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1. Introduction
Toward the beginning of the last century, the methods in the study of ze-

ros of polynomials gained an autonomous interest which gave rise to mono-
graphs like Dieudonné’s La théorie analytique des polyômes d’une variable
(à coefficients quelconques) in 1938, Marden’s The geometry of the zeros of
a polynomial in a complex variable in 1949, or Obrechkoff’s Zeros of poly-
nomials 1 and Verteilung und Berechnung der Nullstellen reeller Polynome
both in 1963. Nowadays, the developments in Statistical Physics, Random
Matrix Theory, Probability, and Combinatorics, among other fields, give this
topic a new face that attracts a lot of interest to the subject. For a more
recent account on analytic theory of polynomials we refer the reader to the
monograph by Rahman and Schmeisser [28]. In this framework, the study
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of zeros of orthogonal polynomials (hereafter abbreviated by OP) have oc-
cupied a privileged place since they exhibit very attractive properties. In
particular, the monotonicity with respect to a real parameter of zeros of or-
thogonal polynomials on the real line (hereafter abbreviated by OPRL) have
been studied as early as the 1880’s, when A. Markov established from the
absolutely continuous part of the orthogonality measure sufficient conditions
for it [27, p. 178] (cf. [20, Theorem 7.1.1]). As a consequence of their main
result, he deduced the monotonicity of zeros of Jacobi polynomials 2. After
A. Markov’s work —without knowing about its existence, since the paper
was sent to him by Hermite on January 27, 1887 [36, Lettre 105]— Stieltjes
3 making use of the linear homogeneous differential equation of second order
that Jacobi and Gegenbauer polynomials satisfy deduced 4 the monotonicity
of zeros for these polynomials [35, Sections 3 and 4]. In the two aforemen-
tioned papers the monotonicity of zeros of Gegenbauer polynomials was used
to improve some inequalities for the zeros of Legendre polynomials given by
Bruns 5 in 1881 and reworked by Szegő in the 1930’s [38].

Readers familiar with the literature on OP known that the dramatic differ-
ence between OPRL and orthogonal polynomials on the unit circle (hereafter
abbreviated by OPUC) is channeled by paraorthogonal polynomials on the
unit circle (hereafter abbreviated by POPUC). The behavior of their zeros,
directly or indirectly, is the main reason by which POPUC have received

2He also stated the monotonicity of zeros of Gegenbauer polynomials, although the proof is
based on an incorrect result [27, p. 181] (cf. [37, p. 121]).

3Stieltjes’ paper was submitted in 1886. Commonly, in the framework of OP this work is
erroneously quote as published in that year. It is probably due to the fact that in all the editions
of Szegő’s book (cf. [37]) the reference to Stieltjes’ work contains this misprint. However, a
careful reader may note that Szegő used Stieltjes’ Collected Papers in the 1914–1918 edition when
consulting this work, and the misprint on the date could come from there.

4The key argument of Stieltjes’ proof, as he wrote in a letter of January 27, 1887 to Hermite
[36, Lettre 105], is a “étroite connexion entre la théorie des équations algébriques et celle des
formes quadratiques définies”. Indeed, in [35] he proved that if H is a real symmetric matrix with
nonpositive off-diagonal elements and H > O, then H−1 > O. Nowadays, H is known as Stieltjes’
matrix.

5In a note added in January 1887 at the end of his work, after receiving A. Markov’s paper,
Stieltjes refers such a result in the following terms: “L’auteur y déduit d’abord la limitation des
racines de l’équation Xn = 0 déjà obtenue par M. Bruns, et ensuite il obtient ausii et pour la
première fois, la limitation plus étroite (B).”. In a letter of February 3, 1887 to Hermite [36,
Lettre 106], he also commented it. But it is not true that A. Markov was the first in to improve
Bruns’ inequalities due to the errors in his work; it is just to attribute the improvement of this
result to Stieltjes. All of the above suggests that Stieltjes did not read A. Markov’s arguments or,
less likely, did not notice the mistakes in his work.
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significant attention over the last years (cf. [23, 3, 16, 1, 18, 5, 9, 10, 11, 41,
4, 6, 22, 33, 32] and references therein). From the theoretical point of view,
POPUC answer a problem posed by Turán at the beginning of the 1970’s
[39, Problem LXVI, p. 60]: “It is known that the zeros of the nth orthogonal
polynomial (with respect to a Lebesgue-integral function on an interval) sep-
arate the zeros of the (n+ 1)th polynomial. What corresponds to this fact on
the unit circle?” 6. As far as we can tell, this question was solved acciden-
tally by Delsarte and Genin [9, Section 5] 7 when they were working in linear
prediction theory. After that, several authors stated additional properties
of zeros of POPUC. A recent work with refined results on the interlacing of
zeros of POPUC and historical comments can be found in [8].

It is well known that POPUC can be regarded as the characteristic poly-
nomials of any matrix similar to a unitary upper Hessenberg matrix with
positive subdiagonal elements (cf. [11, Proposition 5]). The purpose of this
note is to study the monotonicity with respect to a real parameter of zeros of
POPUC as an eigenvalue problem for this class of matrices, using in a conse-
quent manner basic methods of linear algebra. Our main result establishes, in
terms of the primary coefficients in the framework of the so-called tridiagonal
theory developed by Delsarte and Genin in the environment of nonnegative
definite Toeplitz matrices, necessary and sufficient conditions (and tractable
sufficient conditions) for the monotonicity with respect to a real parameter of
eigenvalues of unitary upper Hessenberg matrices with positive subdiagonal
elements. Our results can be considered as analogues of those presented by
Ismail and Muldoon [21] (cf. [20, Section 7.3]) concerning the monotonicity
of zeros of OPRL. In Section 2 we set up notation and terminology. In Sec-
tion 3 our main results are stated and proved, and an application example
is presented. Section 4 is devoted to some further results and an example
within the broader context of matrices with simple eigenvalues on the unit
circle.

2. Notation
We mainly follow the notation of [30, 31, 34]. Denote by D the (open) unit

disk and by S1 its boundary ∂D, i.e.,

D := {z ∈ C | |z| < 1} , S1 := {z ∈ C | |z| = 1} .

6We quote the English translation provided by Szüsz [40, Problem LXVI].
7These authors never mentioned the connection with the question posed by Turán.
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Let αj ∈ D (j = 0, . . . , n − 1) and τn ∈ S1. In the next definition and
subsequently, I denotes the identity matrix, whose order is made explicit or
may be inferred from the context. Set

Θj := Θ(αj), Θ(α) :=

(
α ρ
ρ −α

)
, ρ :=

(
1− |α|2

)1/2
,

and

Gj := diag (Ij,Θj, In−j−1) , Gn := diag(In, τn).

Define the (n+ 1)-by-(n+ 1) matrix

G : = G0G1 · · ·Gn =


α0 ρ0α1 ρ0ρ1α3 · · · ρ0 · · · ρn−1τn
ρ0 −α0α1 −α0ρ1α2 · · · −α0ρ1 · · · ρn−1τn

ρ1 −α1α2 · · · −α1ρ2 · · · ρn−1τn
. . .

. . .
...

ρn−1 −αn−1τn

 .

(1)

By construction, the matrix G is a unitary upper Hessenberg matrix with pos-
itive subdiagonal elements. Conversely, any unitary (n+ 1)-by-(n+ 1) upper
Hessenberg matrix with positive subdiagonal elements is uniquely parame-
terized in the form (1) by 2n+ 1 real numbers that compose the parameters
of the array (α0, . . . , αn−1, τn) [15] (cf. [17] and [2, Proposition 1]). In order
to make the notation more transparent, we write G(α0, . . . , αn−1, τn) instead
of G.

Definition 2.1 (cf. [11, Proposition 5]). Let G(α0, . . . , αn−1, τn) be the ma-
trix given by (1), where αj ∈ D (j = 0, . . . , n− 1) and τn ∈ S1. The (monic)
polynomial Pn+1 defined by

Pn+1(z) := det
(
zI−G(α0, . . . , αn−1, τn)

)
is the POPUC of degree n+ 1 associated with the array (α0, . . . , αn−1, τn).

Definition 2.2 (cf. [10, Equation 2.29]). Let αj ∈ D (j = 0, . . . , n− 1) and
τn ∈ S1. For each ζ ∈ S1, the numbers defined recursively by

τn(ζ) := τn, τj(ζ) :=
ζ αj + τj+1(ζ)

αjτj+1(ζ) + ζ
(j = n− 1, . . . , 0), (2)

are the pseudoreflexion coefficients associated with the array (α0, . . . , αn−1, τn).
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3.Main results
In this section we formulate and prove our main results. Our ideas bor-

row from some ideas of Fan related with the generalized Cayley transform of
strictly dissipative matrices and others by Delsarte and Genin in the frame-
work of the tridiagonal theory (cf. [9, 10, 11, 6]), where a one-parameter
second order recurrence relation is the main object of study.

Theorem 3.1. Let G(α0, . . . , αn−1, τn) be a differentiable matrix-valued func-
tion of the real variable t given by (1), where for all t, αj := αj(t) ∈ D
(j = 0, . . . , n − 1) and τn := τn(t) ∈ S1. Define τj(ζ) via (2) for ζ ∈ S1 \ S,
S being the set of eigenvalues of G(α0, . . . , αn−1, τn). Define recursively the
numbers 8

β0(ζ) :=
1

ζ1/2 + τ0(ζ)ζ1/2
,

βj(ζ) :=
1

βj−1(ζ)

1

ζ + τj(ζ)αj−1

1

1− τjαj+1
(j = 1, . . . , n),

and the polynomials 9

p−1(z, ζ) := 0, p0(z, ζ) := p0 ∈ R \ {0},

pj+1(z, ζ) :=
(
βj(ζ) + βj(ζ)z

)
pj(z, ζ)− zpj−1(z, ζ) (j = 0, . . . , n). (3)

Define also the matrix

A := ζ1/2


β0(ζ)

−1 β1(ζ)
. . .

. . .

−1 βn(ζ)

 ,

8Cf. [10, Equations 3.14 and 3.19]. Here and subsequently, ζ1/2 denotes either of the square
roots of ζ.

9Cf. [10, Equation 3.7].
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with Toeplitz decomposition H + iK 10. Then H > O 11, the eigenvalues of
G(α0, . . . , αn−1, τn) coincide with the zeros of pn+1(z, ζ), and for all η ∈ S,(

p,H1/2 d

dt

(
H−1/2KH−1/2)H1/2p

)
=

(p,Hp)

cos(ζη)− 1

d

dt
arg(η) (mod(0, 2π]),

(4)

where p := (p0(η, ζ), . . . , pn(η, ζ))T.

Proof : The fact that H > O is well known; two different proofs of this fact
are given in [10, Section 3] and [11, pp. 435-436]. Since G(α0, . . . , αn−1, τn)
is a differentiable matrix-valued function having simple eigenvalues (cf. [29,
Proposition 3.26]), then its eigenvalues depend differentiably on t (cf. [25,
Theorem 7, p. 130]). Furthermore, for each eigenvalue of G(α0, . . . , αn−1, τn),
we can choose an eigenvector that depends differentiably on t (cf. [25, The-
orem 8, p. 130]).

Let G(α0, . . . , αn−1, τn) be partitioned as

G(α0, . . . , αn−1, τn) =

(
G11 G12

G21 G22

)
, (5)

G11 being the (j + 1)-by-(j + 1) leading principal submatrix of G(α0, . . . ,
αn−1, τn). We claim that G22 has no eigenvalues on S1. Indeed, it can be
easily seen that G22 is the (n− j)-by-(n− j) trailing principal submatrix of
each of the matrices G(αj, . . . , αn−1, τn) and G(αj, . . . , αn−1, τn) D, D being
the diagonal matrix obtained from the identity matrix by replacing the (1, 1)
entry with a number in S1 \{1}. Suppose the assertion is false, and note that
the eigenvalues of G(α0, . . . , αn−1, τn) are simple and all its eigenvectors have
nonzero components 12 (cf. [11, Proposition 5]). Since G(αj, . . . , αn−1, τn)
and G(αj, . . . , αn−1, τn) D are unitary matrices, these matrices share all the
eigenvalues of G22 on S1. This contradicts the fact that G(αj, . . . , αn−1, τn)
and G(αj, . . . , αn−1, τn) D have no common eigenvalues in agreement with [8,
Lemma 2.2], and the claim is proved. Consequently, from the equality (cf.
[6, Equation 9])

G11 −G12(G22 − ζI)−1G21 = G(α0, . . . , αj−1, τj(ζ)),

10I.e., H := (A + A∗)/2 and K := (A−A∗)/(2i).
11I.e., A is strictly dissipative.
12In order to apply [8, Lemma 2.2], it would suffice to note that all the eigenvectors of any

normal upper Hessenberg matrix with positive subdiagonal elements have nonzero component at
the first (and last) entry (cf. [26, Lemma 2.1]).
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the polynomials

P1(z, ζ) := z − τ1(ζ),

Pj+1(z, ζ) := det
(
zI−G(α0, . . . , αj−1, τj(ζ))

)
(j = 2, . . . , n),

are well defined for each ζ ∈ S1. The technical advantage of these polynomials
is that any three of them are connected by a simple relation (cf. [10, Equation
3.3] and [6, Equation 10]). After an appropriated normalization (cf. [10,
p. 226]), the resulting polynomials satisfy the recurrence relation (3), and
the second statement of the theorem follows 13. Without loss of generality
(since, by hypothesis, ζ ∈ S1 \ S 14), we assume the same initial conditions
[10, Equation 3.7] (cf. [10, Proposition 3] and [6, p. 1049]). Putting (3) in
matrix form, we have (cf. [11, Equation 2.20])

(ζA∗ + zA)p = ζ1/2pn+1(z, ζ)en+1,

where en+1 := (0, . . . , 0, 1). Hence −A−1A∗p = ζηp, A being invertible by
definition 15. It is known (cf. [8, Corollary 1.1]) that pn(z, ζ) and pn+1(z, ζ)
have ζ as the only possible common eigenvalue, then p 6= 0 and, consequently,
p is a right eigenvector of −A−1A∗ associated with the eigenvalue ζη. Set
B := iA. Since ζ is not an eigenvalue of G(α0, . . . , αn−1, τn), ζG(α0, . . . , αn−1,
τn) and B−1B∗ have the same eigenvalues and none of them is equal to 1.

By [14, Theorem 2.1], H1/2B−1B∗H−1/2 (since H > O, H1/2 is well defined
and invertible) is unitary and, in turn, the Cayley transform of−H−1/2KH−1/2,
i.e.,

−H−1/2KH−1/2 = i(I− H1/2B−1B∗H−1/2)−1(I + H1/2B−1B∗H−1/2).

Note that (ζη, H1/2p) is an eigenpair of H1/2B−1B∗H−1/2. Hence
(
i(1 −

ζη)−1(1 + ζη),H1/2p
)

is an eigenpair of −H−1/2KH−1/2, i.e., 16(
H1/2p,

(
H−1/2KH−1/2

)
H1/2p

)
= cot(arg(ζη)/2)(H1/2p,H1/2p) . (6)

Finally, since the eigenvalues of G(α0, . . . , αn−1, τn) are simple, so are those
of H−1/2K H−1/2, and (4) follows by differentiation of (6).

13One can be also prove this directly using [11, Equation 4.22]. But our main interest is in the
previous construction.

14This means that we are considering only the regular case of the theory presented in [11].
15A−1A∗ is known as the generalized Cayley transform of A (cf. [13]).
16Actually, cot(arg(ζη)/2) = (p,Kp)/(p,Hp).
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Remark 3.1. If the starting point in Theorem 3.1 is the sequence of poly-
nomials defined recursively by (3), βj’s being differentiable functions of the
real variable t, then (4) remains true for all ζ ∈ S1 other than the zeros of
the polynomial pn+1, provided the condition H > O holds 17.

Proof : Since A is an invertible and differentiable matrix-valued function of
the real variable t, so is A−1A∗. Since this matrix has simple eigenvalues [13,
Section 2.1], it follows that its eigenvalues depend differentiably on t and, for
each eigenvalue, we can choose an eigenvector that depends differentiably on
t. The rest of the proof runs as in the proof of Theorem 3.1.

The first goal of this work is a direct consequence of Theorem 3.1, and it
reads as follows:

Corollary 3.1. Assume the notation and conditions of Theorem 3.1. Then
η moves strictly counterclockwise along S1 as t increases if and only if(

p,H1/2 d

dt

(
H−1/2KH−1/2)H1/2p

)
< 0.

Remark 3.2. Assume the notation and conditions of Theorem 3.1. Define
R := H1/2 and L := R(d/dt)(R−1)K; by differentiation, we obtain

H1/2 d

dt

(
H−1/2KH−1/2)H1/2 = L + L∗ +

d

dt
K.

This implies that η moves strictly counterclockwise along S1 as t increases if

L + L∗ < − d

dt
K. (7)

Obviously, this inequality may be true even when some of the involved matri-
ces are indefinite.

Although we do not pretend to offer a wider study of consequences of the
above results, a simple analysis gives tractable sufficient conditions for which
we supplied two different proofs.

Corollary 3.2. Assume the notation and conditions of Theorem 3.1. De-
fine the sets K+ := {t ∈ R |K > O} and K− := {t ∈ R |K < O}. Set

xj :=
d

dt
<(ζ−1/2βj(ζ)), yj :=

d

dt
=(ζ−1/2βj(ζ)),

17Note that this implies that the βj ’s are nonzero, i.e., A is invertible.
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and define also the sets

I++ := {t ∈ R | (∀j ∈ {0, . . . , n})[xj > 0 ∧ yj > 0]},
I−+ := {t ∈ R | (∀j ∈ {0, . . . , n})[xj < 0 ∧ yj > 0]},
I−− := {t ∈ R | (∀j ∈ {0, . . . , n})[xj < 0 ∧ yj < 0]},
I+− := {t ∈ R | (∀j ∈ {0, . . . , n})[xj > 0 ∧ yj < 0]}.

Then the eigenvalues of G(α0, . . . , αn−1, τn) move strictly counterclockwise
(respectively, clockwise) along S1 as t increases on each of the nondegenerate
intervals 18 that make up the set (I++ ∩ K+) ∪ (I−+ ∩ K−) (respectively,
(I−− ∩K+) ∪ (I+− ∩K−)), provided that at least one of them exists.

First proof. We only prove the result concerning to the set I++ ∩ K+; the
rest follows in the same way. Assume the notation of Remark 3.2. Note that
(d/dt)H = R(d/dt)R + (d/dt)(R)R. Since R > O and (d/dt)H > O, [25,
Theorem 4, p.149] guarantees that (d/dt)R > O. Hence (d/dt)R−1 < O. By
Winger’s theorem on product of (two) positive matrices (cf. [42, Theorem
1]), −(d/dt)(R−1)K w>O 19. We now claim that if V > O and W w>O, then
VW w>O and W + W∗ > O. Indeed, VW and V1/2WV−1/2 are conjunctive.
Therefore, they have the same inertia. But W and V1/2WV−1/2 are similar,
which shows that VW w>O as claimed. Again by Winger’s theorem, there
exists P1 > O and P2 > O such that W = P1P2. Since W + W∗ and 2P2 are
conjunctive, W + W∗ > O as desired. Thus the condition (7) holds, and the
result follows.

The use of the condition (7) in the above proof can easily be circumvented
by an elementary argument:

Second proof. As in the above proof, we only prove the result concern-
ing to the set I++ ∩ K+. Assume the notation of Remark 3.2. Denote
by ηj (j = 0, . . . , n) the elements of C. By the proof of Theorem 3.1,
ζG(α0, . . . , αn−1, τn) and B−1B∗ have the same eigenvalues and none of them
equal to 1, where B is as defined there. Consider two different points, say t0
and t1, t0 < t1, in one of the nondegenerate intervals that make up the set
(I++ ∩K+), provided it exists. Make temporary explicit that ηj, H, and K

18We are considering the empty set and the singletons as degenerate intervals.
19We recall that a matrix W is weakly positive if there exist an invertible matrix X and a

diagonal matrix D > O such that W = XDX−1. Here and subsequently, weakly positivity of W is
denoted as W w>O.
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depend on t. Under our assumptions, we can assert that K(t1) < K(t0) and
O < H(t1) < H(t0). Hence, for any nonzero vector x ∈ Cn+1,

(x,−K(t0)x)

(x,H(t0)x)
<

(x,−K(t1)x)

(x,H(t1)x)
.

Denote the argument of the eigenvalues of B−1B∗ (which, in turn, are given
by ζηj(t)), arranged in decreasing order, by 0 < θn(t) < · · · < θ2(t) <
θ0(t) < 2π. By Fan’s eigenvalues comparison theorem for the generalized
Cayley transform [14, Theorem 6.1], we have θj(t0) < θj(t1), and the result
follows.

It is worth pointing out that a refined version of [7, Theorem B] can be
obtained in a straightforward way from Corollary 3.2.

Corollary 3.3. Assume the notation and conditions of Corollary 3.2. As-
sume further that H does not depend on t. Define the set

I0+ := {t ∈ R | (∀j ∈ {0, . . . , n})[yj > 0]},
I0− := {t ∈ R | (∀j ∈ {0, . . . , n})[yj < 0]}.

Then the eigenvalues of G(α0, . . . , αn−1, τn) move strictly counterclockwise
(respectively, clockwise) along S1 as t increases on each of the nondegenerate
intervals that make up the set I0+ (respectively, I0−), provided that at least
one of them exists.

For completeness, we also indicate the following case:

Corollary 3.4. Assume the notation and conditions of Corollary 3.2. As-
sume further that K does not depend on t. Define the sets

I+0 := {t ∈ R | (∀j ∈ {0, . . . , n})[xj > 0]},
I−0 := {t ∈ R | (∀j ∈ {0, . . . , n})[xj < 0]}.

Then the eigenvalues of G(α0, . . . , αn−1, τn) move strictly counterclockwise
(respectively, clockwise) along S1 as t increases on each of the nondegenerate
intervals that make up the set I+0 ∩ K+ (respectively, I−0 ∩ K−), provided
that at least one of them exists.

The preceding results may seem at first difficult to apply for expeditiously
deriving interesting concrete results. However, this is not always true. For
instance, when we deal with hypergeometric (or q-hypergeometric) polyno-
mials with simple zeros on S1, the coefficients βj’s in the notation of Theorem
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3.1 can be easily determined, as the following example illustrates. Indeed,
by virtue of the contiguous relations of hypergeometric functions this class
of polynomials furnish an inexhaustible reservoir of examples.

Example 3.1. In [12, Theorem 1.2], it is studied, with respect to the pa-
rameter b, the monotonicity of zeros of the hypergeometric polynomial 20

rn+1(z) :=
(2a)n+1

(a)n+1
2F1

(
−n− 1, a+ bi

2a
; 1− z

)
, (8)

a and b being real numbers with a positive. However, the proof given therein
is quite technical and long. In contrast, Corollary 3.3 leads to the result
immediately and by very simple means. In order to calculate the coefficients
βj’s in the notation of Theorem 3.1, it is useful to note, using contiguous
relations of hypergeometric functions, that the polynomials rj+1 (j = 0, . . . , n)
can be generated recursively by

rj+1(z) =
(
(a+ j − ib) + (a+ j + ib)z

)
rj(z)− j(2a+ j − 1)zrj−1(z), (9)

with initial conditions r−1(z) := 0 and r0(z) := 1. To achieve our objective
we have still to note that (9) can be transformed into the simplest form (3).
Indeed, there exist positive numbers λj

21 (depending only on a) and nonzero
complex numbers cj such that βj = (j + a − ib)λj+1 and pj+1 = cj+1rj+1.
(Consequently, these polynomials are POPUC.) Clearly, each βj is a nonzero
differentiable function of b. Note that(

j(2a+ j − 1)

(a+ j)(a+ j + 1)

)∞
j=0

is a positive chain sequence associated with the ultraspherical polynomials (cf.
[24, p. 758]). Wall-Wetzel’s theorem (cf. [20, Theorem 7.2.1]) now shows

20In [12, Theorem 1.2] the result was stated only for a > 1/2. Obviously, in such work the
polynomial (8) is a POPUC by definition (cf. [12, Equation 1.1]). Consequently, the first statement
of [12, Theorem 1.1] is immediate. The recurrence relation considered in [12, Theorem 3.2] can be
transform into the simplest form (3) by a natural normalization process (cf. [10, pp. 226-227]).
Therefore the first statements of [12, Theorem 3.2] and [12, Theorem 3.1] are immediate. Note also
that in all the above mentioned results, we may say much more about the zeros of the involved
polynomials simply because they are POPUC (see e.g. [8] and references therein).

21These numbers are referred in this framework as the Jacobi parameters of the problem. In
this case, routine calculations immediately reveal that they are determined uniquely by j(2a+ j−
1)λjλj+1 = 1 (j = 1, . . . , n) for any nonzero choice of the initial value λ1.
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that H > O, being H defined as in Theorem 3.1, i.e.,

H =


aλ1 −1

−1 (1 + a)λ2
. . .

. . .
. . . −1
−1 (n+ a)λn+1

 .

Since the polynomial (8) has no zeros at z = 1, in agreement with Remark
3.1, there is no loss of generality in assuming ζ := 1. Thus (d/dt)=(βj) =
−λj < 0 and, by Corollary 3.3, the zeros of the polynomial (8) move strictly
clockwise along S1 as b increases.

4. Further results
The notation of this section differs from that of Section 3. As we have

already mentioned in the proof of Theorem 3.1, for a matrix U with simple
eigenvalues on S1 \ {1}, there exists a (nonunique) strictly dissipative matrix
A such that U = A−1A∗. Let H + iK be the Toeplitz decomposition of A. To
study the monotonicity with respect to a real parameter, say t, of the eigen-
values of U, it suffices to study only the “sign” of H, (d/dt)H, and (d/dt)K,
as follows from the proof of Corollary 3.2. For a given U, this requires to
identify H and K, which in itself is not a simple question. Fortunately, when
we deal with unitary upper Hessenberg matrices with positive subdiagonal
elements, this question is solved by means of the tridiagonal theory and the
matrices H and K have a simple structure, as already seen. But if the unitary
upper Hessenberg matrix considered in the preceding theory is replaced by
an arbitrary matrix with simple eigenvalues on S1, then virtually all of the
results remain true, mutantis mutandis. In view of the above observations,
let us (at least) rewrite Corollary 3.2 in the following terms:

Theorem 4.1. Let A be a differentiable matrix-valued function of the real
variable t. Assume that A is strictly dissipative with Toeplitz decomposition
H + iK. Define the sets H+ := {t ∈ R |H > O}, H− := {t ∈ R |H < O},

I++ := {t ∈ R | (d/dt)H > O ∧ (d/dt)K > O},
I−+ := {t ∈ R | (d/dt)H < O ∧ (d/dt)K > O},
I−− := {t ∈ R | (d/dt)H < O ∧ (d/dt)K < O},
I+− := {t ∈ R | (d/dt)H > O ∧ (d/dt)K < O}.
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Then the eigenvalues of A−1A∗ move strictly counterclockwise (respectively,
clockwise) along S1 as t increases on each of the nondegenerate intervals that
make up the set (I++∩H−)∪(I+−∩H+) (respectively, (I−−∩H−)∪(I−+∩H+)),
provided that at least one of them exists.

Proof : Combining the proofs of Remark 3.2 and Corollary 3.2 gives the de-
sired conclusion.

The following numerical example helps to elucidate Theorem 4.1, and thus
Corollary 3.2, something that the technical simplicity of Example 3.1 does
not allow.

Example 4.1. Define A := H + iK, where we have set

H :=


t 1

1 t
. . .

. . .
. . . 1
1 t

 ,

K :=


π + cos t 1

1 π + 1
2 cos t

. . .
. . .

. . . 1
1 π + 1

n cos t

 ,

t being real. For all t, K is strictly diagonally dominant, so A is strictly
dissipative (cf. [19, Theorem 6.1.10]). Using the formula for the eigenvalues
of a tridiagonal Toeplitz matrix (cf. [19, Problem 1.4.P17]), we see at once
that

H− =

{
t ∈ R

∣∣ t < −2 cos
πn

n+ 1

}
, H+ =

{
t ∈ R

∣∣ t > −2 cos
π

n+ 1

}
.

On the other hand, since for all t, (d/dt)H > O,

I++ =
⋃
k∈Z

(
− π + 2πk, 2πk

)
, I+− =

⋃
k∈Z

(
2πk, π + 2πk

)
,

I−− = ∅, I−+ = ∅.

By Theorem 4.1, the eigenvalues of A−1A∗ move strictly counterclockwise
along S1 as t increases on each of the intervals that make up the set (I++ ∩
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H−) ∪ (I+− ∩H+). Of course, these intervals depend on the order of A. Fix
n = 5. Hence H− = (−∞,−

√
3) and H+ = (

√
3,∞), which gives

I++ ∩H− =
⋃

k∈Z\N

(
− π + 2πk, 2πk

)
∪ (−π,−

√
3),

I+− ∩H+ = (
√

3, π) ∪
⋃

k∈N\{0}

(
2πk, π + 2πk

)
.

Table 1 reports, for some values of t, the arguments of the eigenvalues of
A−1A∗ normalized to the interval (0, 2π]. In the first column, we indicate the
set to which the values of t belong. There the arguments of the eigenvalues
increase as t increases, in concordance with Theorem 4.1. The highlighted
rows correspond to values of t in intervals that do not belong to any of the sets
described in Theorem 4.1. Only for some of these intervals the eigenvalues
of A−1A∗ are not monotone functions of t. This reminds us that indeed our
conditions are only sufficient conditions. Figure 1 shows the behavior of the
arguments on (2π, 7π). Although in the intervals (3π, 4π) and (5π, 6π) they
are not monotone functions of t (in the rest they are, again in concordance
with Theorem 4.1), the prevailing direction of movement when t increase
is positive (see Figure 2). Actually, when t tends to ±∞, they apparently
converge and, in spite of the fact that they do not do it monotonically (see
Figure 2), Theorem 4.1 allows us to detect certain intervals in which this
happens.

Figure 1. Arguments of the eigenvalues of A−1A∗.
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Sets t θ1 θ2 θ3 θ4 θ5

I++ ∩H− −9 0.185831 0.335069 0.578815 0.86836 1.11515

−7 0.382408 0.605763 0.933046 1.28985 1.55583

−6.3 0.435125 0.687466 1.04999 1.4372 1.7185

−5 0.444007 0.725935 1.16298 1.63852 1.98166

−4.5 0.418563 0.709818 1.18639 1.71359 2.0937

−4 0.388862 0.697837 1.22427 1.8118 2.22885

I++ ∩H− −3 0.402512 0.783405 1.44259 2.14272 2.59102

−2 0.639983 1.14671 1.94338 2.6444 3.02789

−1.9 0.676005 1.19954 2.0053 2.69728 3.07083

−1.5 0.837019 1.43245 2.25954 2.90327 3.2362

0 1.602 2.41331 3.14159 3.56758 3.77881

1.6 2.95322 3.69139 4.08756 4.26589 4.34323

I+− ∩H+ 1.8 3.24452 3.8919 4.21492 4.35617 4.41543

2 3.56526 4.09244 4.33892 4.44364 4.49258

3 4.72952 4.75027 4.78687 4.86612 5.14634

3.5 4.83891 4.88426 4.95832 5.08044 5.3373

4 4.91632 4.96699 5.05207 5.18974 5.38445

5 5.00418 5.04361 5.12066 5.24861 5.41438

Table 1. Arguments of the eigenvalues of A−1A∗.

Figure 2. Arguments of the eigenvalues of A−1A∗.
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A final question could be raised here: Is Theorem 4.1 an unexpected result?
The answer is no. Set z := x + iy, x and y being differentiable real valued
functions of a real variable, say t, with y positive. Assume, for instance, that
x is negative, and x and y are strictly increasing functions of t. Since

θ := arg(z−1z) = −2 arctan
(y
x

)
(mod(0, 2π]),

θ moves strictly counterclockwise on S1 as t increase. Roughly speaking,
what we did in this work was to set up similar results in a matrix context.
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