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Abstract: We present some features of the smooth structure, and of the canonical
smooth stratification on the orbit space of a proper Lie groupoid. One of the main
features is that of Morita invariance - it allows us to talk about the canonical smooth
stratification on the orbispace presented by the proper Lie groupoid. We make no
claim to originality. The goal of these notes is simply to give a complementary
exposition to those available, and to clarify some subtle points where the literature
can sometimes be confusing, even in the classical case of proper Lie group actions.
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1. Introduction
Lie groupoids are geometric objects that generalize both Lie groups and

smooth manifolds, and permit an unified approach to the study of several
objects of interest in differential geometry, such as Lie group actions, folia-
tions and principal bundles (see for example [8, 36, 43] and the references
therein). They have found wide use in Poisson and Dirac geometry (e.g. [11])
and noncommutative geometry [10].
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One of the main features of Lie groupoids is that they permit studying
singular objects, in particular quotients, as if they were smooth. This is
because groupoids also generalize equivalence relations on manifolds, but
keep record of the different ways in which points can be equivalent. As such,
every Lie groupoid G ⇒ M has an associated quotient space M/G by the
equivalence relation it defines - its orbit space. Due to their unifying nature,
Lie groupoids are then useful in studying a variety of singular spaces such as
leaf spaces of foliations, orbit spaces of actions, and orbifolds.

As a topological space, the orbit space M/G of a Lie groupoid can be very
uninteresting, so when talking about its orbit space, it is common to consider
extra structure, constructed from the Lie groupoid. There are several dif-
ferent approaches to building a good model for singular, or quotient spaces.
To name a few, one can build Haefliger’s classifying space [29] (also related
to Van Est’s S-atlases [65]), or a noncommutative algebra of functions as
a model for the quotient, as in the Noncommutative geometry of Connes
[10]. There is also the theory of stacks, which grew out of algebraic geometry
[2, 3, 21, 27] (where algebraic groupoids are used instead) and has recently
gained increasing interest in the context of differential geometry (cf. e.g.
[5, 30, 34, 41]). The common feature to all these approaches is that they
start by modelling the situation at hand by the appropriate Lie groupoid
(the holonomy groupoid of a foliation [29], or an orbifold groupoid as an orb-
ifold atlas [44], for example). The way in which a good model M//G for the
quotient is then constructed out of the Lie groupoid is what differs. We refer
to [46] for a comparison of these and some other approaches to modelling
quotients via groupoids.

Let us mention in more detail the role of Lie groupoids in studying orbifolds.
The idea is that these are spaces which are locally modelled by quotients of
Euclidean space by actions of finite groups (where the actions are considered
part of the structure!). Simple as it may seem, making this description precise
has been subtle. Manifestations of orbifolds were first considered in classical
algebraic geometry, where they were called by the name of varieties with
quotient singularities (See for example [1] and the references therein for an
account). But these consisted only of the underlying quotient space. Taking
into account the group actions, classical orbifolds were studied by Satake [54]
and Thurston [62], and were defined in terms of charts and atlases, similar
to manifold atlases. However, this definition still had serious limitations.
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The modern take on orbifolds, following the work of Haefliger [29] and
Moerdijk-Pronk [44], bypasses those limitations by using a special class of
Lie groupoids to describe orbifolds - that of proper étale Lie groupoids. In
modern terminology, an orbifold atlas on a topological space X is a proper
étale Lie groupoid G ⇒ M , together with an homeomorphism between its
orbit space M/G and X. An orbifold structure on X is then defined as an
equivalence class of orbifold atlases on X. The correct notion of equivalence
between atlases is provided by the notion of Morita equivalence between the
corresponding Lie groupoids. This makes sense because, in particular, a
Morita equivalence between Lie groupoids induces an homeomorphism be-
tween their orbit spaces. Indeed, Morita invariant information encodes the
transverse geometry of a Lie groupoid, meaning that geometry of its orbit
space which is independent of a particular choice of atlas (see Theorem 4.3.1
in [18] for a precise statement of this fact).

The definition of orbifolds using Lie groupoids may seem more complicated
than the one in terms of local charts, but it has some crucial advantages.
First of all, it allows naturally for the treatment of orbifolds where the local
actions are non-effective. This is a situation which occurs in several important
examples, such as sub-orbifolds, weighted projective spaces, or simple moduli
spaces . It also makes possible to correctly deal with morphisms of orbifolds.
Some standard textbook references on orbifolds are [1, 43].

In a similar fashion, we can describe atlases for differentiable stacks if we
now allow for the use of general Lie groupoids. Hence, studying the differ-
ential geometry of a differentiable stack can essentially be done by studying
Morita invariant geometry on Lie groupoids.

There are some very recent developments in the treatment of the differ-
ential geometry of singular spaces in this way. Let us name a few exam-
ples (which certainly do not constitute a complete list). Vector fields on
differentiable stacks have been studied via multiplicative vector fields on Lie
groupoids [6, 31, 35, 49]. There are now Riemannian metrics for differentiable
stacks, studied via Riemannian groupoids [19, 20]. Integral affine structures
on orbifolds appear via (special classes of) symplectic groupoids [13, 14, 12].
Measures and densities on differentiable stacks can be studied via transverse
measures for Lie groupoids [15, 71].

In these notes we focus on two aspects of the geometry of a particular
class of differentiable stacks, called orbispaces. Those are the differentiable
stacks which have an atlas given by a proper Lie groupoid . We describe and



4 M. CRAINIC AND J. N. MESTRE

present some features of the smooth structure, and of the canonical smooth
stratification on an orbispace (cf. [51]) which we get associated to any Lie
groupoid presenting it.

Orbispaces generalize orbifolds and have particularly good features among
differentiable stacks. Among them, let us mention that a linearization result
for proper Lie groupoids [17, 70, 72] permits the analysis of the local geometry
of orbispaces. Essentially, the normal form given by the linearization provides
adapted coordinates to the structure of the orbispace. As in the case of
orbifolds, early definitions for orbispaces have appeared in terms of charts
[9, 52, 55], but nowadays they are usually treated using the language of Lie
groupoids (cf. e.g. [18, 40, 63]).

In order to study the smooth structure of an orbispace, we take an approach
inspired by algebraic geometry and see the orbispace as a locally ringed space,
equipped with a sheaf of smooth functions. As is the general philosophy, the
sheaf of smooth functions on the orbispace can be described in terms of
smooth invariant functions on any Lie groupoid presenting it. In this way
we frame orbispaces in the theory of differentiable spaces, which is a simple
version of scheme theory for differential geometry [47]. We then present
two alternative ways to describe the smooth structure, each with its own
advantages. A different strategy, which also proves useful, but that we shall
not discuss in this text is that of equipping an orbispace with the structure
of a diffeology. We refer to [66, 67, 69] for details on this approach.

The canonical stratification of an orbispace is a decomposition of the or-
bispace into subspaces which carry a smooth manifold structure and which
fit together nicely. When studying an orbispace, there is a canonical strati-
fication which appears. It is closely connected to the stratification induced
by the partition by orbit types in the theory of proper Lie group actions.

We explain how to extend the constructions of the canonical stratification
of a proper Lie group action into the context of proper Lie groupoids and
orbispaces (cf. e.g. [24, 50]). This gives a different (but equivalent) take on
the stratification of [51]. More specifically, we use the description of strati-
fications via partitions by manifolds (cf. e.g. [24]) instead of the approach
using germs of decompositions (cf. e.g. [50, 51]).

We also present proofs for some results that seem to be commonly accepted
as an extension of the theory of orbit type stratifications for proper Lie group
actions, but which, to the best of our knowledge, were not readily available.
This is the case for example with the principal Morita type theorem (4.36),



ORBISPACES AS SMOOTH STRATIFIED SPACES 5

which states the existence of a connected open dense stratum of the canonical
stratification of an orbispace by Morita type.
Outline of the paper and of the main results. In section 2 we present
some background material on Lie groupoids, including some basics on Morita
equivalences, proper Lie groupoids, and orbispaces.

In section 3 we describe “the canonical smooth structure” that orbispaces
are endowed with. Several approaches to smooth structures on singular
spaces will be recalled in the paper. We focus on the framework provided by
differentiable spaces (cf. [47]) and prove Main theorem 1. We then move to
other settings and derive two variations of the main theorem 1.

Main Theorem 1 (and variations). The orbit space X of a proper Lie
groupoid G ⇒M , together with the sheaf C∞X on X (Definition 3.1), is a re-
duced differentiable space, a locally fair affine C∞-scheme, and a subcartesian
space.

These smooth structures are Morita invariant, thus associated to the orbis-
pace presented by G.

More refined versions of this statement can be found inside the paper (The-
orem 3.38 and Propositions 3.47 and 3.54).

In section 4 we move to the canonical stratification on orbispaces. Its de-
scription is inspired by the similar stratifications for proper Lie group actions
(cf. e.g. [24]), that it generalizes, but adapted to the groupoid context. The
main idea here is that of “Morita types” - the pieces of the partition giv-
ing rise to the canonical stratification which, by construction, will be Morita
invariant.

Main Theorem 2. Let G ⇒ M be a proper Lie groupoid. Then the parti-
tions of M and of X = M/G by connected components of Morita types are
stratifications.

Given a Morita equivalence between two Lie groupoids G and H, the induced
homeomorphism at the level of orbit spaces preserves this stratification.

We will also prove a principal type theorem for the canonical stratification
on the orbit space (Theorem 4.36).

In section 5 we combine the previous two sections, looking at the interplay
between the smooth structure and the canonical stratification on orbispaces.

Main Conclusion. Let G ⇒ M be a proper Lie groupoid. Then M and
the orbit space X = M/G, together with the canonical stratifications, are
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stratified differentiable spaces. Moreover, the canonical stratifications of M
and X are Whitney stratifications.

Any Morita equivalence between two proper Lie groupoids induces an iso-
morphism of stratified differentiable spaces between their orbit spaces.

2. Background
2.1. Lie groupoids. Recall that a Lie groupoid consists of two smooth
manifolds, G and M , called the space of arrows and the space of objects
respectively, together with submersions s, t : G → M , called the source
and target respectively, a partially defined multiplication m : G(2) → G
(defined on the space of composable arrows G(2) = {(g, h) ∈ G | s(g) = t(h)})
is the space of composable arrows, a unit section u : M → G, and an
inversion i : G → G, satisfying group-like axioms (see e.g. [43]).

We will also use the notations u(x) = 1x, i(g) = g−1 and m(g, h) = gh. An
arrow g with source x and target y is sometimes denoted more graphically

by g : x → y, x
g→ y or y

g←− x and we commonly denote the groupoid G
over M by G ⇒M .

The space of arrows G is not required to be Hausdorff, but the space of
objects M and the fibres of the source map s : G → M are. This is done in
order to accommodate several natural examples of groupoids for which the
space of arrows may fail to be Hausdorff. A typical source of such examples
is foliation theory.

From the definition of a Lie groupoid G ⇒ M we can conclude that the
inversion map is a diffeomorphism of G and that the unit map is an embedding
u : M ↪→ G. We often identify the base of a groupoid with its image by the
unit embedding.

Example 2.1.

1. (Lie groups) Any Lie group G can be seen as a Lie groupoid over a
point G⇒ {∗}.

2. (Submersion groupoids) Given any submersion π : M → B there is a
groupoid M×πM ⇒M , for which the arrows are the pairs (x, y) such
that π(x) = π(y), and the structure maps are defined in the same way
as with the pair groupoid. This is called the submersion groupoid of
π and it is sometimes denoted by G(π). In the particular case of π
being the identity map of M we obtain the so-called unit groupoid;
when B is a point, we obtain the pair groupoid of M .
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3. (Bundles of Lie groups; vector bundles) A bundle of Lie groups param-
eterized by a manifold M is the same as a Lie groupoid G for which
the source map coincides with the target map. As a particular case,
any vector bundle gives rise to a Lie groupoid in this way, with source
and target equal to the projection of the vector bundle, and fibrewise
addition as the composition.

4. (Action groupoids) Let G be a Lie group acting smoothly on a mani-
fold M . Then we can form the action Lie groupoid GnM ⇒M . The
objects are the points of M , and the arrows are pairs (g, x) ∈ G×M .
The structure maps are defined by s(g, x) = x, t(g, x) = g · x, 1x =
(e, x), (g, x)−1 = (g−1, g · x) and (g, h · x)(h, x) = (gh, x).

5. (Gauge groupoids) Let P → M be a principal bundle with structure
group G. Then we can take the quotient (P × P )/G of the pair
groupoid of P by the diagonal action of G, to obtain a Lie groupoid
over M called the gauge groupoid of P , denoted by Gauge(P ) ⇒M .

6. (Tangent groupoids) For any Lie groupoid G ⇒M , applying the tan-
gent functor gives us a groupoid TG ⇒ TM , which we call the tangent
groupoid of G, for which the structural maps are the differential of the
structural maps of G.

Definition 2.2. Let G ⇒ M be a Lie groupoid and x ∈ M . The subsets
s−1(x) and t−1(x) of G are called the source-fibre of x and the target-fibre
of x respectively (or s-fibre and t-fibre). The subset Gx := {g ∈ G | s(g) =
t(g) = x} ⊂ G is called the isotropy group of x.

Definition 2.3. Any Lie groupoid G ⇒ M defines an equivalence relation
on M such that two points x and y are related if and only if there is an arrow
g ∈ G such that s(g) = x and t(g) = y. The equivalence classes are called the
orbits of the groupoid and the orbit of a point x ∈ M is denoted by Ox. A
subset of M is said to be invariant if it is a union of orbits. Given a subset U
of M , the saturation of U , denoted by 〈U〉, is the smallest invariant subset
of M containing U .

The quotient of M by this relation, endowed with the quotient topology,
is called the orbit space of G and is denoted by M/G.

The following result describes these pieces of a groupoid (cf. e.g. [43]).

Proposition 2.4 (Structure of Lie groupoids). Let G ⇒M be a Lie groupoid
and x, y ∈M . Then:



8 M. CRAINIC AND J. N. MESTRE

1. the set of arrows from x to y, s−1(x) ∩ t−1(y) is a Hausdorff subman-
ifold of G;

2. the isotropy group Gx is a Lie group;
3. the orbit Ox through x is an immersed submanifold of M ;
4. the s-fibre of x is a principal Gx-bundle over Ox, with projection the

target map t.

The partition of the manifolds into connected components of the orbits
forms a foliation, which is possibly singular, in the sense that different leaves
might have different dimension. To give an idea of some different kinds of
singular foliations that might occur let us look at two very simple examples
coming from group actions.

Example 2.5. Let the circle S1 act on the plane R2 by rotations. Then
the leaves of the singular foliation on the plane corresponding to the associ-
ated action groupoid are the orbits, i.e., the origin and the concentric circles
centred on it.

Let now (R+,×) act on the plane R2 by scalar multiplication. The leaves
of the corresponding singular foliation are the origin and the radial open
half-lines.

Note that the first example has a Hausdorff orbit space; in the second
example, on the other hand, there is a point in the orbit space which is
dense, defined by the orbit consisting of the origin.

Definition 2.6. A Lie groupoid morphism between G ⇒M and H⇒ N
is a smooth functor, i.e., a pair of smooth maps Φ : G → H and φ : M → N
commuting with all the structure maps. An isomorphism is an invertible
Lie groupoid morphism.

Definition 2.7. Let G ⇒ M be a Lie groupoid. A Lie subgroupoid of G
is a pair (H, j) consisting of a Lie groupoid H and an injective immersive
groupoid morphism j : H → G.

2.2. Actions and representations. A groupoid can act on a space fibred
over its base, with an arrow g : x → y mapping the fibre over x onto the
fibre over y.

Definition 2.8. Let G ⇒ M be a Lie groupoid and consider a surjective
smooth map µ : P →M . A (left) action of G on P along the map µ, which
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is called the moment map, is a smooth map

G ×M P = {(g, p) ∈ G × P | s(g) = µ(p)} → P,

denoted by (g, p) 7→ g · p = gp, such that µ(gp) = t(g), and satisfying the
usual action axioms (gh)p = g(hp) and 1µ(p)p = p. We then say that P is a
left G-space.

G P

M

y

µ

Example 2.9. Any Lie groupoid G ⇒ M acts canonically on its base, with
moment map the identity on M , by letting g : x → y act by gx = y; it
also acts on G itself by left translations, with the target map t : G → M as
moment map, and action g · h = gh.

Definition 2.10. Let G ⇒M be a Lie groupoid. A representation of G is
a vector bundle E over M , together with a linear action of G on E, meaning
that for each arrow g : x → y, the induced map g : Ex → Ey is a linear
isomorphism.

In general, given a groupoid G, there might not be many interesting rep-
resentations, so let us focus on some particular classes that have natural
examples.

Definition 2.11. (Regular and transitive groupoids) A Lie groupoid is called
regular if all the orbits have the same dimension. It is called transitive if
it has only one orbit.

Example 2.12. The gauge groupoid Gauge(P ) of a principal bundle P is
transitive. Conversely, if G ⇒ M is a transitive groupoid, then G is iso-
morphic to Gauge(s−1(x)), the gauge groupoid of the Gx-principal bundle

s−1(x)
t→M , for any object x ∈M .

Example 2.13 (Representations of regular groupoids). Let G ⇒ M be a
regular Lie groupoid, with Lie algebroid A. Then G has natural representa-
tions on the kernel of the anchor map of A, denoted by i, and on the normal
bundle to the orbits (which is the cokernel of the anchor), denoted by ν. An
arrow g ∈ G acts on α ∈ is(g) by conjugation,

g · α = dRg−1 ◦ dLgα
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and it acts on [v] ∈ νs(g) by the so called normal representation: if g(ε) is

a curve on G with g(0) = g such that [v] =
[
d
dε |ε=0

s(g(ε))
]
, then

g · [v] =

[
d

dε |ε=0
t(g(ε))

]
.

In other words, g · [v] can be defined as [dt(X)], where X ∈ TgG is any s-lift
of v, meaning that ds(X) = v.

Example 2.14 (Restriction to an orbit). If G ⇒M is any Lie groupoid, not
necessarily regular, then the normal spaces to the orbits may no longer form a
vector bundle. Nonetheless, we can still get a representation of an appropriate
restriction of G on some appropriate normal bundle. To be precise, if O is
an orbit of G, then the restriction

GO = {g ∈ G | s(g), t(g) ∈ O}

is a Lie groupoid overO (isomorphic to the gauge groupoid of the Gx-principal

bundle s−1(x)
t→ M , for any object x ∈ O). It has a natural representation

on NO, the normal bundle to the orbit inside of M , defined in the following
way. Denote by Nx := TxM/TxOx the fibre of NO at x. Let g ∈ GO and
[v] ∈ Ns(g). Then, just as in the regular case, we define g · [v] to be [dt(X)],
for any s-lift X ∈ TgG of v. Furthermore given any point x in the orbit
O we can restrict this representation to a representation of the isotropy Lie
group Gx on the normal space Nx, also called the normal representation
(or isotropy representation) of Gx.

2.3. Morita equivalences.

Definition 2.15. A left G-bundle is a left G-space P together with a G-
invariant surjective submersion π : P → B. A left G-bundle is called princi-
pal if the map G ×M P → P ×π P , (g, p) 7→ (gp, p) is a diffeomorphism. So
for a principal G-bundle, each fibre of π is an orbit of the G-action and all
the stabilizers of the action are trivial.

G P

M B

y

π
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The notions of right action and right principal G-bundle are defined in an
analogous way.

Definition 2.16. A Morita equivalence between two Lie groupoids G ⇒
M and H ⇒ N is given by a principal G − H-bibundle, i.e., a manifold
P together with moment maps α : P → M and β : P → N , such that
β : P → N is a left principal G-bundle, α : P → M is a right principal H-
bundle and the two actions commute: g·(p·h) = (g·p)·h for any g ∈ G, p ∈ P
and h ∈ H. We say that P is a bibundle realising the Morita equivalence.

G P H

M N

y

α β

x

Example 2.17 (Isomorphisms). If f : G → H is an isomorphism of Lie
groupoids, then G and H are Morita equivalent. A bibundle can be given by
the graph Graph(f) ⊂ G×H, with moment maps t◦ pr1 and s◦ pr2, and the
natural actions induced by the multiplications of G and H.

Example 2.18 (Pullback groupoids). Let G be a Lie groupoid over M and
let α : P → M be a surjective submersion. Then we can form the pullback
groupoid α∗G ⇒ P , that has as space of arrows P ×M G ×M P , meaning that
arrows are triples (p, g, q) with α(p) = t(g) and s(g) = α(q). The structure
maps are determined by

s(p, g, q) = q, t(p, g, q) = p and (p, g1, q)(q, g2, r) = (p, g1g2, r).

The groupoids G and α∗G are Morita equivalent, a bibundle being given
by G ×M P . The left action of G has moment map t ◦ pr1 : G ×M P → M
is given by g · (h, p) = (gh, p) and the right action of α∗G has moment map
pr2 : G ×M P → P and is given by (h, p) · (p, k, q) = (hk, q).

Remark 1 (Decomposing Morita equivalences). Let G andH be Morita equiv-
alent, with bibundle P as above. Since P is a principal bibundle, it is easy
to check that

α∗G = P ×M G ×M P ∼= P ×M P ×N P ∼= P ×N H×N P = β∗H,

as Lie groupoids over P .
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This means that we can break any Morita equivalence between G and H,
using a bibundle P , into a chain of simpler Morita equivalences: G is Morita
equivalent to α∗G ∼= β∗H, which is Morita equivalent to H.

Example 2.19.

1. Two Lie groups are Morita equivalent if and only if they are isomor-
phic.

2. Any transitive Lie groupoid G is Morita equivalent to the isotropy
group Gx of any point x in the base.

3. Let G ⇒ M be a Lie groupoid, let N ⊂ M be a submanifold that
intersects transversely every orbit it meets and let 〈N〉 denote the
saturation of N . Then GN ⇒ N is Morita equivalent to G〈N〉 ⇒ 〈N〉.
As a particular case, we can take N to be any open subset of M .

4. The groupoid G(π) associated to a submersion π : M → N is Morita
equivalent to the unit groupoid π(M).

Lemma 2.20 (Morita equivalences preserve transverse geometry). Let G ⇒
M and H ⇒ N be Morita equivalent Lie groupoids and let P be a bibundle
realising the equivalence. Then P induces:

1. A homeomorphism between the orbit spaces of G and H,

Φ : M/G −→ N/H;

2. isomorphisms φ : Gx −→ Hy between the isotropy groups at any points
x ∈ M and y ∈ N whose orbits are related by Φ, i.e., for which
Φ(Ox) = Oy;

3. isomorphisms φ̃ : Nx −→ Ny between the normal representations at
any points x and y in the same conditions as in point 2, which are
compatible with the isomorphism φ : Gx −→ Hy.

Proof : First, let us define the map Φ: fix a point x in the base of G. Then
for any point x′ in the orbit of x, the fibre α−1(x′) is a single orbit for the
H-action on P ; it projects via β to a unique orbit of H, which we define to
be Φ(Ox). Invariance of β under the action of G implies that Φ(Ox) does
not depend on the choice of x′, so Φ is well defined. In order to see that Φ
is a homeomorphism, note that bi-invariant open sets on P correspond to
invariant opens on G and H.

Let x ∈ M and y ∈ N be points such that their orbits are related by
Φ. Then there is a p ∈ P such that α(p) = x and β(p) = y. Any such p
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induces an isomorphism φp : Gx → Hy between the isotropy groups at x and
y, uniquely determined by the condition gp = pφp(g).

Moreover, p induces an isomorphism φ̃p : Nx → Ny between the normal
representations at x and y, uniquely determined by

φ̃([(dα)p(Xp)]) = [(dβ)p(Xp)], for all Xp ∈ TpP.

2.4. Proper Lie groupoids.

Definition 2.21. A Lie groupoid G ⇒M is called proper if it is Hausdorff
and (s, t) : G →M ×M is a proper map.

Example 2.22. For several of the examples of Lie groupoids described be-
fore the condition of properness becomes some sort of familiar compactness
condition.

1. A Lie group G is proper when seen as a Lie groupoid if and only if it
is compact.

2. The submersion groupoid G(π) associated to a submersion π : M → B
is always proper.

3. An action groupoid is proper if and only if it is associated to a proper
Lie group action.

4. The gauge groupoid of a principal G-bundle is proper if and only if G
is compact.

5. If G ⇒ M is a proper Lie groupoid and S ⊂ M a submanifold such
that the restriction GS ⇒ S is a Lie groupoid, then GS is proper as
well.

The following result gives a first glimpse on how proper Lie groupoids are
better behaved than general ones.

Proposition 2.23. Let G ⇒ M be a proper Lie groupoid. Then the orbit
space M/G is Hausdorff and the isotropy group Gx is compact for every x ∈
M .

Proof : Since the map (s, t) : G → M ×M is proper, it is closed, and has
compact fibres. This automatically implies that the isotropy groups are com-
pact and since the orbit space is the quotient of M by the closed relation
(s, t)(G) ⊂M ×M , it is Hausdorff.

Proposition 2.24. Let G and H be Morita equivalent Lie groupoids. If one
of them is proper, then the other one is proper as well.
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Proof : As mentioned in Remark 1, in order to prove invariance of a property,
we may assume that we the groupoid G ⇒M and its pullbackH = α∗G ⇒ N
via a surjective submersion α : N → M . But then we have a pullback
diagram relating the maps (s, t) : G −→M ×M and (s′, t′) : H −→ N ×N .
The result follows from stability of proper maps (with Hausdorff domain)
under pullback.

Before looking at the local structure of a proper Lie groupoid, let us briefly
recall the local structure of proper Lie group actions. Whenever a Lie group
G acts on a manifold M , we can differentiate the action to get an induced
action of G on TM , the tangent action of G, defined by

g ·X =
d

dε |ε=0
(g · x(ε)),

where X ∈ TxM and x(ε) is a curve representing X.
For any point x ∈M , if we restrict this action to an action of the isotropy

group Gx, then we obtain a representation of Gx on TxM . Since the action
of Gx leaves the tangent space to the orbit through x invariant, we obtain an
induced representation on the quotientNx = TxM/TxOx, called the isotropy
representation at x. This representation is used in the normal form around
an orbit for a proper action of a Lie group, described by the Slice theorem,
also called Tube theorem [24, p. 109].

Theorem 2.25 (Slice theorem for proper actions). Let a Lie group G act
properly on a manifold M and let x ∈ M . Then there is an invariant open
neighbourhood of x (called a tube for the action) which is equivariantly dif-
feomorphic to G×Gx

B, where B is a Gx-invariant open neighbourhood of 0
in Nx (the isotropy representation).

Let us return to the case of a proper Lie groupoid. First, let us recall that
there is a pointwise version of properness.

Definition 2.26. Let G ⇒ M be a Lie groupoid and x ∈ M . The groupoid
G is proper at x if every sequence (gn) ∈ G such that (s, t)(gn)→ (x, x) has
a converging subsequence.

Lemma 2.27. ([18]) A Lie groupoid is proper if and only if it is proper at
every point and its orbit space is Hausdorff.
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Definition 2.28. Let G be a Lie groupoid over M and x ∈ M . A slice at
x is an embedded submanifold Σ ⊂ M of dimension complementary to Ox
such that it is transverse to every orbit it meets and Σ ∩ Ox = {x}.

The following result gives us some information about the longitudinal
(along the orbits) and the transverse structure of a groupoid G, at a point x
at which G is proper. For a proof we refer to [17].

Proposition 2.29. Let G ⇒M be a Lie groupoid which is proper at x ∈M .
Then

1. The orbit Ox is an embedded closed submanifold of M ;
2. there is a slice Σ at x.

Let G ⇒ M be a Lie groupoid and O an orbit of G. We recall that the
restriction

GO = {g ∈ G | s(g), t(g) ∈ O}
is a Lie groupoid over O. The normal bundle of GO in G is naturally a Lie
groupoid over the normal bundle of O in M :

N (GO) := TG/TGO ⇒ NO := TM/TO,
with the groupoid structure induced from that of TG ⇒ TM . The groupoid
N (GO) is called the local model, or the linearization, of G at O.

Recall also that the restricted groupoid GO has a natural representation on
the normal bundle to the orbit, called the normal representation, defined by

g · [v] = [dt(X)],

for any v ∈ Ts(g)M and any s-lift X ∈ TgG of v.
This representation can be restricted, for any x ∈ M , to a representation

of the isotropy group Gx on Nx, also called the normal representation, or
isotropy representation, at x.

Using this representation, there is a more explicit description of the local
model using the isotropy bundle by choosing a point x of O. Let Px denote
the s-fibre of x and recall that it is a principal Gx-bundle overOx (Proposition
2.4). Then the normal bundle to O is isomorphic to the associated vector
bundle

NO ∼= Px ×Gx Nx,

and the local model is

N (GO) ∼= (Px × Px)×Gx Nx.
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The structure on the local model is given by

s([p, q, v]) = [q, v], t([p, q, v]) = [p, v], [p, q, v] · [q, r, v] = [p, r, v].

Remark 2. Since GO is transitive, it is Morita equivalent to Gx. Moreover,
the linearization N (GO) is Morita equivalent to Gx nNx.

The following linearization result is an essential tool for proving most of
the results in this text.

Theorem 2.30 (Linearization theorem for proper groupoids). Let G ⇒ M
be a Lie groupoid and let O be the orbit through x ∈M . If G is proper at x,
then there are neighbourhoods U and V of O such that GU ∼= N (GO)V .

The proof of the linearization result around a fixed point (an orbit consist-
ing of a single point) was first completed by Zung [72]; together with previous
results of Weinstein [70], it gave rise to a similar result to the one we present
here.

The final version of the Linearization theorem that we present here has ap-
peared in [17], where issues regarding which were the correct neighbourhoods
of the orbits to be taken were solved;

Remark 3. Combining the Linearization theorem with the previous remarks
on Morita equivalence, we conclude that any orbit Ox of a proper groupoid
G has an invariant neighbourhood such that the restriction of G to it is
Morita equivalent to GxnNx. For this we use also that Nx admits arbitrarily
small Gx-invariant open neighbourhoods of the origin which are equivariantly
diffeomorphic to Nx.

When we are interested in local properties of a groupoid, it is often enough
to have an open around a point in the base, not necessarily containing the
whole orbit, and the restriction of the groupoid to it. In this case it is possible
to give a simpler model for the restricted groupoid [51, Cor. 3.11]:

Proposition 2.31 (Local model around a point). Let x ∈ M be a point in
the base of a proper groupoid G. There is a neighbourhood U of x in M ,
diffeomorphic to O ×W , where O is an open ball in Ox centred at x and W
is a Gx-invariant open ball in Nx centred at the origin, such that under this
diffeomorphism the restricted groupoid GU is isomorphic to the product of the
pair groupoid O ×O ⇒ O with the action groupoid Gx ×W ⇒ W .
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One of the main features of proper groupoids is that it is possible to take
averages of several objects (functions, Riemannian metrics, ...) to produce
invariant versions of the same objects. This is done using a Haar system,
in an analogous way to how one uses a Haar measure on a compact Lie
group (cf. [64], and also the appendix in [15] for further clarification on the
constructions).

Definition 2.32. Given a Lie groupoid G over M , a (right) Haar system
µ is a family of smooth measures { µx | x ∈ M} with each µx supported on
the s-fibre of x, satisfying the properties

1. (Smoothness) For any f ∈ C∞c (G), the formula

Iµ(f)(x) :=

∫
s−1(x)

f(g) dµx(g)

defines a smooth function Iµ(φ) on M .
2. (Right-invariance) For any h ∈ G with h : x → y and any f ∈
C∞c (s−1(x)) we have∫

s−1(y)

f(gh) dµy(g) =

∫
s−1(x)

f(g) dµx(g)

For such a Haar system, a cut-off function is a smooth function c
on M satisfying

3. s : supp(c ◦ t)→M is a proper map;
4.
∫
s−1(x) c(t(g)) dµx(g) = 1 for all x ∈M .

Proposition 2.33. Any Lie groupoid admits a Haar system and cut-off func-
tions exist for any proper Lie groupoid.

2.5. Orbifolds, orbispaces and differentiable stacks. Lie groupoids
can be used in order to conduct differential geometry on singular (i.e. not
smooth) spaces. The way to do so is to model the singular space we wish
to study as the orbit space of a Lie groupoid, bearing in mind that Morita
equivalent Lie groupoids will describe the “same” space.

We are interested in spaces which are locally modelled on quotients of
Euclidean spaces by smooth actions of compact Lie groups (and such that
the actions are part of the structure), called orbispaces. A particular class of
such spaces is that of orbifolds. These are spaces which are locally modelled
on quotients of Euclidean spaces by smooth actions of finite groups. Orbifolds
are more widespread in the literature (see [33, Ch. 8] for a review of the
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several definitions of orbifold, and of the category or 2-category of orbifolds
in the literature). It is by generalizing their definition in terms of groupoids
(cf. [44]) that we arrive at the following definition of orbispace.

Definition 2.34. An orbispace atlas on a topological space X is given by
a proper Lie groupoid G ⇒M and a homeomorphism f : M/G −→ X.

Two orbispace atlases (G, f) and (H, f ′) are equivalent if G ⇒ M and
H ⇒ N are Morita equivalent, and the homeomorphism Φ : N/H −→ M/G
induced by the Morita equivalence (see Lemma 2.20) satisfies f ◦ Φ = f ′.

An orbispace is a topological space equipped with an equivalence class
of orbispace atlases. Given any proper Lie groupoid G ⇒ M , the orbispace
associated to it by using the atlas (G, idM/G) on M/G is denoted by M//G.

In this language, an orbifold is simply an orbispace which admits an atlas
(G, f) such that all the isotropy groups of G are discrete (cf. [44, 16]). On
the other hand, dropping the condition of properness in the definition of
orbispace atlas, we arrive at the notion of differentiable stack. Therefore,
orbispaces are examples of differentiable stacks, and orbifolds are examples
of orbispaces.

Remark 4. We warn the reader about the fact that we are avoiding all tech-
nicalities related with defining morphisms (and 2-morphisms) between dif-
ferentiable stacks (and orbispaces), but we implicitly identify isomorphic or-
bispaces. Nonetheless, the definitions presented here are sufficient for the
scope of this exposition. We refer to [5, 30, 41] for comprehensive introduc-
tions to the theory of differentiable stacks, and to [18] for the specific case of
orbispaces.

3. Orbispaces as smooth spaces
We study the smooth structure of an orbispace X. The approach we follow

is to single out the sheaf C∞X of smooth functions on X, and study (X, C∞X )
as a locally ringed space. Throughout this section let G ⇒ M be a proper
Lie groupoid with orbit space X.

3.1. Smooth functions on orbit spaces of proper groupoids.

Definition 3.1. The algebra of smooth functions on X is defined as

C∞(X) := {f : X → R | f ◦ π ∈ C∞(M)},
where π : M −→ X denotes the canonical projection map.
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The sheaf of smooth functions on X, denoted by C∞X , is defined by
letting

C∞X (U) := C∞(π−1(U)/G|π−1(U)).

Note that the pullback map π∗ : C∞(X) −→ C∞(M) identifies the algebra
of smooth functions on X with the algebra of G-invariant smooth functions
on M , denoted by C∞(M)G−inv or C∞(M)G.

The orbit space X of a proper Lie groupoid is Hausdorff, second-countable,
and locally compact (since the quotient map π : M −→ X is open for any
groupoid G ⇒ M ), hence also paracompact. Using these properties, we are
able to guarantee the existence of several useful smooth functions on X.

Proposition 3.2. The algebra C∞(X) is normal, i.e., for any disjoint
closed subsets A,B ⊂ X there is a function f ∈ C∞(X) with values in
[0, 1] such that f|A = 0 and f|B = 1.

Proof : Let A,B ⊂ X be closed and disjoint. The sets π−1(A) and π−1(B)
are closed and disjoint in M . Since M is a manifold, we can find a function
h ∈ C∞(M) separating these two sets. Now average h with respect to a Haar
system on G. We obtain in this way an invariant smooth function h̃ on M
which still separates π−1(A) and π−1(B). Being invariant, it corresponds via
the pullback by the projection π to a function f ∈ C∞(X) that separates A
and B.

The fact that C∞(X) is normal is used to prove the existence of useful
smooth functions on X: partitions of unity and proper functions. Before we
see how, let us recall the Shrinking Lemma (see for example [23] for a proof).
We say that a cover {Ui}i∈I of a space X is locally finite if for each x ∈ X
has a neighbourhood Vx such that there are finitely many indices i ∈ I for
which Vx ∩ Ui 6= ∅.

Lemma 3.3 (Shrinking lemma). Let X be a paracompact Hausdorff space.
Then X is normal and for any open cover {Ui}i∈I of X there is a locally
finite open cover {Vi}i∈I with the property that {Vi ⊂ Ui} for all i ∈ I.

Proposition 3.4 (Partitions of unity). For any open cover U of X there is
a smooth partition of unity subordinated to U .

Proof : One possible proof goes by the standard argument used for the clas-
sical version of this result, for continuous functions on a paracompact Haus-
dorff space [23]. It first involves using the Shrinking lemma twice to obtain
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locally finite open covers {Vn} and {Wn} of X such that W n ⊂ Vn and
V n ⊂ Un for each n. Secondly, since C∞(X) is normal, we can choose func-
tions fn : X → [0, 1] such that fn|X−Vn = 0 and fn|Wn

= 1. Since the covers

used are locally finite, we can define functions gn = fn/
∑
fn, which form a

partition of unity subordinated to U .
There is also a proof using the classical version of the result. Take the open

cover π−1(U) of M defined by the preimages by the projection map of the
opens of U , and consider a smooth partition of unity (fn) subordinated to it,
which exists because M is a manifold. Averaging each function with respect
to a Haar system leads to a smooth partition of unity subordinated to U .

Proposition 3.5 (Existence of proper functions). Let X be the orbit space
of a proper groupoid. There exists a smooth proper function f : X → R.

Proof : Let {Un} be a locally finite countable open cover of X such that each
Un has compact closure. Using the Shrinking lemma twice, find open covers
{Vn} and {Wn} of X such that W n ⊂ Vn and V n ⊂ Un for each n. Let
fn ∈ C∞(X) be a function separating X − Vn and W n. This means that
supp(fn) ⊂ Un and fn = 1 on a neighbourhood of W n. By local finiteness of
the covers we can define the function f =

∑
n nfn, which is proper. Indeed,

if K ∈ R is compact, then it is bounded above by some integer m, and so
f−1(K) is a closed subspace of the compact W 1,∪ . . . ∪ Wm, and so it is
compact itself.

3.2. Locally ringed spaces. Let us recall some background on the more
algebro-geometric approach to studying smooth manifolds using the language
of locally ringed spaces, as well as some classical results about smooth func-
tions on manifolds that will be later generalized to other spaces. In this
section we follow the exposition of [47]. Unless otherwise mentioned, all
manifolds are considered to be finite dimensional, Hausdorff and second-
countable.

Definition 3.6. A ringed R-space (also called ringed space) is a pair
(X,OX) where X is a topological space and OX is a sheaf of R-algebras
on X, called the structure sheaf of the ringed space. A morphism of
ringed spaces is a pair

(φ, φ]) : (X,OX)→ (Y,OY )
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consisting of a continuous map φ : X → Y and a morphism φ] : OY → φ∗OX
of sheaves on Y . A locally ringed space is a ringed space (X,OX) such that
the stalk OX,x at any point x ∈ X is a local ring, i.e., it has a unique maximal
ideal, denoted by mx. A morphism of locally ringed spaces is a morphism
of ringed spaces (φ, φ]) : (X,OX)→ (Y,OY ) such that φ](my) ⊂ mφ(y). This
condition means that

(φ]f)(x) = 0⇔ f(φ(x)) = 0.

A morphism (φ, φ]) is an isomorphism if φ is a homeomorphism and φ] is an
isomorphism of sheaves.

A ringed space (X,OX) is said to be reduced if OX is a subsheaf of
R-algebras of the sheaf CX of continuous functions on X and contains all
constant functions.

Remark 5. In general, the notion of ringed space allows for the structure
sheaf to be a sheaf of unital rings, but since all the structure sheaves we use
in this text are actually sheaves of R-algebras, we restrict to this class.

Any reduced ringed space is automatically a locally ringed space, the
unique maximal ideal of the stalk at a point being the ideal of germs that
vanish at that point.

Example 3.7. The following are two essential examples:

1. Any topological space X is a ringed space if we take OX to be equal
to CX , the sheaf of continuous functions.

2. (Rn, C∞Rn) is a locally ringed space, where C∞Rn is the sheaf of smooth
functions on opens of Rn; it is easy to check that any morphism of
locally ringed spaces (Rn, C∞Rn)→ (Rm, C∞Rm) is just given by a smooth
map Rn → Rm.

We can use the language of locally ringed spaces to give an alternative
(equivalent) definition of smooth manifolds to the usual one in terms of at-
lases.

Definition 3.8 (Manifolds as locally ringed spaces). A smooth manifold
of dimension n is a locally ringed space (M,OM) such that M is Hausdorff,
second-countable, and has a cover by open subsets Ui with the property that
each restriction (Ui,OM |Ui

) is isomorphic (as a locally ringed space) to an
open subset of (Rn, C∞Rn).
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We recall the construction of the real spectrum of an R-algebra A. To start
with, let us see how to construct the underlying set. An ideal m of A is called
a real ideal if it is a maximal ideal and A/m ∼= R. A character on A is
a morphism of R-algebras χ : A → R; the kernel of any character is a real
ideal, so there is a natural bijection between the set of characters on A and
the set of real ideals of A.

Definition 3.9. Let A be an R-algebra. The real spectrum of A is the set

Specr A := Hom(A,R) = {real ideals of A}.

Given a point x in Specr A, the corresponding character is denoted by χx
and the corresponding ideal by mx.

Any element f ∈ A defines a real valued function f̂ (but also denoted by
f if there is no risk of confusion) on Specr A, given by

f̂(x) := χx(f) = [f ] ∈ A/mx
∼= R.

In this way we have that

mx = {f ∈ A | f(x) = 0}
and the corresponding character χx is the evaluation map at x.

The topology that we consider on the real spectrum Specr A is the Gelfand

topology, which is the smallest one such that the functions f̂ : Specr A→ R
are continuous, for all f ∈ A.

For any subset I of an R-algebra A, we define the zero-set of I to be

(I)0 := {x ∈ Specr A | f(x) = 0, ∀f ∈ I}.
By definition, these subsets of Specr A are the closed subsets of the Zariski
topology on Specr A. The Gelfand topology is always finer than the Zariski
topology, although they agree in some cases, as we will see below.

Finally, the structure sheaf on Specr A is the sheaf associated to the pre-
sheaf that assigns to an open subset U ⊂ Specr A the ring AU defined as
the localization (i.e., ring of fractions - see [4]) of A with respect to the

multiplicative system of all elements f ∈ A such that f̂ does not vanish at
any point of U . The stalk at any point coincides with the localization of A
with respect to the multiplicative system {f ∈ A | f̂(x) 6= 0}. The resulting
locally ringed space (Specr A, Ã) is called the real spectrum of A (it has
the same name as the underlying set, but the meaning is usually clear from
the context).
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As mentioned before, a manifold can be recovered from its ring of functions.
To start with, the following theorem shows how to recover the underlying
topological space.

Theorem 3.10. Let M be a smooth manifold. Then the map

χ : M → Specr C
∞(M),

given by χ(p)(f) = f(p) (i.e., χ(p) is the evaluation at p) is a homeomor-
phism.

For a proof see for example [47] or [48], but also the proof of Theorem 3.13
below which generalizes this result. From the proof it also follows that for a
smooth manifold, the Gelfand and the Zariski topologies coincide.

That the structure sheaf associated to the ring C∞(M) by localization co-
incides with the sheaf C∞M of smooth functions on opens of M is a consequence
of the following result (see e.g. [47] for a modern exposition of the proof).

Theorem 3.11 (Localization theorem). Let M be a smooth manifold and
U ⊂ M an open. For any differentiable function f on U there exist global
differentiable functions g, h on M , such that h does not vanish on U and
f = g/h on U , i.e.,

C∞(U) = C∞(M)U .

Finally, smooth maps between manifolds can also be recovered from algebra
maps between the rings of functions.

Theorem 3.12 (Theorem 2.3 in [47]). For any two manifolds M and N
there is a natural bijection

C∞(M,N)→ HomR−alg(C∞(N), C∞(M))

given by φ 7→ φ∗.

With the presented framework in mind, an approach to equipping singular
spaces with smooth structures is to choose a class A of R-algebras, such that
the singular spaces we want to consider can be modelled (at least locally) by
the real spectrum of algebras in A. Moreover, A should include the algebra
C∞(M), for any manifold M . There is an ample choice of which kind of
algebras should be taken to belong to A (see for example [33] or Appendix
2 of [45] for a discussion on possible models), depending on which singular
spaces we wish to model.
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Since our goal is to equip the orbit space X of a proper groupoid G with a
smooth structure, we should ask that the spectrum of C∞(X) (see Definition
3.1) is locally isomorphic to the spectrum of an algebra in A. We achieve
this goal by letting A consist of differentiable algebras, discussed in the next
section. We could also go further and require that the algebra C∞(X) itself
is in A. We will see how to achieve this in section 3.5. But first let us show
that, in any case, we can recover the underlying topological space X from
the algebra C∞(X). The result generalizes Theorem 3.10 and the proof is
exactly the same as the one for manifolds, relying simply on the existence
of proper functions on X (Proposition 3.5) and on the fact that C∞(X) is
normal (Proposition 3.2).

Theorem 3.13. Let X be the orbit space of a proper Lie groupoid. Then the
natural map φ : X → SpecrC

∞(X) given by x 7→ evx is a homeomorphism.

Proof : The map φ is clearly injective since C∞(X) is point-separating. To
check surjectivity, let χ ∈ Specr C

∞(X). According to Proposition 3.5, we
can choose a proper function f ∈ C∞(X), and then the level set K =
f−1(χ(f)) is compact. Suppose that χ is not in the image of φ, i.e., it is
not given by evaluation at a point. Then for each point y ∈ X there is a
function fy ∈ C∞(X) such that fy(y) 6= χ(fy). The sets

Uy = {x ∈ X | fy(x) 6= χ(fy)}
cover K, which is compact, so we can take a finite subcover of it, Uy1, . . . , Uyk.
Consider now the function

g = (f − χ(f))2 +
k∑
i=1

(fyi − χ(fyi))
2.

It is easy to see that χ(g) = 0. But g is a nowhere vanishing smooth function
on X, so it is invertible and we have that

1 = χ(1) = χ

(
g

1

g

)
= χ(g)χ

(
1

g

)
,

so that χ(g) 6= 0. Thus we have a contradiction and φ must be surjective.

The map φ is continuous, since if U = f̂−1(V ) is some basic open for the
Gelfand topology, with f ∈ C∞(X) and V open in R , then φ−1(U) = f−1(V )
is open in X.

To finish checking that φ is a homeomorphism, let φ induce a topology
on X which we also call the Gelfand topology. Given a set Y ⊂ X which is
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closed in the original topology of X, we can consider the ideal IY consisting of
all functions of C∞(X) vanishing on Y . Since the algebra C∞(X) is normal,
we have that

Y = {x ∈ X | f(x) = 0 ∀ f ∈ IY },
so Y is also closed in the Gelfand topology.

3.3. Differentiable spaces. In this section we discuss the category of dif-
ferentiable spaces, which will turn out to be a good setting for the study of
orbispaces. These are spaces that are locally modelled on the spectrum of
differentiable algebras (also called closed C∞-rings, cf. [45]), i.e., algebras
of the form C∞(Rn)/I, where I is an ideal of C∞(Rn) which is closed with
respect to the weak Whitney topology (cf. e.g. [32]). Differentiable spaces
appeared in the work of Spallek [60] and also as a particular case of the the-
ory of C∞-schemes [22, 33, 45], that is discussed in the next section. A study
of differentiable spaces, analogous to the basics of scheme theory in algebraic
geometry, is discussed in detail in the book [47]; this is the main reference
for this section. See loc. cit. for the proofs of the results quoted below.

We deal with ideals of C∞(M) that are closed in the Fréchet topology on
C∞(M) (also called the weak Whitney topology [32]). An example of such
a closed ideal is the ideal mp of all smooth functions vanishing at a point
p ∈ M . The following classical result of Whitney characterizes the closure
of an ideal of C∞(M) in terms of conditions on the jets of smooth functions
(cf. e.g. [37] for a proof).

Theorem 3.14 (Whitney’s spectral theorem). Let M be a smooth manifold
and a an ideal of C∞(M). Then

f ∈ ā ⇔ jxf ∈ jx(a),∀x ∈M,

where jxf denotes the jet of f at the point x and jx(a) = {jxg | g ∈ a} .

Definition 3.15. An R-algebra A is called a differentiable algebra if it is
isomorphic to the quotient C∞(Rn)/a, where a is a closed ideal (with respect
to the Fréchet topology). Morphisms of differentiable algebras are simply
morphisms of the underlying R-algebras.

Example 3.16.

1. (Open or closed subsets of Euclidean space) If U ⊂ Rn is an open
subset, then C∞(U) is a differentiable algebra.
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If Y ⊂ Rn is a closed subset, denote by pY the ideal of all smooth
functions on Rn which vanish on Y . Define

AY := {f|Y | f ∈ C∞(Rn)}.

Then AY is a differentiable algebra because AY
∼= C∞(Rn)/pY via the

map [f ] 7→ f|Y , and the ideal pY is closed, since pY =
⋂
p∈Y mp.

2. (Smooth manifolds) As a particular case of the previous example,
using Whitney’s embedding theorem (see e.g. [32]) we conclude that
the algebra of smooth functions on any manifold is a differentiable
algebra.

We now study the real spectrum of a differentiable algebra (see the dis-
cussion in Section 3.2). The point is that for a differentiable algebra A,
the real spectrum behaves similarly to how a manifold does. For example,
closed (resp. open) subsets of Specr A share many features with closed (resp.
open) subsets of smooth manifolds; this is made more precise by the next
two propositions.

Proposition 3.17 (Closed subsets - Lemma 3.1 in [47]). If A is a differen-
tiable algebra and Y ⊂ Specr A is a closed subset, then Y is a zero-set, i.e.,
there is an element a ∈ A such that Y = (a)0.

Note that the Gelfand and the Zariski topologies on Specr A coincide for
any differentiable algebra A, since any closed subset of Specr A is a zero-set.
For open subsets, the following results extend Theorems 3.10 and 3.11 to the
setting of differentiable algebras.

Proposition 3.18 (Open subsets - Proposition 3.2 in [47]). If A is a differ-
entiable algebra and U ⊂ Specr A is an open subset, then we have a homeo-
morphism

U ∼= Specr AU ,

where AU denotes the localization of A with respect to the multiplicative sys-
tem of elements of A that vanish nowhere in U .

It is also important to note that for a differentiable algebra A and an open
subset U ⊂ Specr A, the localization AU is again a differentiable algebra [47,
Thm. 3.7].

Finally, the following result is essential when considering the spectrum of
a differentiable algebra as a locally ringed space.
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Theorem 3.19 (Localization theorem for differentiable algebras). Let A be
a differentiable algebra and let (Specr A, Ã) be its real spectrum. Then for
any open subset U ⊂ Specr A we have that

Ã(U) = AU .

So we see that the essential properties that allow to reconstruct a manifold
from its ring of smooth functions as the real spectrum still hold in the more
general setting of differentiable algebras.

Definition 3.20. An affine differentiable space is a locally ringed space
(X,OX) which is isomorphic to the real spectrum (Specr A, Ã) of some dif-
ferentiable algebra A. By the Localization theorem, A must be isomorphic
to OX(X).

A differentiable space is a locally ringed space (X,OX) for which ev-
ery point x of X has a neighbourhood U such that (U,OX|U) is an affine
differentiable space. Such opens are called affine opens.

Morphisms of differentiable spaces between (X,OX) and (Y,OY ) are
defined to be the morphisms of locally ringed spaces between them (Defini-
tion 3.6). Sections of the sheaf OX over an open subset U ⊂ X are called
differentiable functions on U .

Example 3.21.

1. (Manifolds) Any smooth manifold M is an example of an affine differ-
entiable space. As discussed before, given a manifold M , its algebra
of smooth functions C∞(M) is a differentiable algebra; the manifold
(M, C∞M) is isomorphic, as a locally ringed space, to the real spectrum
of C∞(M).

2. (Open subsets) If (X,OX) is an affine differentiable space and U is an
open subset of X then (U,OX|U) is an affine differentiable space.

3. (Closed subsets) Let (X,OX) be a differentiable space and Y ⊂ X a
closed subset. If IY is the sheaf of differentiable functions vanishing
on Y , then (Y,OX/IY ) is a differentiable space.

Affine differentiable spaces can be explicitly described, at least as a topo-
logical space, as follows.

Lemma 3.22. Let I be an ideal of an R-algebra A. Then there is a natural
homeomorphism

Specr(A/I) ∼= (I)0 ⊂ Specr A.
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Proposition 3.23 (Structure of affine spaces - Proposition 2.13 in [47]). Let
A be an algebra of the form A = C∞(Rn)/a, for any ideal a ⊂ C∞(Rn). Then
there is a homeomorphism

Specr A = (a)0 ⊂ Rn.

As mentioned in the previous section, morphisms of differentiable spaces
M → N between smooth manifolds are simply smooth maps, and these
correspond to algebra maps C∞(N)→ C∞(M). A similar result is valid for
the more general setting of affine differentiable spaces.

Theorem 3.24 (Morphisms into affine spaces - Theorem 3.18 in [47]). If
(X,OX) is a differentiable space and (Y,OY ) is an affine differentiable space,
then

Hom(X, Y ) ∼= HomR−alg(OY (Y ),OX(X)), (φ, φ]) 7→ φ].

As a particular case of this result, we obtain a characterization of mor-
phisms from a differentiable space to an Euclidean space.

Corollary 3.25 (Morphisms into Euclidean space). If (X,OX) is a differ-
entiable space, then we have an isomorphism

Hom(X,Rn) ∼=
n⊕
i=1

OX(X), (φ, φ]) 7→ (φ](x1), . . . , φ
](xn)).

We have seen in the general discussion about the real spectrum of an al-
gebra A that any element f ∈ A can be seen as a continuous function f̂
on Specr A. We now focus on the case in which the assignment f 7→ f̂ is
injective.

Definition 3.26. A differentiable space (X,OX) is said to be reduced if for
any open subset U of X and any f ∈ OX(U) we have

f = 0⇔ f̂(x) = 0, ∀x ∈ X.

Being reduced is a local condition: If every point of x has a reduced open
neighbourhood then X is reduced. By definition, if (X,OX) is a reduced

differentiable space, then the map OX(U) → C(U), f 7→ f̂ is injective for
any open U ; hence (X,OX) is a reduced ringed space.

Let (φ, φ]) be a morphism of differentiable spaces (Definition 3.20) between
reduced differentiable spaces. Then it can be checked (cf. [47]) that (φ, φ])
is a morphism of reduced ringed spaces (Definition 3.6).
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Example 3.27. Smooth manifolds are reduced differentiable spaces. Dif-
ferentiable spaces of the form (Y,OX/IY ), where Y is a closed subset of a
differentiable space X, as in Example 3.21 are also reduced.

We now look at an explicit description of affine reduced differentiable
spaces.

Definition 3.28. Let Y be a topological subspace of Rn. A smooth func-
tion on Y is a continuous function f : Y → R for which every point y ∈ Y
has an open neighbourhood Uy in Rn such that f coincides on Y ∩Uy with the
restriction of a smooth function on Uy. The smooth functions on Y form the
ring C∞(Y ). Denote by C∞Y the sheaf of continuous functions on Y defined
by C∞Y (V ) := C∞(V ), for each open subset V ⊂ Y .

Proposition 3.29 (Structure of reduced affine spaces - [47], Prop. 3.22). Let
A = C∞(Rn)/a be a differentiable algebra. If the affine differentiable space
Y = Specr A is reduced, then OY = C∞Y .

Remark 6. We knew already from Proposition 3.23 that in the conditions
of the previous proposition, Y ∼= (a)0 as a topological space, because A =
C∞(Rn)/a is affine. The new information we get from knowing that Y is
reduced is the characterization of the structure sheaf. In conclusion, reduced
differentiable spaces are reduced ringed spaces which are locally isomorphic
to (Z, C∞Z ), for some closed subset Z of Rn.

We now discuss the Embedding theorem for differentiable spaces, which
characterizes which differentiable spaces can be embedded into an affine space
Rn. Before stating the theorem we discuss subspaces and embeddings of
differentiable spaces.

Definition 3.30. Let (X,OX) be a differentiable space and let Y ⊂ X
be a locally closed subspace. Let I be a sheaf of ideals of OX|Y and set
OX/I := (OX|Y )/I.

We say that (Y,OX/I) is a differentiable subspace of (OX , X) if it is a
differentiable space. It is said to be an open differentiable subspace if Y is
open in X and I = 0. It is said to be a closed differentiable subspace if Y
is closed in X.

Definition 3.31. An embedding of differentiable spaces is a morphism of
differentiable spaces (φ, φ]) : (Y,OY ) −→ (X,OX) such that
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1. φ : Y −→ X induces a homeomorphism of Y onto a locally closed
subspace of X

2. φ] : φ∗OX −→ OY is surjective.

It is called a closed embedding if additionally φ(Y ) is closed in X.

Definition 3.32. Let p be a point of a differentiable space (X,OX) and let
mp be the unique maximal ideal of OX,p. The tangent space of X at p is
defined as:

TpX = Der(OX,p ; OX,p/mp).

The dimension of TpX is called the embedding dimension of X at p.

Theorem 3.33 (Embedding theorem for differentiable spaces - cf. [47]). A
differentiable space is affine if and only if it is Hausdorff, second-countable,
and has bounded embedding dimension.

3.4. Orbispaces as differentiable spaces. We look at how orbit spaces
of proper groupoids can be seen as differentiable spaces. We start by dis-
cussing the smooth structure on orbit spaces of representations of compact
Lie groups. Let G be a compact Lie group and let V be a representation of
G.

Definition 3.34. The algebra of smooth functions on V/G is defined as

C∞(V/G) := {f : V/G→ R | f ◦ π ∈ C∞(V )},
where π : V −→ V/G denotes the canonical projection map.

The sheaf of smooth functions on V/G, denoted by C∞V/G, is defined by

letting
C∞V/G(U) := C∞(π−1(U)/G).

It is natural to identify the algebra of smooth functions on the orbit space,
C∞(V/G), with the algebra of G-invariant smooth functions on V , via the
pullback map π∗.

We now explain how V/G can be seen as an affine differentiable space. The
first step in this direction is given by the following classical result of Schwarz
[56].

Theorem 3.35 (Schwarz). Let G be a compact Lie group and V a representa-
tion of G. Let p1, . . . , pk be generators of the algebra of invariant polynomials
R[V ]G. Then p : V → Rk defined by p = (p1, . . . , pk) induces an isomorphism

p∗C∞(Rk) ∼= C∞(V )G.
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This allows us to make sense of V/G as a differentiable space. To start
with, the map p from the theorem is constant along orbits; so it induces a
map on V/G, denoted by p̃ : V/G→ Rk.

Lemma 3.36. With the notation from Schwarz’s theorem, the map p : V →
Rk is proper and it induces a closed embedding (of topological spaces)

p̃ : V/G→ Rk.

Remark 7. In fact, since p is a polynomial map, the image of V/G is naturally
a semialgebraic set. Its semialgebraic structure can be described explicitly
[53].

We can rephrase Schwarz’s theorem in the language of differentiable spaces
as follows.

Theorem 3.37. Let G be a compact Lie group and V a representation of G.
Then

1. (V/G, C∞V/G) is a reduced affine differentiable space;

2. the map p̃ : V/G→ Rk is a closed embedding of differentiable spaces.

For a proper Lie groupoid G ⇒ M , we prove that the orbit space X is
a reduced differentiable space. We also see that the differentiable space
structure on X only depends on the Morita equivalence class of G, so that it
is really associated to the orbispace presented by G.

We know from the Linearization theorem (Theorem 2.30) that any point
in X has a neighbourhood homeomorphic to a space of the form V/G, where
V is a representation of a compact Lie group G. The idea is to upgrade this
homeomorphism to an isomorphism of locally ringed spaces and to use the
differentiable space structure on V/G described in the previous section.

Theorem 3.38 (Main Theorem 1). The orbit space X of a proper Lie
groupoid G ⇒M , together with the sheaf C∞X on X (Definition 3.1), is a re-
duced differentiable space. Moreover, it is affine if and only if it has bounded
embedding dimension.

If two Lie groupoids G and H are Morita equivalent, their orbit spaces are
isomorphic as differentiable spaces.

Proof : Let O ∈ X and let x be a point in the orbit O. Consider an open
subset U ⊂M containing O, such that GU ∼= NO(G)V , as in the Linearization
theorem (Theorem 2.30). Under this isomorphism, let Σ ⊂ U be the slice
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(see def. 2.28) at x corresponding to the open V ∩ Nx of the normal space
to O at x. It also holds that

C∞(U)G ∼= C∞(V )NO(G).

Moreover, since we are only considering invariant functions, we could work
with invariant opens instead - if Ṽ is the saturation of V , we have that

C∞(Ṽ )NO(G) ∼= C∞(V )NO(G).

So from now on assume that Ṽ = Px ×Gx W , where Px is the s-fibre of G at
x and W ⊂ Nx is an invariant open subset. Note that W intersects all the
orbits in V (it is actually a slice at x). We can define an algebra isomorphism

φ : C∞(Ṽ )NO(G) → C∞(W )Gx

by restriction to the slice W . More precisely, for a function f ∈ C∞(Ṽ )NO(G)

define φ(f)(w) = f([1x, w]). The invariance of φ(f) follows from that of f
and it is also easy to check that φ is an injective algebra homomorphism.
An explicit inverse can be given by φ−1(f)([p, w]) = f(w). Once again it is
easy to check that it is well defined, and an inverse to φ. To see that it is
invariant we use that a point of V belonging to the orbit of [p, w] must be of
the form [q, w]. To summarize, we have isomorphisms

C∞(π(U)) ∼= C∞(U)G ∼= C∞(V )NO(G) ∼= C∞(W/Gx).
Since GU is Morita equivalent to Gx nW , it holds, as explained in Lemma

2.20, that π(U) ∼= W/Gx; what we have proved above is that in fact, we also
obtain an isomorphism of reduced ringed spaces(

π(U), C∞π(U)

) ∼= (W/Gx, C∞(W )Gx
)
.

From the discussion of the previous section, we know that Schwarz’s theorem
implies that

(
W/Gx, C∞(W )Gx

)
is a reduced affine differentiable space (The-

orem 3.37). We have thus proved that the reduced ringed space (X, C∞X ) is
locally isomorphic to a reduced affine differentiable space, so it is a reduced
differentiable space.

The fact that X is affine if and only if it has bounded embedding dimen-
sion follows from the Embedding theorem for differentiable spaces (Theorem
3.33).

We already knew that if G and H are Morita equivalent, then the orbit
spaces of G and H are homeomorphic (Lemma 2.20). We have also seen that
as a differentiable space, the orbit space of a groupoid is locally isomorphic,
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around a point O, to the orbit space of the isotropy representation at a point
of the orbit O, which is invariant under Morita equivalences.

Remark 8. A direct consequence of the last statement is that the algebra of
smooth functions on the orbit space X of a proper groupoid is a differentiable
algebra if and only if X has bounded embedding dimension.

A case in which X has bounded embedding dimension is for example when
X has finitely many Morita types, a notion that is discussed in Section 4.4.

3.5. Alternative framework I: C∞-Schemes. In this section we briefly
discuss C∞-schemes. These are spaces locally modelled on the spectrum of a
C∞-ring. They have appeared as models for synthetic differential geometry in
[22, 45]. We have already seen examples of such spaces, as any differentiable
algebra is also a C∞-ring (and so any differentiable space is a C∞-scheme).
Some references for this material are [33, 45].

Definition 3.39. A C∞-ring is a set C together with operations φf : Cn → C
for each n ≥ 0 (also denoted by φCf ) and for each smooth map f : Rn → R,
satisfying the following conditions.

1. Consider natural numbers m,n ≥ 0, and smooth functions fi : Rn →
R for i = 1, . . . ,m, g : Rm → R. Define a smooth function h : Rn −→
R by

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

Then we have that the following diagram commutes:

Cn Cm

C
φh

(φf1 ,...,φfm)

φg

2. For the coordinate functions xi : Rn → R we have φxi(c1, . . . , cn) = ci,
for all c1, . . . , cn ∈ C.

A morphism of C∞-rings is a map F : C→ D such that for any f ∈ C∞(Rn)
and any c1, . . . , cn ∈ C it holds that

F (φCf (c1, . . . , cn)) = φDf (F (c1), . . . , F (cn))



34 M. CRAINIC AND J. N. MESTRE

Proposition 3.40 (Proposition 1.2 in [45]). Let C be a C∞-ring and I an
ideal of C (with C considered as an R-algebra). Then there is a unique C∞-
ring structure on the quotient C/I, such that the quotient map π : C → C/I
is a C∞-ring morphism.

As an immediate consequence of this proposition we obtain the following.

Corollary 3.41. Any differentiable algebra is a C∞-ring.

It is worth mentioning that C∞-rings are much more general than differ-
entiable algebras - for example, from the theory of the previous section, we
know that the algebra of smooth functions on the orbit space of a proper
groupoid is a differentiable algebra if and only if the orbit space has bounded
embedding dimension. But we will see that it is always a C∞-ring. As a
more extreme example, the algebra of continuous functions on any topologi-
cal space is a C∞-ring.

On the other hand, although C∞-rings are very general, those that arise
as algebras of smooth functions on X still belong to a somewhat restrictive
class - that of locally fair C∞-rings.

Definition 3.42. A C∞-ring C is called finitely generated if there are
c1, . . . , cn in C which generate C under all C∞ operations.

A C∞-ring C is called a C∞-local ring if it has a unique maximal ideal m
and C/m ∼= R.

Example 3.43. The ring C∞p (Rn) of germs at p of functions on Rn is a
C∞-local ring.

Definition 3.44. A C∞-Ringed space (X,OX) is a topological X space
together with a sheaf OX of C∞-rings on it. A local C∞-Ringed space
(X,OX) is a C∞-ringed space for which the stalks OX,x are local rings for all
x ∈ X.

A morphism of C∞-Ringed spaces is a pair

(φ, φ]) : (X,OX)→ (Y,OY )

consisting of a continuous map φ : X → Y and a morphism φ] : OY → φ∗OX
of sheaves on Y (or equivalently, a morphism φ] : φ∗OY → OX of sheaves of
C∞-rings on X).

Definition 3.45. An affine C∞-scheme is a local C∞-ringed space (X,OX)
which is isomorphic to Specr C as a local C∞-ringed space, for some C∞-ring
C.
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A C∞-scheme is a local C∞-ringed space (X,OX) for which X can be
covered by open sets Ui such that each (Ui,OX|Ui

) is an affine C∞-scheme.
Morphisms of C∞-schemes are just morphism of C∞-Ringed spaces.

Definition 3.46. A locally fair C∞-scheme is a C∞-scheme (X,OX) for
which X can be covered by open sets Ui such that each (Ui,OX|Ui

) is isomor-
phic to Specr Ci, where Ci is a finitely generated C∞-ring.

We return to the smooth structure on the orbit space X of a proper
groupoid. Although we already knew that X is a C∞-scheme (since it is
a differentiable space) we show that it is always affine, as a C∞-scheme.

Proposition 3.47 (First variation of Main Theorem 1). Let X be the orbit
space of a proper Lie groupoid G ⇒ M . Then the algebra C∞(X) is a C∞-
ring and (X, C∞X ) is a locally fair affine C∞-scheme.

Proof : It is clear that C∞(X) is a C∞-ring : the operation φf associated
with a smooth function f : Rn → R is simply given by composition with f .

We also know from Theorem 3.13 that the evaluation map

ev : X ∼= Specr C
∞(X)

is a homeomorphism. In fact, almost by definition, ev is also an isomor-
phism of reduced ringed spaces: Let f ∈ OSpecr C

∞(X)(U) and recall that
OSpecr C

∞(X)(U) is the localization of C∞(X) with respect to the multiplica-
tive system of those functions of C∞(X) that vanish nowhere on U . We then
know that f = g

h with g, h ∈ C∞(X) and h non-vanishing on U , so it is
easy to see that ev∗f ∈ C∞X (ev−1(U)). This implies that (X, C∞X ) is an affine
C∞-scheme.

In the proof of Theorem 3.38, we have seen that X is locally isomorphic to
differentiable spaces (hence C∞-schemes) of the form (V/G, C∞V/G), where V

is a representation of a compact Lie group G. Schwarz’s theorem (Theorem
3.35) says that the algebra of G-invariant functions on V is a finitely gener-
ated C∞-ring, and that (V/G, C∞V/G) is affine; hence (V/G, C∞V/G) is isomorphic

to the real spectrum of a finitely generated C∞-ring. Therefore (X, C∞X ) is a
locally fair C∞-scheme.

3.6. Alternative framework II: Sikorski spaces. In this section we dis-
cuss another notion of smooth structure - that of a Sikorski space [57] (also
called differential space in the literature). This type of smooth structure
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will be revisited later on, when we discuss smooth stratifications of the orbit
space (Section 5). The main references used for this section are [59, 67].

Definition 3.48. A Sikorski space is a pair (X,F), where X is a topolog-
ical space and F is a non-empty set of continuous real-valued functions on
X, satisfying:

1. X has the weakest topology such that all the elements of F are con-
tinuous.

2. (Locality) Let f : X → R be a function such that for all x ∈ X there
is a neighbourhood U of x and a function g ∈ F such that f|U = g|U .
Then f ∈ F .

3. (Smooth compatibility) If F ∈ C∞(Rn) and f1, . . . , fn ∈ F , then the
composition F (f1, . . . , fn) belongs to F .

The elements of F are called smooth functions on X.

Remark 9. There are some immediate observations we can draw from the
previous definition.

1. Since the composition of elements of F with translations and rescalings
is again in F , the topology of X is generated by the open subsets of
the form f−1(0, 1), for f ∈ F .

2. The smooth compatibility condition ensures that F is a commutative
R-algebra and that it contains all constant functions.

3. The locality condition guarantees that F induces a sheaf of continuous
functions F̃ on X: for any open U ⊂ X, let F̃(U) be the set of all
functions f : U → R such that for all x ∈ X there is a neighbourhood
V of x in U and a function g ∈ F such that f|V = g|V . In this way

(X, F̃) is a reduced ringed space.

Definition 3.49. A smooth map between Sikorski spaces (X,FX) and
(Y,FY ) is any continuous map φ : X → Y with the property that f ◦φ ∈ FX
for all f ∈ FY .A diffeomorphism is a smooth homeomorphism with a
smooth inverse.

Definition 3.50. Let (X,FX) be a Sikorski space. A Sikorski subspace of
(X,FX) is a Sikorski space (Y,FY ), where Y is a topological subspace of X,
and FY is generated by restrictions of functions of FX to Y , i.e., f ∈ FY if
and only if for all y ∈ Y there is a neighbourhood U of y in X and a function
g ∈ F such that f|U∩Y = g|U∩Y .
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Definition 3.51. Let (X,FX) be a Sikorski space and let R be an equivalence
relation on X. The quotient Sikorski space of X with respect to R is the
Sikorski space (XR,FR), where

1. XR is the set of equivalence classes for R;
2. FR = {f ∈ F | π∗f ∈ F}, where π : X → XR is the canonical

projection;
3. the topology on XR is the smallest one making all functions in FR

continuous.

The topology induced on XR by FR may be distinct from the quotient
topology. The following result provides a sufficient condition for the two
topologies to coincide.

Proposition 3.52 (Proposition 2.1.11 in [59]). Let (X,FX) be a Sikorski
space, let R be an equivalence relation on X and let (XR,FR) be the quotient
Sikorski space. Then the topology induced by FR on XR coincides with the
quotient topology if for every subset U ⊂ XR, open for the quotient topology,
and every point y ∈ U , there exists a function f ∈ FR such that f(y) = 1
and f vanishes outside of U .

As in the other frameworks presented previously, we will see that orbispaces
will fall into a particularly nice subcategory of Sikorski spaces.

Definition 3.53. A subcartesian space is a Hausdorff Sikorski space X
such that every point x ∈ X has a neighbourhood diffeomorphic to a subset
of some Rn.

Remark 10. Subcartesian spaces are sometimes called locally affine Sikorski
spaces in the literature, or are defined in other (equivalent) ways. The precise
connection between the various definitions is made clear in [67].

Proposition 3.54 (Second variation of Main Theorem 1). The orbit space
X of a proper Lie groupoid G ⇒M is a subcartesian space.

If two Lie groupoids G and H are Morita equivalent, their orbit spaces X
and Y are isomorphic as subcartesian spaces.

Proof : First of all, as a quotient, X can be endowed with the quotient Sikorski
space structure (X,C∞(X)). The topology induced by C∞(X) coincides with
the quotient topology because X is a normal space, so it is in the conditions
of Proposition 3.52.
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We have already seen (e.g. in the proof of Theorem 3.38) that (X,C∞(X))
is locally isomorphic to the quotient of a representation of a compact group
which, by Schwarz’s theorem (Theorem 3.35), is isomorphic to a subspace of
some Rn. Hence (X,C∞(X)) is subcartesian.

If two Lie groupoids G and H are Morita equivalent, their orbit spaces X
and Y are homeomorphic (Lemma 2.20); the algebra of smooth functions
can be seen as the algebra of global sections of the structure sheaf, which is
invariant under Morita equivalences (Theorem 3.38).

4. Orbispaces as stratified spaces
In this section we study the canonical decomposition of the base and orbit

space of a proper Lie groupoid. The decomposition is by smooth pieces that
fit together in a prescribed way, as a stratification.

We start by recalling some of the general theory of stratifications associated
with proper Lie group actions. Most of this material is rather classical,
but we try to clarify some points where the literature can sometimes be
confusing. Some references for this exposition are for example [24, 38, 50].
We then extend some of the theory of proper Lie group actions to proper Lie
groupoids, obtaining in this way some of the results from [51] and a principal
type theorem for proper Lie groupoids (Theorem 4.36). Throughout this
section, we assume that X is a connected topological space and M is a
connected manifold of dimension n.

4.1. Stratifications.

Definition 4.1. Let X be a Hausdorff second-countable paracompact space.
A stratification of X is a locally finite partition S = {Xi | i ∈ I} of X such
that its members satisfy:

1. Each Xi, endowed with the subspace topology, is a locally closed, con-
nected subspace of X, carrying a given structure of a smooth manifold;

2. (frontier condition) the closure of each Xi is the union of Xi with
members of S of strictly lower dimension.

The members Xi ∈ S are called the strata of the stratification.

We will study in detail some stratifications associated with proper Lie
group actions and proper Lie groupoids, but let us start with some very
simple examples.
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1. Any connected manifold comes with the stratification by only one
stratum.

2. A manifold with boundary can be stratified by its interior and the
connected components of the boundary.

3. If M is compact, then the cone on M ,

CM = [0, 1)×M / {0} ×M

comes with a stratification with two strata: the vertex point and
(0, 1)×M .

Remark 11. (Comments on the definition and comparison with the literature)
When X is actually a smooth manifold, it is usual to require that the strata
are submanifolds of X. Similarly, when X can be equipped with some sort
of smooth structure, for example the ones described in Section 3, then it is
natural to require some sort of compatibility between the smooth structure
and the stratification. Section 5 is centred around this interplay.

Across the literature, it is possible to find quite a lot of variations on the
definition of a stratification, typically so that the definition is most adapted
to the problem under study. For example, some authors do not require X to
be Hausdorff, paracompact, or second-countable. The two main conditions
used here that are often not mentioned are connectedness of the strata (which
is discussed in detail in Remark 12) and the requirement that strata included
in the closure of another stratum have strictly lower dimension. Although
the latter condition is often not required, without it we would be forced to
consider pathological examples (e.g. the closed topologist’s sine curve, and
even more pathological ones - see [50, Ex. 1.1.12]) that do not occur anyway
in our study of proper actions and proper Lie groupoids. On the other hand,
some authors require further conditions on how the strata fit together, for
example the conditions of topological local triviality, or the cone condition;
these will be discussed in Section 5.

Remark 12 (On the condition of connectedness of the strata). The condition
of connectedness of the strata is important not only as a technical condition
but also conceptually. It is often present in the literature only implicitly,
built into the definition of the partition that is to be studied. More precisely,
one starts with a locally finite partition of X by locally closed submanifolds
P and then one passes to the partition Pc by connected components of P .
The partition Pc is then checked to satisfy the frontier condition. One of the
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usual motivations for passing to connected components is that the elements
of P might have components of different dimension. However, there is a
much more fundamental reason to pass to connected components: in many
important examples (such as the partition by orbit types - see Definition 4.9)
the condition of frontier might not be satisfied unless we pass to connected
components - see Example 4.16.

At a more conceptual level, the condition of connectedness also allows
for a global implementation of Mather’s approach to stratifications using
germs of submanifolds (see e.g. [38, 50]), but without making reference to
germs. We explain below the precise connection with Mather’s approach.
The main point to do so, present in the next lemma, is to understand when
two partitions may give rise, after passing to connected components, to the
same stratification.

Lemma 4.2. Let Pi, i ∈ {1, 2}, be two partitions of X by smooth mani-
folds (whose connected components may have different dimensions) with the
subspace topology; denote by Pci the new partition obtained by taking the con-
nected components of the members of Pi. Then Pc1 = Pc2 if and only if, for
each x ∈ X, there exists an open neighbourhood U of x in X such that

P1 ∩ U = P2 ∩ U,

where Pi ∈ Pi are the members containing x.

Proof : For the direct implication, let x ∈ X and let Ai ∈ Pci such that x ∈ Ai.
Let Pi ∈ Pi be the members containing x. Then there are open subsets Ui of
X such that Ui contains Ai but not the other connected components of Pi.
The open neighbourhood U = U1 ∩ U2 satisfies the second condition of the
statement.

To prove the converse implication, it suffices to show that, for Ai ∈ Pci
(i ∈ {1, 2}) with A1 ∩ A2 6= ∅, one must have A1 = A2. Let Pi ∈ Pi so that
Ai is a connected component of Pi. We first show that A1 ∩ A2 is open in
A1. Let a ∈ A1∩A2. By hypothesis, we find a neighbourhood U of a so that
U ∩P1 = U ∩P2. Since A1 is locally connected, we may assume that U ∩A1 is
connected. Then, since U ∩A1 ⊂ U ∩P1 = U ∩P2 ⊂ P2, we know that U ∩A1

sits inside a connected component of P2. Since a ∈ U ∩ A1 and A2 is the
connected component of P2 containing a, we must have U ∩ A1 ⊂ A2, hence
U ∩ A1 ⊂ A1 ∩ A2. This proves that A1 ∩ A2 is open in A1. Note that this
implies that {A1∩B | B ∈ Pc2} is a partition of A1 by open subspaces hence,
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by the connectedness of A1, it must coincide with one of the members of this
family - and that is necessarily the non-empty A1 ∩A2. Hence A1 ⊂ A2 and
the reverse inclusion is proved similarly.

Definition 4.3. A decomposition of a Hausdorff second-countable topo-
logical space X is a partition P satisfying all conditions from Definition 4.1
except possibly connectedness of the strata.

Example 4.4. Some decompositions cannot be made into a stratification
in our sense by passing to connected components. For example, consider
the decomposition of the plane R2 into three pieces A, B, and C: A equals
the origin {0}, B equals the union of all circles centred at the origin, of
radius equal to 1/n, with n ∈ N, and C = R2\A ∪ B. Passing to connected
components, we would lose local finiteness of the partition.

Mather’s approach using germs leads to the following alternative definition
of stratification (cf. [38, 50]), that we designate by germ-stratification.

Definition 4.5. A germ-stratification of a topological space X is a rule
which assigns to each x ∈ X a germ Sx of a closed subset of X, such that,
for each x ∈ X, there is a neighbourhood U of x and a decomposition P of
U , with the property that for all y ∈ U , Sy is the germ of the piece of P
containing y.

Given any decomposition S on X, we can produce a germ-stratification by
assigning to each x ∈ X the germ of the piece of the decomposition containing
x. A result of Mather [38, Lemma 2.2] states that any germ-stratification
arises in this way. Lemma 4.2 guarantees that as long as we restrict to
those decompositions that are stratifications and their corresponding germ-
stratifications, this correspondence is indeed bijective. Accordingly, germ-
stratifications are usually simply called stratifications in the literature.

Definition 4.6. Given a stratification S there is a natural partial order on
the strata given by

S ≤ T ⇔ S ⊂ T .

The union of all maximal strata (with respect to this order) forms a subspace
MS−reg ⊂M called the S-regular part of M .

The following lemma shows that maximality of a stratum is a local condi-
tion (cf. [12]).
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Lemma 4.7. A stratum S ∈ S is maximal if and only if it is open. The
regular part MS−reg is open and dense in M .

Proof : Assume that S is a maximal stratum which is not open. Let x ∈ S
lie outside the interior of S. Choose a neighbourhood V of x in M which
intersects with only finitely many members of S. Since x is not in the interior
of S, by choosing a sequence of neighbourhoods V ⊃ V0 ⊃ V1 ⊃ . . . that
shrink to x, we can find xn ∈ Vn \ S for each n. We obtain in this way
a sequence (xn)n≥0 converging to x, with xn ∈ V \ S. Each xn belongs to
one of the finitely many members of S which meets V , so after passing to a
subsequence we may assume that xn ∈ T for all n, for some T ∈ S. It follows
that x ∈ T , hence S ∩ T 6= ∅, and so S ⊂ T . From the maximality of S we
have that S = T , which contradicts the fact that xn is not in S.

For the converse, assume that S is open and S ⊂ T for some T ∈ S. If
S 6= T , it follows that S is a stratum of dimension strictly less than that of
T , which cannot be the case since S is open.

The regular part MS−reg is clearly open, being a union of open strata.
Given an arbitrary x ∈ M , it belongs to at least one stratum; consider a
strict chain x ∈ S1 < S2 < . . . < Sk which cannot be continued. Then Sk is
maximal and x ∈ Sk, hence x is in the closure of MS−reg, proving that this
space is dense.

Some natural questions about the regular part of M come to mind; how
different is it from M? Is it connected? The following lemma tries to partially
address these questions.

Lemma 4.8. Let S be a stratification on a smooth manifold M , with no
strata of codimension 1. Then the S-regular part of M , denoted by M reg, is
connected.

Proof : Let x and y be two points of M reg and consider a smooth curve γ :
[0, 1]→M connecting x and y (recall that by M is connected by assumption).
The image of γ is compact, so it can be covered by a finite number of open
subsets of M , each of which intersects finitely many strata. Let U be the
union of those open subsets. Then by the Transversality homotopy theorem
(cf. [28, p. 70]), it is possible to find a map γ′ : [0, 1]→ U which is homotopic
to γ and transverse to all the finitely many strata of codimension greater
than 1 in U , which means that it misses them. Since there are no strata of
codimensions 1, the image of the map γ′ must be completely contained in
the union of the strata of codimension 0, which is precisely M reg.
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4.2. Proper group actions: the canonical stratification. We recall an
important example of a stratification, associated to a proper action of a Lie
group G on a manifold M . This example serves as both motivation and
background for the study of stratifications on proper groupoids. We take the
standard approach of first defining a natural partition P on M associated
to the action and then passing to the partition by connected components
P . For the whole of this section, let G be a Lie group acting properly on a
smooth manifold M .

Definition 4.9. The orbit type equivalence is the equivalence relation on
M given by

x ∼ y ⇐⇒ Gx ∼ Gy (i.e. Gx and Gy are conjugate in G).

The partition by orbit types, denoted by P∼(M), is the resulting partition
(each member of P∼(M) is called an orbit type).

The reason for the terminology is that x ∼ y is equivalent to the fact that
the orbits through x and y are diffeomorphic as G-manifolds. The members
of this partition can be indexed by conjugacy classes (H) of subgroups H of
G. To each such conjugacy class corresponds the orbit type

M(H) = {x ∈M | Gx ∼ H} ∈ P∼(M).

Points in the same orbit belong to the same orbit type, so the parti-
tion P∼(M) descends to a partition by orbit types P∼(M/G) of the orbit
space. Passing to the connected components of the members of P∼(M) and
of P∼(M/G), we obtain stratifications of M and of M/G. Moreover, the pro-
jection of the strata on M by the quotient map are the strata on M/G. In
other words, passing to the quotient commutes with taking connected com-
ponents of the orbit types. A proof of these facts can be found for example
in [24, 50].

Definition 4.10. The canonical stratification on M (respectively M/G)
associated to the action of G is the partition of M (respectively of M/G) by
connected components of the members of P∼(M) (respectively P∼(M/G))
and is denoted by SG(M) (respectively S(M/G)).

There are other partitions ofM that induce the same stratification S(M/G)
by passing to connected components. Let us start with the simplest one to
describe.
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Definition 4.11. The partition by isotropy isomorphism classes on
M , denoted by P∼=(M), is defined by the equivalence relation on M given by

x ∼= y ⇐⇒ Gx
∼= Gy (Lie group isomorphism).

The members of this partition can be indexed by isomorphism classes [H]
of subgroups H of G. To each such conjugacy class corresponds the orbit
type

M[H] = {x ∈M | Gx
∼= H} ∈ P∼=(M).

Proposition 4.12. After passing to connected components, P∼=(M) induces
the same stratification on M as P∼(M).

Proof : Using Lemma 4.2, it is enough to check that given any x ∈M , there
is an open neighbourhood U of x such that M[Gx] ∩ U = M(Gx) ∩ U . Using
the normal form [G×Gx

Nx] around x given by the Tube theorem (Theorem
2.25), and since points belonging to the same orbit are equivalent for both
∼= and ∼, it is enough to compare ∼= and ∼ for points on a neighbourhood
of x in Nx. Therefore, we have reduced the problem to checking that given
a representation V of a compact subgroup K ⊂ G, it holds that V[K] = V(K).
The following lemma guarantees that this is always the case.

Lemma 4.13. If H is a closed subgroup of a compact Lie group K with the
property that H is isomorphic (or just diffeomorphic) to K, then H = K.

Proof : For dimensional reasons we see that H and K must have the same Lie
algebra; from this it follows that their connected components containing the
identity, H0 and K0, coincide. The fact that H is diffeomorphic to K implies
that they also have the same (finite) number of connected components, from
which the statement follows.

Yet another partition that induces the canonical stratification is the par-
tition by local types (cf. [24, Def. 2.6.5]). Its members are indexed by
equivalence classes of pairs (H,V ), where H is a subgroup of G and V is a
representation of H; two such pairs (H,V ) and (H ′, V ′) are equivalent if H
is conjugate to H ′ by some g ∈ G and V ∼= V ′ by an isomorphism compatible
with Adg.

Definition 4.14. The partition by local types on M , denoted by P≈(M),
is defined by the equivalence relation on M given by

x ≈ y ⇐⇒ (Gx,Nx) ≈ (Gy,Ny),
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where Nx is the normal representation at x.

The reason for the terminology is that, as a consequence of the Tube the-
orem (Theorem 2.25), x and y belong to the same local type if and only
if the orbits through x and y admit equivariantly-diffeomorphic neighbour-
hoods. By the same arguments as in the proof of Proposition 4.12 above, we
conclude the following.

Proposition 4.15. After passing to connected components, P≈(M) induces
the canonical stratification on M .

The difference between the three partitions discussed is that they group
the strata of SG(M) in different ways: it is easy to see that

P∼=(M) ≺ P∼(M) ≺ P≈(M)

in the sense that each member of P∼=(M) is a union of members of P∼(M), etc.
The obvious inclusions of a member of P∼(M) into the corresponding member
of P∼=(M), and of a member of P≈(M) into the corresponding member of
P∼(M) are strict in general, as the following example shows.

Example 4.16. Consider the finite group Z2 × Z2 = {±1} × {±1}, acting
on RP 2 by (ε, η) · [x : y : z] = [x : εy : ηz]. The subgroups Z2 × {1} and
{1} × Z2 are isomorphic but not conjugate, and arise as isotropy groups of
the points [1 : 0 : 1] and [1 : 1 : 0] respectively. Hence

RP 2
(Z2×{1}) 6= RP 2

[Z2×{1}].

On the other hand, all fixed points of a given action have the same orbit
type, but the local types of fixed points can differ. For example, consider
the action of the circle S1 on CP 2 given by θ · [x : y : z] = [z : θ2y : θ5z].
The isotropy representation at the fixed points [1 : 0 : 0], [0 : 1 : 0] and
[0 : 0 : 1] are isomorphic with the representation of S1 on C2 of weights
(2, 5), (−2, 3) and (−5,−3) respectively (we say that a representation of S1

on C2 has weight (m,n) ∈ Z2 if it is given by θ · (z, w) = (θmz, θnw)).

Remark 13. It is important to note that, as mentioned in Remark 12, the
passage to connected components of P∼(M) is really necessary to guarantee
that we end up with a stratification. Besides the obvious problem that orbit
types may be disconnected, there is the more serious issue that the frontier
condition may not be satisfied (between orbit types). For example, there may
be orbit types whose closure contains some, but not all of the fixed points
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of the action. This is the case in Example 4.16 above: For the subgroup
H = Z2 × {1}, we see that

RP 2
(Z2×{1}) = {[x : 0 : z] ∈ RP 2 | x 6= 0 6= z},

so its closure contains the fixed points [1 : 0 : 0] and [0 : 0 : 1], but not the
fixed point [0 : 1 : 0].

Unlike the case for the two partitions discussed before, all the connected
components of a local type have the same dimension (which can be seen
using the normal form given by the Tube theorem). However, P≈(M) may
still fail to satisfy the frontier condition: the same counterexample as for
P∼(M) works here as well since [0 : 1 : 0] and [0 : 0 : 1] belong to the same
local type.

We recall another interesting stratification on M , which appears as the
infinitesimal version of the canonical stratification from the previous section.
The idea is that replacing the isotropy Lie groups Gx by their Lie algebras
gx, one obtains similar (but in general different) partitions of M .

Definition 4.17. The infinitesimal orbit type equivalence is the equiv-
alence relation on M given by

x∼inf y ⇐⇒ gx ∼ gy (i.e. gx and gy are conjugate in g).

The partition by infinitesimal orbit types is the resulting partition,
denoted by P∼inf

(M) (each member of P∼inf
(M) is called an infinitesimal

orbit type).
The infinitesimal canonical stratification on M , denoted by S inf

G (M),
is the partition of M by connected components of the members of P∼inf

(M).

Similarly, we define infinitesimal versions of the partitions by isotropy iso-
morphism classes and by local types - define the equivalence relations ≈inf

and ∼=inf by replacing the isotropy Lie groups Gx by their Lie algebras gx in
the definitions. The infinitesimal analogue of Lemma 4.13 is obvious, and
therefore we obtain that the partitions P∼inf

(M) and P∼=inf
(M) induce the

infinitesimal canonical stratification.

Remark 14. It is easy to see that points in the same orbit belong to the same
infinitesimal orbit type, so we obtain a partition by infinitesimal orbit type
on the orbit space M/G. However, this partition does not in general induce
a stratification. Indeed, the members of the partition on the orbit space may
fail to be manifolds. For example, in the case of the action of Z2 on R by
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reflection at the origin, all points have the same infinitesimal orbit type, but
the orbit space is not a manifold.

4.3. Proper actions - principal and regular types. We have seen several
partitions inducing the same stratifications SG(M) and S inf

G (M). This allows
us to use different partitions when proving results about the stratification,
using whichever is more convenient for the proof.

It is interesting to distinguish which notions are intrinsic to the stratifi-
cation, and which are particular to one of the partitions giving rise to it;
similarly, we can wonder about whether a given result on the stratification
can be strengthened to a result on one of the partitions giving rise to it.

We now recall some properties of the maximal strata of the canonical strat-
ification and point out the relation with the partitions that give rise to it.

Definition 4.18. The principal part of M is defined to be the SG(M)-
regular part of M and is denoted by Mprinc := MSG(M)−reg. The orbits inside
Mprinc are called principal orbits.

In order to check whether a point x ∈ M belongs to a principal orbit, we
use Lemma 4.7 and a tube G ×Gx

V around x. We arrive at the condition
that V Gx is open in V , which leads to the following characterization.

Lemma 4.19. For any point x ∈M , the following are equivalent:

1. x ∈Mprinc

2. the action of Gx on the normal space to the orbit is trivial.

In this case all the orbits G · y through points y close to x are diffeomorphic
G · x.

By definition, Mprinc is intrinsically associated to the canonical stratifica-
tion. But to understand it better, we recall a related notion, defined in terms
of the partition P∼(M) by orbit types. First of all, note that there is a partial
order on the orbit types that is analogous to the ordering on the strata:

M(H) ≥M(K) ⇐⇒ K is G− conjugate to a subgroup of H.

The maximal orbit types (with respect to this order) are called principal
orbit types. They are related to Mprinc by the Principal orbit type theorem
(cf. [24, Thm. 2.8.5], or Subsection 4.7 for a generalization of this theorem
for proper Lie groupoids). The theorem states that P∼(M) admits one and
only one maximal orbit type: there exists a unique conjugacy class, denoted
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(Hprinc) such that any isotropy group Gx of the action contains a conjugate
of Hprinc. In terms of the stratification, this means that

Mprinc = M(Hprinc).

Hence the maximal strata of SG(M) are precisely the connected components
of the principal orbit type. We also see that, although it was originally
defined in terms of P∼(M), the notion of principal orbit type only depends
on the stratification.

Moreover, the Principal orbit type theorem also states that, even when
Mprinc is not connected, the quotient M(Hprinc)/G is connected. Hence the
stratification S(M/G) of the quotient M/G has one and only one maximal
(principal) stratum.

Alternatively, we could proceed similarly using P∼=(M) instead of P∼(M);
in that case, the partial order to consider is

M[H] ≥M[K] ⇐⇒ K is isomorphic to a subgroup of H,

which is, indeed, a partial order by Lemma 4.13. The corresponding version
(for P∼=(M)) of the Principal orbit type theorem results in a unique maximal
element, which is precisely M[Hprinc].

Proposition 4.20. The maximal elements of P∼=(M) and of P∼(M) coin-
cide, i.e.,

M[Hprinc] = M(Hprinc).

Proof : It always holds that M(H) ⊂ M[H], so we are left with checking the
converse. If x ∈ M[Hprinc] we know that Gx

∼= Hprinc, but we also know that
Gx is conjugate to a subgroup of Hprinc. Using Lemma 4.13, we see that the
subgroup must be the entire Hprinc, and so Gx is conjugate to it; hence x is
also in M(Hprinc).

Finally, let us mention that, using the partition by local types, one would
equally find that there is a single maximal local type, which again coincides
with Mprinc (cf. [24, Cor. 2.8.6]).

Let us now focus on the infinitesimal canonical stratification. The associ-
ated regular part is denoted:

M reg := MS infG (M)−reg.

In complete similarity with Lemma 4.19, using a the normal form given by
the Tube theorem (Theorem 2.25), we find:
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Lemma 4.21. For any point x ∈M , the following are equivalent:

1. x ∈M reg;
2. the infinitesimal action of gx on the normal space to the orbit is trivial;
3. the action of G0

x on the normal space to the orbit is trivial;
4. all the orbits through points close to x have the same dimension,

In this case all the orbits G · y through points y close to x are coverings of
G · x;

The next proposition shows that, although the infinitesimal canonical strat-
ification behaves worse than the canonical stratification (e.g. it does not
induce a stratification on the quotient), it does have some advantages over
SG(M).

Proposition 4.22. The infinitesimal canonical stratification satisfies:

1. S inf
G (M) does not contain codimension 1 strata.

2. M reg is connected.
3. S inf

G (M) has one and only one maximal strata.

Proof : Assume that S is a stratum of codimension one; S is a connected
component of a subspace of type

M[h] = {x ∈M | gx ∼= h}
for some Lie subalgebra h of g. Let x ∈ S; we may assume that Gx = H.
Let U ⊂ G×H V be a tube around x, with x represented by (e, 0). Then

U ∩M[h]
∼= {y = [a, v] ∈ G×H V | G×Gx

hv = h} = G×H V h.

To achieve codimension 1, V h must be of codimension 1 in V . Let W be
the complement of V h with respect to an H-invariant metric on V ; then
W h = 0, hence W is a non-trivial one dimensional representation of the
compact connected Lie group H0, which is impossible. The fact that part 1
implies part 2 follows from Lemma 4.8; part 3 is just a reformulation of part
2.

4.4. Morita types. In this section we introduce the canonical stratification
associated to a proper Lie groupoid. This generalizes the canonical stratifica-
tion induced by a proper Lie group action. As in the case of proper actions, a
proper Lie groupoid induces a stratification not only on its base, but also on
the orbit space. Let us mention already that one of the essential properties of
the stratification on the orbit space is that it is Morita invariant (see Remark
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15), meaning that it is intrinsically associated to the orbispace presented by
the groupoid.

Let G be a proper Lie groupoid over M and denote its orbit space by X.

Definition 4.23. The Morita type equivalence is the equivalence relation
on M given by

x ∼M y ⇐⇒ (Gx,Nx) ∼= (Gy,Ny),

where (Gx,Nx) ∼= (Gy,Ny) means that there is an isomorphism φ : Gx →
Gy and a compatible isomorphism of representations between the normal
representations Nx and Ny. The partition by Morita types, denoted by
PM(M), is defined to be the resulting partition. Each member of PM(M) is
called a Morita type.

In other words, the partition by Morita types is indexed by equivalence
classes of pairs (H,V ) where H is a Lie group, V is a representation of H,
and two pairs are equivalent in the way described above: H ∼= H ′ and V ∼= V ′

in a compatible way. In this case, we write (H,V ) ∼= (H ′, V ′). Set [H, V ] for
the equivalence class of the pair (H,V ). If [H,V ] = α, then the element of
PM(M) corresponding to α is

M(α) = {x ∈M | [Gx,Nx] = α} ∈ PM(M).

We also denote by M(x) the Morita type of a point x ∈M .

Remark 15. The Morita type of a point x ∈ M depends only on the Morita
equivalence class of the local model N (GOx

) of the groupoid in a neighbour-
hood of its orbit Ox. Indeed, the local models N (GOx

) and N (GOy
) around

x and y are Morita equivalent to Gx nNx and Gy nNy, respectively. These
in turn are Morita equivalent to each other if and only if there is an isomor-
phism φ : Gx → Gy and an isomorphism of representations between Nx and
Ny, compatible with φ.

Therefore, points in the same orbit belong to the same Morita type and
hence we also obtain a partition by Morita types on the orbit space,
PM(X). The projection map π : M → X takes Morita types in M to Morita
types in X; we use the notation X(α) = π(M(α)) for Morita types in the orbit
space. This partition on X is really associated to the orbispace X presented
by G and not to G itself. Indeed, by its very definition, the Morita type of
O ∈ X only depends on Morita invariant information.
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Definition 4.24. The canonical stratification on M , denoted by SG(M),
is the partition on M obtained by passing to connected components of
PM(M). The canonical stratification on the orbit space X, denoted by
S(X), is the partition on X obtained by passing to connected components
of PM(X).

In Section 4.6 we see that these partitions are, indeed, stratifications.

Remark 16. By passing to the corresponding germ-stratification, S(X) cor-
responds to the canonical germ-stratification of [51].

4.5. Comparison with other equivalence relations. The notion of par-
tition by isotropy isomorphism classes (see Definition 4.11) still makes sense
for a general Lie groupoid, so we can compare the partitions P∼=(M) and
PM(M) (see Definition 4.23), and we see that P∼=(M) ≺ PM(M). In the
case of an action groupoid of a proper Lie group action, it also makes sense
to compare these partitions with the ones by orbit types and by local types.
It is easy to see that

P∼=(M) ≺ PM(M) ≺ P≈(M),

and Example 4.16 can be used to check that these comparisons are strict.
There is no such relation comparing PM(M) and P∼(M) in general: for the
Z2×Z2 - action of Example 4.16, the Morita types of [1 : 0 : 1] and [1 : 1 : 0]
are the same, while their orbit types are different. On the other hand, all
fixed points for the S1 - action of Example 4.16 have the same orbit type,
but their Morita types are different.

Nonetheless, as soon as we pass to connected components, Morita types
induce the same stratification as the other partitions.

Proposition 4.25. Let G be the action groupoid associated to a proper Lie
group action. The partition by Morita types on M induces, after passing to
connected components, the canonical stratification associated with the action.

Proof : The situation is completely analogous to the comparison between
P∼(M) and P∼=(M): apply Lemma 4.2 and use the normal form given by
the Tube theorem (Theorem 2.25) to compare PM(M) with P≈(M). Look-
ing at the normal form means we consider the associated bundle G ×K V ,
where V is a representation V of a compact subgroup K ⊂ G. We have
to look at the points v ∈ V with the property that Kv is conjugate to K,
(for ≈), or with the property that Kv is isomorphic to K (for ∼M), and
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additionally that the normal representation of Kv on Nv is isomorphic to
the representation of K on V in a compatible way with the isomorphisms of
Kv and K; once more, the first condition reduces to the condition Kv = K
because of Lemma 4.13. The conditions on the compatibility of the isomor-
phism of the representation become the same in both cases - compatibility
with the identity map of K.

The following result relates the Morita types for a proper Lie groupoid and
the Morita types for the action groupoids given by the local model.

Lemma 4.26 (Reduction to Morita types on a slice). Let G ⇒M be a proper
Lie groupoid and let x ∈M . Then there are invariant open sets U around x
in M and W around 0 in Nx (which we identify with a slice at x) such that
the intersection of the Morita types for G with U are given by the saturation
of the Morita types for the linear action of Gx on W .

Proof : By the Linearization theorem for proper groupoids (Theorem 2.30),
there are invariant open subsets U around Ox in M and W around 0 in Nx

such that GU is Morita equivalent to the action groupoid GxnW . We identify
W with a slice S at x in M . By this Morita equivalence, the Morita types in
U coincide with the saturation of the Morita types for the isotropy action of
Gx on the slice S, and consequently correspond to the Morita types for the
linear action of Gx on W .

Using the notation from the previous lemma, let F be the orthogonal com-
plement to the fixed point set W Gx with respect to an invariant inner product,
as in [24]. The isomorphism

W Gx × F → W, (w, f) 7→ w + f

is equivariant. There is also an equivariant diffeomorphism

φ : R+ × Σ→ F\{0},
where Σ denotes the unit sphere in F , with respect to the inner product used
above; Gx acts on R+ × Σ by g(r, p) = (r, gp).

Lemma 4.27. Using the notation introduced above and identifying W with a
slice at x, the intersection of the Morita type of x with U is the G-saturation
of W Gx. Each other Morita type is given by the G-saturation of

W Gx + φ(R+ × T ) ⊂ W,

where T is a Morita type for the action of Gx on Σ.



ORBISPACES AS SMOOTH STRATIFIED SPACES 53

Proof : The Morita type of the point x (which is identified with 0 ∈ W ) for
the action of Gx on W is given by W(x) = W Gx. To see this, note that every
point of W(x) has an isotropy group isomorphic to Gx, hence equal to Gx by

Lemma 4.13, so that W(x) ⊂ W Gx. The converse inclusion can be deduced

from the fact that all points of W Gx have the same orbit type, hence the
same Morita type. We can assume that this is the case since for a small
enough open containing 0, the members of P∼(W ) and PM(W ) containing 0
coincide. The first statement of the lemma follows by applying Lemma 4.26.

The second part of the statement is obtained as a consequence of Lemma
4.26 and of the fact that the isomorphism W Gx×F → W and the diffeomor-
phism φ : R+ × Σ→ F\{0} are equivariant.

Remark 17 (Morita types on a neighbourhood of a point). When we are only
interested in how Morita types look like in a small neighbourhood of a point
x in the base, we can use the local model for G around x given by Proposition
2.31. This local model is the product of a pair groupoid O × O ⇒ O with
an action groupoid Gx nW ⇒ W , where W is an invariant ball centred at
0 in Nx, on which the compact group Gx acts linearly. So we see that the
intersection of each Morita type in M with the neighbourhood O ×W of x
is of the form O× T where T is a Morita type in W for the action groupoid
Gx nW ⇒ W .

4.6. The canonical (Morita type) stratifications.

Proposition 4.28. Let G ⇒ M be a proper Lie groupoid with only one
Morita type. Then the orbit space X is a smooth manifold and the canonical
projection π : M → X is a submersion, whose fibres are the orbits.

Proof : We already know from Proposition 3.38 that (X,C∞(X)) is a differ-
entiable space, so in order to show that it is a smooth manifold it is enough to
show that every point O ∈ X has a neighbourhood U such that (U,C∞(U))
is a smooth manifold. Consider O ∈ X and x ∈M such that π(x) = O. We
have seen in the proof of Proposition 3.38 that O has a neighbourhood U in
X such that

(U,C∞(U)) ∼= (W/Gx, C∞(W )Gx),

where W is an open in Nx containing the origin, which is invariant for the
isotropy representation of Gx on Nx. To avoid confusion let us use the no-
tation H := Gx. By Morita equivalence, since G only has one Morita type,
the same holds for Gx nW . This implies that for every v ∈ W , the isotropy



54 M. CRAINIC AND J. N. MESTRE

group Hv is isomorphic to H, hence Hv = H, by Lemma 4.13. This means
that H acts trivially on W and so

(U,C∞(U)) ∼= (W/Gx, C∞(W )Gx) = (W,C∞(W ))

is a smooth manifold, and so is X.
To check that π is a submersion, as this is a local property, we can use a

neighbourhood V ⊂ Px×GxW of x in the local model. Since Gx acts trivially
on W then Px ×Gx Nx = O ×W . The restriction of the projection π to V is
then given by π(y, v) = v, hence π is a submersion.

We denote the restriction of G to a Morita type M(α) by G(α) := s−1(M(α)).
It is clear that G(α) is a groupoid over M(α). Recall that we denote its orbit
space by X(α). The next result ensures smoothness of all these objects.

Proposition 4.29. The Morita type M(α) is a smooth submanifold of M , the
groupoid G(α) ⇒M(α) is a Lie groupoid, and the orbit space X(α) is a smooth
manifold.

Proof : Let x ∈ M(α) and let g ∈ G(α). By the Linearization theorem (The-
orem 2.30), there are opens U around Ox in M and V around Ox in NOx
such that GU ∼= N (GOx

)V (note that GU is an open in G containing g).
The idea of the proof is the following: all the conditions we need to verify

are local - that M(α) and G(α) are submanifolds of M and G, that structure
maps restrict to smooth maps and that s, t : G(α) → M(α) are submersions.
This means that it is enough to check them on the opens V and N (GOx

)V ,
slightly abusing notation by thinking of them as opens around x and g.
Checking that the multiplication restricts to a smooth map is done in an
analogous way as for the other maps, but in a neighbourhood of a composable
pair, in the local model.

The situation becomes simple in the linear local model: indeed, U ∩M(α)

corresponds to V ∩ (NOx)(α); to check that this is a submanifold of NOx we

might as well substitute V by its saturation Ṽ . Using the bundle description

Ṽ ∩N(GOx
) ∼= Px ×Gx W

and Lemma 4.27, we have that Ṽ ∩ (NOx)(α) is equal to the saturation of

W Gx inside Px×Gx W and so it is a submanifold, diffeomorphic to Ox×W Gx.
Its dimension is constant along M(α), so M(α) is a submanifold of M .
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Moreover, G(α) ∩ GU corresponds to (N(GOx
)V )(α); for our purposes (local

verifications) we can substitute V by Ṽ , since (N(GOx
)V )(α) is a neighbour-

hood of g inside of (N(GOx
)Ṽ )(α). Using the description

N(GOx
) ∼= (Px × Px)×Gx Nx,

we are interested in the restriction of (Px × Px)×Gx W to

Ṽ ∩ (NOx)(α)
∼= Ox ×W Gx,

which is exactly
Gauge(Px)×W Gx ⇒ Ox ×W Gx,

a Lie subgroupoid of N(GOx
). Therefore, we conclude that on a neighbour-

hood of g, G(α) is a smooth submanifold of G, that the restriction of all the
structure maps of G (except possibly the multiplication) to it are smooth,
and that the restrictions of the source and target are submersions.

One proceeds in a completely analogous way to check that the restriction of
the multiplication is smooth: one only needs to check it a neighbourhood of a

composable pair (g, h) ∈ G(2)
(α); it is enough to work in the local model, where

such a neighbourhood can be constructed starting from N(GOx
)V ×N(GOx

)V ,
since N(GOx

)V is a neighbourhood of both g and h, and then the restriction
of the multiplication coincides with the multiplication of Gauge(Px)×W Gx.

This proves that G(α) ⇒ M(α) is a Lie groupoid and therefore Proposition
4.28 tells us that X(α) is a smooth manifold.

Theorem 4.30 (Main Theorem 2). Let G ⇒ M be a proper Lie groupoid.
Then the partitions of M and of X = M/G by connected components of
Morita types are stratifications.

Given a Morita equivalence between two Lie groupoids G and H, the in-
duced homeomorphism at the level of orbit spaces preserves the canonical
stratification.

Proof : Using the local model for a groupoid around a point x in the base,
we have seen in Remark 17 how to index Morita types in an open around x
by the Morita types for the action groupoid associated to the action of Gx
on the linear slice W . In such a case, we have seen in Proposition 4.25 that
the partition by connected components of Morita types coincides with the
canonical stratification SGx(W ), which is locally finite. We have also seen in
Proposition 4.29 that the elements of the partitions by Morita types on M
and X are smooth manifolds, with the subspace topology.
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Let us check the condition of frontier. Let T1 and T2 be connected compo-
nents of Morita types M(α) and M(β) respectively and suppose that T1∩T2 6=
∅.

First of all, let us start by checking that the condition of frontier for T1

and T2 holds on a neighbourhood U of any point x ∈ T1 ∩ T2, i.e., that
T2 ∩ U ⊂ T1 ∩ U . For this we use the local model of G around the point
x, as in Proposition 2.31. As explained in Remark 17, the Morita types in
such a neighbourhood of x are identified with the product of an open ball
O in Ox with the Morita types for the action groupoid Gx nW , where W
is an invariant open ball in Nx; similarly, passing to connected components,
Ti ∩ U0 is given by O × (Ti ∩W ), for i = 1, 2. So it is enough to check that
y ∈ T1 for all points y ∈ W ∩ T2. We conclude that this holds from the fact
that the partition by connected components of Morita types for an action
groupoid on the slice S induces the canonical stratification on S associated
to the action of Gx.

Let y be any other point in T2 and consider any continuous path γ from
x to y in T2. We can cover the image of γ by finitely many open subsets Ui
of M , centred at points pi along γ, such that on each of them, the frontier
condition for T1 and T2 holds, because of the same considerations made above
for x. Hence y ∈ T1 and so T2 ⊂ T1. The continuity of π ensures that the
condition of frontier also holds on the orbit space.

The statement on Morita invariance follows from the fact that, by defini-
tion, the Morita type of O ∈ X only depends on Morita invariant informa-
tion.

As mentioned before, these stratifications are called the canonical stratifi-
cations of M and X and are denoted by SG(M) and S(X).

4.7. Principal and regular types. In this section we discuss principal and
regular orbits and give a proof of the Principal type theorem for proper Lie
groupoids (Theorem 4.36), generalizing the corresponding result for proper
Lie group actions.

In analogy with the case of proper actions, we denote by Mprinc the SG(M)-
regular part of M and orbits inside Mprinc are called principal orbits. Sim-
ilarly we denote by Xprinc ⊂ X the S(X)-regular part of X. As before, we
get a criteria for when a point x ∈ M lies in Mprinc - combining Lemma
4.7 and the local model of G around x, given as in Proposition 2.31 by
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(O×O)× (Gx nW ) ⇒ O×W , we arrive at the condition that W Gx is open
in W . This leads to:

Lemma 4.31. For a point x ∈M , the following are equivalent:

1. x ∈Mprinc

2. the action of Gx on the normal space to the orbit is trivial.

However, one difference appears: while for a proper action, all orbits close
enough to a principal orbit are diffeomorphic to it, for a proper groupoid this
might not be the case. In general, this property holds for the principal orbits
of a proper groupoid if and only if the restriction of the groupoid to Mprinc

is source-locally trivial, which is the case for action groupoids. For example,
consider the Lie groupoid associated to a submersion between connected
manifolds. It is proper and all orbits are principal, so the similar statement
as for proper actions holds if and only if all fibres of the submersion are
diffeomorphic.

At this stage we know that Mprinc is open, dense, and a union of Morita
types (hence invariant). The Principal type theorem tells us a bit more about
its geometry, but before we get into it and as preparation for its proof, let
us look at an infinitesimal version of the concepts of canonical stratification
and principal orbits.

The infinitesimal canonical stratification on M given by a proper
groupoid is constructed exactly like the stratification SG(M), substituting
everywhere the isotropy group Gx and isotropy action on Nx, at a point x,
by the corresponding isotropy Lie algebra gx and induced Lie algebra action
of gx on Nx. The corresponding stratification is denoted by S inf

G (M).

Remark 18. At the level of the orbit space we do not have in general an infini-
tesimal canonical stratification, as the Morita types may fail to be manifolds.
They are, however, naturally endowed with an orbifold structure.

Let E(G) be the foliation groupoid associated to a regular Lie groupoid G
over M by dividing out the action of the connected components G0

x of the
isotropy groups Gx (for the smoothness of E(G) see Proposition 2.5 in [42]).

The groupoids G and E(G) define the same foliation on M . If G is proper,
then E(G) is proper as well [42]. Therefore, E(G) defines an orbifold structure
on the quotient M/G. Keep in mind that when seen as differentiable stacks,
M//E(G) is different from M//G because we lost isotropy information when
passing from G to E(G) (unless G was a foliation groupoid to begin with).
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Let M inf
(α) be an infinitesimal Morita type and let G inf

(α) denote the restric-

tion of G to it. Since G inf
(α) is proper and regular, E(G inf

(α)) defines an orbifold

structure on X inf
(α) = M inf

(α)/G inf
(α).

The constructions and results are very reminiscent of the ones for proper
actions: we denote by M reg and Xreg the S inf

G (M)-regular part of M and the
image of its projection to X, respectively; orbits in M reg are called regular
and the following result characterizes them:

Lemma 4.32. For any point x ∈M , the following are equivalent:

1. x ∈M reg;
2. the infinitesimal action of gx on the normal space to the orbit is trivial;
3. the action of G0

x on the normal space to the orbit is trivial;
4. all the orbits through points close to x have the same dimension.

The proof of this lemma is straightforward by using Lemma 4.7 and the
local model of Proposition 2.31 for the Lie groupoid G around x.

The main difference with the case of proper actions is that it is no longer
true that all the orbits Oy through points y close to a regular point x are
coverings of Ox. It is still true in the case of source-locally trivial groupoids.

From the definitions it is immediate that Mprinc ⊂ M reg and so also that
Xprinc ⊂ Xreg. It is also clear that like for Mprinc, it holds that M reg is open,
dense and consists of a union of Morita types. We look into connectedness
properties for Mprinc and M reg. With Lemma 4.8 in mind, we start by looking
at codimension 1 Morita types.

Lemma 4.33 (Codimension 1 Morita types). Let G ⇒ M be a proper Lie
groupoid and x ∈M . Suppose that the codimension of M(x) in M is 1. Then

1. All orbits in M(x) are regular, i.e., M(x) ⊂M reg;

2. F is 1-dimensional, where F is an orthogonal complement to (Nx)
Gx

in Nx, for any Gx-invariant inner product on Nx, as in Lemma 4.27;
Gx acts non-trivially on F as O(1,R) = Z2.

3. The orbits near Ox which are not in M(x) are principal.
4. There is a neighbourhood U of x in M such that the intersection of

each orbit which is not in M(x) with U is a two-fold covering of Ox∩U .

Proof : We can use Lemma 4.26 to restrict our attention to a slice at x. We
have that dimM(x) = dimOx + dimN Gxx . In the case that the codimension
of M(x) is 1, F must be 1-dimensional. Now Gx acts non-trivially on F by
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orthogonal transformations, so it must act as multiplication by {+1,−1}.
This proves part 2 of the lemma.

Since the orbits near Ox are equal to the saturation of their intersection of
a slice, which can be identified with Nx, then the dimension of the orbits is
constant near Ox, proving part 1 of the lemma.

For part 3, note that the orbits near Ox which are not in M(x) are the
saturation of elements v ∈ F\{0}. All such points have the same Morita
type, so they all belong to the same open Morita type and therefore to
Mprinc. Part 4 is then an easy consequence of the local model for G around
x (Proposition 2.31).

Corollary 4.34. Let G be a Lie groupoid over M . Then

1. S inf
G (M) does not contain codimension 1 strata.

2. M reg is not only dense and open in M , but also connected.
3. hence S inf

G (M) has one and only one maximal stratum.

Proof : Part 1 is a reformulation of part 1 of Lemma 4.33; part 2 follows from
part 1 and Lemma 4.8; part 3 is just a reformulation of part 2.

Unlike the stratification S inf
G (M), the canonical stratification SG(M) can

have codimension 1 strata. However, Lemma 4.33 also implies that on a small
neighbourhood of a regular point x belonging to a codimension 1 stratum,
all the orbits not contained in this stratum belong to Mprinc; the stratum
through x then disconnects Mprinc into two half-spaces, which are permuted
by the isotropy action. In other words, passing to the orbit space we conclude
that a neighbourhood of Ox in X looks like a neighbourhood of the boundary
point Ox on a manifold with boundary.

Example 4.35. A simple illustration of this behaviour is the following. Con-
sider an action of the circle on the Möbius band (and its associated action
groupoid), so that all orbits are regular and only the central orbit is not
principal - its Morita type consists of only itself and has codimension 1. We
are then in the conditions of Lemma 4.33 and it is clear that the orbit space
is a manifold with boundary: a closed half-line.

Theorem 4.36 (Principal Morita type). Let G ⇒M be a proper Lie groupoid.
Then Xprinc is not only open and dense but also connected, hence S(X) has
a single maximal stratum.

Proof : Let x and y be points on two principal orbits and consider a path γ
in M connecting them. Since the image of γ is compact, by local finiteness
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of the stratification, it meets finitely many strata. As a consequence, we can
use a version the Transversality homotopy theorem [28, p. 72] to obtain a
curve γ′, between x and y, which is transverse to all strata. This means that
it misses all strata of codimension 2 or higher, and it meets finitely many
strata of codimension 1 transversally.

If p is a point in the intersection of a codimension 1 stratum with the image
of γ′, we know by Lemma 4.33 that a neighbourhood U of Op in X looks
like a neighbourhood of a boundary point in a closed half-space, in which
Op is a boundary point (and all orbits not on the boundary are principal).
Since γ′ is transverse to the stratum of p, we can assume that the part of the
image of π ◦ γ′ that lies in U only touches the boundary at Op, so we can
homotope π ◦γ so that its image in U misses the boundary completely, hence
it is contained in Xprinc. Doing this to the curve π ◦ γ′ in X finitely many
times, we obtain a new curve connecting Ox to Oy, completely contained in
Xprinc.

In the case of the action groupoid associated to a proper Lie group action,
Theorem 4.36 becomes the classical Principal orbit type theorem mentioned
in Section 4.2. With some mild assumptions we obtain a consequence about
Mprinc as well:

Corollary 4.37. If G ⇒ M is a proper Lie groupoid with connected orbits
(for example, if it has connected s-fibres), then Mprinc is connected, hence
SG(M) has a single maximal stratum.

5. Orbispaces as smooth stratified spaces
When a space X admits both a stratification and a smooth structure, it

is natural to ask how the strata fit together with respect to the smooth
structure. For example, if X is a smooth manifold, it is natural to require
that the strata are submanifolds.

In general, one way to proceed would be to think of X as a stratified
space and then give it some smooth structure in a way compatible with the
stratification, for example via an appropriate atlas. This approach is studied
in detail in [50]. Alternatively, one could think of X as a “smooth” space
(for example by giving it one of the structures described in Section 3) and
then consider a stratification on X that respects the smooth structure. We
follow this second approach.
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Definition 5.1. A stratified differentiable space consists of a differen-
tiable space (X,OX) together with a stratification S on X such that the
inclusion of each stratum is an embedding of differentiable spaces.

As remarked in [51], the notion of a reduced stratified differentiable space
is the same as that of a stratified space with smooth structure of Pflaum,
defined in terms of singular charts (cf. [50, Sec. 1.3]).

For a general stratification, the only condition we have required on how
the strata should fit together is the frontier condition. In the presence of
smooth structure, there are several other conditions that are often imposed,
the most common of them being Whitney’s conditions (A) and (B).

Definition 5.2. Let M be a smooth manifold and let S be a stratification
on M . We say that a pair of strata (R, S) satisfies the Whitney condition
(A) if the following condition holds:

(A) Let (xn) be any sequence of points in R such that xn converges to a
point x ∈ S and TxnS converges to τ ⊂ TxM in the Grassmannian of
(dimR)-dimensional subspaces of TM . Then TxS ⊂ τ .

Let φ : U −→ Rn be a local chart around x ∈ S. We say that (S, T )
satisfies the Whitney condition (B) at x with respect to the chart (U, φ)
if satisfies the following condition:

(B) Let (xn) be a sequence as in (A), with xn ∈ U ∩ R and let (yn) be a
sequence of points of U ∩ S, converging to x, such that the sequence
of lines

φ(xn)φ(yn)

converges in projective space to a line `. Then (dxφ)−1(`) ⊂ τ .

The pair (S, T ) is said to satisfy the Whitney condition (B) if the above
condition holds for any point x ∈ S and any chart around x.

Although we have used charts in the definition of Whitney condition (B),
the condition is actually independent of the chart chosen - if (S, T ) satisfy
Whitney (B) with respect to a chart around x, they do so with respect to
any chart as well [50, Lemma 1.4.4].

Remark 19. Note that Whitney’s conditions are local, by definition, and
they also make sense for a stratification on a subspace of Rn. In this way we
can make sense of when a reduced stratified differentiable space X satisfies
Whitney’s conditions: by Proposition 3.29 such a space is always covered by
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open subspaces (Ui,OX|Ui
) isomorphic to (Z, C∞Z ), for some closed subset Z of

Rn. The subspace Zi has a decomposition Pi induced by the decomposition
on Ui (By restricting to an open, we might not have a stratification, but only
a decomposition; that is not a problem since all that we want is to check
that Whitney’s conditions hold for the pieces of the decomposition on Zi
corresponding to the strata on X).

Definition 5.3. Let (X,OX ,S) be a reduced stratified differentiable space.
We say that S is a Whitney stratification if X is covered by opens Ui,
such that, in the notation of Remark 19 above, (Ui,OX|Ui

) is isomorphic to
(Z, C∞Zi

), and all the induced stratifications Si satisfy Whitney’s conditions
(A) and (B).

The idea is that Whitney’s conditions are local conditions about how the
strata fit together that permit drawing important global information about
the stratification. Let us mention one particularly important example of this
idea: stratifications satisfying Whitney’s conditions are locally trivial (see
Proposition 5.6 below).

Definition 5.4. A morphism of stratified spaces is a continuous map
f : X −→ Y between stratified spaces with the property that for every
stratum S of X there is a stratum RS of Y such that f(S) ⊂ Y and the
restriction f|S : S −→ RS is smooth.

Let X1 and X2 be two topological spaces, with stratifications Si on Xi,
i = 1, 2. Then the products of the form S ×R with S ∈ S1 and R ∈ S2 form
a stratification on X1 ×X2.

Definition 5.5. A stratification S on a space S is called topologically
locally trivial if for every x ∈ X there is an open neighbourhood U of x in
X, a stratification SF on a space F , a point 0 ∈ F and an isomorphism of
stratified spaces

φ : (S ∩ U)× F −→ U,

where S is the stratum of S containing x, such that the stratum of SF
containing 0 is simply {0}, and such that φ(y, 0) = y for any y ∈ S ∩ U . In
this case F is called the typical fibre over x. When F is a cone, F = CL,
we say that L is the link of x.

If L is locally trivial with cones as typical fibres, and that holds again for
the links in the points of L, and so on, we say that (X,S) is a cone space.
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Proposition 5.6. [Thom-Mather [39, 61]] Any Whitney stratified reduced
differentiable space is locally trivial, with cones as typical fibres.

5.1. Orbispaces as stratified differentiable spaces. We now focus on
the smooth properties of the canonical stratifications associated to a proper
groupoid.

Proposition 5.7 (Main Conclusion). Let G ⇒M be a proper Lie groupoid.
Then M and the orbit space X = M/G, together with the canonical stratifi-
cations, are stratified differentiable spaces. Moreover, the canonical stratifi-
cations of M and X are Whitney stratifications.

Any Morita equivalence between two proper Lie groupoids induces an iso-
morphism of stratified differentiable spaces between their orbit spaces.

Proof : We have seen before that each connected component of a Morita type
is a submanifold of M so, together with its canonical stratification, M is a
stratified differentiable space. Moreover, using the local model of G around a
point in M , as in Remark 17, we see that since the stratification of the action
of Gx on Nx is a Whitney stratification, the same holds for the canonical
stratification on M .

Now let us focus on the orbit space. We already know that the strata are
locally closed subspaces of X. It is a local problem to verify that they are
embedded in X as differentiable spaces and satisfy Whitney’s conditions. Let
x ∈ X and let U be a neighbourhood of x in X for which the intersection
with the canonical stratification coincides with the canonical stratification on
U associated with a compact Lie group representation (again, by the local
description of Morita types as in Remark 17)

The statement on the Whitney conditions for the orbit space now follows
from a result of Bierstone [7], which states that the orbit space of a repre-
sentation of a compact group has a Whitney stratification (which coincides
with the canonical stratification).

Morita invariance of the stratified differentiable space structure on the orbit
space X follows from the Morita invariance of the smooth structure 3.38 and
of the canonical stratification 4.30 on X.

Corollary 5.8. Let G ⇒ M be a proper Lie groupoid. Then the canonical
stratifications on M and X are locally trivial with cones as typical fibres.
Moreover, M is a cone space.
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Proof : The first statement is a direct consequence of Proposition 5.6. But
actually, we already had an explicit description of this fact, by combining
Lemma 4.27 and Remark 17. For the stratification on M we find that the
typical fibre over x is the orthogonal complement F toN Gxx with respect to an
invariant inner product for the Gx-action onNx; the link of x is the unit sphere
Σ of F . Since the stratification on Σ is the canonical stratification for the
Gx-action, it has the same properties, so M , with the canonical stratification,
is a cone space.

With the notation of the proof of the previous corollary, on X we have that
the typical fibre over the orbit Ox is F/Gx and the link of Ox is Σ/Gx.

Remark 20. The proof that the canonical stratifications on M and X are
Whitney stratifications, using the language of germ-stratifications, appeared
in [51]. The authors of loc. cit. also use the canonical stratification to prove
that the orbit space of a proper groupoid can be triangulated, and a deRham
theorem for the basic cohomology of a proper Lie groupoid.

Another example of a stratified differentiable space arising in the study of
proper Lie groupoids is that of the inertia groupoid of a proper Lie groupoid
[26, 25].

5.2. Orbispaces as stratified subcartesian spaces. We now briefly dis-
cuss stratifications on subcartesian spaces (see Section 3.6) coming from or-
bits of families of vector fields and their relevance for orbispaces.

Definition 5.9. Let (S,FS) be a subcartesian space and letX be a derivation
of FS. An integral curve of X through a point x of S is a curve c : I −→ S
such that I is an interval containing 0 and

d

dε
f(c(ε)) = X(f)(c(t))

for all f ∈ FS and all ε ∈ I. If the domain of c is maximal with this
property, we say that c is a maximal integral curve. By convention, the
map c : {0} → S, 0 7→ x is an integral curve of any derivation.

Theorem 5.10 (Theorem 3.2.1 in [59]). Let (S,FS) be a subcartesian space
and let X be a derivation of FS. Then for any x in S, there is a unique
maximal integral curve c of X through x such that c(0) = x.
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Although derivations of FS always admit maximal integral curves, they
may fail to induce local one-parameter groups of local diffeomorphisms. The
ones that do are called vector fields:

Definition 5.11. Let (S,FS) be a subcartesian space. A vector field on S
is a derivation X of FS such that for every x ∈ S, there exists a neighbour-
hood U of x in S and ε > 0 such that for all t ∈ (−ε, ε), the map exp(tX) is
defined on U and its restriction to U is a diffeomorphism of U with an open
subset of S.

Definition 5.12. Let (S,FS) be a subcartesian space, let F be a family of
vector fields on S and let x ∈ S. The orbit of the family F through x is
the set of all points y ∈ S of the form

y = exp(tnXn) ◦ . . . ◦ exp(t1X1)(x),

for some t1, . . . , tn ∈ R and some X1, . . . , Xn ∈ F.

Theorem 5.13 (Theorem 3.4.5 in [58]). Any orbit O of a family F of vector
fields on a subcartesian space S is a smooth manifold. Moreover, in the
topology of O given by the manifold structure, the Sikorski structure induced
on O by the inclusion on S coincides with the manifold structure.

Proposition 5.14 (Proposition 4.1.2 in [59]). The partition of a subcartesian
space S by orbits of the family of all vector fields on S satisfies the frontier
condition.

Corollary 5.15 (Corollary 4.1.3 in [59]). The partition of a subcartesian
space S by orbits of the family of all vector fields on S is a stratification if
and only if the partition is locally finite and the orbits are locally closed.

An important example of a case where orbits of all vector fields do indeed
define a stratification is that of orbit spaces of proper actions.

Theorem 5.16 (Theorem 4.3.10 in [59]). Let G be a Lie group acting properly
on a manifold M . The partition of the subcartesian space M/G by orbits of
the family of all vector fields on M/G is the canonical stratification S(M/G).

Note that this means that for the orbit space of a proper Lie group action,
the canonical stratification is completely determined by the smooth structure
on M/G. Since the orbit space of a proper Lie groupoid is locally diffeomor-
phic (as a subcartesian space) to the orbit space of a representation of a
compact Lie group, we obtain the following (cf. Theorem 4.14 in [68]).
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Corollary 5.17. Let X be the orbit space of a proper Lie groupoid. Then
the canonical stratification S(X) coincides with the partition by the orbits of
the family of all vector fields on X, seen as a subcartesian space.

In the case of a classical orbifold, i.e., one which is presented by an effective
proper groupoid (cf. e.g. [43]), the following result of Watts shows that we
can actually recover all the information from the smooth structure:

Theorem 5.18 (Main theorem in [68]). Given an effective orbifold X, an
orbifold atlas for it can be constructed out of invariants of the ring of smooth
functions C∞(X).
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schémas. (“SGA IV”). Lecture Notes in Mathematics, Vol. 269, 270. Springer-Verlag, Berlin-
New York, 1972.

[4] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[5] K. Behrend and P. Xu. Differentiable stacks and gerbes. J. Symplectic Geom., 9(3):285–341,
2011.

[6] D. Berwick Evans and E. Lerman. Lie 2-algebras of vector fields. Preprint arXiv:1609.03944.
[7] E. Bierstone. Lifting isotopies from orbit spaces. Topology, 14(3):245–252, 1975.
[8] A. Cannas da Silva and A. Weinstein. Geometric models for noncommutative algebras, vol-

ume 10 of Berkeley Mathematics Lecture Notes. American Mathematical Society, Providence,
RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999.

[9] W. Chen. A homotopy theory of orbispaces. Preprint arXiv:math/0102020.
[10] A. Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.
[11] A. Coste, P. Dazord, and A. Weinstein. Groupöıdes symplectiques. In Publications du
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