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1. Introduction

Given X1, . . . , Xn independent copies of an absolutely continuous real ran-
dom variable with unknown density and distribution functions f and F , re-
spectively, the classical kernel estimator of F introduced by authors such as
Tiago de Oliveira (1963), Nadaraya (1964) or Watson and Leadbetter (1964),
is defined, for x ∈ R, by

F̄nh(x) =
1

n

n
∑

i=1

K̄

(

x−Xi

h

)

, (1)

where, for u ∈ R,

K̄(u) =

∫ u

−∞

K(v)dv,

with K a kernel on R, that is, a bounded and symmetric probability density
function with support [−1, 1] and h = hn a sequence of strictly positive
real numbers converging to zero when n goes to infinity. For some recent
references on this classical estimator see Giné and Nickl (2009), Chacón and
Rodŕıguez-Casal (2010), Mason and Swanepoel (2011) and Chacón, Monfort
and Tenreiro (2014).
If the support of f is known to be the finite interval [a, b], that is, a = inf{x :

F (x) > 0} > −∞ and b = sup{x : F (x) < 1} < +∞, the previous kernel
estimator suffers from boundary problems if F ′

+(a) 6= 0 or F ′
−(b) 6= 0. This
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2 C. TENREIRO

question is addressed in Tenreiro (2013) who extend to the distribution func-
tion estimation framework the approach followed in nonparametric regression
and density function estimation by authors such as Gasser and Müller (1979),
Rice (1984), Gasser et al. (1985) and Müller (1991). Especially, the author
considers the boundary modified kernel distribution function estimator given
by

F̃nh(x) =



















0, x ≤ a

1

n

n
∑

i=1

K̄x,h

(

x−Xi

h

)

, a < x < b

1, x ≥ b,

(2)

where 0 < h ≤ (b− a)/2 and

K̄x,h(u) =







K̄L(u; (x− a)/h), a < x < a+ h
K̄(u), a+ h ≤ x ≤ b− h
K̄R(u; (b− x)/h), b− h < x < b,

with

K̄L(u;α) =

∫ u

−∞

KL(v;α)dv and K̄R(u;α) = 1−

∫ +∞

u

KR(v;α)dv,

whereKL(·;α) andKR(·;α) are, respectively, left and right boundary kernels
for α ∈ ]0, 1[, that is, their supports are contained in the intervals [−1, α] and
[−α, 1], respectively, and |µ0,ℓ|(α) =

∫

|Kℓ(u;α)| du < ∞ for all α ∈ ]0, 1[
and ℓ = L,R (here and bellow integrals without integration limits are meant
over the whole real line).
For ease of presentation, from now on we assume that the right boundary

kernel KR is given by KR(u;α) = KL(−u;α), the reason why only the left
boundary kernel is mentioned from now on. By assuming that KL(·;α) is a
second order kernel, that is,

µ0,L(α) = 1, µ1,L(α) = 0 and µ2,L(α) 6= 0, for all α ∈ ]0, 1[, (3)

where we denote

µk,L(α) =

∫

ukKL(u;α) du, for k ∈ N,

Tenreiro (2013) shows that the previous estimator is free of boundary prob-
lems and that the theoretical advantage of using boundary kernels is com-
patible with the natural property of getting a proper distribution function
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estimate. In fact, it is easy to see that the kernel distribution function esti-
mator based on each one of the second order left boundary kernels

KL
1 (u;α) = (2K̄(α)− 1)−1K(u)I(−α ≤ u ≤ α), (4)

where we assume that K is such that
∫ α

0 K(u)du > 0 for all α > 0, and

KL
2 (u;α) = K(u/α)/α, (5)

is, with probability one, a continuous probability distribution function (see
Tenreiro, 2013, Examples 2.2 and 2.3). Additionally, it is shown that the
Chung-Smirnov law of iterated logarithm is valid for the new estimator, and
an asymptotic expansion for its mean integrated squared error is presented,
from which the choice of h is discussed (see Tenreiro, 2013, Theorems 3.2,
4.1 and 4.2).
A careful analysis of the asymptotic expansions presented in Tenreiro (2013,

p. 171, 178) for the local bias and the integrated squared bias of estimator (1),
suggests that the previous properties may still be valid for all the boundary
kernels satisfying the less restricted condition

α (1− µ0,L(α)) + µ1,L(α) = 0, for all α ∈ ]0, 1[, (6)

which is in particular fulfilled by the left boundary kernel

KL
3 (u;α) = αK(u)I(−1 ≤ u ≤ α)

/

(αµ0,α(K)− µ1,α(K)), (7)

where we denote µk,α(K) =
∫ α

−1 u
kK(u) du, for k ∈ N (see Figure 1). This

observation motivated the present note, which is organized as follows. In
Section 2 we describe the global and boundary behaviour of F̃nh to the broad
class of boundary kernels satisfying assumption (6). In Section 3 we refine
the previous analysis by describing the asymptotic behaviour of the bias and
variance of F̃nh(x) at the extreme boundary region, that is, for x taking the
form x = a + αh, where α = αn converges to zero as n tends to infinity.
This local analysis enables us to identify different orders of convergence for
the mean square error of the estimators associates to boundary kernels KL

1

and KL
2 and to boundary kernelKL

3 , which indicate that this latter boundary
kernel can be especially performing when the classical kernel estimator suffers
from severe boundary problems. In Section 4 we present some exact finite
sample comparisons between the estimators based on the previous boundary
kernels. The proofs of all results are deferred to Section 5.
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Figure 1. Left boundary kernels KL
q (u;α) (left column) and

K̄L
q (u;α) (right column) for q = 1, 2, 3 and α = 0.2, 0.4, 0.6, 1,

where K is the Epanechnikov kernel K(t) = 3
4(1− t2)I(|t| ≤ 1).
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2. Global and boundary behaviour

In this section we describe the global and boundary behaviour of the bound-
ary modified kernel distribution function estimator F̃nh defined by (2). As
mentioned before, for each one of the families of boundary kernels (4) and
(5), F̃nh is, under general conditions on K, a continuous probability distri-
bution function (with probability one). It is not hard to see that this is also
true for the new family of boundary kernels (7) whenever K is continuous on
]− 1, 1[.

2.1. Global behaviour. A classical measure of a distribution function esti-
mator performance is the supremum distance between such an estimator and
the underlying distribution function F . Next we extend Theorems 3.1 and
3.2 of Tenreiro (2013) by establishing the almost complete uniform conver-
gence and the Chung-Smirnov law of iterated logarithm for kernel estimator
(2). These properties have been first obtained for estimator (1) by Nadaraya
(1964), Winter (1973, 1979) and Yamato (1973). We denote by || · || the
supremum norm.

Theorem 1. If KL(u;α) satisfies

sup
α∈ ]0,1[

|µ0,L|(α) < ∞, (8)

we have
||F̃nh − F || → 0 almost completely.

Additionally, if F is Lipschitz on [a, b] and

(n/ log logn)1/2h→ 0, (9)

then F̃nh has the Chung-Smirnov property, i.e.,

lim sup
n→∞

(2n/ log logn)1/2||F̃nh − F || ≤ 1 almost surely.

The same is true under the less restrictive condition

(n/ log logn)1/2h2 → 0, (10)

whenever KL satisfies (6) and F ′ is Lipschitz on [a, b].

If the restriction of F to the interval [a, b] is twice continuously differen-
tiable, it can be proved that the expansion of the mean integrated squared
error of the estimator F̃nh given in Theorem 2.4 of Tenreiro (2013) is also valid
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for the boundary modified kernel estimator (2) when the left boundary kernel

satisfies condition (6) with
∫ 1

0 |µ0,L|(α)
2dα <∞. The asymptotically optimal

bandwidth, in the sense of minimising the main terms of that expansion, is
given by

h0 = δ(K)

(
∫

F ′′(x)2dx

)−1/3

n−1/3, (11)

where δ(K) =
(∫

uB(u) du
)1/3 (∫

u2K(u)du
)−2/3

and B(u) = 2K̄(u)K(u).
This optimal bandwidth satisfies condition (10) but not condition (9).

2.2. Boundary behaviour. In the next result we present asymptotic ex-
pansions for the bias and variance of F̃nh(x) with x in the boundary support
region. They extend the corresponding expansions presented in Tenreiro
(2013, p. 174) for second order boundary kernels. We will restrict our atten-
tion to the left boundary region ]a, a + h[, but similar results are valid for
the right boundary region ]b− h, b[.

Theorem 2. If KL(u;α) satisfies conditions (6) and (8), and the restriction
of F to the interval [a, b] is twice continuously differentiable, we have:

a)

sup
x∈ ]a,a+h[

∣

∣

∣

∣

EF̃nh(x)− F (x)−
h2

2
F ′′(x)µL

(

(x− a)/h
)

∣

∣

∣

∣

= o(h2),

where

µL(α) = µ2,L(α)− αµ1,L(α), α ∈ ]0, 1[.

b)

sup
x∈ ]a,a+h[

∣

∣

∣

∣

VarF̃nh(x)−
F (x)

(

1− F (x)
)

n

+
h

n
F ′(x)ν1,L

(

(x− a)/h
)

−
h2

2n
F ′′(x)ν2,L

(

(x− a)/h
)

∣

∣

∣

∣

= o(n−1h2),

where

ν1,L(α) = m1,L(α) + α(1− µ0,L(α)
2)

and

ν2,L(α) = m2,L(α) + α2(1− µ0,L(α)
2),
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Figure 2. Functions µL (top), ν1,L (left bottom) and ν∗2,L (right

bottom) for the left boundary kernels KL
q , with q = 1, 2, 3, where

K is the Epanechnikov kernel.

with mk,L(α) =
∫

ukBL(u;α) du, for k = 1, 2, and

BL(u;α) = 2K̄L(u;α)KL(u;α),

for α ∈ ]0, 1[. Additionally, if F ′
+(a) = 0 the previous expansion takes the

form

sup
x∈ ]a,a+h[

∣

∣

∣

∣

VarF̃nh(x)−
F (x)

(

1− F (x)
)

n

−
h2

2n
F ′′(x)ν∗2,L

(

(x− a)/h
)

∣

∣

∣

∣

= o(n−1h2),

where

ν∗2,L(α) = ν2,L(α)− 2αν1,L(α).
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For all boundary kernels satisfying (6) it can be shown that

ν1,L(α) =

∫ α

−1

K̄L(u;α)
(

1− K̄L(u;α)
)

du,

from which we deduce that ν1,L(α) > 0 for all α ∈ ]0, 1[, whenever the bound-
ary kernel family satisfies 0 ≤ K̄L(u;α) ≤ 1, for all u ∈ R and α ∈ ]0, 1[.
Therefore, and similarly to what has been pointed out by other authors (see
Azzalini, 1981, Tenreiro, 2013), we conclude that the kernel estimator F̃nh

presents a local variance smaller than the variance of the empirical distribu-
tion function estimator whenever F ′

+(a) > 0. The same conclusion is valid
in the case F ′

+(a) = 0 whenever the boundary kernel family satisfies

ν∗2,L(α) = 2

∫

(α− u)K̄L(u;α)2du− α2 < 0, for all α ∈ ]0, 1[.

In order to undertake a first asymptotic comparison between the boundary
kernelsKL

q given by (4), (5) and (7), we plot in Figure 2 the functions µL, ν1,L
and ν∗2,L which are the coefficients of the most significant terms depending on

the kernel in the expansions of the local variance and bias of estimator F̃nh(x)
for x in the left boundary region. We take forK the Bartlett or Epanechnikov
kernel K(t) = 3

4(1− t2)I(|t| ≤ 1), but similar conclusions are valid for other
polynomial kernels such as the uniform (in this case KL

1 = KL
2 ), the biweight

or the triweight kernels (for the definition of these kernels see Wand and
Jones, 1995, p. 31). In particular, the left boundary kernels KL

q associated
to all these kernels satisfy ν1,L(α) > 0 and ν∗2,L(α) < 0 for all α ∈ ]0, 1[.

From the plots we also conclude that the boundary kernel KL
2 has, uni-

formly over the boundary region, the lowest asymptotic bias but also the
biggest asymptotic variance among the considered boundary kernels. In the
case F ′

+(a) > 0, the lowest asymptotic variance is obtained by the boundary
kernel KL

3 , which also has the biggest asymptotic bias among the considered
boundary kernels. In the case F ′

+(a) = 0 we see that the three considered ker-
nels present similar asymptotic variances with a small advantage for kernel
KL

3 . Taking into account the bias behaviour, we conclude that the estimator
based on kernel KL

2 can be specially performing when F ′
+(a) = 0. We post-

pone to Section 4 the analysis of the combined effect of bias and variance
which depends on the underlying distribution F , especially throughout F ′(x)
and F ′′(x).
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3. Extreme boundary behaviour

As we have seen in the previous section, although the estimators based on
the considered classes of boundary kernels present different behaviours in the
boundary region, the mean square error order of convergence does not reflect
those differences. In fact, under the conditions of Theorem 2, for h = Cn−1/3,
with C > 0, we always have

MSEF̃nh(x) = O
(

n−4/3
)

.

Next we extend the previous analysis to the extreme boundary region.
More precisely, we describe the asymptotic behaviour of the bias and variance
of F̃nh(x) when x takes the form x = a+αh, where α = αn converges to zero as
n tends to infinity. As a consequence of this analysis, we will able to identify
different orders of convergence for the mean square error of the estimators
associate to boundary kernels KL

1 and KL
2 , and to KL

3 . For k = 0, 1, . . . and
α ∈ ]0, 1[, we will write |µk,L|(α) :=

∫

|u|k|KL(u;α)|du ≤ |µ0,L|(α).

Theorem 3. Under the conditions of Theorem 2, for x = a + αnh, with
αn → 0 as n→ ∞, we have:
a)

EF̃nh(x)− F (x) =
h2

2
F ′′(x)µL(αn) + o

(

h2|µ2,L|(αn)
)

+ o
(

h2α2
n

)

.

b)

VarF̃nh(x) =
F (x)

(

1− F (x)
)

n
−
h

n
F ′(x)ν1,L(αn) +

h2

2n
F ′′(x)ν2,L(αn)

+ o
(

n−1h2|µ2,L|(αn)
)

+ o
(

n−1h2α2
n

)

.

Additionally, if F ′
+(a) = 0 the previous expansion takes the form

VarF̃nh(x) =
F (x)

(

1− F (x)
)

n
+
h2

2n
F ′′(x)ν∗2,L(αn)

+ o
(

n−1h2|µ1,L|(αn)
)

+ o
(

n−1h2|µ2,L|(αn)
)

+ o
(

n−1h2α2
n

)

.

From the previous expansions we see that the mean square error order of
convergence of F̃nh(x), for x is in the extreme boundary region, depends on
the behaviour of µL(α), ν1,L(α) and ν

∗
2,L(α) for α close to zero. For each one

of the considered boundary kernel families KL
q , for q = 1, 2, 3, we can obtain
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the expansions

µL(α) =







1
3α

2 + o
(

α2
)

, for KL
1

∫

u2K(u)duα2, for KL
2

Cα+ o(α), for KL
3 ,

ν1,L(α) =







1
3
α+ o(α), for KL

1
∫

uB(u)duα, for KL
2

α− C1α
2 + o(α2), for KL

3

and

ν∗2,L(α) =







−1
3
α2 + o(α2), for KL

1

−
∫

(2u− u2)B(u)duα2, for KL
2

−(1− C2)α
2 + o(α2), for KL

3 ,

where 0 <
∫

uB(u)du < 1 for a general kernel K, C =
∫ 1

0 u
2K(u)du

/

∫ 1

0 uK(u)du, Ck =
∫ 1

0 u
kB(−u)du

/ ( ∫ 1

0 uK(u)du
)2
, for k = 1, 2, and K

is assumed to be differentiable on a right neighbourhood of the origin with
K(0) 6= 0 (these additional assumptions on K are exclusively used to de-
rive the previous expansions for the boundary kernel family KL

1 ). In par-
ticular, taking for K the Epanechnikov kernel we get

∫

u2K(u)du = 1/5,
∫

uB(u)du = 9/35,
∫

(2u − u2)B(u)du = 11/35, C = 8/15, C1 = 176/105,
and C2 = 17/45.
From Theorem 3 we conclude that different orders of convergence for the

bias are obtained for kernels KL
1 and KL

2 and for kernel KL
3 . In fact, the bias

order of convergence to zero is bigger for kernels KL
1 and KL

2 than for kernel
KL

3 . More precisely, we have

EF̃nh(x)− F (x) =
h2

2
F ′′
+(a)µL(αn)(1 + o(1))

=

{

O
(

h2α2
n

)

, for KL
1 and KL

2

O
(

h2αn

)

, for KL
3 .

In relation to the variance of the estimator, its order of convergence to zero
is bigger for kernel KL

3 than for kernels KL
1 and KL

2 whenever F ′
+(a) > 0. In

fact, in this case we have

VarF̃nh(x) =
h

n
F ′
+(a)

(

αn − ν1,L(αn)
)

(1 + o(1))

=

{

O
(

n−1hαn

)

, for KL
1 and KL

2

O
(

n−1hα2
n

)

, for KL
3 .
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Finally, if F ′
+(a) = 0 the order of convergence of the variance is the same for

the three families of estimators

VarF̃nh(x) =
h2

2n
F ′′
+(a)

(

α2
n + ν∗2,L(αn)

)

(1 + o(1)) = O
(

n−1h2α2
n

)

.

As a consequence of the previous expansions, we summarize in the following
theorem the different orders of convergence we can observe for the mean
square error of F̃nh(x) when x is in the extreme boundary region and h
has the order of convergence of the asymptotically optimal bandwidth (11).
We conclude that the mean square error order of convergence is bigger for
kernel KL

3 than for kernels KL
1 and KL

2 whenever F ′
+(a) > 0, and the inverse

situation occurs whenever F ′
+(a) = 0. This result suggests that the new

class of boundary kernels KL
3 can be especially performing when the classical

kernel distribution function estimator suffers from boundary problems.

Theorem 4. Under the conditions of Theorem 3, let x be such that x =
a+ αnh, with αn → 0 as n→ ∞, and take h = Cn−1/3, with C > 0.

a) If F ′
+(a) > 0 we have

MSEF̃nh(x) =

{

O
(

n−4/3αn

)

, for KL
1 and KL

2

O
(

n−4/3α2
n

)

, for KL
3 .

b) If F ′
+(a) = 0 we have

MSEF̃nh(x) =

{

O
(

n−4/3α2
n(n

−1/3 + α2
n)
)

, for KL
1 and KL

2

O
(

n−4/3α2
n

)

, for KL
3 .

4. Exact finite sample comparisons

In this section we compare the boundary performance of the kernel estima-
tor F̃nh when we take for KL one of the left boundary kernels given by (4),
(5) and (7), respectively. For that, we use as test distributions some beta
mixtures of the form wB(1, 2)+(1−w)B(2, b),where w ∈ [0, 1] and the shape
parameter b is such that b ≥ 2. Four values of w = 0, 0.25, 0.5, 0.75 are con-
sidered, which lead to distributions with F ′

+(0) = 0, 0.5, 1, 1.5, respectively.
For each one of the previous weights w, two values for the shape parameter b
are taken in order to get a second order derivative F ′′

+(0) equal to 6 and 30.
As the results observed for the test distributions with F ′′

+(0) equal to 6 or 30
were quite similar, we will focus our comments on the results obtained for
the test distributions with F ′′

+(0) = 6 whose probability densities are shown
in Figure 3.
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For each one of these test distributions we present in Figure 4 the exact
variance, V(x), square bias, B(x)2, and mean square error, MSE(x) = V(x)+
B(x)2, of F̃nh(x), for x = αh and α ∈ ]0, 1[, where

nV(x) := nVarF̃nh(αh) =

∫

F ((α− u)h)BL(u;α)du−
(

EF̃nh(αh)
)2

and

B(x) := EF̃nh(αh)− F (αh) =

∫

F ((α− u)h)KL(u;α) du− F (αh)

(on these expressions see Section 5 below). For comparative purposes the
mean square error of the sample distribution function estimator is also in-
cluded in the graphics. We have considered the sample size n = 100. Similar
pictures were generated for other sample sizes but they are not included here
to save space. As before, we have taken for K the Epanechnikov kernel. The
global bandwidth h that determines the boundary region was always taken
equal to the asymptotically optimal bandwidth h0 given by (11).
From the graphics we conclude that the boundary behaviour of the kernel

estimator based on the boundary kernels KL
q , for q = 1, 2, 3, is dominated by

the magnitude of the underlying density f = F ′ over the boundary region.
As predicted by the asymptotic theory previously exposed, the kernel esti-
mator based on the boundary kernel KL

3 presents the lowest variance among
the considered boundary kernel estimators for all the test distributions. The
reduced bias shown by this estimator for distributions with large values of
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Figure 3. Beta mixture test densities wB(1, 2)+ (1−w)B(2, b)
with F ′

+(0) = 0, 0.5, 1, 1.5 and F ′′
+(0) = 6.
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Figure 4: B(αh)2 (�), V(αh) (•) and MSE(αh) (N), for KL
q ,

q = 1, 2, 3, with K the Epanechnikov kernel, and for the sample
distribution function Fn, where F is the beta mixture distributi-
ons shown in Figure 3. The sample size is n = 100.

F ′
+(0) explains its superior mean square error performance in relation to both

boundary kernels KL
1 and KL

2 . The graphics obtained for the test distribu-
tions with F ′′

+(0) = 30 (but not shown here) also reveal that this advantage
over the second order boundary kernels KL

1 and KL
2 is bigger for small than

for large values of F ′′
+(0)

2, which is in accordance with the asymptotic ex-
pansion for the bias presented in Theorem 2. When the underlying density
is such that F ′

+(0) = 0, in which case the classical kernel estimator does not
suffer from boundary problems, we see that the boundary kernels KL

1 and
KL

2 perform similarly being both better than KL
3 . The large bias presented

by the kernel estimator based on the boundary kernel KL
3 explains the poor
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mean square error results obtained for this estimator. Finally, for intermedi-
ate values of F ′

+(0) the three considered left boundary kernels have shown a
similar performance.
Based on this evidence, we conclude that none of the considered boundary

kernels is the best over the considered set of test distributions. The kernel
estimator based on the new boundary kernel KL

3 has shown to be especially
performing when the classical kernel estimator suffers from severe boundary
problems. However, it may present a large bias otherwise, being outper-
formed by the estimators based on the boundary kernels KL

1 and KL
2 . These

findings agree with the asymptotic based conclusions gathered in Theorem
4.

5. Proofs

Proof of Theorem 1: This proof follows closely the lines of the proofs of
Theorems 3.1 and 3.2 of Tenreiro (2013) the reason way the details are omit-
ted. However, in order to deal with boundary kernels for which µ0,L(α) = 0
for some α ∈ ]0, 1[, the following integration by parts formula, that general-
izes Lemma 6.1 of Tenreiro (2013), is needed.

Lemma 1. If Φ is a probability distribution function and Ψ(u)=
∫ u

−∞ ψ(v)dv

where ψ is a Lebesgue integrable function, then
∫

ΦdΨ+
∫

ΨdΦ =
∫

ψ(v)dv.

Proof: If
∫

ψ(v)dv 6= 0, define ψ0 = ψ/
∫

ψ(v)dv and use Lemma 6.1 of
Tenreiro (2013) with ψ = ψ0. If

∫

ψ(v)dv = 0, consider ψ+ and ψ−, the
positive and the negative parts of ψ, that satisfy

∫

ψ+(v)dv =
∫

ψ−(v)dv = I
(say). If I = 0, the stated result is obvious because in this case ψ = 0 a.e..
If I > 0, the stated result follows from the first part of the proof by taking
ψ = ψ+ and ψ = ψ−. �

Proof of Theorem 2: For x ∈ ]a, a+ h[, the expectation of F̃nh(x) is given
by

EF̃nh(x) =

∫

K̄L((x− y)/h; (x− a)/h)f(y) dy

=

∫

F (x− uh)KL(u; (x− a)/h) du,
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(see Tenreiro, 2013, p. 186). By the continuity of the second derivative of F
on [a, b] and Taylor’s formula, we have

F (x− uh) = F (x)− uhF ′(x) + u2h2
∫ 1

0

(1− t)F ′′(x− tuh) dt, (12)

for −1 ≤ u ≤ (x− a)/h , from which we deduce that

EF̃nh(x)− F (x)−
h2

2
F ′′(x)µL((x− a)/h) = A(x, h) +B(x, h), (13)

where

A(x, h) = F (x)
(

µ0,L((x− a)/h)− 1
)

− hF ′(x)µ1,L((x− a)/h)

+
h2

2
F ′′(x)((x− a)/h)µ1,L((x− a)/h),

and

B(x, h) = h2
∫∫ 1

0

(1− t)
(

F ′′(x− tuh)− F ′′(x)
)

dt u2KL(u; (x− a)/h) du,

is such that

sup
x∈ ]a,a+h[

|B(x, h)| ≤
h2

2
sup

α∈ ]0,1[

|µ0,L|(α) sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|. (14)

On the other hand, taking into account that F (a) = 0 and using condition
(6) and the Taylor’s expansion

F (x) = (x− a)F ′(x)−
1

2
(x− a)2F ′′(x)

− (x− a)2
∫ 1

0

(1− t)
(

F ′′(x− (x− a)t)− F ′′(x)
)

dt, (15)

we get

A(x, h)=−
(

µ0,L((x−a)/h)−1
)

(x−a)2
∫ 1

0

(1−t)
(

F ′′(x−(x−a)t)−F ′′(x)
)

dt,

where

sup
x∈ ]a,a+h[

|A(x, h)| ≤ h2 sup
α∈ ]0,1[

|µ0,L(α)− 1| sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|.

(16)
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Part a) of Theorem 2 follows now from (13), (14) and (16), and the fact
that

sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)| = o(1).

From Part a), the variance of F̃nh(x) is given by

nVarF̃nh(x) =

∫

K̄L(u; (x− a)/h)2hf(x− uh)du−
(

EF̃nh(x)
)2

(17)

= F (x)(1− F (x)) + C(x, h) + o
(

h2
)

,

uniformly in x ∈ ]a, a+ h[, where

C(x, h) =

∫

K̄L(u; (x− a)/h)2hf(x− uh)du− F (x)

=

∫

F (x− zh)BL(z; (x− a)/h)dz − F (x).

Moreover, using (12) and the fact that
∫

BL(z;α)dz = µ0,L(α)
2, we deduce

that

C(x, h) = F (x)
(

µ0,L((x− a)/h)2 − 1
)

− hF ′(x)m1,L((x− a)/h)

+ h2
∫∫ 1

0

(1− t)F ′′(x− tuh)dtu2BL(u; (x− a)/h)du (18)

= F (x)
(

µ0,L((x− a)/h)2 − 1
)

− hF ′(x)m1,L((x− a)/h)

+
h2

2
F ′′(x)m2,L((x− a)/h) + o(h2),

uniformly in x ∈ ]a, a+ h[, as supα∈ ]0,1[

∫

|u2BL(u;α)|du <∞.
Finally, from Taylor’s expansion (15) we get

sup
x∈ ]a,a+h[

∣

∣

∣
C(x, h)+hF ′(x)ν1,L

(

(x−a)/h
)

−
h2

2
F ′′(x)ν2,L

(

(x−a)/h
)

∣

∣

∣
= o(h2),

which concludes the proof. �

Proof of Theorem 3: Part a) follows from (13) where for x = a+ αnh

A(x, h)=−
(

µ0,L(αn)− 1
)

(x− a)2
∫ 1

0

(1− t)
(

F ′′(x− (x− a)t)− F ′′(x)
)

dt,
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and

B(x, h) = h2
∫∫ 1

0

(1− t)
(

F ′′(x− tuh)− F ′′(x)
)

dt u2KL(u;αn) du,

with

|A(x, h)| ≤ |µ0,L(αn)− 1|h2α2
n sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|/2 = o
(

h2α2
n

)

,

and

|B(x, h)| ≤ h2|µ2,L|(αn) sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|/2 = o
(

h2|µ2,L|(αn)
)

.

In order to establish Part b), we start by using (17) and (18) to write

nVarF̃nh(x) = F (x)(1− F (x)) + C(x, h)

−
(

EF̃nh(x)− F (x)
)2

+ 2
(

EF̃nh(x)− F (x)
)

F (x), (19)

with

C(x, h) = F (x)
(

µ0,L(αn)
2 − 1

)

− hF ′(x)m1,L(αn) +
h2

2
F ′′(x)m2,L(αn)

+ h2
∫∫ 1

0

(1− t)
(

F ′′(x− tzh)− F ′′(x)
)

dtz2BL(z;αn)dz,

and

EF̃nh(x)− F (x) = O
(

h2(|µ2,L|(αn) + α2
n)
)

, (20)

where the latter equality follows from Part a) and conditions (6) and (8).
But

F (x) = hαnF
′(x)−

h2

2
α2
nF

′′(x)− h2α2
n

∫ 1

0

(1− t)
(

F ′′(x− hαnt)− F ′′(x)
)

dt,

which leads to

C(x, h) =−hF ′(x)ν1,L(αn) +
h2

2
F ′′(x)ν2,L(αn)

− h2α2
n

(

µ0,L(αn)
2 − 1

)

∫ 1

0

(1− t)
(

F ′′(x− hαnt)− F ′′(x)
)

dt

+ h2
∫∫ 1

0

(1− t)
(

F ′′(x− tzh)− F ′′(x)
)

dtz2BL(z;αn)dz
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=−hF ′(x)ν1,L(αn) +
h2

2
F ′′(x)ν2,L(αn) +o(h

2α2
n) +o

(

h2|µ2,L|(αn)
)

.

Additionally, if F ′(a) = 0, we have

F ′(x) = hαnF
′′(x) + hαn

∫ 1

0

(

F ′′(x+ hαnt)− F ′′(x)
)

dt,

and in this case

C(x, h)=
h2

2
F ′′(x)ν∗2,L(αn) + o

(

h2αn|µ1,L|(αn)
)

+ o(h2α2
n) + o

(

h2|µ2,L|(αn)
)

.

Part b) of Theorem 3 follows now from (19), (20) and the previous expres-
sions for C(x, h). �
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