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STRONGLY MIXED RANDOM ERRORS
IN MANN’S ITERATION ALGORITHM

FOR A CONTRACTIVE REAL FUNCTION

HASSINA ARROUDJ, IDIR ARAB AND ABDELNASSER DAHMANI

Abstract: This work deals with the Mann’s stochastic iteration algorithm under
α−mixing random errors. We establish the Fuk-Nagaev’s inequalities that enable
us to prove the almost complete convergence with its corresponding rate of con-
vergence. Moreover, these inequalities give us the possibility of constructing a
confidence interval for the unique fixed point. Finally, to check the feasibility and
validity of our theoretical results, we consider some numerical examples, namely a
classical example from astronomy.
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1. Introduction
In many mathematical problems arising from various domains, the exis-

tence of a solution is the same as the existence of a fixed point by some
appropriate transformation of the problem. The most known problem in
that framework is the root existence which can be tackled easily as the ex-
istence of a fixed point and vice versa. Therefore, the fixed point theory is
of paramount importance in engineering sciences and many areas of mathe-
matics. Fixed point theory provides conditions under which maps have the
existence and uniqueness of solutions. Over the last decades, that theory has
been revealed as one of the most significant tool in the study of nonlinear
problems. In particular, in many fields, equilibria or stability are fundamen-
tal concepts that can be described in terms of fixed points. For example, in
economics, a Nash equilibrium of a game is a fixed point of the game’s best
response correspondence. However, in informatics, programming language
compilers use fixed point computations for program analysis, for example in
data-flow analysis, which is often required for code optimization. The vector
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of PageRank values of all web pages is the fixed point of a linear transforma-
tion derived from the World Wide Web’s link structure. In astronomy, the
eccentric anomaly E of a given planet is related to a fixed point equation
that cannot be solved analytically, this will be well described in example (9)
and many examples could be found in engineering sciences such as physics,
geology, chemistry, biology, mechanical statistics, etc.
Mathematically, a fixed point problem is presented under the following form

Find x ∈ X such that Fx = x (1)

Where F is an operator, defined on a given space X. The solutions of that
equation if they exist are called ”fixed points” of the mapping F . The clas-
sical result in fixed point theory is the Banach fixed-point theorem [2]; it
ensures the existence and uniqueness of a fixed point of certain self-maps of
a metric space. Additionally, it provides a constructive numerical method to
approximate the fixed point.

After verifying the existence and uniqueness conditions, it is necessary to
find (or approximate) the unique fixed point of the problem (1). This leads to
find the unique root of F−idX where idX denotes the identity operator on X.
Analytically, to find that root, one has to reverse the operator F − idX and
one could immediately think about the difficulty when dealing with inversion
and most of the time that task is impossible. Alternatively, numerical meth-
ods become the most appropriate tool and have attracted many researches
these last decades. The pioneering work after Picard’s iterative method was
introduced by Mann [15] to remedy the problem of convergence while us-
ing the Picard’s method for approximating the fixed point of nonexpansive
mapping. Later, many modified algorithms were introduced, by considering
the stochastic part, i.e., considering the errors generated by the numerical
evaluation of the algorithm. For an account of relevant literature on that
topic, see ([3, 4, 5, 9, 11, 12, 13, 14]).

In the framework of this paper, we consider the Mann iterative algorithm
as described in (3) by taking into account the committed errors at each
evaluation of the approximated fixed point xn. These errors are supposed
to be random and modeled by random variables and we suppose them to
be strong mixing. Recall that a sequence (ξi) is said to be strong mixing or
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α−mixing if the following condition is satisfied:

α (n) = sup
A∈Fk−∞,C∈F+∞

k+n

|P (A ∩ C)− P (A)P (C)| −→
n−→+∞

0 (2)

where Fm
l denotes the σ-algebra engendered by events of the form

{(ξi1, · · · , ξik) ∈ B}, where l ≤ i1 < i2 < · · · < ik ≤ m and B is a Borel set.
The notion of α-mixing was firstly introduced by Rosenbaltt in 1956 [17]

and the central limit theorem has been established. The strong mixing ran-
dom variables have many interest in linear processes and find many applica-
tion in finance, for more motivating examples and properties concerning the
mixing notions, see [7, 10].

In this paper, we establish Fuk-Nagaev’s inequalities. These inequalities al-
low us to prove the almost complete convergence of Mann’s algorithm to the
fixed point, with convergence rate and the possibility of giving a confidence
interval. To strengthen the obtained theoretical results, some numerical ex-
amples are considered.
The rest of the paper is organized as follows: In section 2, the statement of
the problem is described and some known results are recalled. In section 3,
some new results were established by using stochastic methods. In section
4, the validity of our approach is checked up by considering some numerical
examples.

2. Preliminaries
Let (Ω,F ,P) be a probability space and f : R→ R a non-linear function.

We consider the stochastic Mann’s iteration algorithm:

xn+1 = (1− an)xn + bnf (xn) + cnξn, (3)

where the sequences of positive numbers (an)n≥1, (bn)n≥1 and (cn)n≥1 satisfy
the following conditions,

lim
n→+∞

bn = lim
n→+∞

an = 0 and
+∞∑
n=1

bn =
+∞∑
n=1

an = +∞

+∞∑
n=1

c2
n < +∞.

Without loss of generality, we take

an = bn =
a

n
and cn =

a

n2
, a > 0.
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Hence, the stochastic Mann’s iteration algorithm (3) takes the following
form:

xn+1 =
(

1− a

n

)
xn +

a

n

[
f (xn) +

1

n
ξn

]
. (4)

We now introduce some classical hypothesis that will be useful tools for the
proof of established results in the sequel:

(H1) : The fixed point x∗ satisfies

∃ N > 0, |x1 − x∗| ≤ N < +∞. (5)

(H2) : The function f is contractive, i.e, it satisfies the following property:

∀ x, y ∈ R, |f (x)− f (y)| ≤ c |x− y| , c ∈ (0, 1) . (6)

(H3) : The random variables (ξi)i fulfill the condition of uniform decrease,
that is,

∃ p > 2, ∀ t > 0, P {|ξi| > t} ≤ t−p. (7)

(H4) : The coefficients of the α-mixing sequence (ξn)n satisfy the following
arithmetic decay condition:

∃ d ≥ 1, ∃ β > 1 : α (n) ≤ d n−β,∀ n ∈ N∗. (8)

(H5) : The α-mixing coefficients satisfy the following condition

∃ ρ > 0, ρ
(β + 1) p

β + p
> 2. (9)

Remark 1. The assumption (H1) is classical. Arbitrary choice of x1 and
the existence of x∗ allows us to assume such supposition. The contraction’s
assumption (H2) ensures the existence and uniqueness of the fixed point x∗

of the function f according to Banach’s theorem for fixed point. When the
function f is differentiable, the condition (H2) is equivalent to the boundness
of the derivative f ′, i.e, ∃ c > 0, sup

x
|f ′ (x)| ≤ c < 1. The hypothesis (H3)

is satisfied for all bounded random variables and Gaussian ones. Assump-
tion (H4) is used in order to characterize the dependence structure of errors.
Moreover, combined to (H3), the assumption (H4) allows the obtention of
Fuk-Nagaev’s inequalities [16], which ensures the almost complete conver-
gence result. As a particular example, the geometric α-mixing sequence (ξi)i
and its mixing coefficients are defined as follows,

∃ d0 > 0,∃ κ ∈ (0, 1) : α (n) ≤ d0 κ
n,∀ n ∈ N∗.
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The assumption (H5) will be useful for specifying the rate of almost com-
plete convergence of the stochastic Mann’s iteration algorithm. That condi-
tion is classical, see [1, 8].

First, we state the following theorem which will be used in the sequel during
the proof of the main result.

Theorem 2. Let (ξi)i∈N∗ be a centered sequence of real-valued random vari-
ables and (αn)n∈N∗ the corresponding sequence of mixing coefficients as de-
fined in (2) such that the hypothesis (H3) and (H4) are satisfied. Let us
set

s2
n =

n∑
i=1

n∑
k=1

|Cov (ξi, ξk)| .

Then, for every real numbers r ≥ 1 and λ > 0, we have

P

(
sup
k∈[1,n]

∣∣∣∣∣
k∑
i=1

ξi

∣∣∣∣∣ ≥ 4λ

)
≤ 4

(
1 +

λ2

rs2
n

)−r
2

+ 4Cnr−1
( r
λ

) (β+1)p
(β+p)

.

Proof : The proof is well detailed in [16], page 84 to 87.

Lemma 3. Using the hypothesis (H1), we get the following inequality:

|xn+1 − x∗| ≤ N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
|ξi| . (10)

Proof : The proof is straightforward by induction on n.

Lemma 4. For all constants a < 1, we have the following inequalities
n∏

j=i+1

(
1− a (1− c)

j

)
≤
(
i+ 1

n+ 1

)a(1−c)
, (11)

and,
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
≤ aS

(n+ 1)a(1−c) . (12)

Proof : For the first inequality, we have

n∏
j=i+1

(
1− a (1− c)

j

)
≤ exp

(
−a (1− c)

n∑
j=i+1

1

j

)
≤
(
i+ 1

n+ 1

)a(1−c)
.
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The second inequality follows immediately from inequality (11) by setting S

the sum of the convergent series (i+1)
i2

a(1−c)
.

3. Convergence of Mann iterative algorithm
The following theorem gives the almost complete convergence by mean of

Fuk-Nagaev’s inequality that will give also the possibility of constructing a
confidence interval.

Theorem 5. Under the assumptions (H1)–(H5) and for any real positive ρ

such that 2(β+p)
p(β+1) < ρ < a (1− c) < 1, we have:

xn+1 − x∗ = O

( √
lnn

na(c−1)−ρ

)
a.co. (13)

Proof : Using the inequality (10), we have

P (|xn+1 − x∗| > ε)

≤ P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
|ξi| > ε

)

≤ P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
E |ξi| ≥

ε

2

)

+P

(
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
(|ξi| − E |ξi|) >

ε

2

)
. (14)

Firstly, since the left hand side inside the following probability is not ran-
dom, we have

P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
E |ξi| >

ε

2

)
≤ K1e

−n2a(1−c)ε2.

(15)
We set

Zi =
ana(1−c)

i2

n∏
j=i+1

(
1− a (1− c)

j

)
(|ξi| − E |ξi|) .
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Note that the random variables (Zi)i are centered and according to (7), we
show that, there exists a positive constant M such that,

∀ t > 0 , P (|Zi| > t) ≤Mt−p. (16)

Finally, we notice that if the random errors (ξi) are α-mixing, then the ran-
dom variables (Zi) remain also with mixing coefficients less than or equal
to those of the sequence (ξi)i. Thus, applying the Fuk-Nagaev’s exponential
inequality given by Rio (Theorem 2) to the variables (Zi), we obtain for any
ε > 0 and r ≥ 1 :

P (|xn+1 − x∗| > ε) ≤ K1e
−n2a(1−c)ε2 + 4

(
1 +

ε2n2a(1−c)

4rs2
n

)−r
2

+4Cnr−1

(
2r

εna(1−c)

) (β+1)p
(β+p)

(17)

where,

C = 2Mp (2p− 1)−1 (2βd) p−1β+p and s2
n =

n∑
i=1

n∑
k=1

|Cov (Zi, Zk)| .

Let us bound the double sum of covariances s2
n,

s2
n =

n∑
i=1

n∑
k=1

|Cov (Zi, Zk)| =
n∑
i=1

V ar (Zi) +
n∑
i=1

n∑
k 6=i

|Cov (Zi, Zk)| .

We recall that,

n∑
i=1

V ar (Zi) ≤
n∑
i=1

a2 (i+ 1)2a(1−c)

i4
V ar (|ξi|) ≤ Sv (18)

since it is a partial sum of a convergent series with positive terms.
On the other hand, for i 6= k, we have

|Cov (Zi, Zk)| ≤
a2 (i+ 1)a(1−c)

i2
(k + 1)a(1−c)

k2
|E (|ξi| − E |ξi|) (|ξk| − E |ξk|)| .

(19)
According to the inequality given by Ibragimov [10] (Theorem 17.2.2 page
307), we obtain:

|E (|ξi| − E |ξi|) (|ξk| − E |ξk|)| ≤ (4 + 6C) (α (|i− k|))
p−2
p , (20)
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consequently,

|Cov (Zi, Zk)| ≤ a2 (4 + 6C)
(i+ 1)a(1−c)

i2
(k + 1)a(1−c)

k2
(α (|i− k|))

p−2
p . (21)

Since the mixing coefficients of the sequence (|ξi| − E |ξi|)i are less than or
equal to those of the sequence (ξi)i, we get,

n∑
i=1

n∑
k 6=i

|Cov (Zi, Zk))| ≤
n∑
i=1

n∑
k=1

a2 (4 + 6C)
(i+ 1)a(1−c)

i2
(k + 1)a(1−c)

k2
(α(1))

p−2
p

≤ (4 + 6C)
n∑
i=1

(i+ 1)a(1−c)

i2

n∑
k=1

a2 (k + 1)a(1−c)

k2
≤ Sc. (22)

Combining (18) and (22), we obtain:

s2
n ≤ Sv + Sc = S. (23)

So, from (23), we have the inequality

P (|xn+1 − x∗| > ε) ≤ T1 + T2 + T3, (24)

where

T1 = K1e
−n2a(1−c)ε2, T2 = 4

(
1 +

n2a(1−c)ε2

4rS

)−r
2

and T3 = 4Cnr−1
( r

na(1−c)ε

) (β+1)p
β+p

.

For a well chosen positive number r and ε, the quantities T1, T2 and T3

become a general terms of convergent series. Consequently, we obtain,

+∞∑
n=1

P (|xn+1 − x∗| > ε) < +∞

that ensures the almost complete convergence of the sequence (xn)n to the
unique fixed point x∗. The choice of the tuning positive number r will be
specified while deriving the corresponding rate of convergence.

Recall that xn − x∗ = O (εn) almost completely (a.co), where (εn)n is a
sequence of real positive numbers tending to zero, if there exists a positive
constant k such that,

+∞∑
n=1

P (|xn − x∗| > kεn) < +∞.
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Basing on the inequalities obtained above, we take:

ε = εn = kεn, where k =
√

1 + δ, δ > 0 and εn =

√
lnn

na(1−c)−ρ .

Hence, we obtain

T1 = K1e
−(n+1)

2a(1−c)
ε2 ≤ K1e

−(1+δ) lnn =
K1

n1+δ
. (25)

For a suitably chosen r such that r > 2
ρ , we obtain,

T2 = 4

(
1 +

(1 + δ)nρ

rS

)−r
2

≤ K2n
−ρ r2 (26)

where,

K2 =

(
rS

1 + σ

)r/2
.

With regard to T3, we have,

T3 ≤ 4Cnr−1

(
r√

1 + δnρ lnn

) (β+1)p
β+p

= 4Cr
(β+1)p
β+p −1 n(√

1 + δnρ lnn
) (β+1)p

β+p

.

With r chosen as in (26), we deduce,

T3 ≤ K3
1

nρ
(β+1)p
β+p −1 (lnn)

(β+1)p
β+p

, (27)

which is a general term of Bertrand series, it is convergent because of the
hypothesis (H5). It leads that:

P

(
|xn+1 − x∗| >

√
1 + δ

√
lnn

na(1−c)−ρ

)
≤ K1

n1+δ
+
K2

nρ
r
2

+
K3

nρ
(β+1)p
β+p (lnn)

(β+1)p
β+p

. (28)

The right-hand side of the last inequality is a term of a convergent series.

Remark 6. Remark that in the obtained rate of convergence given by the

formula (13), more the quantity 2(β+p)
p(β+1) is small, more we have the choice

of taking ρ smaller and consequently the rate of convergence becomes more
interesting.
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Corollary 7. Under the assumptions (H1)–(H5), for a given level σ, there
exists a natural integer nσ for which the fixed point x∗ of the function f
belongs to closed interval of center xnσ and radius ε with a probability greater
than or equal to 1− σ.

∀ ε > 0,∀ σ > 0,∃ nσ ∈ N : P (|xnσ − x∗| ≤ ε) ≥ 1− σ. (29)

Proof : Indeed, using Kronecker’s Lemma, we obtain lim
n→+∞

α (n) = 0 which

implies

lim
n→+∞

K1

n1+δ
+
K2

nρ
r
2

+
K3

nρ
(β+1)p
β+p (lnn)

(β+1)p
β+p

= 0. (30)

Since there exists a natural integer nσ such that

∀ n ∈ N, n ≥ nσ − 1 =⇒ K1

n1+δ
+
K2

nρ
r
2

+
K3

nρ
(β+1)p
β+p (lnn)

(β+1)p
β+p

≤ σ, (31)

thus, (29) arises from (28) and (31).

4. Numerical results
In this section, a simulation study is proposed to check the validity of our

obtained theoretical results. We consider two examples. In the first one,
a contractive function where its unique fixed point is known exactly and
we compare the fixed point with the approximated ones obtained using the
Mann’s iterative algorithm. In the second example, we consider a classical
problem from astronomy, where the mathematical equation cannot be solved
to obtain the exact value of the fixed point and we use the Cauchy’s criterium
to compare two successive iterates to ensure the convergence of the sequence
obtained using iterative Mann’s algorithm.

xn+1 =
(

1− a

n

)
xn +

a

n

[
f (xn) +

1

n
ξn

]
0 < a(1− c) < 1, ξ0 = 0, n ∈ N∗.
To characterize the strong mixing random errors (ξi), we consider an au-

toregressive model (ξi)i of order 1 (see [6]), described as follows

ξi+1 = ϕξi + gi, (32)

where gi is a Gaussian white noise process, ϕ is a constant such that |ϕ| < 1.
For the simulation of Gaussian random variables (gi)i, we use the method of
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Box-Muller :
gk =

√
−2ln(u1) cos(2πu2) (33)

where u1 and u2 are uniform distributed random numbers on (0.1)

Example 8. We consider the following function defined by:

f : [0, 5]→ [0, 5]
x 7→

√
x+ 1

The function f is a contractive function with c = max
x∈[0,+∞)

∣∣f ′(x)
∣∣ = 1

2 . Hence

f has a unique fixed point x∗ = 1+
√

5
2 = 1, 618033988749895, which is known

as golden ration. For x1 = 1.3, a = 1
4 and ϕ = 0.8, the following results are

obtained:

n xn |xn − x∗|
103 1.614142671526978 0.003891317222917
104 1.615420224332314 0.002613764417581
105 1.616115916146472 0.001918072603423

Example 9. Most of mathematical problems come from engineering sciences
(physics, chemistry, geology, astronomy, etc.). When studying some physical
problems using the appropriate mathematical models, we obtain an equation
or a set of equations and usually cannot be solved analytically because in
general, these equations are corrupted by noise or the known mathematical
tools do not allow us to solve them. To illustrate this fact, we consider the
following classical example from astronomy.

Consider a planet in an orbit around the sun as described by the following
diagram.
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Let n be the mean angular motion of the Mercury’s orbit around the sun,
t the elapsed time since the planet was last closet to the sun (this is called

perifocus or perihelion in astronomy) and e =
√

1− b2

a2 , the eccentricity of the

planet’s elliptical orbit. Using Kepler’s laws of planetary motion, we obtain
the location of the planet at time t.{

x = a (cos (E)− e)
y = a

√
1− e2 sin (E)

The quantity E is called the eccentric anomaly and is given by the following
equation

E = nt+ e sin (E) = M + e sin (E) .

where M is called the mean anomaly which increases linearly in time at the
rate n. Note that E is the fixed point of the function f, where f (x) =
M + e sin (x) for a given time t and the frequency of the orbit ω. In this
equation, we cannot find an explicit formula of the eccentric anomaly E. It
is easy to check that f is a contraction, moreover, we have,

|f (x)− f (y)| ≤ e |x− y| ,

which ensures the existence and uniqueness of the fixed point E.
For our simulation, by choosing the Mercury planet, we have its eccentricity

e = 0.20563069 and the mean anomaly M= 3.05076572 (The Mann’s process
is implemented for a = 0.9, ϕ = 0.7), and given an initial guess x1 = 3, we
obtain the following iterates:

n xn |xn − xn−1| |xn − xfp|
100 3.066277803444744 5.084582991976561e-06 3.292480386907215e-05
1000 3.066247563732222 2.842158499660741e-07 2.685091347043311e-06
104 3.066245125153754 6.291136500635730e-08 2.465128789985727e-07
105 3.066244900326525 7.696832948766996e-09 2.168565016447133e-08

Remark 10. Note that the numerical solution of the equation f(x) = x
given by Matlab is xfp = 3.066244878640875. As we can observe, the used
Mann algorithm gives nice approximations of the unique fixed point of the
function f . Thus, the complementary numerical examples considered above
make the obtained theoretical results of convergence well palpable.
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