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ON ZEROS OF POLYNOMIALS IN BEST
Lp-APPROXIMATION AND INSERTING MASS POINTS

K. CASTILLO, M. S. COSTA AND F. R. RAFAELI

Abstract: The purpose of this note is to revive in Lp spaces the original A. Markov
ideas to study monotonicity of zeros of orthogonal polynomials. This allows us
to prove and improve in a simple and unified way our previous result [Electron.
Trans. Numer. Anal., 44 (2015), pp. 271–280] concerning the discrete version of A.
Markov’s theorem on monotonicity of zeros.
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1. Introduction and main results
Let µ be a positive and nontrivial Radon measure on a compact set A ⊂ R.

For 1 < p < ∞, the space Lp(µ) denotes the set of all equivalent classes of
µ-measurable functions f such that |f |p is µ-summable, endowed with the
usual vector operations and with the norm

‖f‖p :=

(∫
|f(x)|pdµ(x)

)1/p

. (1)

Set X := Lp(µ). By a well known result by Clarkson [4, Corollary, p. 403],
X is uniformly convex. Following Bourbaki [1, Definition I, p. 166], define
N := {0, 1, . . . }. Fix n ∈ N and set K := Pn, Pn being the set of all real
polynomials of degree at most n regarded as a subspace of X. Since K is
finite dimensional, K is a closed convex subspace of X. Following Singer
[12, p. 15], LK(f) denotes the set of all elements of best approximation of
f ∈ X by elements of K. It is known that for any point f ∈ X, there is
a unique point g0 ∈ LK(f) (cf. [10, Theorem 8, p. 45]). The preceding
affirmation thus guarantees the existence and uniqueness of g0 ∈ LK(xn+1).
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By the characterization of elements of best approximation (cf. [12, Theorem
1.11]) g0 ∈ LK(xn+1) if and only if∫

g(x)|xn+1 − g0(x)|p−1sgn(xn+1 − g0(x))dµ(x) = 0 (g ∈ K). (2)

Consider the (monic) polynomial Pn+1,p(x) := xn+1−g0(x). As a consequence
of (2), the minimum of the norm (1) taken over all (monic) real polynomials
Pn+1 of degree n+ 1 is attained when Pn+1 := Pn+1,p. By Fejér’s convex hull
theorem (cf. [5, Theorem 10.2.2]), the zeros of Pn+1,p all lie in the closure of
the convex hull of supp(µ). Furthermore, all the zeros of Pn+1,p are simple 1.

The central concern of this work is the following

Question (Q). Let µ be a positive and nontrivial Radon measure on a com-
pact set A ⊂ R. Assume that dµ(x, t) has the form 2

dα(x, t) + (t)δy(t), (3)

where dα(x, t) := ω(x, t)dν(x) and, (t) ∈ R+ and y(t) ∈ R are continuous
differentiable function of t ∈ U , U being an open interval on R. Determine
sufficient conditions in order for the zeros of the polynomial Pn+1,p(x, t) (2 ≤
p <∞) to be strictly increasing functions of t.

For reasons of economy of exposition, we intentionally avoided the case
1 < p < 2. Even though the reader has to proceed with caution in this
case, under natural additional assumptions, Theorem 1.1 below remains true,
mutantis mutandis. When (3) has the form ω(x, t)dx and p = 2, Question
(Q) was studied as early as 1886 by A. Markov [11, p. 178], in a work
with many lights and some shadows (see, for instance, [2, Section 1] for
some historical remarks). When (3) has the form ω(x, t)dν(x) and p = 2,
Question (Q) was posed as an exercise in Freud’s book [6, Problem 16, p.
133] (a proof of such result can be found in the more recent book by Ismail
[8, Theorem 7.1.1]). When (3) has the form ω(x, t)dx, A := [−1, 1], and
1 ≤ p ≤ ∞, Question (Q) was studied by Kroó and Peherstorfer [9]. When
(3) has the form ω(x)dx + δy(t) and p = 2, Question (Q) was considered in
[3, Theorem 2.2] through a combination of elementary facts. We recall that

1Suppose, contrary to our claim, that x0 is a multiple zero. From (2) we have∫
Pn+1,p(x)

(x− x0)2
|Pn+1,p(x)|p−1sgn(Pn+1,p(x))dµ(x) =

∫ |Pn+1,p(x)|p

|x− x0|2
dµ(x) = 0,

a contradiction.
2The Dirac measure δy is a positive Radon measure whose support is the set {y}.
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this partially solves an open problem posed by Ismail at the end of the 1980’s
within the framework of orthogonal polynomials (cf. [7, Problem 1] and [8,
Problem 24.9.1]). It is, therefore, natural that this last result be broadened
to Lp spaces— as it was done in [9] with the standard version of A. Markov’s
theorem. Not surprisingly, this can be easily achieved by using A. Markov’s
original ideas 3. Our main result reads as follows:

Theorem 1.1. Assume the notation and conditions of Question (Q). As-
sume further the existence and continuity for each x ∈ A and t ∈ U of
(∂ω/∂t)(x, t). Denote by x0(t), . . . , xn(t) the zeros of Pn+1,p(x, t). Fix k ∈
{0, . . . , n} and set

dk(t) :=

{
y(t)− xk(t) if y(t) 6= xk(t),

1 if y(t) = xk(t).

Define the rational function

R(t) :=
n∑
j=0

′ p− δj,k
y(t)− xj(t)

,

where the prime means that the sum is over all values j and t for which
y(t) 6= xj(t). Then xk(t) is a strictly increasing function for those values of
t such that

1

dk(t)

{
′(t)

(t)
+ y′(t)R(t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

}
≥ 0, (4)

and

1

ω(x, t)

∂ω

∂t
(x, t) (5)

is an increasing function of x ∈ A, provided that at least the inequality (4)
be strict or the function (5) be nonconstant on A.

3In his classical book [14, Footnote 31, p. 116], Szegő refers his proof of A. Markov’s theorem
in the following terms: “This proof does not differ essentially from the original one by A. Markov,
although the present arrangement is somewhat clearer.”. Probably this assertion has avoided the
attention of some mathematicians to A. Markov’s work. While it is true that in the framework of
orthogonal polynomials Szegő’s argument becomes especially elegant, A. Markov’s approach works
in a more general framework. Szegő’s approach is based on Gauss mechanical quadrature, which
was an approach that Stieltjes suggested to handle the problem, see [13, Section 5, p. 391].
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The next observations concern the cases studied in the literature for p = 2.
As far as we know, these are the only ones that have been studied up to now.
It is worth highlighting that such cases are the simplest consequences that
can be derived from Theorem 1.1.

Observation 1. 4 Assume the notation and conditions of Theorem 1.1 under
the constraint that dµ(x, t) = dα(x) + δy(t). Define the sets

B− := {t ∈ U | y(t) ∈ Ac ∩ R ∧ y′(t) < 0},
B+ := {t ∈ U | y(t) ∈ Ac ∩ R ∧ y′(t) > 0}.

Then all the zeros of Pn+1,p(x, t) are strictly decreasing (respectively, increas-
ing) functions of t on B− (respectively, on B+).

Observation 2. 5 Assume the notation and conditions of Theorem 1.1 under
the constraint that dµ(x, t) = dα(x) + (t)δy. Define the sets

C− := {t ∈ U | ′(t) < 0}, C+ := {t ∈ U | ′(t) > 0}.

If xk(t) < y (respectively, xk(t) > y) for each t ∈ U , then xk(t) is a strictly
increasing (respectively, decreasing) function of t on C− (respectively, on C+).

The proof of Theorem 1.1 rests on two pillars: one is the characterization of
elements of best approximation (2) and the other one is the implicit function
theorem. A. Markov used the orthogonality relation that yields (2) when
p = 2 (cf. [11, Equation 2]) together with the chain rule (cf. [11, Equation
5], assuming that the zeros are implicitly defined as differentiable functions
of the parameter. In any case, as we have already mentioned, we follow
the reasoning by A. Markov. In some steps of our proof, the reader will be
addressed to the corresponding step in A. Markov’s work.

2. Proof of Theorem 1.1
Differentiability of the zeros: Let Pn+1(x) := (x − x0) · · · (x − xn), xj ∈ R

(j = 0, . . . , n). (Note that the xj’s do not depend on t.) Define the map
f := (f0, . . . , fn) : U ⊂ Rn+1×R→ Rn+1, where we have set x := (x0, . . . , xn)

4Observation 1 for p = 2 was proved for the first time in [3, Theorem 2.2]. In order to have
monotonicity of zero the location of the mass point outside A is quite natural. In this regard, the
statements of Theorem 2 and Corollary 3 in arXiv:1501.07235 [math.CA] appear to be incorrect.

5The case p = 2, often considered in the literature, can be easily handled by using very elemen-
tary results.
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and

fk(x, t) :=

∫
|Pn+1(x)|p

x− xk
dµ(x, t). (6)

For j 6= k one has

∂fk
∂xj

(x, t) =p

∫
1

x− xk
∂Pn+1

∂xj
(x)|Pn+1(x)|p−1sgn(Pn+1(x))dµ(x, t); (7)

otherwise 6

∂fk
∂xk

(x, t) =

∫ ∣∣∣∣ Pn+1(x)

(x− xk)

∣∣∣∣p ∂

∂xk

(
|x− xk|p

x− xk

)
dµ(x, t)

= (1− p)
∫
|Pn+1(x)|p

(x− xk)2
dµ(x, t) < 0. (8)

Set x(t) := (x0(t), . . . , xn(t)). From (6), (7) and (8), and using (2) we obtain

f(x(0), 0) = 0,
∂f

∂x
(x(0), 0) = det


∂f0

∂x0
(x(0), 0)

. . .
∂fn
∂xn

(x(0), 0)

 6= 0.

According to the implicit function theorem, under these conditions the equa-
tion f(s, t) = 0 has a solution s = x(t) in a neighborhood of (x(0), 0) that
depends differentiable on t.

Expression for the derivative of the zeros: In view of the above result 7,

dxk
dt

(t) = −
∂fk
∂t

(x(t), t)

∂fk
∂xk

(x(t), t)
.

We see at once that

∂fk
∂t

(x(t), t) =

∫
|Pn+1,p(x, t)|p

x− xk(t)
∂ω

∂t
(x, t)dν(x) (9)

+
(
′(t) + (t)y′(t)R(t)

) |Pn+1,p(y(t), t)|p

y(t)− xk(t)
.

6Cf. the denominator on the right-hand side of [11, Equation 5].
7Cf. the left-hand side of [11, Equation 5].
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Clearly 8

1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

∫
|Pn+1,p(x, t)|p

x− xk(t)
dµ(x, t) = 0.

Subtracting this from the left-hand side of (9) yields 9

∂fk
∂t

(x(t), t) (10)

=

∫
|Pn+1,p(x, s)|p

x− xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
ω(x, t)dν(x)

+

(
′(t) + (t)y′(t)R(t)− (t)

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
|Pn+1,p(y(t), t)|p

y(t)− xk(t)
.

It only remains to note that 10

1

x− xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
≥ 0.

Thus

sgn

(
dxk
dt

(t)

)
= sgn

(
∂fk
∂t

(x(t), t)

)
,

and the desired result follows from (10).
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