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ABSTRACT: In this work is presented a study on matrix biorthogonal polynomials se-
quences that satisfy a nonsymmetric recurrence relation with unbounded coefficients.
The ratio asymptotic for this family of matrix biorthogonal polynomials is derived in
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KEYWORDS: ratio asymptotic; quadrature formulae; Markov functions; matrix biorthog-
onal polynomials; generalized Chebyshev polynomials.

AMS SUBJECT CLASSIFICATION (2010): 33C45, 33C47, 42C05, 47A56, 65D32.

1.Introduction

The study of the outer ratio asymptotics i.e. the limit of the ratio of two
consecutive polynomials pn and pn+1 of a sequence of polynomials, {pn}n∈N,
orthogonal with respect to an inner product outside the convex hull of the
support of the measure of orthogonality has attracted the interest of many re-
searchers in the last decades. Since the first study of Nevai in 1979 (cf. [14])
for orthogonal polynomials with respect to a measure supported on a in-
finite subset of the real line with convergent recurrence coefficients, more
general situations have been considered, such as the case of asymptotically
periodic recurrence coefficients with a finite number of accumulation points
(cf. [16], [19], [20]) or the case of unbounded recurrence coefficients (cf. [19]).

In 1993 Durán (cf. [9]) gave the characterization of symmetric bilinear
forms for which the multiplication operator by a polynomial is a symmetric
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one. There, necessary and sufficient conditions were deduced, so that, a se-
quence of scalar polynomials {pn}n∈N satisfying a (2N+1)-term recurrence re-
lation

h(x) pn(x) = cn,0 pn(x) +

N∑

k=1

�
cn,k pn−k(x)+ cn+k,k pn+k(x)

�
,

is orthogonal with respect to a symmetric bilinear form (generalization of the
Favard’s theorem). In particular, their attention was focused on the discrete
Sobolev type inner products. In that work, the author gave a first idea to con-
nect scalar orthogonal polynomials with respect to a bilinear form and matrix
orthogonal polynomials with respect to a positive definite matrix of measures.
From the above result, Durán and Van Assche [13] proved that if {pn}n∈N is a
sequence of scalar polynomials satisfying a (2N +1)-term recurrence relation,
they are related to a matrix polynomial sequence {Pn}n∈N satisfying a matrix
three-term recurrence relation

x Pn(x) = An+1 Pn+1(x) + Bn Pn(x) + A∗
n

Pn−1(x) , n ∈ N , (1)

with initial conditions P0(x) = IN and P−1(x) = 000N , where for each n ∈ N, An

is an upper triangular, nonsingular matrix and Bn is a Hermitian matrix.
The above results reawakened the interest on matrix orthogonal polynomi-

als (cf. the survey paper [7]). So, in [12] Durán and López-Rodríguez studied
properties for the zeros of a sequence of matrix polynomials {Pn}n∈N which are
orthonormal with respect to a positive definite matrix of measures W . Next,
Durán in [10] showed two important results: the first one is a quadrature
formula for matrix polynomials and the second one is the Markov theorem
for matrix polynomials when again the matrix of measures is positive definite.
In [8], the author deals with the outer ratio asymptotic for matrix orthogonal
polynomials. Therein, Durán obtained the asymptotic behavior of two consec-
utive polynomials belonging to the matrix Nevai class, i.e. these polynomials
satisfy a three-term recurrence formula as in (1) where, again, An are nonsin-
gular, upper triangular matrices and Bn are Hermitian matrices for all n ∈ N,
and such that An→ A and Bn→ B. Later on, Durán and Daneri-Vias analyzed
the above case but when the matrix sequences (An)n∈N, (Bn)n∈N diverge in a
particular way (cf. [11] for details).

Recently, Yakhlef and Marcellán [18] have studied the outer relative asymp-
totics of sequences of matrix orthogonal polynomials for Uvarov perturbations
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in the degenerate case, i.e. given a positive definite matrix of measures α,
and its corresponding sequences of matrix orthonormal polynomials, {Pα

n
}n∈N,

satisfying a three-term recurrence relation as in (1), they define a new matrix
of measures β as, dβ(u) = dα(u) +Mδ(u− c) , where M is a positive definite
matrix, δ(u− c) is the Dirac measure supported at c that is located outside the
support of dα, and the sequence of matrix orthonormal polynomial associated
with dβ , {Pβ

n
}n∈N. Then, they study the outer relative asymptotic between

the sequences {Pβ
n
}n∈N and {Pα

n
}n∈N under quite general assumptions on the

coefficients of the three-term recurrence relation (An)n∈N, (Bn)n∈N.
When the matrix of measures, W , is no longer Hermitian, we can define a bi-

linear (respectively, sesquilinear form) in RN×N[x] (respectively, in CN×N[x])
and deal with sequences of biorthogonal matrix polynomials, {Vn}n∈N , {Gn}n∈N,
which play the role of the left and right-orthogonalities (cf. Definition 1). It
can be proven that these sequences satisfies a three-term recurrence relation

x Vn(x) = αn Vn+1(x)+ βn Vn(x) + γn Vn−1(x) , (2)

x Gn(x) = an Gn+1(x)+ bn Gn(x)+ cn Gn−1(x) , (3)

where an, αn, bn, βn, are nonsingular matrices. Without loss of generality we
can suppose that an, αn are lower triangular matrices and cn, γn are upper
triangular matrices (cf. [13]).

As we have said above, matrix polynomials defined by the recurrence for-
mulas as (2) appear in a natural way in the literature and its study paid an
increasing attention in the last decades. For example in [4], the authors give a
matrix interpretation of the multiple orthogonality in terms of matrix orthog-
onal polynomials satisfying the same kind of recursion formulas. On the other
hand, in [1], [2], [15] were studied perturbations of measures (Christoffel,
Geronimus, and Geronimus-Uvarov) which yield to non-positive definite ma-
trix of measuress, and thus, to the biorthogonality.

Example 1. Let µ be a scalar measure supported on the real line, and {pn}n∈N
its corresponding sequence of monic orthogonal polynomials. If W is a ma-
trix polynomial of degree M , then we can define a new measure dµ̂ = W dµ

(Christoffel transformation of the measure) which clearly is non-positive defi-
nite as W needs not to be identical to W T. In particular, taking W (x) =

�
x 1
0 x

�
,
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then following the techniques developed in [1], it is easy to see that the se-
quence of matrix polynomials

Vn(x) =

 
Kn(x , 0)/pn(0)

pn(0)Kn(x ,0)−W (pn,pn+1)(0) pn(x)

p2
n
(0) x

0 Kn(x , 0)/pn(0)

!
,

Gn(x) = −

�
Kn(x , 0)/pn(0) 0

−
�
Kn(x , 0)p′

n
(0) + ∂ Kn(x ,0)

∂ y

�
/pn(0) Kn(x , 0)/pn(0)

�
.

with W (pn, pn+1)(x) = pn(x)p
′
n+1(x)− pn+1(x)p

′
n
(x) , and

Kn(x , 0) =
�

pn(0) pn+1(x)− pn+1(0) pn(x)
�
/x

satisfies ∫
Vm(x)W(x)Gn(x) dµ(x) = IN δn,m ,

i.e. {Vn}n∈N, {Gn}n∈N are sequences of biorthonormal polynomial with respect
to W and satisfy the three-term recurrence relations (2) and (3) with an =

γn+1, bn = βn, and cn = αn−1 = IN (cf. Theorem 1) .

Outer ratio asymptotics for the class of matrix orthogonal polynomials sat-
isfying the three-term recurrence formula as in (2) was studied for the first
time in [6]. There, the authors analyzed the case of convergent recurrence
coefficients by introducing an analog of the Nevai class of matrix polynomials
for the nonsymmetric case, the generalized matrix Nevai class.

In the present contribution our aim is to generalize those results when
the coefficients of the nonsymmetric recurrence formula diverge in a partic-
ular way.

The structure of the manuscript is as follows. Section 2 provides the basic
background about matrix biorthogonal polynomials {Vn}n∈N and {Gn}n∈N that
satisfy dual nonsymmetric recurrence relations. Here, we establish the rela-
tions between the zeros of these two families of polynomials and discuss the
most appropriate way of scaling these matrix polynomials in order to obtain
its asymptotic behavior. Section 3 deals with the outer ratio asymptotics for
left and right-orthogonal matrix polynomials with varying recurrence coeffi-
cients. We also deduce a quadrature and a Liouville-Ostrogradski formulas
for the right-orthogonal polynomials. Section 4 is focused on our main result
(Theorem 8), the outer ratio asymptotics of matrix orthogonal polynomials
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satisfying recurrence formulas with nonsymmetric and nonsingular recurrence
coefficients diverging in a particular way. Section 5 is devoted to the study of
the case when certain matrix appearing in the recurrence formula is singular.

2.Matrix biorthogonal polynomials

Let us a consider a quasidefinite N × N matrix of measures, W , i.e. W =�
wi, j

�N−1
i, j=0, with measures, wi, j, i, j ∈ {0, . . . , N −1}, supported on the real line

but not necessarily positive definite with finite moments, Un =
∫

xn dW (x) ,
n ∈ N, and such that the Hankel determinants satisfy

det
��

Ui+ j

� j=0,...,n

i=0,...,n

�
6= 0 , n ∈ N .

We will assume, without loss of generality, that the matrix of measures is
normalized by U0 =

∫
dW (x) = IN . If P and R are matrix polynomials in

C
N×N[x], then we introduce the following sesquilinear form,

〈P , R〉=

∫
P(x) dW(x)RT(x) , P , R ∈ CN×N[x] .

Definition 1. Let W be a quasidefinite N × N matrix of measures. The ma-
trix polynomial sequences, {Vn}n∈N (respectively, {Gn}n∈N), such that for every
n, m ∈ N, deg Vn(x) = n (respectively, deg Gm(x) = m) and

∫
Vn(x) dW(x) xm = Ω(1)

n
δn,m , m= 0, . . . , n

(respectively,

∫
xn dW (x)Gm(x) = Ω

(2)
m
δn,m , n= 0, . . . , m ),

with δn,m is the Kronecker symbol and Ω(1)
n

(respectively, Ω(2)
n

) nonsingular
matrices for n ∈ N, are said to be the left (respectively, right) orthogonal poly-

nomial sequences with respect to W .

We also refer to {Vn}n∈N, {Gn}n∈N as biorthogonal polynomial sequences with
respect to the quasidefinite matrix of measures W , when

∫
Vn(x) dW(x)Gm(x) = IN δn,m , n, m ∈ N .
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Theorem 1 (cf. [5], Theorem 4). Given a quasidefinite matrix of measures W,

then its biorthogonal polynomial sequences, {Vn}n∈N, {Gn}n∈N satisfy the three-

term recurrence relations

x Vn(x) = An Vn+1(x)+ Bn Vn(x) + Cn Vn−1(x) , n ∈ N , (4)

x Gn(x) = Gn−1(x)An−1+ Gn(x)Bn+ Gn+1(x)Cn+1 , n ∈ N , (5)

with V−1(x) = 000N , V0(x) = IN , and G−1(x) = 000N , G0(x) = IN . Here, An and Cn

are nonsingular matrices for every n ∈ N.

Without loss of generality we can suppose that (An)n∈N (respectively, (Cn)n∈N)
is a sequence of lower (respectively, upper) triangular matrices (cf. [13]).

In the same way as in the scalar case, the Favard’s Theorem for matrix poly-
nomials can be find in the literature (cf. [5], Theorem 7).

Theorem 2. Given a quasidefinite matrix of measures W, then its biorthogonal

polynomial sequences, {Vn}n∈N, {Gn}n∈N, are such that for each n, Vn and Gn

have the same zeros.

Proof : Notice that the N -block Jacobi matrix associated with the recurrence
relation (5) for the polynomials Gn is the transpose of the N -block Jacobi ma-
trix

J =




B0 A0 000N

C1 B1 A1
. . .

000N C2 B2
. . .

. . . . . . . . .




,

associated with the recurrence relation (4) for the polynomials Vn . The result
follows by taking into account that the zeros of Vn (Gn, respectively) are the
eigenvalues of Jn (JT

n
, respectively), where Jn is the truncated matrix of J , with

dimension nN × nN .

Definition 2. Let W be a quasidefinite matrix of measures and {Vn}n∈N and
{Gn}n∈N the corresponding sequences of biorthogonal matrix polynomials. We
define the first kind associated polynomial sequence {V (1)

n
}n∈N and {G(1)

n
}n∈N,

as follows,

V
(1)
n−1(x) =

∫
Vn(x)− Vn(y)

x − y
dW (y) , G

(1)
n−1(x) =

∫
dW (y)

Gn(x)− Gn(y)

x − y
.
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The first kind associated polynomial sequences {V (1)
n
}n∈N, {G

(1)
n
}n∈N also sat-

isfy the three-term recurrence relations (4) and (5) with initial conditions,
V
(1)
−1 (x) = 000N , V

(1)
0 (x) = A−1

0 , and G
(1)
−1(x) = 000N , G

(1)
0 (x) = C−1

1 .
In order to obtain the outer ratio asymptotic for polynomials with varying

recurrence coefficients we will need some auxiliary results such as quadrature
and Liouville-Ostrogradsky type formulas for biorthogonal polynomials. For
the left-orthogonal polynomials these results can be found in the literature.

Lemma 1 (cf. [12], Lemma 2.2). Let A be an N × N matrix polynomials and

let a be a zero of A of multiplicity p, i.e. a is a zero of det A of multiplicity p.

We put L(a , A) = {v ∈ CN : v
T

A(a) = 000N} and R(a , A) = {v ∈ CN : A(a) v =

000N} . If dim L(a , A) = dim R(a , A) = p, then
�

Adj (A(x))
�( j)
(a) = 000N , for

j = 0, . . . , p− 2, and
�

Adj (A(x))
�(p−1)

(a) 6= 000N .

Moreover, rank
�

Adj (A(x))
�(p−1)

(a) = p .

Lemma 2 (cf. [3], Proposition 5.14). Let Pn be a matrix polynomial of degree n

with m different zeros {xn,1, . . . , xn,m} and with {ℓ1, . . . ,ℓm} as corresponding

multiplicities. For any matrix polynomial R of degree less than or equal to n− 1
and x ∈ C \ {xn,1, . . . , xn,m} we have

R(x) (Pn(x))
−1 =

m∑

k=1

Cn,k

x − xn,k
, (Pn(x))

−1R(x) =

m∑

k=1

Dn,k

x − xn,k
,

where

Cn,k =
ℓk

(det Pn)
(ℓk)(xn,k)

R(xn,k)
�

Adj Pn(x)
�(ℓk−1)

(xn,k) ,

Dn,k =
ℓk

(det Pn)
(ℓk)(xn,k)

�
Adj Pn(x)

�(ℓk−1)
(xn,k)R(xn,k) .

Theorem 3 (Quadrature formula). Let {Vn}n∈N, {Gn}n∈N be the sequences of

biorthogonal matrix polynomials with respect to a quasidefinite matrix of mea-

sures W, and let {V (1)
n
}n∈N, {G

(1)
n
}n∈N be its first kind associated polynomial

sequences. Given the different zeros of Vn, {xn,1, . . . , xn,s}, with multiplicities

{ℓ1, . . . ,ℓs}, we define the matrices Γm,k, eΓm,k, as

Γn,k =
ℓk

(det Vn)
(ℓk)(xn,k)

�
Adj Vn(x)

�(ℓk−1)
(xn,k)V

(1)
n−1(xn,k) ,
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eΓn,k = G
(1)
n−1(xn,k)

ℓk

(det Gn)
(ℓk)(xn,k)

�
Adj Gn(x)

�(ℓk−1)
(xn,k) .

Then, for any polynomial P of degree less than or equal to 2n− 1 the following

quadrature formula holds
∫

P(x) dW (x) =

s∑

k=1

P(xn,k)Γn,k ,

∫
dW (x) P(x) =

s∑

k=1

eΓn,k P(xn,k) .

Proof : We will prove the quadrature formula for the right orthogonal poly-
nomials, because the left one is already proved in [6]. Let P be a matrix
polynomial of degree less than or equal to n − 1. Since Gn is a polynomial
with nonsingular leading coefficient, then P(x) = Gn(x)C(x) + R(x) . Here
C(x) and R(x) are matrix polynomials with degree of R(x) less than or equal
to 2n− 1. Using Lemma 2 we get

G−1
n
(x)R(x) =

s∑

k=1

Dn,k

x − xn,k
,

where the matrices Dn,k are

Dn,k =
ℓk

(det Gn)
(ℓk)(xn,k)

�
Adj Gn(x)

�(ℓk−1)
(xn,k)R(xn,k) .

Taking into account that R(xn,k) = P(xn,k)− Gn(xn,k)C(xn,k) and
�

Adj Gn

�(ℓk−1)
(xn,k)Gn(xn,k) = Gn(xn,k)

�
Adj Gn

�(ℓk−1)
(xn,k) = 000N , (6)

the previous expression becomes

Dn,k =
ℓk

(det Gn)
(ℓk)(xn,k)

�
Adj Gn(x)

�(ℓk−1)
(xn,k) P(xn,k) .

Thus,

P(x) = Gn(x)C(x)+

s∑

k=1

Gn(x)
Dn,k

x − xn,k
.

Using again (6), we have

P(x) = Gn(x)C(x)+

s∑

k=1

Gn(x)− Gn(xn,k)

x − xn,k
Dn,k .
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and by the definition of the first kind associated polynomial, it follows that
∫

dW (x) P(x) =

∫
dW (x)Gn(x)C(x)+

s∑

k=1

G
(1)
n−1(xn,k)Dn,k .

So, from orthogonality we have
∫

dW (x) P(x) =

s∑

k=1

G
(1)
m−1(xm,k)Dm,k ,

and the result follows.

Theorem 4 (Liouville-Ostrogradski formula). Let {Vn}n∈N, {Gn}n∈N be the se-

quence of matrix biorthogonal polynomials with respect to a quasidefinite matrix

of measures W and {V (1)
n
}n∈N, {G

(1)
n
}n∈N be, respectively, the first kind associated

polynomial sequences. Then,

Vn(z)G
(1)
n
(z)− V

(1)
n+1(z)Gn+1(z) = A−1

n
, (7)

Vn(x)G
(1)
n
(x)− V

(1)
n−1(x)Gn+1(x) = C−1

n+1 , (8)

where An, Cn are the nonsingular matrices in (5).

Proof : Equation (7) was already proved in [6]. To prove (8) we proceed by
induction on n. For n = 0 the result follows from the initial conditions. We
assume that the formula

Vp(x)G
(1)
p
(x)− V

(1)
p−1(x)Gp+1(x) = C−1

p+1 ,

is true for p = 1, . . . , n − 1. First, we use the recurrence relation in G(1)
n

and Gn+1 to obtain

Vn(x)G
(1)
n
(x)− V

(1)
n−1(x)Gn+1(x) = (Vn(x)G

(1)
n−1(x)− V

(1)
n−1(x)Gn(x))

× (x IN − Bn)C
−1
n+1− (Vn(x)G

(1)
n−2(x)− V

(1)
n−1(x)Gn−1(x))An−1 C−1

n+1 .

Second, we prove that Vn(x)G
(1)
n−1(x)− V

(1)
n−1(x)Gn(x) = 000N . Using the defini-

tion of the first kind associated polynomial, we get

Vn(x)G
(1)
n−1(x)− V

(1)
n−1(x)Gn(x)

=

∫
Vn(y) dW(y)

x − y
Gn(x)− Vn(x)

∫
dW (y)Gn(y)

x − y
.
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Adding and subtracting

∫
Vn(y) dW(y)Gn(y)

x − y
in the last relation and tak-

ing in account the left and right-orthogonalities, the result follows. With this
in mind

Vn(x)G
(1)
n
(x)− V

(1)
n−1(x)Gn+1(x)

= −(Vn(x)G
(1)
n−2(x)− V

(1)
n−1(x)Gn−1(x))An−1 C−1

n+1 . (9)

Now, using the recurrence relations for Vn and V
(1)
n−1,

Vn(x)G
(1)
n−2(x)− V

(1)
n−1(x)Gn−1(x)

= A−1
n−1(x − Bn−1) (Vn−1(x)G

(1)
n−2(x)− V

(1)
n−2(x)Gn−1(x))

− A−1
n−1Cn−1 (Vn−2(x)G

(1)
n−2(x)− V

(1)
n−3(x)Gn−1(x)) .

Since Vn−1(x)G
(1)
n−2(x)− V

(1)
n−2(x)Gn−1(x) = 000p, we deduce

Vn(x)G
(1)
n−2(x)− V

(1)
n−1(x)Gn−1(x)

= −A−1
n−1 Cn−1(Vn−2(x)G

(1)
n−2(x)− V

(1)
n−3(x)Gn−1(x)) .

Using this relation in (9) we obtain

Vn(x)G
(1)
n
(x)− V

(1)
n−1(x)Gn+1(x)

= A−1
n−1 Cn−1 (Vn−2(x)G

(1)
n−2(x)− V

(1)
n−3(x)Gn−1(x))An−1 C−1

n+1 .

According to the induction hypothesis the result follows.

In the sequel, we will assume that the matrix recurrence coefficients diverge
in a particular way: we will suppose that there exists a sequence of positive
definite matrices (Dn)n∈N such that





lim
n→∞

D−1/2
n

An D−1/2
n

= A , lim
n→∞

D−1/2
n

Bn D−1/2
n

= B ,

lim
n→∞

D−1/2
n

Cn D−1/2
n

= C , lim
n→∞

D−1/2
n

D
1/2
n−1 = IN .

(10)

When unbounded coefficients are considered in the scalar case (assuming the
same hypothesis given by (10)), the outer ratio asymptotic is then obtained for
the scaled polynomials pn(cnz). However, in the matrix case there is a large
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range of possibilities to define the scaled matrix polynomial P(H x) (cf. [11]).
From now on we are going to work with two notions of scaled matrix polyno-
mials depending on the kind of orthogonality (left or right) that we will deal
with. In the case of left-orthogonality, the suitable definition of scaled matrix
polynomials was introduced by Durán in [11].

Definition 3 (cf. [11]). Given the sequences of recurrence coefficients (An)n∈N,
(Bn)n∈N, and (Cn)n∈N, we can define a sequence of matrix polynomials in an
one matrix variable, {VVV n}n∈N as

T VVV n(T ) = An VVV n+1(T ) + Bn VVV n(T ) + Cn VVV n−1(T ) ,

with initial conditions VVV−1(T ) = 000N ,VVV 0(T ) = IN . We define the left-scaled

matrix polynomials as V H
n
(x) = VVV n(H x). On the other hand, the natural defi-

nition in order to scale the right-orthogonal polynomials is the following one.
Using the recurrence coefficients we can define another matrix polynomial
sequence of one matrix variable, {GGGn}n∈N, as

GGGn(T ) T = GGGn−1(T )An−1+GGGn(T )Bn+GGGn+1(T )Cn+1 ,

with initial conditions GGG−1(x) = 000N and GGG0(x) = IN . Now, we define the
right-scaled matrix polynomials as GH

n
(x) = GGGn(H x).

Notice that, in particular, for each non-negative integer k the scaled polyno-
mial sequences {V Dk

n
(z)}n∈N and {GDk

n
(z)}n∈N, are biorthogonal with respect

to a certain varying matrix of measures Wk. We will say that {V Dk

n
}n∈N and

{GDk

n
}n∈N are matrix biorthogonal polynomials with varying recurrence coeffi-

cients. In this way, our main result Theorem 8 will be a consequence of a more
general theorem on outer ratio asymptotics cf. Theorem 6.

In the sequel, we associate with three given matrices A, C , B, where A, C ,
are nonsingular, the left-orthogonal Chebyshev matrix polynomials of second
kind {UC ,B,A

n
}n∈N which are defined by the recurrence formula

x UC ,B,A
n
(x) = C U

C ,B,A
n+1 (x)+ B UC ,B,A

n
(x)+ AU

C ,B,A
n−1 (x) , n ∈ N , (11)

with initial conditions U
C ,B,A
0 (x) = IN and U

C ,B,A
−1 (x) = 000N , as well as the right-

orthogonal Chebyshev matrix polynomial of second kind {T A,B,C
m
}m∈N given by

x T A,B,C
n
(x) = T

A,B,C
n+1 (x)A+ T A,B,C

n
(x)B+ T

A,B,C
n−1 (x)C , n ∈ N , (12)



12 BRANQUINHO, GARCÍA-ARDILA AND MARCELLÁN

where T
A,B,C
0 (x) = IN and T

A,B,C
−1 (x) = 000N . We denote by WC ,B,A the matrix

weight for which the polynomial sequences {UC ,B,A
n
}, {T A,B,C

n
} are biorthogonal.

3.Outer ratio asymptotics for orthogonal polynomials with

varying recurrence coefficients

For each k = 1, 2, . . ., we consider orthogonal matrix polynomials {Rn,k}n∈N
and {Sn,k}n∈N, given by the recurrence relations

x Rn,k(x) = An,k Rn+1,k(x) + Bn,k Rn,k(x) + Cn,k Rn−1,k(x) , n ∈ N , (13)

x Sn,k(x) = Sn−1,k(x)An−1,k+ Sn,k(x)Bn,k + Sn+1,k(x)Cn+1,k , n ∈ N , (14)

with R0,k(x) = IN , R−1,k(x) = 000N , and S0,k(x) = IN , S−1,k(x) = 000N .
For a fixed k, these matrix polynomial sequences are biorthogonal with re-

spect to a certain quasidefinite matrix of measures which we denote by Wk.
As far as we know, the only result on outer ratio asymptotics for matrix

polynomials satisfying nonsymmetric recurrence relations is the following one.

Theorem 5 (cf. [6], Theorem 3). Let W be a quasidefinite matrix of measures,

and {Vn}n∈N, {Gn}n∈N biorthogonal polynomial sequences with respect to W, sat-

isfying,respectively, the three-term recurrence relation (4), (5). Let us assume

lim
n→∞

An = A , lim
n→∞

Bn = B , lim
n→∞

Cn = C ,

with A, C nonsingular matrices. We denote by ∆n the set of zeros of {Vn}n∈N,

and Γ =
⋂

N≥0

MN , where MN =
⋃

n≥N

∆n. Then,

lim
n→∞

Vn−1(x)V
−1
n
(x)A−1

n−1 =

∫
dWC ,B,A(y)

x − y
, x ∈ C \Γ ,

lim
n→∞

C−1
n

G−1
n
(x)Gn−1(x) =

∫
dWC ,B,A(y)

x − y
, x ∈ C \ Γ ,

where WC ,B,A is the matrix of measures associated with the second kind Chebyshev

matrix polynomials. Moreover, the convergence is locally uniform on compact

subsets of C \Γ.

In the previous case, the coefficients in the recurrence relation are assumed
to be convergent.
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The following result generalizes the previous one in two senses: we con-
sider a case of varying recurrence coefficients and for a fixed k, the recurrence
coefficients will diverge in a particular way.

Theorem 6. Let Wk be for each k ∈ N a quasidefinite matrix of measures, and

{Rn,k}n∈N, {Sn,k}n∈N be the sequences of biorthogonal matrix polynomials depend-

ing on a parameter k, k = 1, 2, . . ., satisfying (13), (14). Let (nm)m∈N, (km)m∈N,

be two increasing sequences of positive integers and we will assume that there

exist three matrices A, B, C , with A and B nonsingular, such that for all l ∈ N,

lim
m→∞

Anm−l,km
= A , lim

m→∞
Bnm−l,km

= B , lim
m→∞

Cnm−l,km
= C . (15)

We denote by e∆n,k the set of zeros of Snm,km
and eΓ =

⋂

N≥0

eMN ,k, where eMN ,k =

⋃

n≥N

e∆n,k. Then,

lim
m→∞

Rnm−1,km
(x)R−1

nm,km
(x)A−1

nm−1,km
=

∫
dWC ,B,A(t)

x − t
, x ∈ C \Γ , (16)

lim
m→∞

C−1
nm,km

S−1
nm,km
(x)Snm−1,km

(x) =

∫
dWC ,B,A(y)

x − y
, x ∈ C \ eΓ , (17)

where WC ,B,A is the matrix weight for the generalized Chebyshev matrix poly-

nomials defined in (12). Moreover, the convergence is locally uniform for x on

compact subsets of C \ Γ.

Proof : We will prove the asymptotic result (17). Notice that (16) follows by
using analogous arguments. First, we consider the sequence of discrete mea-
sures {µn,k}n∈N defined by

µn,k =

s∑

j=1

δxm,k, j
Rn−1,k(xn,k, j)eΓn,k, jSn−1,k(xn,k, j) , n ∈ N ,

where xn,k, j, j = 1, . . . , s are the different zeros of the matrix polynomial,
Rn,k, or, equivalently, the zeros of Sn,k (cf. Theorem 2) with multiplicities
{ℓ1, . . . ,ℓs}, and

eΓn,k, j = S
(1)
n−1,k(xn,k, j)

ℓ j

�
Adj (Sn,k(x))

�(ℓ j−1)
(xn,k, j)

(det(Sn,k(x)))
(ℓ j)(xn,k, j)

.
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Notice that from the definition of the quadrature formula
∫

dµn,k(x) =

s∑

j=1

Rn−1,k(xn,k, j)eΓn,k, jSn−1,k(xn,k, j)

=

∫
Rn−1,k(x) dWk(x)Sn−1,k(x) = IN , n= 1, 2, . . . .

According to Lemma 2, we get

�
Sn,k(x)

�−1
Sn−1,k(x) =

s∑

k=1

Dn,k, j

x − xn,k, j
,

where

Dn,k, j =
ℓ j

(detSn,k)
(ℓ j)(xn,k, j)

�
Adj Sn,k(x)

�(ℓ j−1)
(xn,k, j)Sn−1,k(xn,k, j) . (18)

Multiplying in the left hand side of (18) by C−1
n,k

C−1
n,k Dn,k, j = C−1

n,k

ℓ j

(detSn,k)
(ℓ j)(xn,k, j)

�
Adj Sn,k(x)

�(ℓk−1)
(xn,k, j)Sn−1,k(xn,k, j) ,

and applying the Liouville-Ostrogradski formula (8)

Sn,k(xn,k, j)
�

Adj Sn,k

�(ℓk−1)
(xn,k, j) = 000N ,

we get C−1
n,k Dn,k, j = Rn−1,k(xn,k, j) eΓn,k Sn−1,k(xn,k, j) . From the definition of the

matrices eΓn,k, we have

C−1
n,kS−1

n,k(x)Sn−1,k(x) =

∫
dµn,k(y)

x − y
, x ∈ C \ eΓ .

For two given nonnegative integers n, k let us consider the generalized Cheby-
shev matrix polynomials of the second kind, {T A,B,C

n
(x)}n∈N, defined in (12).

We can prove by induction that

lim
m→∞

∫
dµnm,km

(x)T
A,B,C
l
(x) = IN δl,0 . (19)

To this end, we can write

Sn−1,k(x) T
A,B,C
l
(x) = Sn,k(x)Kl,n−1,k(x) +

n∑

i=1

Sn−i,k(x)∆i,l,n−1,k , (20)
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where Kl,n−1,k(x) is a matrix polynomial with degree less than or equal to
n− 1. Thus,
∫

dµn,k(x)T
A,B,C
l
(x) =

s∑

j=1

Rn−1,k(xn,k, j)eΓn,k, jSn−1,k(xn,k, j)T
A,B,C
l
(xn,k, j)

=

s∑

j=1

Rn−1,k(xn,k, j)eΓn,k, j

�
Sn,k(xn,k, j)Kl,n−1,k(xn,k, j)+

n∑

i=1

Sn−i,k(xn,k, j)∆i,l,n−1,k

�
.

According to the definition of the matrices eΓn,k and taking into account that

�
Adj (Sn,k)(x)

�(ℓk−1)
(xn,k, j)Sn,k(xn,k, j)

= Sn,k(xn,k, j)
�

Adj (Sn,k)(x)
�(ℓk−1)

(xn,k, j) = 000N ,

we get
∫

dµn,k(x) T
A,B,C
l
(x) =

s∑

j=1

Rn−1,k(xn,k, j) eΓn,k, j

� n∑

i=1

Sn−i,k(xn,k, j)∆i,l,n−1,k

�
.

Using the quadrature formula given in Theorem 3, we conclude
∫

dµn,k(x) T
A,B,C
l
(x)

=

n∑

i=1

∫
Rn−1,k(x) dWk(x)Sn−i,k(x)∆i,l,n−1,k =∆1,l,n−1,k .

So, (19) follows when lim
m→∞

∆ j,l,nm−1,km
= IN δ j,l+1 , holds. We use induction

on l. When l = 0 the result is immediate. Now assuming that the result is
valid up to l, the three-term recurrence relation for the matrix polynomials
{T A,B,C

n
}n∈N yields

Sn−1,k(x) T
A,B,C
l+1 (x) = Sn−1,k(x)

�
x T

A,B,C
l
(x)− T

A,B,C
l
(x)B− T

A,B,C
l−1 (x)C

�
A−1 .

Using (20) and the three-term recurrence relation for {Sn,k}n∈N

∆ j,l+1,n−1,k = An− j,k∆ j−1,l,n−1,k A−1+ Bn− j,k∆ j,l,n−1,k A−1

+ Cn− j∆ j+1,l,n−1,k A−1−∆ j,l,n−1,k B A−1−∆ j,l−1,n−1,k C A−1 .
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For j ≥ l + 3 or j ≤ l − 1 the induction hypothesis shows that

lim
m→∞

∆ j,l+1,nm−1,km
= 000N .

We study the cases j = l, j = l + 1, and j = l + 2 separately:
Case 1. j = l.

lim
m→∞

∆ j,l+1,nm−1,km
= lim

m→∞

�
Anm−l,km

∆l−1,l,nm−1,km
A−1

+ Bnm−l,km
∆l,l,nm−1,km

A−1+ Cnm−l∆l+1,l,nm−1,km
A−1−∆l,l,nm−1,km

B A−1

−∆l,l−1,nm−1,km
C A−1�= (C − C)A−1 = 000N .

Case 2. j = l + 1.

lim
m→∞

∆l+1,l+1,nm−1,km
= lim

m→∞

�
Anm−l−1,km

∆l,l,nm−1,km
A−1

+ Bnm−l−1,km
∆l+1,l,nm−1,km

A−1+ Cnm−l−1∆l+2,l,nm−1,km
A−1−∆l+1,l,nm−1,km

BA−1

−∆l+1,l−1,nm−1,km
CA−1�= (B− B)A−1 = 000N .

Case 3. j = l + 2.

lim
m→∞

∆l+2,l+1,nm−1,km
= lim

m→∞

�
Anm−l−2,km

∆l+1,l,nm−1,km
A−1

+ Bnm−l−2,km
∆l+2,l,nm−1,km

A−1+ Cnm−l−2∆l+3,l,nm−1,km
A−1−∆l+2,l,nm−1,km

BA−1

−∆l+2,l−1,nm−1,km
CA−1�= AA−1 = IN .

Now, in the same way that was done in [11], one can prove

lim
m→∞

∫
dµnm,km

(y)

x − y
=

∫
dWC ,B,A(y)

x − y
, x ∈ C \Γ ,

by using the so called method of moments.

4.Main result

Definition 4 (cf. [17] Section 7.7). Let A, B ∈ CN×N be Hermitian matrices.
We write A ≥ B if the matrix A− B is positive semi-definite. Similarly, A > B

means that A− B is positive definite.

It is easy to see that the relation ≥ (respectively, >) is transitive and reflex-
ive.
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Definition 5. Let (An)n∈N be a sequence of Hermitian matrices. We say that
(An)n∈N is an increasing sequence if An+1 ≥ An for every n ∈ N.

Theorem 7. Let the matrix sequence (Dn)n∈N be increasing. Then, for each n ∈

N, the polynomials V Dn

n
(x) and GDn

n
(x) have the same zeros. Moreover, denoting

by exn, j the zeros of V Dn

n
(x) or GDn

n
(x), then there exists a positive constant M

(independent of n) such that the the zeros exn, j are contained in a disk D = {z ∈
C : |z| < M} .

Proof : The N -block Jacobi matrix associated with GDk

n
(x)D

1/2
k

is the transpose
of the matrix

eJ (k) =




D
−1/2
k

B0D
−1/2
k

D
−1/2
k

A0D
−1/2
k

000N

D
−1/2
k

C1D
−1/2
k

D
−1/2
k

B1D
−1/2
k

D
−1/2
k

A1D
−1/2
k

. . .

000N D
−1/2
k

C2D
−1/2
k

D
−1/2
k

B2D
−1/2
k

. . .
. . . . . . . . .




,

associated to D
1/2
k

V Dk

n
(x). The first statement is an straightforward conse-

quence of the fact that the zeros of V Dn

n
(x) are the eigenvalues of eJ (k)nN (trun-

cated N -block Jacobi matrix of dimension nN) and the zeros of GDn

n
(x)D

1/2
k

are the eigenvalues of eJ (k)TnN (the transpose of the previous one). Using the
Gershgorin disk theorem for the location of eigenvalues, it is enough to show
that the entries of the matrix eJnN are bounded (independently of n). But the
entries of this matrix are

D
−1/2
k

An D
−1/2
k

= D
−1/2
k

D1/2
n

D−1/2
n

An D−1/2
n

D1/2
n

D
−1/2
k

,

D
−1/2
k

Bn D
−1/2
k

= D
−1/2
k

D1/2
n

D−1/2
n

Bn D−1/2
n

D1/2
n

D
−1/2
k

,

D
−1/2
k

Cn D
−1/2
k

= D
−1/2
k

D1/2
n

D−1/2
n

Cn D−1/2
n

D1/2
n

D
−1/2
k

.

Since the matrices D−1/2
n

An D−1/2
n

, D−1/2
n

Bn D−1/2
n

, and D−1/2
n

Cn D−1/2
n

converge

and IN ≥ D
−1/2
k

D1/2
n

if n ≤ k since (Dn)n∈N is an increasing sequence, then the
result follows.

The theory of matrix orthogonal polynomials with varying recurrence co-
efficients studied in the previous section allows us to prove the main result
of this manuscript, i.e. the outer ratio asymptotics for matrix biorthogonal
polynomials satisfying three-term recurrence relations as in (4) and (5) with
unbounded coefficients reads as follows.
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Theorem 8 (Outer ratio asymptotics). Let {Vn}n∈N and {Gn}n∈N be the sequences

of biorthogonal matrix polynomials with respect to a quasidefinite matrix of mea-

sures, W, satisfying the recurrence relations (4), (5), respectively. Let assume

that there exists a sequence of positive definite matrices (Dn)n∈N such that (10)
holds with A and C nonsingular matrices, and consider the scaled matrix polyno-

mials sequences {V Dn

n
}, {GDn

n
} given in Definition 3. We denote by ∆n the set of

zeros of V Dn

n
and by Γ =

⋂

N≥0

MN , where MN =
⋃

n≥N

∆n. Then,

(a) If we assume that the matrix sequence (Dn)n∈N is increasing, then Γ is a

compact set.

(b) The following outer ratio asymptotics hold

lim
n→∞

D1/2
n

V
Dn

n−1(z)
�

V Dn

n
(z)
�−1

A−1
n−1D1/2

n
=

∫
dWC ,B,A(t)

z − t
, z ∈ C \ Γ,

lim
n→∞

D1/2
n

C−1
n

�
GDn

n
(z)
�−1

G
Dn

n−1(z)D1/2
n
=

∫
dWC ,B,A(t)

z− t
, z ∈ C \Γ ,

where WC ,B,A is the matrix weight for the generalized Chebyshev matrix poly-

nomials of the second kind defined by (11). Moreover, the convergence is

locally uniform for z on compact subsets of C \Γ.

Proof : Let (Dn)n∈N be a sequence of N ×N positive definite matrices. In order
to apply Theorem 6, we consider the scaled matrix polynomials V Dk

n
(x), GDk

n
(x)

associated with the parameters (An)n∈N, (Bn)n∈N, (Cn)n∈N. Taking into account
their definitions, we have

x Dk V Dk

n
(x) = An V

Dk

n+1 (x) + Bn V Dk

n
(x) + Cn V

Dk

n−1(x) , (21)

GDk

m
(x)Dk x = G

Dk

m−1(x)Am−1+ GDk

m
(x)Bm+ G

Dk

m+1(x)Cm+1 , (22)

and so

x D
1/2
k

V Dk

n
(x) = D

−1/2
k

An D
−1/2
k

D
1/2
k

V
Dk

n+1(x)

+ D
−1/2
k

Bn D
−1/2
k

D
1/2
k

V Dk

n
(x)+ D

−1/2
k

Cn D
−1/2
k

D
1/2
k

V
Dk

n−1(x) ,

xGDk

n
(x)D

1/2
k
= G

Dk

n−1(x)D
1/2
k

D
−1/2
k

An−1 D
−1/2
k

+ GDk

n
(x)D

1/2
k

D
−1/2
k

Bn D
−1/2
k
+ G

Dk

n+1(x)D
1/2
k

D
−1/2
k

Cn+1 D
−1/2
k

,
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respectively. For each k, taking
¨

Rn,k(x) = D
1/2
k

V Dk

n
(x) , Sn,k(x) = GDk

n
(x)D

1/2
k

,
An,k = D

−1/2
k

An D
−1/2
k

, Bn,k = D
−1/2
k

Bn D
−1/2
k

, Cn,k = D
−1/2
k

Cn D
−1/2
k

,

the matrix polynomial sequences {Rn,k}n∈N, {Sn,k}n∈N satisfy the three-term
recurrence relations, (13), (14), respectively, with initial conditions R0,k(x) =

G0,k(x) = D
1/2
k

and R−1,k(x) = G−1,k(x) = 000N . Then, the matrix polynomial
sequences {Rn,k}n∈N, {Sn,k}n∈N are orthogonal with respect to a certain varying
matrix of measures Wk. Under the assumptions (10) it is easy to see that the
limit conditions (15) are satisfied for nm = km = m. Then, Theorem 8 holds.

Finally, from Theorem 7 we have that if the matrix sequence (Dn)n∈N is in-
creasing, then the zeros of V Dn

n
(x) and GDn

n
(x) are bounded (and so Γ is a

compact set), as we wanted to prove.

Example 2. In Example 1 let us take the scalar measure dµ = xαe−x d x , α >
−1, supported on ]0,∞[ and {Lα

n
}n∈N its respective monic orthogonal poly-

nomial sequence (Laguerre polynomials of parameter α). The biorthogonal
sequences with respect to the new measure

�
x −1
0 x

�
xαe−xd x are given by

Vn(x) =




Lα+1
n
(x)

Lα+1
n
(x)−α+n+1

α+1
Lα

n
(x)

x

0 Lα+1
n
(x)


 =

 
Lα+1

n
(x) − n

α+1
Lα+2

n−1(x)

Lα+1
n
(x)

!
,

Gn(x) = −




(−1)n
Γ(α+1)Kα

n
(x ,0)

Γ(α+n+1)
0

nKα
n
(x ,0)

(α+1)
+ (−1)n Γ(α+1)

Γ(α+n+1)

∂ Kα
n
(x ,0)

∂ y
(−1)n

Γ(α+1)Kα
n
(x ,0)

Γ(α+n+1)


 .

Moreover, the sequences {Vn}n∈N, {Gn}n∈N satisfy the three-term recurrence
relations (4), (5) with An = IN ,

Bn =

�
1 −2n/(α+ 1)
0 1

�
, Cn =

�
n(α+ n+ 1) nα(α+ n+ 1)/(α+ 1)

0 n(α+ n+ 1)

�
.

On the other hand, taking the sequence of positive definite matrices (Dn)n∈N,

where Dn =

�
n2 0
0 n2

�
, we find that D1/2

n
=

�
n 0
0 n

�
, D−1/2

n
=

�
1/n 0
0 1/n

�
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and D−1/2
n

D
1/2
n−1 = IN . Thus,

D−1/2
n

Bn D−1/2
n

=

�
1/n2 −2/((α+ 1)n)

0 1/n2

�
, and so D−1/2

n
BnD−1/2

n
→ 000N ,

D−1/2
n

CnD−1/2
n

=

 
α+n+1

n

α(α+n+1)
(α+1)n

0 α+n+1
n

!
, and so D−1/2

n
Cn D−1/2

n
→

 
1 α

α+1

0 1

!
.

From Theorem 8 we get

lim
n→∞

D1/2
n

V
Dn

n−1(z)
�

V Dn

n
(z)
�−1

D1/2
n
=

∫
dWC ,0,I(t)

z− t
, z ∈ C \Γ ,

lim
n→∞

D1/2
n

C−1
n

�
GDn

n
(z)
�−1

G
Dn

n−1(z)D
1/2
n
=

∫
dWC ,0,I(t)

z− t
, z ∈ C \Γ ,

where WC ,0,I is the matrix of measures associated with the sequence of biortho-
gonal polynomials {UC ,0,I

n
}n∈N and {T C ,0,I

n
}n∈N satisfying

xUC ,0,I
n
(x) = U

C ,0,I
n+1 (x)+

�
1 α/(α+ 1)
0 1

�
U

C ,0,I
n−1 (x) , n ∈ N ,

x T C ,0,I
n
(x) = T

C ,0,I
n+1 (x)

�
1 α/(α+ 1)
0 1

�
+ T

C ,0,I
n−1 (x) , n ∈ N ,

with initial conditions U
C ,0,I
0 (x) = T

C ,0,I
0 (x) = IN , U

C ,0,I
−1 (x) = T

C ,0,I
−1 (x) = 000N .

Notice that an interesting situation appears when α = 0, because C is the
identity matrix. The above implies that, for all n ∈ N, T I ,0,I

n
(x) = U I ,0,I

n
(x)

and WI ,0,I(x) is a positive definite matrix of measures. Moreover, using Corol-
lary 2.3 in [8] we obtain

∫
dWI ,0,I(t)

z − t
=

z I

2
−

p
(z2− 4) I

2
.

Example 3. Let {Vn}n∈N, {Gn}n∈N be matrix polynomial sequences satisfying the
recurrence relations (4) and (5), respectively, with

An =

�
2n2 0

7n2+ 1 5n2

�
, Bn =

�
3/n 4/n

n 8n2

�
, Cn =

�
2n2 2n

0 n

�
.



RATIO ASYMPTOTIC FOR BI-ORTHOGONAL MATRIX POLYNOMIALS 21

If we take the sequence of positive definite matrices, (Dn)n∈N,

Dn =
n8

(n2− 1)2

�
1/n2+ 1/n4 −2/n3

−2/n3 1/n2+ 1/n4

�
,

then D1/2
n
= n4

n2−1

�
1/n −1/n2

−1/n2 1/n

�
, D−1/2

n
=

�
1/n 1/n2

1/n2 1/n

�
, D−1/2

n
D

1/2
n−1 →

IN . From here

D−1/2
n

An D−1/2
n

=

�
2+ 1/n3+ 5/n2+ 7/n (7n3+ 7n2+ 1)/n4

7+ 1/n2+ 7/n 5+ 1/n3+ 2/n2+ 7/n

�
,

and so, D−1/2
n

AnD−1/2
n
→

�
2 0
7 5

�
,

D−1/2
n

BnD−1/2
n

=

�
(9n2+ 3n+ 4)/n4 (8n3+ 5n+ 3)/n4

(9n4+ 3n+ 4)/n5 (8n5+ n3+ 4n+ 3)/n5

�
,

D−1/2
n

BnD−1/2
n
→

�
0 0
0 8

�
,

D−1/2
n

CnD−1/2
n

=

�
2+ 3/n2 5/n
(3n2+ 2)/n3 1+ 4/n2

�
, D−1/2

n
CnD−1/2

n
→

�
2 0
0 1

�
.

Theorem 8 yields

lim
n→∞

D1/2
n

V
Dn

n−1(z)
�

V Dn

n
(z)
�−1

A−1
n−1D1/2

n
=

∫
dWC ,B,A(t)

z − t
, z ∈ C \ Γ,

lim
n→∞

D1/2
n

C−1
n

�
GDn

n
(z)
�−1

G
Dn

n−1(z)D1/2
n
=

∫
dWC ,B,A(t)

z− t
, z ∈ C \Γ ,

where dWC ,B,A(x) is the matrix of measures of the sequence of biorthogonal
polynomials satisfying for all n ∈ N ,

xUC ,B,A
n
(x) =

�
2 0
0 1

�
U

C ,B,A
n+1 (x) +

�
0 0
0 8

�
UC ,B,A

n
(x) +

�
2 0
7 5

�
U

C ,B,A
n−1 (x) ,

x T A,B,C
n
(x) = T

A,B,C
n+1 (x)

�
2 0
7 5

�
+ T A,B,C

n
(x)

�
0 0
0 8

�
+ T

A,B,C
n−1 (x)

�
2 0
0 1

�
,
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with initial conditions U
C ,B,A
0 (x) = T

C ,B,A
0 (x) = IN , U

C ,B,A
−1 (x) = T

C ,B,A
−1 (x) =

000N .

5.The singular case

In this section, we study the case when the limit matrices A or C are sin-
gular. In [11], for the case of symmetric recurrence coefficients the authors
proved that the ratio asymptotic also exists in the singular case, although they
cannot compute explicitly the degenerate positive definite matrix of measures
appearing in the limit. A similar argument can be applied for obtaining the ex-
istence of outer ratio asymptotics for matrix polynomials satisfying recurrence
relations with nonsymmetric coefficients.

Theorem 9. Let {Vn}n∈N, {Gn}n∈N be the sequences of biorthogonal matrix poly-

nomials with respect to a quasidefinite matrix of measures, W, satisfying the

recurrence relations (4), (5). Let us suppose that (Dn)n∈N is an increasing se-

quence of matrices. Under the hypotheses of Theorem 8, if we assume the limit

matrix A to be singular, then there exists a matrix of measures ν1, for which

lim
n→∞

D1/2
n

V
Dn

n−1(z)
�

V Dn

n
(z)
�−1

A−1
n−1D1/2

n
=

∫
dν1(t)

z − t
, z ∈ C \Γ .

Moreover, if the matrix C is singular, then there exists a matrix of measures ν2,

such that

lim
n→∞

D1/2
n

C−1
n

�
GDn

n
(z)
�−1

G
Dn

n−1(z)D1/2
n
=

∫
dν2(t)

z− t
, z ∈ C \Γ .

Moreover, if we write FA(z) =
∫

dν1(t)

z−t
and FC(z) =

∫
dν2(t)

z−t
, with z /∈ supp(ν),

then these analytic matrix functions satisfy the matrix equation

C F(z)A F(z) + (B− zI) F(z) + I = 000N . (23)

Proof : Following the technique given in Section 4 of [11], it is enough to
reduce the result to the case of varying recurrence coefficients and to use the
matrix polynomials x l IN instead of UC ,B,A

n
(x) and T A,B,C

n
(x) in the proof of

Theorem 6.
In order to prove that the Hilbert transforms of the measures ν1 and ν2

satisfy the matrix equation (23), let us remind that the polynomials V Dk

n
(x)
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and GDk
n
(x) satisfy (21), (22), i.e.

x D
1/2
k

V Dk

n
(x) = D

−1/2
k

An V
Dk

n+1(x)+ D
−1/2
k

Bn V Dk

n
(x)+ D

−1/2
k

Cn V
Dk

n−1(x) ,

xGDk

n
(x)D

1/2
k
= G

Dk

n−1(x)An−1 D
−1/2
k
+ GDk

n
(x)Bn D

−1/2
k
+ G

Dk

n+1(x)Cn+1 D
−1/2
k

.

Let us multiply the right hand side of the first one by
�

V Dn

n

�−1
(x)D−1/2

n
, and

the left hand side of the second one by D−1/2
n

�
GDn

n

�−1
(x). Now, we put k = n

and take limit as n tends to infinity. Then, from Theorem 8

lim
n→∞

D−1/2
n

An V
Dk

n+1(x)
�

V Dn

n
(x)
�−1

D−1/2
n

= F−1
A

,

lim
n→∞

D−1/2
n

�
GDn

n
(x)
�−1

G
Dn

n+1(x)Cn+1 D−1/2
n

= F−1
C

,

and the result follows.
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