 such that (19) holds. To this end, it suffices to show that

lim
N→∞,Λ→∞

N∑
ν=0

∑
k∈Zn,|k|≤Λ

tQνkaQνk (20)

exists in S ′(Rn), and we rely on the proof of Step 1 of [36, Theorem 3.8].
For convenience of the reader we repeat here the arguments. For r ∈
(0,min{1, p−, q−}), we have the following sequence of embeddings

f
s(·),φ
p(·),q(·)(R

n) ↪→ f
s̃(·),φ
p̃(·),q(·)(R

n) ↪→ f
s̃(·),φ
p̃(·),∞(Rn),

with s̃(x) := s(x) + n
p(x)(r − 1) and p̃(x) := p(x)

r for all x ∈ Rn, cf. [36,

Proposition 3.1]. Therefore we can assume that {tQ}Q∈Q∗ ∈ f s̃(·),φp̃(·),∞(Rn).

Let h ∈ S (Rn). From conditions (16) and (17) of Definition 4.5, we obtain∣∣∣ ∫
Rn

∑
k∈Zn,|k|≤Λ

tQνkaQνk(x)h(x) dx
∣∣∣

. 2−ν(L+n)
∑

k∈Zn,|k|≤Λ

|tQνk| ‖h(·)H(2ν · −k) | C L(Rn)‖

= 2−νL
∫
Rn

∑
k∈Zn,|k|≤Λ

|tQνk| ‖h(·)H(2ν · −k) | C L(Rn)‖χQνk(y) dy (21)
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where H ∈ C∞(Rn) with H(x) = 1 for x ∈ 3Q00 and supp H ⊂ 4Q00. Since
h ∈ S (Rn), we can estimate the norm in (21) from above by

‖h(·)H(2ν · −k) | C L(Rn)‖ . (1 + |xQνk|)−δ ∼ (1 + |y|)−δ, for y ∈ Qνk,

with δ > 0 at our disposal and the underlying constants do not depend
neither on ν nor on k. Then, (21) becomes∣∣∣ ∫

Rn

∑
k∈Zn,|k|≤Λ

tQνkaQνk(x)φ(x) dx
∣∣∣

. 2−νL
∫
Rn

∑
k∈Zn,|k|≤Λ

|tQνk|(1 + |y|)−δχQνk(y) dy

. 2−νL
∫
Rn

∑
k∈Zn,|k|≤Λ

|tQνk|
(1 + |y|)−δ

(1 + 2ν|y − xQνk|)R
dy

.
∞∑
j=0

2−νL
∫
Dj

∑
k∈Zn
|tQνk|

(1 + |y|)−δ

(1 + 2ν|y − xQνk|)R
dy, (22)

where R > 0 is as big as we want, D0 := {x ∈ Rn : |x| ≤ 1} and, for all
j ∈ N,

Dj := {x ∈ Rn : 2j−1 ≤ |x| ≤ 2j}.
For all j, ν ∈ N0 and y ∈ Dj, let W y,ν

0 := {k ∈ Zn : 2ν|y− xQνk| ≤ 1} and, for
i ∈ N,

W y,ν
i := {k ∈ Zn : 2i−1 < 2ν|y − xQνk| ≤ 2i}.

Then, we have

H(j, ν, y) :=
∑
k∈Zn
|tQνk|(1 + 2ν|y − xQνk|)−R ∼

∞∑
i=0

∑
k∈W y,ν

i

|tQνk|2−iR2νn2−νn

∼
∞∑
i=0

2−iR
∫
⋃
k̄∈Wy,ν

i
Qνk̄

2νn
[∑
k∈Zn
|tQνk|χQνk(z)

]
dz.

Note that, if z ∈
⋃
k̄∈W y,ν

i
Qνk̄, then z ∈ Qνk̄0

for some k̄0 ∈ W y,ν
i and, for

y ∈ Dj, 1 + 2ν|y − z| ∼ 1 + 2i; moreover,

|z| ≤ |z − xQνk̄0
|+ |xQνk̄0

− y|+ |y| . 2−ν + 2−ν+i + 2j . 2i+j,
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which imples that ⋃
k̄∈W y,ν

i

Qνk̄ ⊂ Q(0, 2i+j+c0)

with some positive constant c0 ∈ N. From this, we deduce that, for all
a ∈ (n,∞),

H(j, ν, y) ∼
∞∑
i=0

2−i(R−a)

∫
⋃
k̄∈Wy,ν

i
Qνk̄

2νn

(1 + 2ν|y − z|)a

·

[∑
k∈Zn
|tQνk|χQνk(z)χQ(0,2i+j+c0)(z)

]
dz

.
∞∑
i=0

2−i(R−a)ην,a ∗
(∑
k∈Zn
|tQνk|χQνkχQ(0,2i+j+c0)

)
(y),

where ην,a(x) := 2νn(1 + 2ν|x|)−a, x ∈ Rn. We go back to (22) and get

∣∣∣ ∫
Rn

∑
k∈Zn,|k|≤Λ

tQνkaQνk(x)φ(x) dx
∣∣∣ . 2−νL

∞∑
j=0

∞∑
i=0

2−i(R−a)

·
∫
Dj

ην,a ∗
(∑
k∈Zn
|tQνk|χQνkχQ(0,2i+j+c0)

)
(y) (1 + |y|)−δ dy

. 2−νL
∞∑
j=0

∞∑
i=0

2−i(R−a)(1 + 2j)−δ0

·
∫
Dj

ην,a ∗
(∑
k∈Zn
|tQνk|χQνkχQ(0,2i+j+c0)

)
(y) (1 + |y|)−δ+δ0 dy

. 2−ν(L+s̃−)
∞∑
j=0

2−jδ0
∞∑
i=0

2−i(R−a)
∥∥(1 + | · |)−δ+δ0 | Lp̃′(·)(Rn)

∥∥
·
∥∥∥∥ην,a ∗ (∑

k∈Zn
2νs̃(·)|tQνk|χQνkχQ(0,2i+j+c0)

)∣∣∣Lp̃(·)(Rn)

∥∥∥∥
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. 2−ν(L+s̃−)
∞∑
j=0

2−jδ0
∞∑
i=0

2−i(R−a)

·
∥∥∥∥∑
k∈Zn

2νs̃(·)|tQνk|χQνkχQ(0,2i+j+c0)

∣∣∣Lp̃(·)(Rn)

∥∥∥∥,
with δ > δ0 + n(1− r

p+ ), applying the Hölder inequality for Lp(·)-spaces with

p̃′(x) := p(x)−r
p(x) for all x ∈ Rn, as well as [6, Theorem 3.2] with a > n. Then,

using (2), we obtain∣∣∣ ∫
Rn

∑
k∈Zn,|k|≤Λ

tQνkaQνk(x)φ(x) dx
∣∣∣ . 2−ν(L+s̃−)

∞∑
j=0

2−jδ0
∞∑
i=0

2−i(R−a)

·
∥∥∥∥∑
k∈Zn

2νs̃(·)|tQνk|χQνk
∣∣∣Lp̃(·)(Q(0, 2i+j+c0))

∥∥∥∥
. 2−ν(L+s̃−)

∞∑
j=0

2−jδ0
∞∑
i=0

2−i(R−a)φ(Q(0, 2i+j+c0))
∥∥t | f s̃(·),φp̃(·),∞(Rn)

∥∥
. 2−ν(L+s̃−)

∞∑
j=0

2−j(δ0−log2 c̃1(φ)
∞∑
i=0

2−i(R−a−log2 c̃1(φ))
∥∥t | f s̃(·),φp̃(·),∞(Rn)

∥∥
. 2−ν(L+s̃−)

∥∥t | f s̃(·),φp̃(·),∞(Rn)
∥∥, (23)

considering δ0 > max{0, log2 c̃1(φ)} and R > a + log2 c̃1(φ). By (19), we
find that there exists r ∈ (0,min{1, p−, q−}) such that s− + n

p− (r− 1) > −L.
Therefore,

s̃− ≥ inf
x∈Rn

s(x) + inf
x∈Rn

n(r − 1)

p(x)
= s− +

n

p−
(r − 1) > −L,

which, together with (23), implies that (20) exists in S ′(Rn).

Step 3. We deal with part (i). Assume that {tQ}Q∈Q∗ ∈ f s(·),φp(·),q(·)(R
n) and

that {aQ}Q∈Q∗ is a family of [K,L]-non-smooth atoms with K,L ≥ 0 such
that (19) holds. We have shown in Step 2 that f =

∑
Q∈Q∗ tQ aQ converges

in S ′(Rn). We shall prove now that

‖f | F s(·),φ
p(·),q(·)(R

n)‖ . ‖t | f s(·),φp(·),q(·)(R
n)‖.
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Let kj, j ∈ N0, be local means as in Corollary 3.8. For a given dyadic cube
P ∈ Q and j ∈ N0, it holds

kj ∗ f =

(jP∨0)−1∑
ν=0

∑
k∈Zn

tQνk kj ∗ aQνk +

j∑
ν=(jP∨0)

∑
k∈Zn

tQνk kj ∗ aQνk

+
∞∑

ν=j+1

∑
k∈Zn

tQνk kj ∗ aQνk

where
∑(jP∨0)−1

ν=0 ... = 0 if jP ≤ 0.
Let r ∈ (0,min{1, p−, q−}) be such that L > n

r − n − s
−. Thus, we find

that

1

φ(P )

∥∥∥∥( ∞∑
j=(jP∨0)

2js(·)q(·)|kj ∗ f |q(·)
) 1

q(·)

| Lp(·)(P )

∥∥∥∥
.

1

φ(P )

∥∥∥∥∥
{ ∞∑
j=(jP∨0)

(
2js(·)r

(jP∨0)−1∑
ν=0

∑
k∈Zn
|tQνk|r |kj ∗ aQνk|r

) q(·)
r

} r
q(·) ∣∣∣ Lp(·)

r
(P )

∥∥∥∥∥
1
r

+
1

φ(P )

∥∥∥∥∥
{ ∞∑
j=(jP∨0)

(
2js(·)r

j∑
ν=(jP∨0)

∑
k∈Zn
|tQνk|r |kj ∗ aQνk|r

) q(·)
r

} r
q(·) ∣∣∣ Lp(·)

r
(P )

∥∥∥∥∥
1
r

+
1

φ(P )

∥∥∥∥∥
{ ∞∑
j=(jP∨0)

(
2js(·)r

∞∑
ν=j+1

∑
k∈Zn
|tQνk|r |kj ∗ aQνk|r

) q(·)
r

} r
q(·) ∣∣∣ Lp(·)

r
(P )

∥∥∥∥∥
1
r

=: I + II + III. (24)

Observe that I = 0 if jP ≤ 0. Thus, to estimate I we need to assume that
jP > 0. By Lemma 4.8, we have

I .
1

φ(P )

∥∥∥∥∥
{ ∞∑

j=jP

(
2js(·)r

jP−1∑
ν=0

∑
k∈Zn
|tQνk|r2−(j−ν)Kr

· (1 + 2ν| · −xQνk|)−Mr

) q(·)
r

} r
q(·) ∣∣∣∣ Lp(·)

r
(P )

∥∥∥∥∥
1
r
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≤ 1

φ(P )

∥∥∥∥∥
∞∑

j=jP

jP−1∑
ν=0

2js(·)r
∑
k∈Zn
|tQνk|r2−(j−ν)Kr

· (1 + 2ν| · −xQνk|)−Mr

∣∣∣∣ Lp(·)
r

(P )

∥∥∥∥∥
1
r

,

where M ∈ (0,∞) is as large as we want.
Proceeding as in Step 2 of the proof of Theorem 3.8 in [36] to estimate I1

therein, and using the fact that K > s+ +max{0, log2 c̃1(φ)} and by choosing
M > a+ ε

r + log2 c̃1(φ), we arrive at

I .
∥∥t | f s(·),φp(·),q(·)

∥∥. (25)

Now we estimate II. By Lemma 4.8, we have

II .
1

φ(P )

∥∥∥∥{ ∞∑
j=(jP∨0)

(
2js(·)r

j∑
ν=(jP∨0)

∑
k∈Zn
|tQνk|r2−(j−ν)Kr

· (1 + 2ν| · −xQνk|)−Mr

)q(·)
r
} r
q(·) ∣∣∣Lp(·)

r
(P )

∥∥∥∥ 1
r

≤ 1

φ(P )

∥∥∥∥ ∞∑
j=(jP∨0)

j∑
ν=(jP∨0)

2js(·)r
∑
k∈Zn
|tQνk|r2−(j−ν)Kr

· (1 + 2ν| · −xQνk|)−Mr
∣∣∣Lp(·)

r
(P )

∥∥∥∥ 1
r

where M ∈ (0,∞) is as large as we want. We claim that, for fixed x ∈ P ,
j ≥ (jP ∨ 0) and ν with (jP ∨ 0) ≤ ν ≤ j,

J(ν, j, x, P ) := 2js(x)r
∑
k∈Zn
|tQνk|r 2−(j−ν)Kr(1 + 2ν|x− xQνk|)−Mr

. 2−(j−ν)(K−s+)r
∞∑
i=0

2−(j+i)(M−a− εr )r

· ην,ar ∗
([∑
k∈Ωx,ν,ji

|tQνk|2νs(·)χQνkχQ(cP ,2−i+j−jP+c0)

]r)
(x),
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where a > n
r , ε > clog(s), cP is the center of P , c0 ∈ N is a positive constant

independent of x, P, i, ν, k, j,

Ωx,ν,j
0 := {k ∈ Zn : 2ν|x− xQνk| ≤ 2j}

and, for all i ∈ N,

Ωx,ν,j
i := {k ∈ Zn : 2j+i−1 < 2ν|x− xQνk| ≤ 2j+i}.

Indeed, we can see that

J(ν, j,x, P ) = 2js(x)r
∞∑
i=0

∑
k∈Ωx,ν,ji

|tQνk|r 2−(j−ν)Kr(1 + 2ν|x− xQνk|)−Mr

. 2js(x)r
∞∑
i=0

∑
k∈Ωx,ν,ji

|tQνk|r 2−(j−ν)Kr 2−(j+i)Mr 2νn
∫
⋃
k̄∈Ω

x,ν,j
i

Qνk̄

χQνk(y) dy.

Observe that, if y ∈
⋃
k̄∈Ωx,ν,ji

Qνk̄, then there exists a k̄0 ∈ Ωx,ν,j
i such that

y ∈ Qνk̄0
and 2ν|x− xQνk̄0

| ≤ 2j+i. Then,

2ν|x− y| ≤ 2ν|x− xQνk̄0
|+ 2ν|xQνk̄0

− y| . 2j+i + 2ν2−ν.

Moreover, since ν ≥ jP , it follows that

|y− cP | ≤ |y− xQνk̄0
|+ |x− xQνk̄0

|+ |x− cP | . 2−ν + 2j+i−ν + 2−jP . 2i+j−jP ,

which implies that ⋃
k̄∈Ωx,ν,ji

Qνk̄ ⊂ Q(cP , 2
i+j−jP+c0),

for some constant c0 ∈ N. From this, we get

J(ν,j, x, P ) . 2−(j−ν)(K−s+)r
∞∑
i=0

2−(j+i)Mr+νn

·
∫
⋃
k̄∈Ω

x,ν,j
i

Qνk̄

2νs(x)r
∑

k∈Ωx,ν,ji

|tQνk|rχQνk(y)χQ(cP ,2i+j−jP+c0)(y) dy
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. 2−(j−ν)(K−s+)r
∞∑
i=0

2−(j+i)(M−a− εr )r

∫
⋃
k̄∈Ω

x,ν,j
i

Qνk̄

2νs(x)rην,ar+ε(x− y)

·
[ ∑
k∈Ωx,ν,ji

|tQνk|χQνk(y)χQ(cP ,2i+j−jP+c0)

]r
(y) dy

. 2−(j−ν)(K−s+)r
∞∑
i=0

2−(j+i)(M−a− εr )r

· ην,ar ∗
([ ∑

k∈Ωx,ν,ji

|tQνk|2νs(·)χQνkχQ(cP ,2i+j−jP+c0)

]r)
(x),

where the last step follows by Lemma 19 of [11] with ε > clog(s). This implies
that the claim holds true.

By this claim, we go back to the norm and conclude that, by Theorem 3.2
of [6] with a > n

r and using (2),

II .
1

φ(P )

{ ∞∑
j=(jP∨0)

2−j(K−s
++M−a− εr )r

j∑
ν=(jP∨0)

2ν(K−s+)r
∞∑
i=0

2−i(M−a−
ε
r )r

·
∥∥∥∥ην,ar ∗ ([ ∑

k∈Ωx,ν,ji

|tQνk|2νs(·)χQνkχQ(cP ,2i+j−jP+c0)

]r)∣∣∣Lp(·)
r

(P )

∥∥∥∥} 1
r

.
1

φ(P )

{ ∞∑
j=(jP∨0)

2−j(K−s
++M−a− εr )r

j∑
ν=(jP∨0)

2ν(K−s+)r
∞∑
i=0

2−i(M−a−
ε
r )r

·
∥∥∥∥∑
k∈Zn
|tQνk|2νs(·)χQνk

∣∣∣Lp(·)(Q(cP , 2
i+j−jP+c0))

∥∥∥∥r} 1
r

.
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥{ ∞∑

j=(jP∨0)

2−j(K−s
++M−a− εr )r

·
j∑

ν=(jP∨0)

2ν(K−s+)r
∞∑
i=0

2−i(M−a−
ε
r )r

[
φ(Q(cP , 2

i+j−jP+c0))
]r

φ(P )r

} 1
r
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.
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥{ ∞∑

j=(jP∨0)

2−j(K−s
++M−a− εr )r

·
j∑

ν=(jP∨0)

2ν(K−s+)r
∞∑
i=0

2−i(M−a−
ε
r )r2r(i+j) log2 c̃1(φ)

} 1
r

=
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥{ ∞∑

j=(jP∨0)

2−j(K−s
++M−a− εr−log2 c̃1(φ))r

·
j∑

ν=(jP∨0)

2ν(K−s+)r
∞∑
i=0

2−i(M−a−
ε
r−log2 c̃1(φ))r

} 1
r

.
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥, (26)

provided that K > s+ and M > a+ ε
r + log2 c̃1(φ).

Now we deal with III. By Lemma 4.8, we have

III .
1

φ(P )

∥∥∥∥{ ∞∑
j=jP

(
2js(·)r

∞∑
ν=j+1

∑
k∈Zn
|tQνk|r2−(ν−j)(L+n)r

· (1 + 2j| · −xQνk|)−Mr

) q(·)
r
} r

q(·) ∣∣∣Lp(·)
r

(P )

∥∥∥∥ 1
r

,

where M ∈ (0,∞) is as large as we want. We claim that, for fixed x ∈ P ,
ν, j ∈ N0 with ν > j,

J(ν, j, x, P ) := 2js(x)r
∑
k∈Zn
|tQνk|r2−(ν−j)(L+n)r(1 + 2j|x− xQνk|)−Mr

. 2−(ν−j)(L+n+s−−nr )r
∞∑
i=0

2−i(M−a−
ε
r )r

· ηj,ar ∗
([ ∑

k∈Λx,ν,ji

|tQνk|2νs(·)χQνkχQ(cP ,2i−jP+c0)

]r)
(x),

where a > n
r , ε > clog(s), cP is the center of P , c0 ∈ N is a positive constant

independent of x, P, i, ν, k,

Λx,ν
0 := {k ∈ Zn : 2j|x− xQνk| ≤ 1}
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and, for all i ∈ N,

Λx,ν,j
i := {k ∈ Zn : 2i−1 < 2j|x− xQνk| ≤ 2i}.

Indeed, we can see that

J(ν,j, x, P ) = 2js(x)r
∞∑
i=0

∑
k∈Λx,ν,ji

|tQνk|r2−(ν−j)(L+n)r(1 + 2j|x− xQνk|)−Mr

≤ 2js(x)r
∞∑
i=0

∑
k∈Λx,ν,ji

|tQνk|r2−(ν−j)(L+n)r2−iMr2νn
∫
⋃
k̄∈Λ

x,ν
i

Qνk̄

χQνk(y) dy.

Observe that, if y ∈
⋃
k̄∈Λx,ν,ji

Qνk̄, then there exists a k̄0 ∈ Λx,ν,j
i such that

y ∈ Qνk̄0
and 2j|x− xQνk̄0

| ≤ 2i. Then, since ν ≥ j, it follows that

2j|x− y| ≤ 2j|x− xQνk̄0
|+ 2j|xQνk̄0

− y| . 2i + 2j−ν . 2i

and hence

|y − cP | ≤ |y − xQνk̄0
|+ |x− xQνk̄0

|+ |x− cP | . 2−ν + 2i−j + 2−jP . 2i−jP ,

which implies that ⋃
k̄∈Λx,ν,ji

Qνk̄0
⊂ Q(cP , 2

i−jP+c0),

for some constant c0 ∈ N. From this, we get

J(ν, j, x, P ) . 2−(ν−j)(L+n+s−)r
∞∑
i=0

2−iMr+νn

·
∫
⋃
k̄∈Λ

x,ν,j
i

Qνk̄

2νs(x)r
∑

k∈Λx,ν,ji

|tQνk|rχQνk(y)χQ(cP ,2i−jP+c0)(y) dy
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. 2−(ν−j)(L+n+s−)r
∞∑
i=0

2−i(M−a−
ε
r )r2(ν−j)n

∫
⋃
k̄∈Λ

x,ν,j
i

Qνk̄

2νs(x)r

· ηj,ar+ε(x− y)
[ ∑
k∈Λx,ν,ji

|tQνk|χQνk(y)χQ(cP ,2i−jP+c0)

]r
(y) dy

. 2−(ν−j)(L+n−nr+s−)r
∞∑
i=0

2−i(M−a−
ε
r )r

· ηj,ar ∗
([ ∑

k∈Λx,ν,ji

|tQνk|2νs(·)χQνkχQ(cP ,2i−jP+c0)

]r)
(x),

where the last step follows by Lemma 19 of [11] with ε > clog(s). This implies
that the claim holds true. Using this claim, we go back to the norm and, by
Minkowski’s inequality and Theorem 3.2 of [6] with a > n

r , we conclude that

III .
1

φ(P )

∥∥∥∥ ∞∑
i=0

{ ∞∑
j=(jP∨0)

(
2−i(M−a−

ε
r )rην,ar ∗

[ ∞∑
ν=j+1

2−(ν−j)(L+n−nr+s−)r

·
∑

k∈Λx,ν,ji

|tQνk|r2νs(·)rχQνkχQ(cP ,2i−jP+c0)

]) q(·)
r
} r

q(·) ∣∣∣Lp(·)
r

(P )

∥∥∥∥ 1
r

.
1

φ(P )

{ ∞∑
i=0

2−i(M−a−
ε
r )r

∥∥∥∥{ ∞∑
j=(jP∨0)

( ∞∑
ν=j+1

2−(ν−j)(L+n−nr+s−)r

·
∑

k∈Λx,ν,ji

|tQνk|r2νs(·)rχQνk
) q(·)

r
} r

q(·) ∣∣∣Lp(·)
r

(Q(cP , 2
i−jP+c0))

∥∥∥∥
} 1

r

.

We apply now Lemma 3.10 in [8] with L > n
r − n− s

−, and get

III .
1

φ(P )

{ ∞∑
i=0

2−i(M−a−
ε
r )r

·
∥∥∥∥[ ∞∑

ν=(jP∨0)

(∑
k∈Zn
|tQνk|r2νs(·)rχQνk

) q(·)
r

] r
q(·) ∣∣∣Lp(·)

r
(Q(cP , 2

i−jP+c0))

∥∥∥∥
} 1

r
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≤ 1

φ(P )

{ ∞∑
i=0

2−i(M−a−
ε
r )r

·
∥∥∥∥[ ∞∑

ν=(jQ∨0)

(∑
k∈Zn
|tQνk|r2νs(·)rχQνk

) q(·)
r

] r
q(·) ∣∣∣Lp(·)

r
(Q(cP , 2

i−jP+c0))

∥∥∥∥
} 1

r

.
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥{ ∞∑

i=0

2−i(M−a−
ε
r )r

[
φ(Q(cP , 2

i−jP+c0))
]r

φ(P )r

} 1
r

.
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥{ ∞∑

i=0

2−i(M−a−
ε
r−log2 c̃1(φ))r

} 1
r

.
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥ (27)

provided that M > a+ ε
r + log2 c̃1(φ).

By (24), (25), (26) and (27), and applying Corollary 3.8, we finally conclude
that ∥∥f | F s(·),φ

p(·),q(·)(R
n)
∥∥ . ∥∥(2js(·)(kj ∗ f)

)
j
| Lφp(·)(`q(·))

∥∥
. sup

P∈Q

1

φ(P )
(I + II + III)

.
∥∥t | f s(·),φp(·),q(·)(R

n)
∥∥,

which completes the proof.

Remarks 4.11. (i) In the case of classical Triebel-Lizorkin spaces F s
p,q(Rn)

the above result has been proved in [24]. Regarding the Triebel-Lizorkin

spaces with variable exponents F
s(·)
p(·),q(·)(R

n), it is covered by [8, Theo-

rem 3.14].
(ii) Our proof relies mainly on the proof of the smooth atomic decomposition

from [37], although we were able to avoid the use of the maximal operator.

5. Pointwise multipliers
Let ϕ be a bounded function on Rn. The question is under which conditions

the mapping f 7→ ϕ · f makes sense and generates a bounded operator in a

given space F
s(·),φ
p(·),q(·)(R

n).
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For the classical spaces Bs
p,q(Rn) and F s

p,q(Rn), Triebel studied this problem
in Section 4.2 of [29], where two different approaches were followed. The
first idea used a smooth atomic decomposition of f , but requiring the non-
existence of moment conditions like (15), since the moment conditions are in
general destroyed by multiplication with ϕ. A more general result was then
obtained by Triebel with the help of local means. Recently, Scharf has shown
in [24] that it is possible to get a very general result on pointwise multipliers
using atomic decomposition but now with the non-smooth atoms.

Regarding the scale of Triebel-Lizorkin-type spaces, in [34, Theorem 6.1]
the authors proved a corresponding result for the spaces F s,τ

p,q (Rn), based in
the same techniques as Triebel in [29]. Our aim is to extend this result for

the scale of variable exponents F
s(·),φ
p(·),q(·)(R

n). In this direction, we follow [8]

and [24], and use the non-smooth atoms to get the desired result. Initially
we refer two helpful results proved in [24]. The first lemma shows that the
product of two functions in C s(Rn) is still a function in this space, as in
Lemma 4.2 in [24].

Lemma 5.1. Let s ≥ 0. There exists a constant c > 0 such that for all
f, g ∈ C s(Rn), the product f · g belongs to C s(Rn) and it holds

‖f · g | C s(Rn)‖ ≤ c ‖f | C s(Rn)‖ · ‖g | C s(Rn)‖.

The next result states that the product of a non-smooth [K,L]-atom with
a function ϕ ∈ C ρ(Rn) is still a non-smooth [K,L]-atom, and represents a
slight normalization of Lemma 4.3 in [24].

Lemma 5.2. There exists a constant c with the following property: for all
ν ∈ N0, m ∈ Zn, all non-smooth [K,L]-atoms aν,m with support in 3Qν,m

and all ϕ ∈ C ρ(Rn) with ρ ≥ max(K,L), the product

c ‖ϕ | C ρ(Rn)‖−1 · ϕ · aν,m
is a non-smooth [K,L]-atom with support in 3Qν,m.

Now we have all the tools we need to prove the main theorem of this section.
Since the proof follows exactly as in Theorem 4.3 in [8], we do not present it
here.

Theorem 5.3. Let p, q, s, φ as in Definition 2.1. Let

ρ > max{s+, s+ + log2 c̃1(φ),
n

min{1, p−, q−}
− n− s−}.
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Then there exists a positive number c such that

‖ϕf | F s(·),φ
p(·),q(·)(R

n)‖ ≤ c ‖ϕ | C ρ(Rn)‖ · ‖f | F s(·),φ
p(·),q(·)(R

n)‖

for all ϕ ∈ C ρ(Rn) and all f ∈ F s(·),φ
p(·),q(·)(R

n).

Remark 5.4. In the particular case of the classical Triebel-Lizorkin spaces
F s
p,q(Rn) this result is well-known and coincides with [28, Corollary 2.8.2];

see also to [24].
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