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Abstract: We interpret a class of nonlinear Fokker-Planck equations with reaction
as gradient flows over the space of Radon measures equipped with the recently in-
troduced Hellinger-Kantorovich distance. The driving entropy of the gradient flow
is not assumed to be geodesically convex or semi-convex. We prove new general
isoperimetric-type functional inequalities, which allow us to control the relative
entropy by its production. We establish the entropic exponential convergence of
the trajectories of the flow to the equilibrium. Along with other applications, this
result has an ecological interpretation as a trend to the ideal free distribution for
a class of fitness-driven models of population dynamics. Our existence theorem
for weak solutions under mild assumptions on the nonlinearity is new even in the
absence of the reaction term.
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.Introduction
..Setting. Let Ω be an open connected bounded domain in R

d with suf-
ficiently smooth boundary and let ν be the outward unit normal along ∂Ω.
We are interested in nonnegative solutions of

∂tu = −div(u∇f ) + f u, (x, t) ∈Ω× (0,∞), (.)

u
∂f

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞), (.)

u = u0, (x, t) ∈Ω× 0. (.)

Here u is the unknown function, f = f (x,u(x)) is a known nonlinear func-
tion of x and u, equation (.) is the no-flux boundary condition and the
initial data u0 are nonnegative. We refer to Section . for the motivation
and background.
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When considering problem (.)–(.), we always make the following
assumptions concerning the function f : Ω× (0,∞)→R:

f ∈ C2(Ω× (0,∞))∩L1
loc(Ω× [0,∞)) (.)

uf ,ufx ∈ C(Ω× [0,+∞)) (.)
fu < 0, (.)

limsup
u→∞

f (x,u) < 0 ∀x ∈Ω, (.)

liminf
u→+0

f (x,u) > 0 ∀x ∈Ω, (.)

|f (x,u)|+u|fu(x,u)|+u|fxu(x,u)|
≤ g(u) a. a. u > 0; g ∈ L1

loc[0,∞), (.)

(ufx)
∣∣∣
u=0

= 0. (.)

When needed, we also assume that

either fx = 0 for large u or lim
u→∞

f (x,u) = −∞ ∀x ∈Ω (.)

either fx = 0 for small u or lim
u→+0

f (x,u) =∞ ∀x ∈Ω (.)

Remark .. We make comfortable assumptions about the smoothness of f .
We do not insist that f should be defined for u = 0 so as not to exclude the
interesting cases such as f = −(logu + V (x)) (which corresponds to the
linear Fokker-Planck equation, cf. [, ]) and f = uα−1, −1 < α < 0, (the
fast diffusion, cf. []). However, we assume in (.) that the functions uf
and ufx admit continuous extensions to Ω × [0,∞). This ensures that the
terms in (.) make sense. Moreover, we assume (.) to avoid certain
complications with the entropy production to be defined below.

Remark .. Assumption (.) is essential, it ensures the parabolicity
of (.). The equation may become degenerate or singular only if u = 0
or u is large. The latter does not bother us as we only consider bounded
solutions in what follows.

Remark .. Assumptions (.), (.) ensure the existence of a positive
equilibrium, see below.
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Remark .. Estimate (.) ensures that the entropy and energy of the
equation are well-defined and well-behaved. Note that at least some re-
strictions on the growth of fu as u → 0 are inevitable, as the related very
fast diffusion equation is known to behave abnormally [].

Remark .. Conditions (.) and (.) are convenient technical assump-
tions needed for L∞-bounds (hence for the existence theorem) and for con-
trolling the energy for large u in the proof of Theorem .. However, they
are not necessary everywhere, so we explicitely mention them when the
need arises.

It follows from (.)–(.) that for any x ∈Ω there exists a uniquem(x) >
0 such that

f (x,m(x)) = 0.

Clearly, m ∈ C2(Ω). It is a stationary solution of (.), (.). As we will see,
all non-zero solutions of the problem converge to m.

.. Energy and entropy. Now we will introduce the energy and entropy
functionals for equation (.) as well as the notion of weak solution.

Put

Φ(x,u) = −
∫ u

0
ξfu(x,ξ)dξ, Ψ (x,u) =

∫ u

0
Φ(x,ξ)dξ.

It is easy to see that

Φ(x,0) = Ψ (x,0) = 0, Φu = −ufu, Φx = −
∫ u

0
ξfxu(x,ξ)dξ, Ψu = Φ .

Observe that both Φ and Ψ are nonnegative and strictly increase with
respect to u.

Note that if u is a nonnegative function of x and possibly of t, an L∞-
bound on u is translated into an L∞-bound on Φ(·,u(·)), i. e. the superpo-
sition operator associated with Φ is L∞-bounded. The same is true of Ψ .

Let u be a classical solution of (.)–(.). Equation (.) can be cast in
the equivalent form

∂tu = ∆Φ −div(Φx +ufx) +uf , (.)



 S. KONDRATYEV AND D. VOROTNIKOV

where we write Φ for Φ(x,u(x, t)), etc. Multiplying by Φ(x,u(x, t)) and
integrating over Ω, we obtain

∂t

∫
Ω

Ψ dx = −
∫
Ω

|∇Φ |2 dx

+
∫
Ω

(Φx +ufx) · ∇Φ dx+
∫
Ω

uf Φ dx. (.)

We call the functional

W (u) =
∫
Ω

Ψ (x,u(x))dx

the energy of problem (.)–(.) and equation (.), the energy identity.
Thus, any classical solution of (.)–(.) satisfies the energy identity (.).

For our purposes, the energy identity is useful because it allows us
to control the integral

!
QT
|∇Φ |2 dxdt. In particular, we can define the

weak solution of (.)–(.) in a class of functions u such that Φ(·,u(·)) ∈
L2(0,T ;H1(Ω)). It is easier to exploit this assumption in the case of equa-
tion (.). Thus, we define the weak solution as follows:

Definition .. Let u0 ∈ L∞(Ω). A function u ∈ L∞(QT ) is called a weak
solution of (.)–(.) on [0,T ] if Φ(·,u(·)) ∈ L2(0,T ;H1(Ω)) and∫ T

0

∫
Ω

(u∂tϕ + (−∇Φ +Φx +ufx) · ∇ϕ + f uϕ)dxdt

=
∫
Ω

u0(x)ϕ(x,0)dx (.)

for any function ϕ ∈ C1(Ω × [0,T ]) such that ϕ(x,T ) = 0. A function u ∈
L∞loc([0,∞);L∞(Ω)) is called a weak solution of (.)–(.) on [0,∞) if for
any T > 0 it is a weak solution on [0,T ].

Now, let us address the entropy of the problem. Define

E(x,u) = −
∫ u

m(x)
f (x,ξ)dξ.

It follows from (.) that E is well-defined and continuous on Ω×[0,∞). As
f decreases with respect to u and f (x,m(x)) = 0, it is clear that E ≥ 0 and
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E(x,u) = 0 if and only if u = m(x). The relative entropy of equation (.) is
the functional

E(u) =
∫
Ω

E(x,u(x))dx. (.)

Observe that it is well-defined at least for u ∈ L∞(Ω)+ as the superposition
operator u 7→ E(·,u(·)) is bounded in the spaces L∞+ → L∞+ .

A straightforward computation shows that for a positive classical solu-
tion of (.)–(.) we have

∂tE(u) = −
∫
Ω

u(f 2 + |∇f |2)dx. (.)

Equation (.) is called the entropy dissipation identity and the integral
on the right-hand side of (.) is called the entropy production. However,
the term

∫
Ω
u|∇f |2 dx may make no sense for vanishing or non-smooth u.

In order to generalise the definition of the entropy production, we use the
identity

u|∇f |2 =
1
u
| − ∇Φ +Φx +ufx|2 (u > 0).

Given a function u ∈ L∞+ (Ω) such that Φ(·,u(·)) ∈ H1(Ω), the right-hand
side of the last identity is a nonnegative measurable function on [u > 0],
so we can define the entropy production for such functions by the formula

DE(u) =
∫
Ω

uf 2 dx+
∫

[u>0]

1
u
| − ∇Φ +Φx +ufx|2 dx,

where the second integral on the right-hand side may be infinite. Thus,
we see that any positive classical solution of (.)–(.) satisfies the entropy
dissipation identity

∂tE(u) = −DE(u). (.)

As usual, in the case of weak solutions we establish not the identi-
ties (.) and (.) but rather corresponding inequalities, viz. the energy
inequality

∂tW (u) ≤
∫
Ω

(
− |∇Φ |2 + (Φx +ufx) · ∇Φ +uf Φ

)
dx (.)

and the entropy dissipation inequality

∂tE(u) ≤ −DE(u). (.)
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For functions u ∈ L∞+ (Ω) such that Φ ∈ L2(0,T ;H1(Ω)) we understand
(.) and (.) in the sense of measures, i. e. that for any smooth nonneg-
ative compactly supported function χ : (0,T )→R we respectively have

−
∫ T

0
χ′(t)W (u)dt

≤
"

QT

χ(t)
(
− |∇Φ |2 + (Φx +ufx) · ∇Φ +uf Φ

)
dxdt,

∫ T

0
χ′(t)E(u)dt ≥

∫ T

0
χ(t)DE(u)dt.

If (.) holds in the sense of measures, the derivative ∂tE(u) is a nonpos-
itive distribution and hence a measure, while the entropy E(u) itself a. e.
coincides with a non-increasing function.

An important question is whether the entropy can be controlled by the
entropy production, since this would imply the exponential stability of the
equilibrium. It turns out that this is the case for sets of functions provided
that their L1-norms are bounded away from 0. Specifically, we have

Theorem . (Entropy-entropy production inequality). Suppose that f sat-
isfies (.)–(.) as well as (.). Let U ⊂ L∞+ (Ω) be a set of functions such
that for any u ∈U , we have Φ(·,u(·)) ∈H1(Ω) and

inf
u∈U
‖u‖L1(Ω) > 0. (.)

Then there exists CU such that

E(u) ≤ CUDE(u) (u ∈U ). (.)

Theorem . is a consequence of a fairly general functional inequality
established in Section .

Theorem . (Existence of weak solutions). Suppose that f satisfies (.)–
(.) as well as (.) and (.). Then for any u0 ∈ L∞+ (Ω) there exists a
nonnegative weak solution u ∈ L∞(Ω× (0,∞)) of problem (.)–(.) enjoying
the following properties:
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() (upper L∞-bound)

‖u‖L∞(Ω×(0,∞))

≤ inf
{
ξ ≥ 0: sup

x∈Ω
f (x,ξ) ≤ −ess sup

x∈Ω
f −(x,u0(x))

}
; (.)

() u satisfies the energy inequality (.) in the sense of measures and

ess lim sup
t→+0

W (u(t)) ≤W (u0); (.)

() u satisfies the entropy dissipation inequality (.) in the sense of mea-
sures and

ess sup
t>0

E(u(t)) ≤ E(u0); (.)

() (lower L1-bound)

‖u(t)‖L1(Ω) ≥ ‖min(u0,m)‖L1(Ω) a. a. t > 0. (.)

Remark .. Theorem ., mutatis mutandis, is also valid in the case of a
pure Fokker-Planck equation (.). Even in this case, our conditions on
the nonlinearity f are more relaxed than the ones available in the litera-
ture, see, e.g., [, , , , , , , ] and the references therein.

Remark .. In the general case, uniqueness of solutions cannot be ex-
pected due to the non-Lipschitz reaction term. However, our weak solu-
tions are unique provided the initial data is bounded away from zero, see
Theorem ..

Remark .. Under the hypotheses of Theorem ., the right-hand side
of (.) is always finite (see Remark .). Moreover, if u0 satisfies an esti-
mate ‖u0‖L∞(Ω) ≤ a, inequality (.) provides an estimate ‖u‖L∞(Ω×(0,∞)) ≤
Ca.

The next theorem shows that the solutions that we have constructed ex-
ponentially converge to m. Note that assumption (.) is not needed for
the long-time convergence.

Theorem . (Convergence to equilibrium). Assume (.) and suppose
that a weak solution u of (.)–(.) with the initial data u0 . 0 satisfies
the entropy dissipation inequality (.), inequality (.), and the lower L1-
bound (.). Then u exponentially converges to m in the sense of entropy:

E(u(t)) ≤ E(u0)e−γt a. a. t > 0, (.)
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where γ > 0 can be chosen uniformly over initial data satisfying

‖min(u0,m)‖L1(Ω) ≥ c (.)

with some c > 0.

Theorems ., ., and . are proved in Section ..

..Motivation and background. The nonlinear Fokker-Planck equation

∂tu = −div(u∇(f (x,u))) (.)

is intended to express the behaviour of stochastic systems coming from
various branches of physics, chemistry and biology, see [, , , ]. In
order to take into account the creation and annihilation of mass, the gen-
eral drift-diffusion-reaction equation (.) was suggested in []. In the
considerations of [] (cf. also []), the crucial role is played by the free
energy functional which up to an additive constant coincides with our rel-
ative entropy functional E from (.). We opt for this change of terminol-
ogy (though for thermodynamists the free energy involves the (physical)
entropy, the internal energy, and the temperature) because in mathemati-
cal analysis it is convenient to refer to the basic Lyapunov functional of a
system as the entropy, cf. [, p. ].

On the other hand, equation (.) is a general nonlinear model for the
spatial dynamics of a population which is tending to achieve the ideal free
distribution [, ] (the distribution which happens if everybody is free to
choose its location) in a heterogeneous environment. The dispersal strat-
egy is determined by a local intrinsic characteristic of organisms called
fitness (see, e.g., [, ]). The fitness manifests itself as a growth rate, and
simultaneously affects the dispersal as the species move along its gradient
towards the most favorable environment. In (.), u(x, t) is the density of
organisms, and f (x,u) is the fitness. The equilibrium u(x) ≡ m(x) when
the fitness is constantly zero corresponds to the ideal free distribution.
The original model [, ] assumes a linear logistic fitness

f =m(x)−u (.)

but in general it can be any nonlinear function of the spatial variable and
the density, cf. []. The assumptions (.), (.), (.) are natural as they
simply mean that the fitness is decreasing with respect to the population
density (as the resources are limited), being positive for very small densi-
ties and negative for very large densities. Our Theorem . indicates that
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the populations converge to the ideal free distribution with an exponential
rate.

The existence of weak solutions for the fitness-driven dispersal
model (.)–(.) with the logistic fitness (.) was shown in [], and
the entropic exponential convergence to m was established in []. The
same kind of results for cross-diffusion systems involving several interact-
ing populations (with logistic fitnesses) can be found in []. Related two-
species models were investigated in [, ], where one population uses the
fitness-driven dispersal strategy and the other diffuses freely or does not
move at all. A system of two interacting populations with a particular
nonlinear fitness function has recently been considered in [], which is
the only existing mathematical treatment of a non-logistic fitness model
that we are aware of.

But perhaps our main motivation to study (.) is that it is a gradient
flow of the entropy functional E with respect to the intriguing recently in-
troduced distance on the space of Radon measures, which is related to the
unbalanced optimal transport (i.e., failing to preserve the total transported
mass), and which is referred to as the Hellinger-Kantorovich distance or
the Wasserstein-Fisher-Rao distance [, , , ]. This distance endows
the set of Radon measures with a formal (infinite dimensional) Riemann-
ian metric 〈·, ·〉, and provides first- and second-order differential calculus
[] in the spirit of Otto [, , ]. In particular, one can compute the
metric gradients of the functionals of the form

F (u) =
∫
Ω

F(x,u(x))dx

by the formula

gradF (u) = −div
(
u∇δF

δu

)
+u

δF
δu
, (.)

where δF
δu = ∂uF(x,u) stands for the first variation with respect to u and

∇ = ∇x is the usual gradient in space. We refer to [] for further details
and explanations. Since f = −∂uE, we can recast (.) as a gradient flow

∂tu = −gradE(u). (.)



 S. KONDRATYEV AND D. VOROTNIKOV

The entropy dissipation identity (.), which by the way was already
known to Frank [], is then nothing but the archetypal property of gra-
dient flows

d
dt
E(u) = −〈gradE(u),gradE(u)〉u.

In this connection, we recall that for the metric gradient flows like (.),
the geodesic convexity of the driving entropy functional (or at least semi-
convexity, i.e., λ-convexity with a negative constant λ) makes a difference
[, , , , ]. The presence of convexity allows one to apply mini-
mizing movement schemes [, ] to construct solutions to the gradient
flow. Moreover, λ-convexity with λ strictly positive enables the Bakry-
Emery procedure which usually yields the exponential convergence of the
relative entropy to zero. Minimizing movement schemes for Hellinger-
Kantorovich gradient flows of geodesically convex functionals and for re-
lated reaction-diffusion equations were suggested in [, ].

Our entropy E is geodesically (−1/2)-convex with respect to the
Hellinger-Kantorovich structure if f = 1 − uα, α > 0, but fails to be semi-
convex for f = uα − 1, α < 0, and for f = − logu (the latter option cor-
responds to the interesting case of the Boltzmann entropy). The spatial
heterogeneity further complicates the situation. The quadratic (logistic)
multicomponent entropy considered in [, ] is not even semi-convex.
All this can be observed by computing the Hessian of the entropy, cf. [,
Section .]; the non-convexity of the Boltzmann entropy with respect to
the Hellinger-Kantorovich metric was also mentioned in [, , , ].
However, Santambrogio [] emphasizes that the lack of geodesic convex-
ity is not a universal obstacle for the study of gradient flows; our results
in the current paper and in [, , , ] illustrate this idea.

.An isopetimetric-type inequality
.. Setting. Motivated by the expressions for the entropy and entropy
production, we forget for a while problem (.)–(.) and consider the
integrals ∫

Ω

E(x,u(x))dx, (.)∫
Ω

(g(x,u(x)) +u|∇xf (x,u(x))|p)dx (.)
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on their own right. Here Ω a domain in R
d; p ≥ 1; the functions

E,g : Ω× (0,∞)→ [0,∞),

f : Ω× (0,∞)→R

are fixed, and u varies over a set U of functions Ω→ (0,∞). Observe that
the nonnegativity of E and g ensures the existence of the integrals (.)
and (.), although they need not be finite.

The functions f and E introduced in Section . are, of course, proto-
types for the ones appearing in (.) and (.), but we assume no formal
relationship between them. In particular, in this section we do not sup-
pose that f satisfies (.)–(.).

We would like to know whether (.) can be controlled by (.) uni-
formly with respect to u ∈U . In general, this is not the case. However, we
show that under suitable assumptions on the functions E, f , and g, (.)
does indeed control (.) provided that the set U of admissible u is sep-
arated from 0 in some sense. The result can be termed an isoperimetric-
type inequality, see [].

For simplicity, we concentrate on the regular case. Section . contains
a discussion of possible generalisations.

Theorem .. Let Ω be a bounded, connected, open domain in R
d admitting

the relative isoperimetric inequality. Let p ≥ 1. Suppose that functions E,g ∈
C(Ω×R+), and f ∈ C1(Ω× (0,+∞)) satisfy

E ≥ 0, g ≥ 0; (.)
lim
ε→0

sup
0<u≤ε
x∈Ω

E(x,u) <∞; (.)

inf
u>ε
x∈Ω

E(x,u),0

g(x,u)
E(x,u)

> 0 ∀ε > 0, (.)

lim
ε→0

inf
0<u≤ε
x∈Ω

f (x,u) > lim
ε→0

sup
u>0

E(x,u)<ε

f (x,u). (.)

Finally, suppose that a set U ⊂ C1(Ω) consisting of strictly positive functions
contains no sequence {un} such that {E(·,un(·))} is bounded in L1(Ω) and {un}
converges to 0 in measure. Then there exists a constant C = C(Ω,p,E,g, f ,U )
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such that∫
Ω

E(x,u(x))dx

≤ C
(∫

Ω

(
g(x,u(x)) +u(x)|∇xf (x,u(x))|p

)
dx

)
(u ∈U ). (.)

Remark .. The isoperimetric inequality for Ω reads

P (A;Ω) ≥ cΩ|A|
d−1
d , A ⊂Ω, |A| ≤ 1

2
|Ω|, (.)

where P (A;Ω) denotes the relative perimeter of a Lebesgue measurable set
A of locally finite perimeter with respect to Ω, cf. [, Remark .]. We
recall that the relative perimeter is defined as

P (A;Ω) = |µA|(Ω),

where µA is the Gauss-Green measure associated with A, see []. We note
that the support of µA is contained in the topological boundary of A.

Remark .. If E ∈ C(Ω ×R+), condition (.) is automatically true. If the
set {(x,u) ∈ Ω ×R+ : E(x,u) = 0} is compact, the right-hand side of (.) is
simplified to maxE(x,u)=0 f (x,u) and likewise, if f ∈ C(Ω×R+), the left-hand
side of (.) can be written as minx f (x,0). As for (.), it is more tricky.
In Section . we show that it always holds in a particular setting relevant
for gradient flows (Theorem .).

Remark .. The infimum in (.) depends on ε and may tend to zero as
ε→ 0, otherwise the claim would be trivial.

..Proof of Theorem .. Here we prove Theorem .. We start with the
following remarks.

Observe that under the hypotheses of Theorem ., integral (.) is finite
for u ∈U whenever so is ∫

Ω

g(x,u(x))dx.

Indeed, according to (.) we can choose ε > 0 such that

A := sup
0<u≤ε
x∈Ω

E(x,u) <∞.
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By (.), we have

B := inf
u>ε
x∈Ω

E(x,u),0

g(x,u)
E(x,u)

> 0

(possibly B =∞). Then E(x,u) ≤ g(x,u)/B whenever u > ε, so∫
Ω

E(x,u(x))dx =
∫

[u≤ε]
E(x,u(x))dx+

∫
[u>ε]

E(x,u(x))dx

≤ A|Ω|+ 1
B

∫
Ω

g(x,u(x))dx <∞,

as claimed.
Take sequences {εn} and {ξn} such that εn > 0, εn→ 0,

0 < ξn ≤ inf
u>εn
x∈Ω

g(x,u)
E(x,u)

(this is possible according to (.)), and ξn→ 0.
Assume that Theorem . is not true. Then there exists a sequence of

functions {un} ⊂U such that∫
Ω

(gn +un|∇fn|p)dx ≤ εnξn
∫
Ω

Endx, (.)

where

En(x) = E(x,un(x)),

fn(x) = f (x,un(x)),

gn(x) = g(x,un(x)).

Clearly, En, gn ∈ C(Ω) and fn ∈ C1(Ω). Moreover, it easily follows
from (.)–(.) that

En(x) ≥ 0, gn(x) ≥ 0; (.)

lim
n→∞

sup
[un≤εn]

En <∞; (.)

lim
n→∞

inf
[un≤εn]

fn > lim
ε→0

sup
[En<ε]

fn, (.)

and according to the choice of ξn, we have

gn ≥ ξnEn on [un > εn]. (.)
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We want to show that the sequence {En} is bounded in L1(Ω) and un→ 0
in measure, thus obtaining a contradiction.

We use (.) to estimate

1
εn

∫
Ω

un|∇fn|pdx ≤ ξn
∫
Ω

Endx − 1
εn

∫
Ω

gndx

≤ ξn
∫
Ω

Endx − 1
εn

∫
[un>εn]

gndx

≤ ξn
∫
Ω

Endx − ξn
εn

∫
[un>εn]

Endx

= −ξn(ε−1
n − 1)

∫
[un>εn]

Endx+ ξn

∫
[un≤εn]

Endx.

Thus, we have

1
εn

∫
Ω

un|∇fn|pdx ≤ −ξn(ε−1
n − 1)

∫
[un>εn]

Endx+ ξn

∫
[un≤εn]

Endx. (.)

For large n, the first term on the right-hand side is negative, so we conclude
that

1
εn

∫
un|∇fn|pdx ≤ ξn sup

[un≤εn]
En|[un ≤ εn]|. (.)

From (.) we get∫
[un>εn]

Endx ≤ 1
ε−1
n − 1

∫
[un≤εn]

Endx ≤
sup[un≤εn]En|[un ≤ εn]|

ε−1
n − 1

(.)

and by (.), the last expression is bounded uniformly with respect to n.
Hence the sequence {En} is bounded in L1(Ω).

Lemma .. Given a > 0,

lim
n→∞
|[un > εn]∩ [En > a]| = 0. (.)
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Proof : Using (.), we have:

|[un > εn]∩ [En > a]| ≤
1
a

∫
[un>εn]∩[En>a]

Endx

≤ 1
a

∫
[un>εn]

Endx

≤ |[un ≤ εn]|
a(ε−1

n − 1)
sup

[un≤εn]
En→ 0 (n→∞),

where we have taken into account (.), so (.) is proved.

Lemma .. Given a > 0, for large n we have

|[En > a]| ≤ 2|[un ≤ εn]|. (.)

Proof : Using the estimate

|[un > εn]∩ [En > a]| ≤
|[un ≤ εn]|
a(ε−1

n − 1)
sup

[un≤εn]
En

obtained in the proof of Lemma ., we get

|[En > a]| ≤ |[un ≤ εn]|+ |[un > εn]∩ [En > a]|

≤
(
1 +

sup[un≤εn]En
a(ε−1

n − 1)

)
|[un ≤ εn]|,

and the lemma follows.

It follows from (.) that we can choose a > 0, α, and β, all independent
of n, such that for large n we have

sup
[En≤a]

fn ≤ α < β ≤ inf
[un≤εn]

fn. (.)

We can assume that the limit

lim
n→∞
|[un ≤ εn]|

exists. It follows from (.) that for large n the sets [un ≤ εn] and [En ≤ a]
are disjoint, so in view of Lemma . we have

|[un ≤ εn]|+ |[En ≤ a]| → |Ω| (.)
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Thus, we actually face three logical possibilities:

lim
n→∞
|[un ≤ εn]| = |Ω|; (.)

lim
n→∞
|[un ≤ εn]| = 0; (.)

lim
n→∞
|[un ≤ εn]| = µ0 ∈ (0, |Ω|); (.)

As εn→ 0, (.) clearly implies un→ 0 in measure, a contradiction.
In what follows we show that (.) and (.) are in fact impossible.

The following lemma is crucial.

Lemma .. We have

1
εn

∫
Ω

un|∇fn|pdx

≥ 1
|[En > a]∩ [un > εn]|p−1

(∫ β

α
P ([fn > t],Ω)dt

)p
(.)

Proof : We have

1
εn

∫
Ω

un|∇fn|pdx ≥
∫

[En>a]∩[un>εn]
|∇fn|pdx

≥ 1
|[En > a]∩ [un > εn]|p−1

(∫
[En>a]∩[un>εn]

|∇fn|dx
)p
. (.)

Using the coarea formula, we get:∫
[En>a]∩[un>εn]

|∇fn|dx =
∫ ∞

−∞
P ([fn > t]; [En > a]∩ [un > εn])dx

≥
∫ β

α
P ([fn > t]; [En > a]∩ [un > εn])dx (.)

Fix t ∈ (α,β). Evoking the definition of the relative perimeter, we have

P ([fn > t]; [En > a]∩ [un > εn]) =
∣∣∣µ[fn>t]

∣∣∣ ([En > a]∩ [un > εn]), (.)

where µ[fn>t] is the Gauss-Green measure. Obviously, we have

suppµ[fn>t]∩Ω ⊂ ∂Ω[fn > t] ⊂ [fn = t]

for any t ∈ (α,β). It follows from (.) that

[fn = t] ⊂ [En > a]∩ [un > εn],
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so
suppµ[fn>t]∩Ω ⊂ [En > a]∩ [un > εn]

and continuing (.), we obtain

P ([fn > t]; [En > a]∩ [un > εn]) =
∣∣∣µ[fn>t]

∣∣∣ ([En > a]∩ [un > εn])

=
∣∣∣µ[fn>t]

∣∣∣ (Ω)

= P ([fn > t];Ω).

Combining this with (.) and (.), we obtain (.).

Let us show that (.) is impossible. Assume that it holds.
If at a point x we have fn(x) > t, t ∈ (α,β), it follows from (.) that nec-

essarily En(x) > a, i. e. [fn > t] ⊂ [En > a]. It follows from (.) and (.)
that [|En ≤ a]| → |Ω| and thus, [|En > a]| → 0, so we conclude that |[fn > t]|
is uniformly in t small when n is large. For such large n we can apply the
isoperimetric inequality:

P ([fn > t];Ω) ≥ cΩ|[fn > t]|
d−1
d .

Now it follows from (.) that [un ≤ εn] ⊂ [fn > t], so we have

P ([fn > t];Ω) ≥ cΩ|[un ≤ εn]|
d−1
d .

Plugging this estimate into (.), we obtain

1
εn

∫
Ω

un|∇fn|pdx ≥
c
p
Ω

(β −α)p|[un ≤ εn]|p(d−1)/d

|[En > a]∩ [un > εn]|p−1 .

Estimating
|[En > a]∩ [un > εn]| ≤ |[En > a]| ≤ 2|[un ≤ εn]|

by virtue of (.), we obtain

1
εn

∫
Ω

un|∇fn|pdx ≥
c
p
Ω

(β −α)p|[un ≤ εn]|p(d−1)/d

2p−1|[un ≤ εn]|p−1 = C|[un ≤ ε]|1−p/d ,

where C is independent of n.
Combining obtained estimate with (.), we get:

C|[un ≤ εn]|1−
p
d ≤ ξn sup

[un≤εn]
En|[un ≤ εn]|,

whence
C ≤ ξn sup

[un≤εn]
En|[un ≤ εn]|

p
d → 0 (n→∞),
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as ξn → 0 and the suprema are bounded by (.). This contradicts the
fact that the left-hand side is a positive constant independent of n. Thus,
(.) is impossible.

It remains to show that (.) is also impossible. Assume that it holds.
It is easy to check that in this case we have

P ([fn > t];Ω) ≥ p0 (α < t < β), (.)

where p0 > 0 is independent of t and n. Indeed, we have the inclusions

[un ≤ εn] ⊂ [fn > t] ⊂ [En > a]

and as in our case the measure of the first and third terms goes to µ0 as
n→∞, we also have

|[fn > t]| → µ0 uniformly in t ∈ (α,β).

Now it suffices to apply the isoperimetric equality to [fn > t] if µ0 < 1/2
and to [fn ≤ t] otherwise.

Plugging (.) into (.), we get

1
εn

∫
Ω

un|∇fn|pdx ≥ 1
|[un > εn]∩ [En > a]|p−1 (β −α)ppp0.

Comparing this with (.), we obtain

1
|[un > εn]∩ [En > a]|p−1 (β −α)ppp0

≤ ξn sup
[un≤εn]

En|[un ≤ εn]| → 0 (n→∞).

As n → ∞, the left-hand side remains bounded away from , while the
right-hand side goes to , a contradiction.

.. Generalisations and specialisations. We start with the remark that
Theorem . can often be applied if U is a subset of a space X of functions
defined on Ω provided that C1(Ω) is dense in X and the integrals (.)
and (.) are continuous with respect to the topology of X. Indeed, if
U1 =U ∩C1(Ω) is dense in U , we apply the theorem to U1 and proceed by
density to make sure that the same constant works for U as well. On the
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other hand, if U1 is not dense in U , we replace U with its small enlarge-
ment Ũ in the cone of nonnegative functions in X and apply the same rea-
soning to Ũ . A more complicated density argument is used in the proof of
Theorem . given in Section ..

Another question is whether the constant C can be chosen uniformly
with respect to the set of functions (E,g,f ) if the latter is allowed to vary
over a set X . It turns out that Theorem . can be easily extended to han-
dle this case. Specifically, if the suprema and infima in (.)–(.) are
additionally taken over (E,g,f ) ∈ X , the constant C can be chosen inde-
pendently of (E,g,f ). The proof remains essentially the same. Assuming
the converse, we have violating sequences {(Ẽn, g̃n, f̃n)} ⊂ X and {un} ⊂ U
such that (.) holds with

En(x) = Ẽn(x,un(x)),

fn(x) = f̃n(x,un(x)),

gn(x) = g̃n(x,un(x)).

Moreover, the functions En, gn, and fn satisfy (.)–(.). The rest of the
proof can be reused verbatim.

It should also be noted that the bare u on the right-hand side of (.)
can be replaced by a nonnegative function v(x,u(x)). Of course, in this
case it no longer makes sense to require that U should consist exclusively
of positive functions. The separation from 0 should be taken in the sense
that no sequence {v(·,un(·))}, where un ∈ U and the sequence {En(·,un(·))}
is bounded in L1(Ω), converges to 0 in measure. However, if v is, for ex-
ample, an increasing function vanishing at 0, this new condition is clearly
equivalent to the original one.

Again, the proof remains essentially unchanged, the sets [un > εn] and
[un ≤ εn] being replaced by [vn > εn] and [vn ≤ εn], respectively (here vn(x) =
v(x,un(x))).

Summarising, we have the following strengthened version of Theo-
rem .:

Theorem .. Let Ω be a bounded, connected, open domain in R
d admitting

the relative isoperimetric inequality. Let p ≥ 1 and I be an interval (possibly
unbounded). Let X = {(E,g,f ,v)} be a set of tuples such that E,g,v ∈ C(Ω× I),
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f ∈ C1(Ω× I), and

E ≥ 0, g ≥ 0, v ≥ 0 ∀(E,g,f ,v) ∈ X ; (.)

lim
ε→0

sup

E(x,u) :
(E,f ,g,v) ∈ X ,
(x,u) ∈Ω× I,
v(x,u) ≤ ε

 <∞ (.)

inf


g(x,u)
E(x,u)

:

(E,f ,g,v) ∈ X ,
(x,u) ∈Ω× I,
E(x,u) , 0,
v(x,u) > ε

 > 0 ∀ε > 0 (.)

lim
ε→0

inf

f (x,u) :
(E,f ,g,v) ∈ X ,
(x,u) ∈Ω× I,
v(x,u) ≤ ε


> lim
ε→0

sup

f (x,u) :
(E,f ,g,v) ∈ X ,
(x,u) ∈Ω× I,
E(x,u) ≤ ε

 (.)

Finally, suppose that a set U ⊂ C1(Ω; I) satisfies the following requirement:
for any sequences {(En, gn, fn,vn)} ⊂ X } and {un} ⊂ U such that the sequence
{En(·,un(·))} is bounded in L1(Ω), the sequence {vn(·,un(·))} does not converge
to 0 in measure. Then there exists a constant C depending only on Ω, p, U and
X such that∫

Ω

E(x,u(x))dx ≤ C
∫
Ω

(
g(x,u(x))+

v(x,u(x))|∇xf (x,u(x))|p
)
dx ((E,g,f ,v) ∈ X ,u ∈U ).

The proof is left to the reader.
Another option would be to allow for nonnegative instead of strictly

positive u in Theorem .. In this case one assumes that E ∈ C(Ω× [0,∞))
and that the supremum in (.) is taken over 0 ≤ u ≤ ε and x ∈ Ω. The
resulting inequality differs from (.) in that the integral on the right-hand
side is taken over [u > 0]. The only modification needed in the proof is that
whenever g or u|∇f |p are integrated over Ω, the domain of integration
should be changed to [u > 0]. Note that this does not fit into the previous
theorem because f can be undefined on [u = 0].



FREE ENERGY FOKKER-PLANCK 

We conclude by showing that Theorem . is applicable in a situation
relevant for gradient flows. In the subsequent formulation, fu and Eu de-
note the derivatives of the functions f and E, respectively, with respect to
their second argument.

Theorem .. Suppose that functions E ∈ C(Ω× [0,∞)), f ∈ C1(Ω× (0,+∞)),
and m ∈ C(Ω) satisfy

E(x,u) ≥ 0, (x,u) ∈Ω× [0,∞); (.)

m(x) > 0, x ∈Ω; (.)
E(x,m(x)) = 0, x ∈Ω; (.)

Eu(x,u) = −f (x,u), (x,u) ∈Ω× (0,+∞); (.)

fu(x,u) < 0, (x,u) ∈Ω× (0,+∞) (.)

and let U ⊂ C1(Ω) be a set of strictly positive functions having the property
that no sequence {un} ⊂U such that {E(·,un(·))} is bounded in L1(Ω), converges
to 0 in measure. Finally, let σ ∈ (0,minΩm) and

vσ (ξ) =
ξ2

max(ξ,σ )
.

Then we have∫
Ω

E(x,u(x))dx

≤ C
∫
Ω

vδ(u(x))
(
(f (x,u(x)))2 + |∇xf (x,u(x))|2

)
dx (u ∈U ), (.)

where C > 0 depends on Ω, f , σ , and U .

Remark .. Observe that under the hypotheses of Theorem ., the func-
tions E and m are uniquely defined by f . Indeed, if x ∈Ω is fixed, E(x,u)
as a function of u attains its minimum at m(x) > 0, so Eu(x,m(x)) = 0, i. e.
f (x,m(x)) = 0, according to (.). This uniquely definesm(x), as it follows
from (.) that f (x,u) strictly decreases with respect to u. Now, E(x,u) is
the antiderivative of −f (x,u) with respect to u vanishing at m(x).

Proof : We check the hypotheses of Theorem . with I = (0,∞), p =
2, g(x,u) = vσ (u)(f (x,u))2, and the set X consisting of the single tu-
ple (E,g,f ,vσ ). Clearly, we have (.), while (.)–(.) are equivalent
to (.)–(.).
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Recalling Remark ., we see that (.) holds.
Let us check (.). Fix x ∈Ω. The function E(x,u) is strictly convex in u

and attains its zero minimum only at u = m(x). As f (x,m(x)) = 0, we see
that

lim
ε→0

sup
E<ε

f = max
E=0

f = 0.

On the other hand, as f decreases with respect to u, we have

lim
ε→0

inf
0<u≤ε
x∈Ω

f (x,u) ≥ inf
x∈Ω

f (x,σ )

= inf
x∈Ω

∫ m(x)

σ
(−fu(x,u))du

≥ min
σ≤u≤m(x)
x∈Ω

(−fu(x,u))min
x∈Ω

(m(x)− σ ) > 0,

so (.) indeed holds.
It remains to check (.). Without loss of generality, assume that ε > 0 is

such that

ε <
1
2

min
x∈Ω

(−2m(x)fu(x,m(x))), (.)

ε <
1
2

min
x∈Ω

(−fu(x,m(x))). (.)

By Cauchy’s mean value theorem, for any x ∈Ω, u > σ , u ,m(x), we have

g(x,u)
E(x,u)

=
g(x,u)− g(x,m(x))
E(x,u)−E(x,m(x))

=
gu(x,ξx,u)
Eu(x,ξx,u)

= −f (x,ξx,u)− 2ξx,ufu(x,ξx,u), (.)

where ξx,u is some point between u and m(x).
By uniform continuity, there exists δ ∈ (0,minΩm− σ ) such that

|ξ −m(x)| < δ
implies

| − f (x,ξ)− 2ξfu(x,ξ) + 2m(x)fu(x,m(x))| < ε, (.)
|fu(x,ξ)− fu(x,m(x))| < ε. (.)
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Then from (.) and (.) we see that

|ξ −m(x)| < δ⇒−f (x,ξ)− 2ξfu(x,ξ) > ε. (.)

Further, using (.) and (.), we have

−f (x,m(x) + δ) =
∫ m(x)+δ

m(x)
(−fu(x,u)du) ≥ εδ,

whence, recalling that fu is negative and f is decreasing, we conclude

ξ ≥m(x) + δ⇒−f (x,ξ)− 2ξfu(x,ξ) > εδ. (.)

Now, if |u − m(x)| < δ, the point ξx,u also satisfies |ξ − m(x)| < δ, so we
use (.) to conclude from (.) that

g(x,u)
E(x,u)

> ε. (.)

If u ≥m(x)+δ, then eitherm(x) < ξx,u < m(x)+δ and we again obtain (.),
or ξx,u ≥m(x) + δ and then we use (.) to get

g(x,u)
E(x,u)

> εδ.

Thus,

inf
u>ε
x∈Ω

E(x,u),0

g(x,u)
E(x,u)

≥min

 min
ε≤u≤m(x)−δ

x∈Ω

g(x,u)
E(x,u)

, ε,εδ

 > 0,

since the function g/E is continuous and positive on the compact set

{(x,u) : x ∈Ω, ε ≤ u ≤m(x)− δ}.
We have showed that (.) holds.

Thus, the hypotheses of Theorem . are fulfilled and the inequality
follows.

.Technicalities
..Positive classical solutions. Let

θ(s) =

1 if s > 0,
0 if s ≤ 0

be the Heaviside step function.
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Lemma .. If nonnegative u, û ∈ C∞(Ω) satisfy the no-flux boundary condi-
tion (.), then ∫

Ω

θ(u − û)div(u∇f − û∇f̂ )dx ≥ 0, (.)

where f and f̂ stand for f (x,u(x)) and f (x, û(x)), respectively.

Proof : Without loss of generality, the functions u and û are defined and
smooth on R

d. Consider the set Υ := [u − û > 0]. First let us assume
that 0 is a regular value of the function u − û, then the boundary of Υ is
smooth. Employing de Giorgi’s Gauss-Green formula [, Theorem .]
and the formula for the Gauss-Green measure of an intersection [, The-
orem .], we compute∫

Ω

θ(u − û)div(u∇f − û∇f̂ )dx =
∫
Υ∩Ω

div(u∇f − û∇f̂ )dx

=
∫
∂∗(Υ∩Ω)

(u∇f − û∇f̂ ) · νΥ∩ΩdHd−1 =
∫
∂Υ∩Ω

(u∇f − û∇f̂ ) · νΥ dHd−1

+
∫
Υ∩∂Ω

(u∇f − û∇f̂ ) · νΩdHd−1 +
∫

[νΥ =νΩ]
(u∇f − û∇f̂ ) · νΩdHd−1,

where νΥ∩Ω is the measure-theoretic outward unit normal vector along the
reduced boundary ∂∗(Υ ∩Ω) of the intersection []. Due to the no-flux
boundary condition, the last two integrals vanish. On ∂Υ ∩Ω, we have
u = û and consequently, f = f̂ . Thus, we can write∫

Ω

θ(u − û)div(u∇f − û∇f̂ )dx =
∫
∂Υ∩Ω

u∇(f − f̂ ) · νΥ dHd−1. (.)

Due to the monotonicity of f , we have Υ = [f − f̂ < 0]. We see then that
whenever ∇(f − f̂ ) , 0 on ∂Υ , ∇(f − f̂ ) is an outward normal vector along
∂Υ . Thus, ∇(f − f̂ ) · νΥ ≥ 0 and equality (.) gives (.).

In the general case, take a decreasing sequence εn → 0 such that 0 is a
regular value of u + εn − û. Set

un = u + εn, fn = f (x,un(x)).

By the above, we have∫
Ω

θ(un − û)div(un∇fn − û∇f̂ )dx ≥ 0. (.)
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As θ is right-continuous, we have

θ(un − û)→ θ(u − û) pointwise in Ω;

moreover, it is clear that

fn→ f in C2(Ω).

Passing to the limit in (.), we obtain (.).

Lemma . (L1-contraction for positive classical solutions). Let u and û be
classical solutions of (.)–(.) on [0,T ] with different initial data. Suppose
that u and û satisfy

κ ≤ u ≤ 1
κ
, κ ≤ û ≤ 1

κ
in QT

with some κ > 0 and let Lκ > 0 be such that

|u1f (x,u1)−u2f (x,u2)| ≤ Lκ|u1 −u2| x ∈Ω, ∀u1,u2 ∈
(
κ,

1
κ

)
. (.)

Then for a. a. t > 0,

∂t

∫
Ω

(u − û)+ dx ≤ Lκ
∫
Ω

(u − û)+ dx. (.)

Proof : We have:

∂t

∫
Ω

(u − û)+ dx =
∫
Ω

θ(u − û)(∂tu −∂tû)dx

= −
∫
Ω

θ(u − û)div(u∇f − û∇f̂ )dx

+
∫
Ω

θ(u − û)(uf − ûf̂ )dx =: −I1 + I2,

where f and f̂ stand for f (x,u(x, t)) and f (x, û(x, t)), respectively. By
Lemma ., we have I1 ≥ 0. To estimate I2, we use (.) and the obser-
vation that the integrand vanishes where u − û < 0, thus obtaining

I2 ≤ Lκ
∫
Ω

(u − û)+ dx.

Inequality (.) follows.
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For c ∈R, define uc ∈ C2(Ω) by

f (x,uc(x)) = c. (.)

As f is monotonous in u, we see that the function uc is unique, but it does
not need to exist for a given c. Note that u0 =m.

Remark .. There is a simple formula for the L∞-norm of uc:

‖uc‖L∞(Ω) = inf
{
ξ ≥ 0: sup

x∈Ω
f (x,ξ) ≤ c

}
. (.)

It follows from the fact that due to the monotonicity of f , the inequality
ξ ≥ ‖uc‖L∞(Ω) or, equivalently, ξ ≥ uc(x) for all x ∈ Ω, holds if and only if
f (x,ξ) ≤ f (x,uc(x)) ≡ c for all x ∈Ω, i. e. when

sup
x∈Ω

f (x,ξ) ≤ c.

Remark .. If (.) holds, for any u ∈ L∞+ (Ω) the function uc with

c = −ess sup
x∈Ω

f −(x,u(x)) (.)

is well-defined and u ≤ uc a. e. in Ω. Indeed, if the second alternative
in (.) holds, for any x ∈ Ω, the function f (x,ξ) assumes all the val-
ues in the interval (−∞,0] as ξ varies over [m(x),∞); in particular, f (x,ξ)
attains the value c. If, on the other hand, the first alternative in (.)
holds, take ξ1 ≥ ‖u‖L∞ such that c1 := f (x,ξ1) is independent of x and neg-
ative. Clearly, for any fixed x ∈Ω, the function f (x,ξ) takes all the values
in the interval [c1,0] as ξ varies over [m(x),ξ1]. Now it suffices to observe
that due to the monotonicity of f , we have c ∈ [c1,0]. One can prove in the
same way that if (.) holds, for any function u essentially bounded away
from 0 on Ω, there exists uc such that u ≥ uc a. e. in Ω, and c ≥ 0.

Remark .. It follows from Remarks . and . that if (.) holds, the
right-hand side of (.) is finite for any u0 ∈ L∞+ (Ω).

Lemma . (Restricted L1-contraction). Let u be a classical solution of (.)–
(.) on [0,∞). Then for c ≤ 0 we have∫

Ω

(u −uc)+ dx ≤
∫
Ω

(u0 −uc)+ dx, t > 0 (.)
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and likewise, for c ≥ 0 we have∫
Ω

(u −uc)−dx ≤
∫
Ω

(u0 −uc)−dx, t > 0 (.)

provided that uc exists.

Proof : Let us prove (.) for c ≤ 0. Computing the derivative of the left-
hand side, for a. a. t > 0 we have:

∂t

∫
Ω

(u −uc)+ dx =
∫
Ω

θ(u −uc)∂tudx

= −
∫
Ω

θ(u −uc)div(u∇f )udx

+
∫
Ω

θ(u −uc)uf dx =: −I1 + I2.

As ∇f (x,uc(x)) ≡ 0, we can use Lemma . to get I1 ≥ 0. Now, the integrand
of I2 can only be non-zero where u > uc, in which case f ≤ c ≤ 0 due to the
monotonicity of f ; consequently, I2 ≤ 0. Thus, we have

∂t

∫
Ω

(u −uc)+ dx ≤ 0

and (.) follows. Inequality (.) is proved in much the same way.

Lemma .. Suppose that f satisfies (.) and (.). Then for any smooth
u0 : Ω → (0,∞) satisfying the non-flux boundary condition, problem (.)–
(.) has a classical solution.

Proof : Equation (.) can be cast in the form

∂tu = −ufu∆u −∇u · (fx + fu∇u)−u(fxx + 2fxu · ∇u + fuu |∇u|2 − f ).

If we show that a classical solution is a priori bounded and stays away
from , we can ignore the fact that the coefficient −ufu can be degenerate
or singular at u = 0,∞ and infer the existence of the solution from the
classical theory of quasilinear parabolic equations.

Indeed, according to Remark ., we can find uc1 and uc2 such that c2 ≤
0 ≤ c1 and

uc1(x) ≤ u0(x) ≤ uc2(x) (x ∈Ω).
Then it follows from Lemma . that

uc1(x) ≤ u(x, t) ≤ uc2(x, t) (x, t) ∈Ω× (0,∞),
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providing the required bounds.

..Positive initial data. If the initial data (.) is bounded away from 0,
we approximate it with smooth functions and prove the existence and
uniqueness of weak solutions to (.)–(.) stated in Theorem . below.

Lemma .. Suppose that u ∈ L∞+ (QT ) satisfies the energy inequality (.) in
the sense of measures; then

‖W (u)‖L∞(0,T ) ≤ ess lim sup
t→+0

W (u(t)) +CT , (.)

‖∇Φ(·,u(·))‖L2(QT ) ≤ 2(ess lim sup
t→+0

W (u(t)) +CT ), (.)

where C > 0 is defined by an upper bound on ‖u‖L∞(Ω).

Proof : The function

t 7→W (u(t))

−
∫ t

0

(
−
∫
Ω

|∇Φ |2 dx+
∫
Ω

(Φx +ufx) · ∇Φ dx+
∫
Ω

uf Φ dx
)

dt

has a non-positive derivative in the sense of measures, so it a. e. coincides
with a non-increasing function. In other words, for a. a. t0, t1 ∈ (0,T ), t0 <
t1, we have

W (u(t1))−W (u(t0))

−
∫ t1

t0

(
−
∫
Ω

|∇Φ |2 dx+
∫
Ω

(Φx +ufx) · ∇Φ dx+
∫
Ω

uf Φ dx
)

dt ≤ 0.

An upper bound on ‖u‖L∞(QT ) defines essential upper bounds on uf , Φ =
Φ(x,u(x, t)), Φx, and ufx, so for a. a. t ∈ (t0, t1) we can estimate∫

Ω

(Φx +ufx) · ∇Φ dx+
∫
Ω

uf Φ dx

≤ 1
2

∫
Ω

|∇Φ |2 dx+
1
2

∫
Ω

|Φx +ufx|2 dx+
∫
Ω

uf Φ dx

≤ 1
2

∫
Ω

|∇Φ |2 dx+C,
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whence

W (u(t1)) +
1
2

∫ t1

t0

∫
Ω

|∇Φ |2 dxdt ≤W (u(t0)) +C(t1 − t0).

Passing to the essential upper limit as t0→ 0 and estimating t1− t0 ≤ T , we
obtain

W (u(t1)) +
1
2

∫ t1

0

∫
Ω

|∇Φ |2 dxdt ≤ ess lim sup
t→+0

W (u(t)) +CT ,

whence (.) and (.) follow.

Theorem . (Solvability for positive data). Suppose that f satisfies (.)–
(.) as well as (.) and (.). Then for any u0 ∈ L∞+ such that

κ ≤ u0 ≤ 1
κ

a. e. in Ω

with some constant κ > 0, there exists a unique weak solution

u ∈ L∞+ (Ω× [0,∞))∩C([0,∞);L1(Ω))

satisfying the following properties: i) the upper bound (.) and lower
bound (.); ii) the energy and entropy dissipation inequalities as well
as (.) and (.); iii) the restricted contraction∫

Ω

(u −uc)+ dx ≤
∫
Ω

(u0 −uc)+ dx (c ≤ 0), (.)∫
Ω

(u −uc)−dx ≤
∫
Ω

(u0 −uc)−dx (c ≥ 0) (.)

whenever uc is defined; iv) if û is another such solution with the initial data
û0, the L1-contraction holds:

‖(u(t)− û(t))+‖L1(Ω) ≤ eLκt‖(u0 − û0)+‖L1(Ω), (.)

where Lκ is defined by (.).

Proof : Let {u0
n} be a sequence of smooth functions satisfying the no-flux

boundary condition such that

κ ≤ u0
n(x) ≤ 1

κ
in Ω (.)

and
u0
n→ u0 in L1(Ω) and a. e. in Ω. (.)
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Let un be the classical solution of (.)–(.) on [0,∞) with the initial data
u0
n. For any T > 0, it follows from Lemma . that

‖un −um‖C([0,T ];L1(Ω)) ≤ eLκT ‖u0
n −u0

m‖L1,

so {un} is a Cauchy sequence in C([0,T ];L1(Ω)). As T is arbitrary, we see
that {un} converges in C([0,∞);L1(Ω)) to some function u. We claim that it
is the sought-for solution.

By Remark ., there exists uc (c ≤ 0) such that uc ≥ 1/κ; then uc
dominates the initial data u0

n and thus, the solutions un as well, which
follows from Lemma .. Consequently, the sequence {un} is bounded
in L∞(Ω × (0,∞)), so it converges to u weakly* in this space, whence
u ∈ L∞(Ω× (0,∞)).

Put

fn = f (x,un(x, t)), fxn = fx(x,un(x, t)),

Φn = Φ(x,un(x, t)), Φxn = Φx(x,un(x, t)),

Ψn = Ψ (x,un(x, t)), En = E(x,un(x, t)).

Fix T > 0. As the sequence {un} is bounded in L∞(QT ), so are the sequences
{unfn}, {unfxn}, {Φn}, {Φxn}, {Ψn}, and {En}. Thus, there is no loss of generality
in assuming

un→ u

unfn→ uf

unfxn→ ufx
Φn→ Φ

Φxn→ Φx

Ψn→ Ψ



a. e. in QT ,
strongly in any Lp(QT ), 1 ≤ p <∞,
weakly* in L∞(QT ),
and in the sense of distributions,

(.)

where we write Φ for Φ(·,u(·)), etc. It follows from (.) that ∇Φn →
∇Φ in the sense of distributions. The approximate solutions satisfy the
energy inequality and (.) while their initial energy is bounded, so we
see from (.) that the sequence∇Φn is bounded in L2(QT ). Consequently,
Φ ∈ L2(0,T ;H1(Ω)) and

∇Φn→∇Φ weakly in L2(QT ). (.)

Let us check that u is a weak solution of (.)–(.) on [0,T ]. Take an
admissible test function ϕ. Writing the weak setting for the approximate
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solution, we have∫ T

0

∫
Ω

(un∂tϕ + (−∇Φn +Φxn +unfxn) · ∇ϕ + fnunϕ)dxdt

=
∫
Ω

u0
n(x)ϕ(x,0)dx. (.)

It follows from (.), (.), and (.) that we can pass to the limit
in (.) and obtain (.) for u. Thus, u is indeed a weak solution.

Let us show that u satisfies the energy inequality on [0,T ] in the sense
of measures. Taking a smooth nonnegative test function ϕ ∈ C∞ vanishing
outside of [0,T ], we write the energy inequality in the sense of measures
for the approximate solutions:

−
"

QT

Ψnϕ
′(t)dxdt ≤ −

"
QT

|∇Φn|2ϕ(t)dxdt

+
"

QT

ϕ(t)(Φxn +unfxn) · ∇Φndxdt +
"

QT

unfnΦnϕ(t)dxcdt

Convergences (.) ensure that we can pass to the limit in all the terms
but for the first one on the right-hand side. As for the latter, it follows
from (.) that

√
ϕ∇Φn→

√
ϕ∇Φ weakly in L2(QT ), whence"

QT

ϕ|∇Φ |2 dxdt ≤ liminf
n→∞

"
QT

ϕ|∇Φn|2 dxdt,

and the energy inequality follows.
Let us check (.). The approximate solutions satisfy

ess lim sup
t→+0

W (un(t)) ≤W (u0
n)

so by virtue of (.) we obtain

ess sup
t∈(0,ε)

W (un(t)) ≤W (u0
n) +Cε.

It follows from (.) and (.) that

W (un)→W (u) weakly* in L∞(0, ε),

W (u0
n)→W (u0),
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so we get

ess sup
t∈(0,ε)

W (u(t)) ≤ liminf
n→∞

ess sup
t∈(0,ε)

W (un(t))

≤ lim
n→∞
W (u0

n) +Cε

=W (u0) +Cε.

Now sending ε→ 0 we recover (.).
Let us show that u satisfies the entropy dissipation inequality on [0,T ] in

the sense of measures. Let ϕ ∈ C∞ be a smooth nonnegative test function
vanishing outside of [0,T ]. The approximate solutions satisfy the entropy
dissipation inequality in the sense of measures, so we have

−
"

QT

Enϕ
′(t)dxdt ≤ −

"
QT

ϕ(t)unf
2
n dxdt

−
"

un>0

ϕ(t)
un
| − ∇Φn +Φxn +unfxn|2 dxdt.

Consequently, for any δ > 0 we have

−
"

QT

Enϕ
′(t)dxdt ≤ −

"
QT

ϕ(t)
max(un,δ)

(unfn)
2 dxdt

−
"

QT

ϕ(t)
max(un,δ)

| − ∇Φn +Φxn +unfxn|2 dxdt. (.)

Observe that

ϕ(t)
max(un,δ)

→
ϕ(t)

max(u,δ)

a. e. in QT ,
strongly in any Lp, 1 ≤ p <∞,
and weakly* in L∞(QT ),

(.)

vn := −∇Φn +Φxn +unfxn→−∇Φ +Φx +ufx weakly in L2(Ω) (.)

We claim that"
QT

ϕ(t)
max(u,δ)

| − ∇Φ +Φx +ufx|2 dxdt

≤ liminf
n→∞

"
QT

ϕ(t)
max(un,δ)

| − ∇Φn +Φxn +unfxn|2 dxdt. (.)
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Then, taking into account (.), we can pass to the limit in (.) obtain-
ing

−
"

QT

Eϕ′(t)dxdt ≤ −
"

QT

ϕ(t)
max(u,δ)

(uf )2 dxdt

−
"

QT

ϕ(t)
max(u,δ)

| − ∇Φ +Φx +ufx|2 dxdt.

On the set {(x, t) ∈ QT : u(x, t) = 0} we have ufx = 0 (by virtue of (.)),
Φx = 0 and Φ = 0, whence also ∇Φ = 0 a. e. on this set. Thus, we can write

−
"

QT

Eϕ′(t)dxdt ≤ −
"

QT

ϕ(t)
max(u,δ)

(uf )2 dxdt

−
"

u>0

ϕ(t)
max(u,δ)

| − ∇Φ +Φx +ufx|2 dxdt

Letting δ→ 0, by Beppo Levi’s theorem we obtain the energy inequality.
To prove the technical claim (.), we use a variant of the Banach-

Alaoglu theorem in varying L2(dµn) spaces:

Lemma .. Let O ⊂ R
N be an open set, µn a sequence of finite non-negative

Radon measures narrowly converging to µ, and vn a sequence of vector fields
on O. If

‖vn‖L2(O,dµn) ≤ C,

then there exists v ∈ L2(O,dµ) such that, up to extraction of some subsequence,

∀ζ ∈ C∞c (O) : lim
n→∞

∫
O
vn ·ζdµn =

∫
O
v ·ζdµ (.)

and
‖v‖L2(O,dµ) ≤ liminf

n→∞
‖vn‖L2(O,dµn). (.)

The proof of this fact by optimal transport techniques can be found in
[]; this lemma also follows from a variant of the Banach-Alaoglu theo-
rem [, Proposition .]. We will apply this lemma with O =QT , vn from
(.), and the sequence of measures dµn(t,x) := ϕ(t)

max(un,δ) dxdt, which con-

verges narrowly to dµ(t,x) = ϕ(t)
max(u,δ) dxdt due to the strong convergence
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(.). Extracting a subsequence if needed, we see that there is a vector-
field v ∈ L2(O,dµ) verifying (.) and (.). On the other hand, by (.)
and (.),

vn
ϕ(t)

max(un,δ)
→ (−∇Φ +Φx +ufx)

ϕ(t)
max(u,δ)

weakly in L1(QT ). Evoking (.), we find that∫
O
v ·ζdµ =

∫
O

(−∇Φ +Φx +ufx) ·ζdµ

for all test functions ζ. By density, we conclude that v = −∇Φ +Φx +ufx in
L2(O,dµ), and (.) follows from (.).

Inequality (.) is proved in the same way as (.) given that it holds
for the approximate solutions.

Inequalities (.)–(.) follow from correspondent inequalities for ap-
proximate solutions (Lemmas . and .), as we obviously have

(un(t)−uc)±→ (u(t)−uc)±

(un(t)− ûn(t))+→ (u(t)− û(t))+

}
in L1(Ω), ∀t ≥ 0,

where the approximations ûn are constructed in the same way as un.
Contraction (.) implies the uniqueness of u.
To obtain the upper bound (.), we define c ≤ 0 by (.) and thus have

u0 ≤ uc on Ω, whence in view of contraction (.),

u(x, t) ≤ uc(x), (x, t) ∈Ω× (0,∞).

Recalling the formula (.) for the norm of uc, we obtain the upper bound.
To obtain the lower L1-bound (.), we take uc =m in (.), obtaining

‖u(t)‖L1(Ω) ≥ ‖min(u(t),m)‖L1(Ω) =
∫
Ω

(m− (u(t)−m)−)dx

≥
∫
Ω

(m− (u0 −m)−)dx = ‖min(u(t),m)‖L1(Ω),

as required.

.. Nonnegative initial data. If initial data (.) is only nonnegative,
we approximate it with positive functions and reuse the proof of Theo-
rem . to establish the existence of solutions to (.)–(.) as stated in
Theorem . (but not uniqueness, owing to the loss of contraction).
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Proof of Theorem .: Take a decreasing sequence εn→ 0 and set

u0
n = u0 + εn.

By Theorem ., there exists a weak solution un of (.)–(.) with the ini-
tial data u0

n. Contraction (.) ensures the comparison principle for this
sequence of solutions, whence un+1 ≤ un a. e. in Ω× (0,∞). Consequently,
there exists the monotone limit u ∈ L∞(Ω× (0,∞)) and moreover, we obvi-
ously have the convergences (.). From this moment on, the proof copies
that of Theorem . except that (.) and (.) hold almost everywhere
rather then everywhere.

We conclude by proving Theorems . and ..

Proof of Theorem .: Let D = {(x,Φ(x,u)) : x ∈Ω,u > 0} and consider the
function Ξ : D→ [0,∞) implicitly defined by the equation

Φ(x,Ξ(x,φ)) = φ.

As Φ is monotonous with respect to its second argument, Ξ is uniquely
defined. Clearly, Ξ is C2.

Fix u ∈U . We claim that there exists a sequence of functions Φn ∈ C(Ω)∩
C∞(Ω) such that

(x,Φn(x)) ∈D (x ∈Ω),

Φn→ Φ(·,u(·)) in H1and a. e. in Ω

Indeed, take a sequence {δn}, where δn > 0 and δn → 0, put Φ̃n(x) =
Φ(x,u(x)) + δn, and let Φ̃ε

n be the mollification of Φ̃n. Observe that Φ̃n is
strictly positive and so is Φ̃ε

n. It suffices to show that for any n sufficiently
large there exists εn > 0 such that whenever ε < εn, we have

{(x, Φ̃ε
n(x)) : x ∈Ω} ⊂D. (.)

If the second alternative in (.) holds, we clearly have D = (0,∞),
so (.) obviously holds with any ε.

Assume the first alternative in (.). Take ξ0 ≥ ‖u‖L∞(Ω) such that f (x,ξ)
does not depend on x if ξ ≥ ξ0 and set

a = −
∫ ξ0+1

ξ0

ufu(x,ξ)dx > 0.
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We have:

Φ(x,ξ0 + 1)− Φ̃n(x) = Φ(x,ξ0 + 1)−Φ(x,u(x))− εn
≥ Φ(x,ξ0 + 1)−Φ(x,ξ0)− εn = a− εn.

Thus, for large n we have

Φ̃n(x) ≤ Φ(x,ξ0 + 1)− a
2
.

Upon mollification,

Φ̃ε
n(x) ≤ Φε(x,ξ0 + 1)− a

2
.

For a fixed n, the function Φ(·,ξ0 + 1) is continuous on Ω, so the mollifica-
tions Φε(·,ξ0 + 1) converge to it uniformly on Ω as ε→ 0. Consequently,

(x, Φ̃ε
n(x)) ∈ {(x,φ) ∈Ω× (0,∞) : φ ≤ Φ(x,ξ0 + 1)} ⊂D (.)

for all x ∈Ω, proving (.).
Taking a sequence {Φn} as above, we can set un(x) = Ξ(x,Φn(x)), so that

Φn(x) = Φ(x,un(x)). Clearly, un ∈ C2(Ω) and un > 0. Further, the sequence
{un} is bounded in L∞(Ω) because so is {Φn}, and due to the continuity of
Ξ we have

un→ u a. e. in Ω.

As a consequence, for fn = f (x,un(x)) and En = E(x,un(x)) we have

un→ u

unfn→ uf

unfxn→ ufx
Φxn→ Φx

En→ E


a. e. in Ω

and in any Lp(Ω), 1 ≤ p <∞ , (.)

where we write f for f (·,u(·)), etc. In particular, there is no loss of gener-
ality in assuming a lower bound

‖un‖L1(Ω) ≥ c :=
1
2

inf
u∈U
‖u‖L1(Ω) > 0

(positivity by virtue of (.)), where c is obviously independent not only
of un but of u as well.
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Define
Ũ = {w ∈ C1(Ω) : w > 0,‖w‖L1(Ω) ≥ c}.

By Theorem ., there exist a function

v(ξ) =
ξ2

max(ξ,σ )
,

where σ > 0, and a constant C > 0 such that∫
Ω

E(x,w(x))dx

≤ C
∫
Ω

v(w(x))(f (x,w(x)) + |∇f (x,w(x))|2)dx (w ∈ Ũ ).

In particular, as un ∈ Ũ , we see that∫
Ω

Endx ≤ C
∫
Ω

vn(fn + |∇fn|2)dx, (.)

where vn = v(un(x)).
Let us check that we can pass to the limit in (.). First, it follows

from (.) that ∫
Ω

Endx→
∫
Ω

Edx.

Next, note that we clearly have

1
max(un,σ )

→ 1
max(u,σ )

a. e. in Ω and weakly* in L∞(Ω)

and thus, again using (.), we obtain∫
Ω

vnf
2
n dx =

∫
Ω

1
max(un,σ )

(unfn)
2 dx→

∫
Ω

1
max(u,σ )

(uf )2 dx.

Finally, as un is smooth and positive, we can write∫
Ω

vn|∇fn|2 dx =
∫
Ω

1
max(un,σ )

| − ∇Φn +Φxn +unfxn|2 dx

→
∫
Ω

1
max(u,σ )

| − ∇Φ +Φx +ufx|2 dx.
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On the set [u = 0] we have ufx = 0 by (.), Φx = 0, and Φ = 0, the last
equality implying ∇Φ = 0 a. e. on [u = 0]. Thus, we can write∫

Ω

vn|∇fn|2 dx→
∫

[u>0]

1
max(u,σ )

| − ∇Φ +Φx +ufx|2 dx.

To sum up, we have∫
Ω

Edx

≤ C
(∫

Ω

u2

max(u,σ )
f 2 dx+

∫
[u>0]

1
max(u,σ )

| − ∇Φ +Φx +ufx|2 dx
)
,

which is even stronger than (.).

Proof of Theorem .: Let U ⊂ L∞+ be the set of functions such that for any
v ∈U , we have Φ(·,v(·)) ∈H1(Ω) and ‖v‖L∞(Ω) ≥ c. By Theorem . we have
the entropy-entropy production inequality (.) for U .

Let u be a weak solution of (.)–(.) with the initial data satisfy-
ing (.). It follows from the lower L1-bound (.) that u(t) ∈U for a. a.
t > 0. Combining the entropy dissipation and entropy-entropy production
inequalities, we obtain

∂tE(u(t)) ≤ −CUE(u(t)) a. a. t > 0.

Letting e(t) = E(u(t))eCU t, we see that ∂te(t) ≤ 0 in the sense of measures,
whence e a. e. coincides with a nonincreasing function. Moreover,

ess sup
t>0

e(t) = ess lim sup
t→0

e(t) = ess lim sup
t→0

E(u(t))eCU t ≤ E(u0)

by virtue of (.), so e(t) ≤ E(u0) for a. a. t > 0, yielding (.) with γ =
CU .
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