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Abstract: Considering the wide class of CP-INARCH models, introduced in [6],
the main goal of this paper is to develop and compare parametric estimation pro-
cedures for order one models, applicable without specifying the conditional distri-
bution of the process. Therefore, two-step estimation procedures, combining ei-
ther the conditional least square (CLS) or the Poisson quasi-maximum likelihood
(PQML) methods with that of the moment’s estimation, are introduced and dis-
cussed. Specifying the process conditional distribution, we develop also within this
class of models the conditional maximum likelihood (CML) methodology. A sim-
ulation study illustrates, particularly, the competitive performance of the two-step
approaches regarding the more classical CML one which requires the conditional
distribution knowledge. A final real-data example shows the relevance of this wide
class of models, as it will be clear the better performance in the data fitting of some
new models emerging in such class.
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1. Introduction
The family of discrete compound Poisson distributions, which includes as

particular cases the Poisson, the Neyman type-A or the geometric Poisson
laws, was recently used to define a new class of integer-valued GARCH models,
the compound Poisson INGARCH ones [6], specified through the characteristic
function of the conditional law of the process given its past. Namely, X =
(Xt, t ∈ Z) follows a CP-INGARCH process if the characteristic function of Xt

conditioned on X t−1 is such that
ΦXt|Xt−1

(u) = exp
{
i λt

φ′
t(0)

[φt(u)− 1]
}
, u ∈ R,

E(Xt|X t−1) = λt = α0 +

p∑
j=1

αjXt−j +

q∑
k=1

βkλt−k,

where α0 > 0, α1, ..., αp, β1, ..., βq ≥ 0, X t−1 represents the σ-field generated
by {Xt−s, s ≥ 1} and (φt, t ∈ Z) is a family of characteristic functions on R,
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X t−1-measurables, associated to a family of discrete laws with support in N0

and finite mean. The functional form of the conditional characteristic func-
tion ΦXt|Xt−1

allows a wide flexibility of the class of CP-INGARCH models.
In fact, as it is assumed that the family of discrete characteristic functions
(φt, t ∈ Z) is X t−1-measurable it means that its elements may be random func-
tions or deterministic ones. Thus, this general model unifies and enlarges sub-
stantially the family of conditionally heteroscedastic integer-valued processes.
In fact, it is possible to present new specific models with conditional distri-
butions with interest in practical applications as, for instance, the geometric
Poisson INGARCH ([6]) or the Neyman type-A INGARCH ([5]) ones, and also
recover recent contributions such as the Poisson INGARCH ([4]), the general-
ized Poisson INGARCH ([12]), the negative binomial INGARCH ([11]) and the
negative binomial DINARCH ([10]) processes (correspon- ding to random or
deterministic functions φt, respectively). In addition to having the ability to
describe different distributional behaviors and consequently different kinds of
conditional heteroscedasticity, the CP-INGARCH model is able to incorporate
simultaneously the overdispersion characteristic that has been recorded in real
count data.

In this paper, we focus on the case where φt is deterministic and constant
in time which still includes many of the particular cases referred above. For
that reason, from now on we will refer these functions simply as φ. In this
subclass of models, there exists a strictly stationary and ergodic solution with
finite first and second order moments under

∑p
j=1 αj +

∑q
k=1 βk < 1 ([6]). For

p = q = 1, Gonçalves, Mendes-Lopes and Silva [7] stated that this simple
coefficient condition is also necessary and sufficient to establish the existence
of all the moments of Xt.

The remainder of the paper proceeds as follows. In Section 2 we consider
the subclass of CP-INARCH models of order one, with φt = φ determinis-
tic, and deduce its moments, central moments and cumulants up to the order
4. These results are particularly important in Section 3, devoted to estimation
procedures, to deduce explicit expressions for the asymptotic distribution of the
Conditional Least Squares (CLS) estimators of the conditional mean parame-
ters, α0 and α1. In a second step, the method of moments is used to estimate the
additional parameter associated to the function φ. Another two-step estima-
tion procedure, combining the Poisson Quasi Maximum Likelihood (PQML)
and the moment methods, is also proposed in this section, followed by the
Conditional Maximum Likelihood (CML) estimation for the NTA-INARCH(1)
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and GEOMP2-INARCH(1) models. Section 4 presents some simulation stud-
ies that illustrate and compare the performance of these three methodologies
of estimation. In Section 5 an integer-valued time series related to the prices
of electricity in Portugal and Spain during 2013 is considered. The data is
fitted by several CP-INARCH(1) models estimated by the CML method and
the quality of the fitting is discussed using, in particular, the values of the
log likelihood function, Akaike information criterion and Bayesian information
criterion. Detailed calculations are included in the Appendices.

2. The CP-INARCH(1) process
Let us consider the subclass of CP-INGARCH(1) models for which p = q = 1

and β1 = 0. Supposing φt = φ constant in time and deterministic we recall
that α1 < 1 is a necessary and sufficient condition to assure the existence of
a strictly stationary and ergodic solution of the model. Moreover the process
has moments of all the orders.

Setting X = (Xt, t ∈ Z) a CP-INARCH(1) process we derive in the following
closed-form expressions for the joint (central) moments and cumulants of the
CP-INARCH(1) up to order 4. In fact, setting the notations below (used, for
instance, by Weiß in [9]),

fk =
α0∏k

j=1 (1− αj
1)
, k ∈ N,

µ(s1, ..., sr−1) = E
(
XtXt+s1...Xt+sr−1

)
,

µ̃(s1, ..., sr−1) = E
(
(Xt − µ)(Xt+s1 − µ)...(Xt+sr−1

− µ)
)
, (1)

κ(s1, ..., sr−1) = Cum
[
Xt, Xt+s1, ..., Xt+sr−1

]
,

with r = 2, 3, 4 and 0 ≤ s1 ≤ ... ≤ sr−1, and

v0 = −i
φ′′(0)

φ′(0)
, d0 = −φ′′′(0)

φ′(0)
, c0 = i

φ(iv)(0)

φ′(0)
,

we establish the following results whose proofs may be found in Appendices 1
and 2, respectively.

Theorem 2.1 (Moments of a CP-INARCH(1) process).
We have:

(a): For any k ≥ 0, µ(k) = f2(v0α
k
1 + α0(1 + α1)).
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(b): For any l ≥ k ≥ 0,

µ(k, l) = [d0(1− α2
1)− v20(1 + α1 − 2α2

1)]f3α
l+k
1 +

v0(α0 + v0)

1− α1

f2α
l
1 + v0f1f2α

l−k
1 + f1µ(k).

(c): For any m ≥ l ≥ k ≥ 0,

µ(k, l,m) = αm−l
1

[{
(c0 − 4v0d0 + 3v30) + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+ (7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
f4α

2l+k
1

+
2v0 + α0

1− α1

f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−k
1

+
α0f3
1− α1

{
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
}
α
2(l−k)
1 +

v0 + α0

1− α1

µ(k, l)

−f2µ(k)[α0 + (v0 + α0)α1]] + f1µ(k, l).

Corollary 2.1 (Central Moments and Cumulants of a CP-INARCH(1) pro-
cess).
We have:

(a): For any s ≥ 0, µ̃(s) = κ(s) = v0α
s
1f2.

(b): For any l ≥ s ≥ 0,

µ̃(s, l) = κ(s, l) = f3α
l
1[v

2
0(1 + α1 + α2

1)− {v20(1 + α1 − 2α2
1)− d0(1− α2

1)}αs
1].

(c): For any m ≥ l ≥ s ≥ 0,

κ(s, l,m) = αm
1 f4

[{
c0 + 3v30 − 4v0d0 + 3v0(v

2
0 − d0)α1 + (3α0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
αl+s
1

+v0(1 + α1 + α2
1 + α3

1)[d0(1− α2
1)− v20(1 + α1 − 2α2

1)](2α
l
1 + αs

1)

+v0(1 + α1 + α2
1)(1 + α2

1)[(1 + α1)v
2
0 + (d0(1− α1) + v20(2α1 − 1))αl−s

1 ]
]
,

µ̃(s, l,m) = κ(s, l,m) + v20f
2
2 (α

m−l+s
1 + 2αm+l−s

1 ).

From Theorem 2.1 we deduce, for instance,

E(X2
t ) = µ(0) =

α0(v0 + α0(1 + α1))

(1− α1)(1− α2
1)

, (2)

E(X3
t ) = µ(0, 0) =

α0

(1− α1)3

[
d0 + (3v20 − d0)α

2
1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1
+ α2

0

]
.

These results generalize those of Weiß [9] for the INARCH(1) model. They
are particularly important to deduce explicit expressions for the asymptotic
distribution of the CLS estimators of the parameters α0 and α1 provided in
the next section. As we will take in our study some important particular
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cases concerning the process conditional law, we conclude this section recalling
such cases and deducing the corresponding values of v0, d0 and c0, previously
introduced.

a) The INARCH(1) model ([4]) corresponds to a CP-INARCH model consid-
ering φ the characteristic function of the Dirac’s law concentrated in {1}. So,
we deduce that v0 = d0 = c0 = 1.

b) When φ is the characteristic function of the Poisson distribution with
mean ϕ > 0, Xt|X t−1 follows a Neyman type-A law with parameter (λt/ϕ, ϕ),
and we have the NTA-INARCH(1) model introduced in [5]. For this case,
v0 = 1 + ϕ, d0 = 1 + 3ϕ+ ϕ2 and c0 = 1 + 7ϕ+ 6ϕ2 + ϕ3.

c) Considering in the above expressions v0 = (2 − p∗)/p∗, d0 = (6 − 6p∗ +
(p∗)2)/(p∗)2 and c0 = ((2−p∗)(12−12p∗+(p∗)2))/(p∗)3, we obtain the expres-
sions for the GEOMP2-INARCH(1) model [6]. In fact, this process is defined
considering φ the characteristic function of the geometric distribution with
parameter p∗ ∈]0, 1[ and Xt|X t−1 following a geometric Poisson (p∗λt, p

∗) law.

d) Another particular case of the CP-INARCH model is the NB2-INARCH
(that is identical to the NB-DINARCH model proposed by Xu et al. [10]),
where Xt|X t−1 follows a negative binomial law with parameter (λt/(β − 1), 1/β)
and β > 0. This process is stated when φ is the characteristic function of the
logarithmic distribution with parameter (β−1)/β and then, we deduce v0 = β,
d0 = 2β2 − β and c0 = 6β2(β − 1) + β.

e) When φ is the characteristic function of the Borel law with parameter
κ ∈]0, 1[, Xt|X t−1 follows a generalized Poisson distribution with parameter
((1− κ)λt, κ) and we recover the GP-INARCH model ([12]). So, v0 = (1−κ)−2,
d0 = (2κ+ 1)(1− κ)−4 and c0 = (6κ2 + 8κ+ 1)(1− κ)−6.

3. Estimation Procedures
In this section, we will focus on the estimation of the vector θ = (α0, α1, v0)

⊤,
where v0 includes the additional parameter associated to the conditional dis-
tribution of the CP-INARCH(1) model (for example, v0 = 1 + ϕ in the NTA-
INARCH(1) model and v0 = (2 − p∗)/p∗ in the GEOMP2-INARCH(1)). To
estimate the true value of θ, we start by discussing a two-step approach using
the conditional least squares and moment estimation methods; after we con-
sider the combination of the Poisson Quasi-Maximum Likelihood and moments
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estimation methods and finally develop the conditional maximum likelihood
estimation. For this purpose, let (x1, ..., xn) be n particular values, arbitrarily
fixed, of the process X.

3.1. Two-step estimation procedures.

3.1.1. Conditional Least Squares and Moments estimation methods.
In the first step, we discuss the conditional least squares (CLS) approach

for the estimation of the conditional mean parameters α0 and α1 and, for
parameter v0 associated to the CP-INARCH(1) conditional distribution, an
approach based on the moment estimation method is developed.

The CLS estimator of α = (α0, α1) is obtained by minimizing the sum of
squares

Qn(α) =
n∑

t=2

[xt − E (Xt|Xt−1 = xt−1)]
2 =

n∑
t=2

[xt − α0 − α1xt−1]
2,

with respect to α. Solving the least squares equations
∂Qn(α)

∂α0
= −2

n∑
t=2

(xt − α0 − α1xt−1) = 0

∂Qn(α)

∂α1
= −2

n∑
t=2

xt−1 (xt − α0 − α1xt−1) = 0,

we obtain the following explicit expressions for the CLS estimator α̂n = (α̂0,n, α̂1,n):

α̂1,n =

∑n
t=2XtXt−1 − 1

n−1 ·
∑n

t=2Xt ·
∑n

s=2Xs−1∑n
t=2X

2
t−1 − 1

n−1 (
∑n

t=2Xt−1)
2 ,

α̂0,n =

∑n
t=2Xt − α̂1,n

∑n
t=2Xt−1

n− 1
. (3)

The consistency and the asymptotic distribution of these estimators are
stated in the next theorem.

Theorem 3.1. Let α̂n = (α̂0,n, α̂1,n) be the CLS estimator of α = (α0, α1)
given in (3). Then α̂n converges almost surely to α and

√
n(α̂n − α)

d−→ N(02×1,V−1WV−1),
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as n → ∞, where the entries of the matrix V−1WV−1 = (bij), i, j = 1, 2, are
given by

b11 =
α0

1− α1

(
α0(1 + α1) +

v20 + (d0 − v20)α1(1 + α1 − α2
1) + (3v20 − d0)α

4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b22 = (1− α2
1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
,

and d−→ means convergence in distribution.

Proof. The results announced are proved using those of Klimko and Nelson
[13, Section 3]. In fact, it is easily checked that the regularity conditions (i) to
(iii) defined on [13, p. 634] are satisfied taking into account that g(α;Xt−1) =
E (Xt|X t−1) = α0+α1Xt−1, and thus, by their Theorem 3.1, it follows that the
CLS estimators are strongly consistent. Furthermore, the matrix V is invertible
as it is given by

V =


E
(

∂g
∂α0

∂g
∂α0

)
E
(

∂g
∂α0

∂g
∂α1

)
E
(

∂g
∂α1

∂g
∂α0

)
E
(

∂g
∂α1

∂g
∂α1

)
 =

 E (1) E (Xt−1)

E (Xt−1) E
(
X2

t−1

)
 =

 1 α0

1−α1

α0

1−α1

α0(v0+α0(1+α1))

(1−α1)(1−α2
1)

 ,

considering the expressions stated in Theorem 2.1. Thus, Theorem 3.2 of [13] is
satisfied implying the asymptotic normality of the CLS estimators. The entries
of the covariance matrix of the asymptotic distribution V−1WV−1 are derived
in Appendix 3. �

To estimate the parameter v0 we propose to use the moments estimation
method. Taking into consideration the expression (2) of the second order mo-
ment of the CP-INARCH(1) model, an estimator for v0, whose strong consis-
tence is a consequence from the strict stationarity and ergodicity of the process
X, is given by solving the equation

α̂0,n(v0 + α̂0,n(1 + α̂1,n))

(1− α̂1,n)(1− α̂2
1,n)

=
1

n

n∑
t=1

X2
t

in order to v0; in this way we get the two-step CLS+M estimator for (α0, α1, v0).
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We deduce, for instance, that the corresponding estimator of ϕ for the NTA-
INARCH(1) model is given by

ϕ̂n = −1− α̂0,n(1 + α̂1,n) +
(1− α̂1,n)(1− α̂2

1,n)

nα̂0,n

n∑
t=1

X2
t ,

and for the GEOMP2-INARCH(1) process an estimator of the p∗ parameter is

p̂∗ = 2

[
1− α̂0,n(1 + α̂1,n) +

(1− α̂1,n)(1− α̂2
1,n)

nα̂0,n

n∑
t=1

X2
t

]−1

.

3.1.2. Poisson Quasi-Maximum Likelihood and Moments estimation methods.

One of the advantages of using the above CLS+M approach is the fact that
we do not need to specify entirely the conditional distribution of the CP-
INARCH(1) model to estimate its para- meters. We refer now another two-step
approach where it is used the Poisson quasi-conditional maximum likelihood es-
timator (PQMLE) to estimate the conditional mean parameters α0 and α1 and,
as previously, the moment estimation method for parameter v0. The resulting
estimator is denoted PQML+M.

The PQMLE provides a general approach for estimating the conditional mean
parameters of the CP-INARCH(1) models by maximizing a pseudo-likelihood
function considering the conditional distribution the Poisson one, that is, the
function

L̃n(θ|x) =
n∑

t=2

(xt log (λt)− λt).

Ahmad and Francq [1] found some regularity conditions to establish the con-
sistency and asymptotic normality of the Poisson quasi-maximum likelihood
estimator of the conditional mean parameters of a count time series. These
regularity conditions are easily satisfied by a CP-INARCH (1) process with
α1 < 1, and so the Poisson QML estimator of (α0, α1) is consistent and asymp-
totically Gaussian. The almost sure convergence of the v0 estimator follows as
previously.

3.2. Conditional Maximum Likelihood Estimation.
When the distribution of Xt|X t−1 is known, we can estimate its parameters

using the conditional maximum likelihood estimation (CMLE) method. In
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this section, we discuss this procedure by considering NTA-INARCH(1) and
GEOMP2-INARCH(1) models.

Starting by a NTA-INARCH(1) process, we have the conditional probability
mass function of Xt ([8]) given by

P [Xt = xt|X t−1] =
e−

λt
ϕ ϕxt

xt!
Z(λt, xt, ϕ), Z(λt, Xt, ϕ) =

∞∑
j=0

(
λte

−ϕ
)j
jXt

ϕjj!
,

for xt = 0, 1, .... The conditional likelihood function is then

Ln(θ|x) =
n∏

t=2

e−
λt
ϕ ϕxt

xt!
Z(λt, xt, ϕ),

where for convenience θ = (α0, α1, ϕ) as v0 = 1 + ϕ. So the log-likelihood
function has the form

logLn(θ|x) =
n∑

t=2

lt(θ) =
n∑

t=2

{
−λt

ϕ
+ xt log(ϕ)− log (xt!) + log (Z(λt, xt, ϕ))

}
.

The first derivatives of lt are given as
∂lt(θ)

∂ϕ
=

λt

ϕ2
+

xt
ϕ

−
(
ϕ+ 1

ϕ

)
Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)
,

∂lt(θ)

∂αj
=

[
−1

ϕ
+

1

λt

Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)

]
∂λt

∂αj
, j = 0, 1,

and the second derivatives of lt are
∂2lt(θ)

∂ϕ2
= −2

λt

ϕ3
− xt

ϕ2
+

1

ϕ2

Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)
+

(
ϕ+ 1

ϕ

)2 [
Z(λt, xt + 2, ϕ)

Z(λt, xt, ϕ)
− Z2(λt, xt + 1, ϕ)

Z2(λt, xt, ϕ)

]
,

∂2lt(θ)

∂ϕ∂αj

=

[
1

ϕ2
− ϕ+ 1

ϕλt

{
Z(λt, xt + 2, ϕ)

Z(λt, xt, ϕ)
− Z2(λt, xt + 1, ϕ)

Z2(λt, xt, ϕ)

}]
∂λt

∂αj

,

∂2lt(θ)

∂αj∂αk

=
1

λ2
t

[
−Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)
+

Z(λt, xt + 2, ϕ)

Z(λt, xt, ϕ)
− Z2(λt, xt + 1, ϕ)

Z2(λt, xt, ϕ)

]
∂λt

∂αj

∂λt

∂αk

+

[
1

λt

Z(λt, xt + 1, ϕ)

Z(λt, xt, ϕ)
− 1

ϕ

]
∂2λt

∂αj∂αj

, 0 ≤ j, k ≤ 1,

where the expressions for ∂λt/∂αj and ∂2λt/∂αj∂αk are easily deduced.
Analogously, for the GEOMP2-INARCH(1) process we obtain the following

expression

logLn(θ|x) =
n∑

t=2

lt(θ)
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=
n∑

t=2

{
−λt + log

(
�xt=0 +

[
xt∑
n=1

λn
t

n!

(
xt − 1
n− 1

)
(p∗)n(1− p∗)xt−n

]
�xt ̸=0,

)}
,

where θ = (α0, α1, p
∗), as v0 = (2− p∗)/p∗ and taking into consideration that

the conditional probability mass function of Xt is given by

P [Xt = 0|X t−1] = e−λt,

P [Xt = xt|X t−1] =

xt∑
n=1

e−λt
λn
t

n!

(
xt − 1
n− 1

)
(p∗)n(1− p∗)xt−n, xt = 1, 2, ...

Similarly to the previous case, the first and second derivatives of lt in order to
α0, α1 and p∗ are deduced.

4. A simulation study
Some simulation studies were developed to examine and compare the perfor-

mance of the different estimators considered in Section 3 for the model param-
eters.

We begin by illustrating the two-step approach based on CLS and moments
estimation methods by computing the estimates and analyzing its performance.
In the sequel, the several estimation procedures are discussed and compared.
All the study is developed considering the NTA-INARCH(1) and the GEOMP2-
INARCH(1) models.

4.1. CLS estimators performance.

4.1.1. NTA-INARCH(1) model.
To illustrate the CLS method, we focus on the NTA-INARCH(1) model with

true parameters α0 = 2, α1 = 0.2 and ϕ = 2 and, for different sample sizes
n = 100, 250, 500, 750, 1000, we present in Table 1 the expected values,
variances and covariance of α̂0,n, α̂1,n and ϕ̂n. In the last column of this table
we present the true values of α0, α1 and ϕ as well as the entries of the asymptotic
matrix V−1WV−1, respectively b11, b22 and b12 given in Theorem 3.1. We verify
that the asymptotic and the sample values are quite similar for large values of
n.

Figure 1 displays the boxplot and histogram of the 1000 values of the CLS
estimator (centered and reduced) of α̂0 and α̂1 for samples of length n = 2000
of a NTA-INARCH(1) model with α0 = 2, α1 = 0.2 and ϕ = 2. In agreement
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with Theorem 3.1, the plots indicates the adequacy of the normal for the em-
pirical marginal distributions of the estimator α̂. In addition, the Kolmogorov-
Smirnov test for the sampling laws of the standardized CLS estimation gives
large p-values, 0.9454 and 0.4051, for testing against the standard normal dis-
tribution.

Table 1. Means, variances and covariances for the CLS+M es-
timates of the NTA-INARCH(1) model with coefficients α0 = 2,
α1 = 0.2, ϕ = 2 and for different sample sizes n.

n = 100 250 500 750 1000
Eest(α̂0,n) 2.0221 2.0108 2.0071 2.0076 2.0014 2
Eest(α̂1,n) 0.1859 0.1937 0.1971 0.1975 0.1988 0.2
Eest(ϕ̂n) 1.9490 1.9666 1.9876 1.9836 1.9874 2
n · Vest(α̂0,n) 12.1454 11.6264 11.7927 12.7023 12.0195 12.3774
n · Vest(α̂1,n) 1.1320 1.2236 1.2530 1.2381 1.2368 1.2604

n · Vest(ϕ̂n) 22.1794 22.0772 23.1773 20.5149 22.2516
n · Covest(α̂0,n, α̂1,n) −2.0654 −2.4147 −2.5108 −2.4944 −2.3405 −2.5510

Figure 1. Boxplot and histogram of the empirical distribution of
α̂0 (on top) and α̂1 (bellow) for a NTA-INARCH(1) process when
α0 = 2, α1 = 0.2 and ϕ = 2. Superimposed is the standard normal
density function.
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Figure 2. Boxplot and histogram of the empirical distribution of
√
n
(
ϕ̂n − ϕ

)
when α0 = 2, α1 = 0.2 and ϕ = 2 for a NTA-

INARCH(1).

Figure 3. Empirical CDF of the distribution of
√
n
(
ϕ̂n − ϕ

)
when α0 = 2, α1 = 0.2 and ϕ = 2 for a NTA-INARCH(1) (in
blue) and the CDF of the normal(0, 4.7) distribution (in red).

In Figure 2 we present the boxplot and the histogram of the distribution of√
n(ϕ̂n − ϕ). Figure 3 shows the similarity between the empirical cumulative

distribution function of
√
n(ϕ̂n − ϕ) (represented in blue) and the cumulative

distribution function of the normal(0, 4.7) law (in red), whose parameters are
the sample mean and variance of

√
n(ϕ̂n − ϕ). Once again, the p-value of the
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Kolmogorov-Smirnov test, namely 0.8231, indicates the adequacy of the normal
for the empirical distribution of

√
n(ϕ̂n − ϕ).

From the empirical results presented in the two last lines of Table 2, we can
presume that the estimators of α0, (resp., α1) and ϕ are asymptotically un-
correlated. In fact, for the NTA-INARCH(1) model in study, the empirical
correlations ρest(α̂0,n, ϕ̂n) and ρest(α̂1,n, ϕ̂n) are significantly low. To support
this statement we use the Monte Carlo method to determine confidence inter-
vals for the mean of ρest(α̂0,n, ϕ̂n) and for the mean of ρest(α̂1,n, ϕ̂n) which we
denote by m0,n,ñ and m1,n,ñ, respectively. The confidence intervals are obtained
considering ñ = 35 and ñ = 50 replications of n-dimensional samples (n = 500
and n = 1000) of a NTA INARCH(1) model with α0 = 2, α1 = 0.2 and ϕ = 2.
Such intervals with confidence level 0.99 are presented in Table 3, where we
stress the lower values when n or ñ increase. So we have estimated (α0, α1)
and ϕ separately, likely without loss of efficiency.

Table 2. Empirical correlations for the CLS+M estimates of the
NTA-INARCH(1) model with coefficients α0 = 2, α1 = 0.2, ϕ = 2
and for different sample sizes n.

n = 250 750 1000 5000 10000
ρest(α̂0,n, α̂1,n) −0.6277 −0.6455 −0.6264 −0.6379 −0.6273

ρest(α̂0,n, ϕ̂n) 0.1242 0.1163 0.0828 0.0683 0.0636

ρest(α̂1,n, ϕ̂n) 0.0061 0.0265 0.0043 0.0703 0.0462

Table 3. Confidence intervals for the mean of ρest(α̂0,n, ϕ̂n) and
for the mean of ρest(α̂1,n, ϕ̂n), with confidence level γ = 0.99 and
for different sample sizes n and ñ.

ñ = 35 ñ = 50
n = 500 n = 1000 n = 500 n = 1000

m0,n,ñ [0.0917, 0.1180] [0.0883, 0.1162] [0.0940, 0.1160] [0.0814, 0.1064]
m1,n,ñ [0.0113, 0.0412] [0.0165, 0.0412] [0.0137, 0.0354] [0.0132, 0.0397]

4.1.2. GEOMP2-INARCH(1) model.
Let us consider now the GEOMP2-INARCH(1) model with true parameters

α0 = 2, α1 = 0.4 and p∗ = 0.1. As in the previous section, for different sample
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sizes n, we compute the expected values, variances and covariance of α̂0,n, α̂1,n

and p̂∗n (see Table 4) and for samples of length n = 2000 we plot boxplots
and histograms for 1000 values of the CLS+M estimators (in Figure 4). To
show the adequacy of the normal for the empirical distribution of

√
n(p̂∗n −

p∗), in Figure 5 we present the empirical cumulative distribution function of√
n(p̂∗n− p∗) (represented in blue) and the cumulative distribution function of

the normal(0, 0.3) law (in red).

Table 4. Expected values, variances and covariances for the
CLS+M estimates of the GEOMP2-INARCH(1) model with α0 =
2, α1 = 0.4, p∗ = 0.1 and different sample sizes n.

n = 100 250 500 750 1000
Eest(α̂0) 2.0527 2.0758 2.0400 2.0177 2.0182 2
Eest(α̂1) 0.3367 0.3637 0.3817 0.3890 0.3892 0.4
Eest(p̂∗) 0.1170 0.1071 0.1040 0.1026 0.1012 0.1
n · Vest(α̂0) 50.6433 53.6845 61.9295 56.6796 59.6529 61.5325
n · Vest(α̂1) 2.9292 3.3704 3.5536 4.2723 3.8424 4.3979
n · Vest(p̂∗) 0.0961 0.0881 0.0841 0.0856 0.0800
n · Covest(α̂0, α̂1) −1.5730 −3.2463 −5.9278 −5.5029 −5.7433 −7.0598

4.2. Comparative analysis of the estimation procedures.
To examine and compare the finite sample performances of the CLS+M, Pois-

son QMLE+M and CMLE methods, we consider two different NTA-INARCH(1)
models with parameter values α0 = 2, α1 = 0.2, ϕ = 2 and α0 = 5, α1 =
0.3, ϕ = 1, and two different GEOMP2-INARCH(1) models with parameter
values α0 = 2, α1 = 0.2, p∗ = 0.1 and α0 = 5, α1 = 0.3, p∗ = 0.6. The
sample sizes considered are n = 500 and 1000 and the number of replications
m = 1000.

For the maximization of the log-likelihood functions, we use the MATLAB
function fmincon where the estimates obtained using the CLS+M method were
used as the initial values and the constrained conditions are α0 > 0, 0 < α1 < 1,
ϕ > 0 (for the NTA) and 0 < p∗ < 1 (for the GEOMP2). The performance of
the estimators is evaluated by the mean square error, i.e.,

1

m

m∑
k=1

(
θ̂j,k − θj

)2
, j = 1, 2, 3.

The results of the simulation experiments are presented in Tables 5 and 6.
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Figure 4. Boxplot and histogram of the law of α̂0 (on top), α̂1 (in
the middle) and p̂∗ (bellow) when α0 = 2, α1 = 0.4 and p∗ = 0.1
for a GEOMP2-INARCH(1). Superimposed is the standard normal
density function. The results are based on 1000 simulations and
samples of size n = 2000.

From this study we may conclude that the three methods seem to perform
quite well, although the CMLE gives slightly smaller mean square errors in
most cases.

5. Real data example - Counts of differences in the prices
of electricity in Portugal and Spain

OMIE (http://www.omie.es) is the company that manages the wholesale
electricity market on the Iberian Peninsula. Electricity prices in Europe are
set on a daily basis (every day of the year) at 12 noon, for the twenty-four
hours of the following day, known as daily market. The market splitting is the
mechanism used for setting the price of electricity on the daily market. When
the price of electricity is the same in Portugal and Spain, which corresponds
to the desired situation, it means that the integration of the Iberian market is
working properly.
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Figure 5. Empirical CDF of the law of
√
n
(
p̂∗n − p∗

)
when α0 =

2, α1 = 0.4 and p∗ = 0.1 for a GEOMP2-INARCH(1) model (in
blue) and the CDF of the normal(0, 0.3) law (in red).

Table 5. Mean estimates (in bold) and mean square errors
(within parentheses) for the NTA-INARCH(1) model with different
sample sizes n.

n Method α0 = 2 α1 = 0.2 ϕ = 2 α0 = 5 α1 = 0.3 ϕ = 1

500

CLS+M 2.0023 0.1974 1.9921 5.0293 0.2952 0.9948
(0.0224) (0.0023) (0.0431) (0.1204) (0.0022) (0.0178)

PQMLE+M 2.0013 0.1978 1.9921 5.0288 0.2953 0.9951
(0.0214) (0.0022) (0.0432) (0.1159) (0.0021) (0.0181)

MLE 1.9996 0.1985 1.9969 5.0291 0.2953 0.9923
(0.0206) (0.0021) (0.0172) (0.1140) (0.0021) (0.0139)

1000

CLS+M 2.0027 0.1973 1.9887 5.0044 0.2986 0.9956
(0.0123) (0.0013) (0.0225) (0.0571) (0.0010) (0.0089)

PQMLE+M 2.0040 0.1968 1.9897 5.0042 0.2986 0.9957
(0.0118) (0.0012) (0.0227) (0.0538) (0.0010) (0.0089)

MLE 2.0023 0.1975 1.9956 5.0050 0.2985 0.9961
(0.0115) (0.0011) (0.0082) (0.0531) (0.0010) (0.0070)

In the following, we consider the time series that represents the number of
hours in a day in which the prices of electricity for Portugal and Spain are
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Table 6. Mean estimates (in bold) and mean square errors
(within parentheses) for the GEOMP2-INARCH(1) model with dif-
ferent sample sizes n.

n Method α0 = 2 α1 = 0.2 p∗ = 0.1 α0 = 5 α1 = 0.3 p∗ = 0.6

500

CLS+M 2.0432 0.1887 0.1033 5.0307 0.2944 0.6025
(0.0998) (0.0055) (0.0002) (0.1191) (0.0020) (0.0008)

PQMLE+M 2.0351 0.1918 0.1034 5.0291 0.2946 0.6026
(0.0949) (0.0050) (0.0002) (0.1141) (0.0020) (0.0008)

MLE 2.0228 0.1967 0.1005 5.0290 0.2946 0.6025
(0.0840) (0.0035) (0.0001) (0.1114) (0.0019) (0.0007)

1000

CLS+M 2.0020 0.1960 0.1016 5.0121 0.2985 0.6011
(0.0464) (0.0031) (0.0001) (0.0578) (0.0010) (0.0004)

PQMLE+M 1.9980 0.1976 0.1016 5.0084 0.2990 0.6012
(0.0438) (0.0027) (0.0001) (0.0552) (0.0010) (0.0004)

MLE 1.9947 0.1991 0.1005 5.0091 0.2989 0.6008
(0.0393) (0.0019) (0.0000) (0.0528) (0.0009) (0.0004)

different. The data presented in Figure 6 consists of 365 observations, starting
from January 2013 and ending in December 2013.

Figure 6. Daily number of hours in which the price of electricity
of Portugal and Spain are different, starting from January 2013
and ending in December 2013.

Empirical mean and variance of the data are 2.5863 and 15.0894, respectively,
indicating that the true marginal distribution is overdispersed. Let us observe
that this time series exhibits also volatility clusters suggesting characteristics of
conditional heteroscedasticity. The partial autocorrelation function presented
in Figure 7, suggests an order 1 dependence and so a CP-INARCH(1) model
may be a reasonable choice to fit the data within the CP-INGARCH class.
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Figure 7. Sample autocorrelations and partial autocorrelations.

Trying to obtain a suitable model for this count time series, we present a
comparative study between CP-INARCH(1) processes associated to the Pois-
son ([4]), the generalized Poisson ([12]), the Neyman type-A, the geometric
Poisson and the negative binomial ([10]) laws. For the parameter estimation
we use the conditional maximum likelihood method and the results, obtained
with the help of MATLAB software, are displayed in Table 7. Based on the
values of the log likelihood function, the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC), we conclude that the GEOMP2-
INARCH(1) model gives better fit than the other CP-INARCH(1) models con-
sidered and the NTA-INARCH(1) fit is the second one. The mean, variance and
the first-order autocorrelation coefficient (FOAC) for the fitted CP-INARCH(1)
models are summarized in Table 8. The results are in accordance with the pre-
vious conclusions as, although the similarity of the mean values, the variance
values point clearly to a NTA-INARCH(1) or GEOMP2-INARCH(1) fitting.

Table 7. Conditional ML parameters estimates for several CP-
INARCH(1) models.

Model α̂0,365 α̂1,365 Additional parameter -Log L AIC BIC

INARCH(1)

P 1.4189 0.4529 1047.8 2099.6 2107.4
GP 1.2689 0.5107 κ̂365 = 0.6429 695.5 1396.9 1408.6

NTA 1.3891 0.4644 ϕ̂365 = 2.9439 683.7 1373.6 1385.3
GEOMP2 1.3518 0.4787 p̂∗365 = 0.3111 676.5 1359.0 1370.7

NB2 1.3030 0.4976 β̂365 = 6.6531 685.9 1377.8 1389.5
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Table 8. Sample and estimated means, variances and FOACs un-
der CP-INARCH(1) models.

Model Sample P GP NTA GEOMP2 NB2
Mean 2.5863 2.5935 2.5933 2.5935 2.5931 2.5936
Variance 15.0894 3.2627 27.5118 13.0412 18.2625 22.9337
FOAC 0.428 0.4529 0.5107 0.4644 0.4787 0.4976

6. Conclusion
The class of integer-valued GARCH models, specified through the character-

istic function of the compound Poisson law and denoted CP-INGARCH, [6],
unifies and enlarges substantially the family of conditionally heteroscedastic
integer-valued processes. With this new class, we may capture simultaneously
different kinds of conditional volatility and the overdispersion characteristic
often recorded in real count data. The probabilistic analysis of this kind of
models, concerning stationarity and ergodicity properties as well as moments
studies, was the goal of previous works among which we may refer those es-
tablished in [5] and [6]. The aim of this paper is to develop some statistical
studies, regarding the process parametric estimation, that allow the use of this
general class with real data and show its true practical usefulness. We con-
centrate our study on the CP-INARCH models of order one, and a two-step
estimation methodology, involving the conditional least square or the Poisson
quasi-maximum likelihood methods in a first-step, and the moment’s estimation
method in the second one, has been introduced and developed. We point out
the great advantage of this procedure regarding the more classical conditional
maximum likelihood one, as its application is independent from the specific
conditional distribution of the process. In fact, the simulation study presented
allows concluding that the two-step methodology performance is strongly com-
petitive with that of the conditional maximum likelihood estimation. We should
also stress that the practical relevance of this wide class is clearly shown with
the real-data example presented which illustrates the better quality of the fit-
ting performed by new models emerged from that class.

Future developments of the present study should concern, particularly, the
parametric estimation of a general CP-INGARCH model. In which regards the
CP-INARCH process of any order p, these procedures will be easily generalized
with a natural increase of complexity.
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Appendix 1. Proof of Theorem 2.1

To establish the results present in Theorem 2.1 let us begin by recalling the
expression of the following conditional moments:

E(Xt|X t−1) = λt = α0 + α1Xt−1,

E(X2
t |X t−1) = v0λt + λ2

t = α2
1X

2
t−1 + α1(2α0 + v0)Xt−1 + α0(α0 + v0),(4)

E(X3
t |X t−1) = i Φ′′′

Xt|Xt−1
(0) = d0λt + 3v0λ

2
t + λ3

t

= α3
1X

3
t−1 + 3α2

1(v0 + α0)X
2
t−1 + α1(3α

2
0 + 6v0α0 + d0)Xt−1

+α0(d0 + 3v0α0 + α2
0). (5)
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(a): Using the fact that for k ≥ 0, Γ(k) = αk
1f2 we get

µ(k) = E(XtXt+k) = Cov(Xt, Xt+k) + E(Xt)
2

= f2(v0α
k
1 + α0(1 + α1)). (6)

(b): To derive µ(k, l), 0 ≤ k ≤ l, we distinguish the following three cases:
Case 1: l > k: We have

µ(k, l) = E(XtXt+kXt+l) = E[XtXt+kE(Xt+l|X t+l−1)]

= α0E(XtXt+k) + α1E(XtXt+kXt+l−1)

= α0µ(k) + α1µ(k, l − 1)

= α0µ(k) + α1[α0µ(k) + α1µ(k, l − 2)]

= . . . = αl−k
1 [µ(k, k)− f1µ(k)] + f1µ(k).

Case 2: l = k > 0: We have
µ(k, k) = E[XtE(X2

t+k|X t+k−1)]

= α2
1E(XtX

2
t+k−1) + α1(2α0 + v0)E(XtXt+k−1) + α0(α0 + v0)E(Xt)

= α2
1µ(k − 1, k − 1) + α1(2α0 + v0)µ(k − 1) + α0(α0 + v0)f1

= . . . = α2k
1

[
µ(0, 0)− v0(2α0 + v0)

1− α1

f2 − f1µ(0)

]
+

v0(2α0 + v0)

1− α1

f2α
k
1 + f1µ(0).

Case 3: l = k = 0: According to the relations between the moments
and the cumulants (e.g., formula (15.10.4) in [3, p. 186]) and The-
orem 4.2 of [7], we have

µ(0, 0) = E(X3
t ) = κ3 + 3κ2µ+ µ3 = f3[d0(1− α2

1) + 3v20α
2
1] + 3v0f2f1 + f 3

1

= [d0(1− α2
1) + 3v20α

2
1]f3 +

2α0v0
1− α1

f2 + f1µ(0),

since f1 = (1− α2
1)f2.

So the above formula for µ(k, k) simplifies to

µ(k, k) = α2k
1

[
[d0(1− α2

1) + 3v20α
2
1]f3 −

v20
1− α1

f2

]
+

v0(2α0 + v0)

1− α1

f2α
k
1 + f1µ(0)

= α2k
1 f3

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
+

v0(2α0 + v0)

1− α1

f2α
k
1 + f1µ(0),

which also holds for k = 0. Replacing this expression in µ(k, l) above,
it follows that

µ(k, l) = αl−k
1

[
[d0(1− α2

1)− v20(1 + α1 − 2α2
1)]f3α

2k
1 +

v0(2α0 + v0)

1− α1
f2α

k
1

+f1µ(0)− f1µ(k)] + f1µ(k).
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As

f1µ(0)− f1µ(k) = v0f1f2 −
v0α0

1− α1
f2α

k
1,

we finally obtain, for any 0 ≤ k ≤ l,

µ(k, l) = [d0(1− α2
1)− v20(1 + α1 − 2α2

1)]f3α
l+k
1 +

v0(α0 + v0)

1− α1

f2α
l
1 + v0f1f2α

l−k
1 + f1µ(k).

(c): In what concerns the fourth-order moments µ(k, l,m) with 0 ≤ k ≤
l ≤ m, we proceed in a similar way as above and distinguish the following
four cases:

Case 1: m > l: As above we have

µ(k, l,m) = E(XtXt+kXt+lXt+m)

= αm−l
1 [µ(k, l, l)− f1µ(k, l)] + f1µ(k, l).

Case 2: m = l > k: For this case, using formula (4), we obtain
µ(k, l, l) = E[XtXt+kE(X2

t+l|X t+l−1)]

= α2
1µ(k, l − 1, l − 1) + α1(v0 + 2α0)µ(k, l − 1) + α0(v0 + α0)µ(k).

Replacing µ(k, l−1), using µ(0) = (v0+α0(1+α1))f2 and replacing
µ(k), we obtain

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k) + µ(k)µ(0)

−f2v0

[
f2(v0 + α0(1 + α1)) +

(v0 + 2α0)(v0 + α0)

(1− α1)2

]
α2l−k
1

−f1

[
f1µ(0) +

v0(v0 + 2α0)

1− α1

f2

]
α
2(l−k)
1 +

v0 + 2α0

1− α1

[µ(k, l)− f1µ(k)]

−v0 + 2α0

1− α1

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2l
1 .

So, replacing µ(0), recalling µ(0, 0) and taking into account that f1
1−α1

=

(1 + α1)f2, we get

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k)− µ(k)f2[α0 + (v0 + α0)α1]

− f2v0
(1− α1)(1− α2

1)

[
v20(1 + α1) + v0α0(4 + 3α1) + 3α2

0(1 + α1)
]
α2l−k
1

−f1

{
µ(0, 0)− [d0(1− α2

1) + 3v20α
2
1]f3 +

v20f2
1− α1

}
α
2(l−k)
1

+
v0 + 2α0

1− α1

µ(k, l)− v0 + 2α0

1− α1

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2l
1 . (7)
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Case 3: m = l = k > 0: From formula (5) we have

µ(k, k, k) = E[XtE(X3
t+k|X t+k−1)]

= α3
1µ(k − 1, k − 1, k − 1) + 3α2

1(v0 + α0)µ(k − 1, k − 1)

+α1(d0 + 6v0α0 + 3α2
0)µ(k − 1) + α0(d0 + 3v0α0 + α2

0)µ.

Replacing µ(k − 1, k − 1) and thereafter µ(k − 1), we deduce
µ(k, k, k) = α3

1µ(k − 1, k − 1, k − 1)

+3(v0 + α0)
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2k
1

+
v0f2
1− α1

[
3α1(v0 + α0)

2 + 3α1(v0 + α0)α0 + (d0 + 6v0α0 + 3α2
0)(1− α1)

]
αk
1

+f1f2
{
3α2

1(v0 + α0)(v0 + α0(1 + α1)) + (d0 + 6v0α0 + 3α2
0)α1(1− α1)(1 + α1)

+(d0 + 3v0α0 + α2
0)(1− α1)(1− α2

1)
}
.

Making some calculations and then recalling the expression of µ(0, 0),
we obtain

µ(k, k, k) = α3
1µ(k − 1, k − 1, k − 1)

+3(v0 + α0)
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
f3α

2k
1

+
v0f2
1− α1

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
αk
1

+f1(1− α3
1)µ(0, 0).

Replacing successively the expression of µ(k − j, k − j, k − j), j =
1, ..., k − 1, it remains

µ(k, k, k) = α3k
1

{
µ(0, 0, 0)− 3(v0 + α0)

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
] f3
1− α1

− v0f2
(1− α1)(1− α2

1)

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
−f1µ(0, 0)}+

3(v0 + α0)f3α
2k
1

1− α1

[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]

+
v0f2α

k
1

(1− α1)(1− α2
1)

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
+f1µ(0, 0). (8)

Replacing µ(0, 0), highlighting f3
1−α2

1
, noting that f2 = (1 − α3

1)f3

and f3
1−α2

1
= f4(1 + α2

1) and developing the calculations, we finally
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get
µ(k, k, k) =

{
µ(0, 0, 0)− f4

[
4v0d0 − 3v30 + 3v0(d0 − v20)α1 + v0(3v

2
0 + d0)α

2
1

+v0(6v
2
0 − d0)α

3
1 + 3v0(2v

2
0 − d0)α

4
1 + v0(9v

2
0 − 4d0)α

5
1

+α0(1 + α2
1)
[
3v20 + 4d0 + (3v20 + 4d0)α1 + (15v20 − 4d0)α

2
1 + (12v20 − 4d0)α

3
1

]
+6v0α

2
0(1 + α2

1)(1 + α1)(1 + α1 + α2
1)

+α3
0(1 + α2

1)(1 + α1)
2(1 + α1 + α2

1)
]}

α3k
1

+3
v0 + α0

1− α1

f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2k
1 + f1µ(0, 0)

+
v0

(1− α1)(1− α2
1)
f2
[
3α2

0(1 + α1) + 3v0α0(2 + α1)

+d0(1− α1) + 3v20α1

]
αk
1. (9)

Case 4: m = l = k = 0: Once again, according to the relations be-
tween the moments and the cumulants, we obtain

µ(0, 0, 0) = E(X4
t ) = κ4 + 3κ2

2 + 6κ2µ
2 + 4κ3µ+ µ4

= f4
{
c0 + (3v30 + 4v0d0 − c0)α

2
1 + (6v0d0 − c0)α

3
1 + (15v30 − 10v0d0 + c0)α

5
1

+α0(1 + α2
1)
[
3v20 + 4d0 + (3v20 + 4d0)α1 + (15v20 − 4d0)α

2
1 + (12v20 − 4d0)α

3
1

]
+6v0α

2
0(1 + α1)(1 + α2

1)(1 + α1 + α2
1) + α3

0(1 + α1)
2(1 + α2

1)(1 + α1 + α2
1)
}
.

So the formula (9) for µ(k, k, k) studied in case 3 simplifies to
µ(k, k, k) = f4

{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
α3k
1

+3
v0 + α0

1− α1

f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2k
1 + f1µ(0, 0)

+
v0

(1− α1)(1− α2
1)
f2
[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v20α1

]
αk
1.

Inserting into the formula (7) for µ(k, l, l) stated in case 2, we obtain
µ(k, l, l) = f4

{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
α2l+k
1

+
2v0 + α0

1− α1

f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+

{
α0f3
1− α1

[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]

}
α
2(l−k)
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−k
1

+
v0 + 2α0

1− α1

µ(k, l)− f2µ(k)[α0 + (v0 + α0)α1].
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So it follows that we have

µ(k, l,m) = αm−l
1 [µ(k, l, l)− f1µ(k, l)] + f1µ(k, l)

= αm−l
1

[
f4
{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
α2l+k
1

+
2v0 + α0

1− α1

f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+

{
α0f3
1− α1

[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]

}
α
2(l−k)
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−k
1

+
v0 + α0

1− α1

µ(k, l)− f2µ(k)[α0 + (v0 + α0)α1]

]
+ f1µ(k, l),

which holds for all 0 ≤ k ≤ l ≤ m.

Appendix 2. Proof of Corollary 2.1

To establish the results present in Corollary 2.1 we use the general relations
between joint moments and joint cumulants (see [2], p. 5),

(a): the second-order central moments and cumulants of X, for any s ≥ 0,
are given by

µ̃(s) = κ(s) = Cov(Xt, Xt+s) = v0α
s
1f2.

(b): the third-order central moments and cumulants, for any l ≥ s ≥ 0,
are given by

µ̃(s, l) = κ(s, l)

= f3α
l
1[v

2
0(1 + α1 + α2

1)− {v20(1 + α1 − 2α2
1)− d0(1− α2

1)}αs
1].

(c): In what concerns the fourth-order cumulants we have, for m ≥ l ≥
s ≥ 0,
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κ(s, l,m) = αm−l
1

[
α2l+s
1 f4

{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3v0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
+
2v0 + α0

1− α1

f3
[
d0(1− α2

1)− v20(1 + α1 − 2α2
1)
]
α2l
1

+

{
α0f3

1 − α1

[d0(1 − α2
1) − v2

0(1 + α1 − 2α2
1)]

}
α

2(l−s)
1

+
v0

(1− α1)(1− α2
1)
f2
[
2v0α0 + d0(1− α1) + v20(2α1 − 1)

]
α2l−s
1

+
v0 + α0

1− α1

µ(s, l)− f2µ(s)[α0 + (v0 + α0)α1]

]
+f1µ(s, l) − f1µ(s, l)

−f1

(
[d0(1 − α2

1) − v2
0(1 + α1 − 2α2

1)]f3α
m+l−2s
1 +

v0(v0 + α0)

1− α1

f2α
m−s
1

+v0f1f2α
m−l
1 +f1µ(l − s) − f1f2(v0α

l−s
1 + α0(1 + α1))

+[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]f3α
m+l
1

+
v0(v0 + α0)

1− α1

f2α
m
1 + f1f2v0α

m−l
1 +f1µ(l) − f1µ(l)+

v0(v0 + α0)

1− α1

f2α
m
1

+[d0(1− α2
1)− v20(1 + α1 − 2α2

1)]f3α
m+s
1 + v0f1f2α

m−s
1 +f1µ(s) − f1µ(s)

)
−(f2[v0α

s
1 + α0(1 + α1)]− f 2

1 )(f2[v0α
m−l
1 + α0(1 + α1)]− f 2

1 )

−(f2[v0α
l
1 + α0(1 + α1)]− f 2

1 )(f2[v0α
m−s
1 + α0(1 + α1)]− f2

1 )

−(f2[v0α
m
1 + α0(1 + α1)]− f2

1 )(f2[v0α
l−s
1 + α0(1 + α1)]− f 2

1 )

+f 2
1

(
f2[v0α

m
1 + α0(1 + α1)] + f2[v0α

m−s
1 + α0(1 + α1)]

+f2[v0α
m−l
1 + α0(1 + α1)]− 3f2

1

)
,

where we highlight, using bold, expressions whose sum equals zero.
So, taking into account that

−f2µ(s)[α0 + (v0 + α0)α1]α
m−l
1 =

[
−f1

α0 + v0
1− α1

µ(s) + v0f2µ(s)

]
αm−l
1

and

−(f2[v0α
s
1 + α0(1 + α1)]− f 2

1 )(f2[v0α
m−l
1 + α0(1 + α1)]− f 2

1 )

−(f2[v0α
l
1 + α0(1 + α1)]− f 2

1 )(f2[v0α
m−s
1 + α0(1 + α1)]− f 2

1 )

−(f2[v0α
m
1 + α0(1 + α1)]− f 2

1 )(f2[v0α
l−s
1 + α0(1 + α1)]− f 2

1 )

+f 2
1

(
f2[v0α

m
1 + α0(1 + α1)] + f2[v0α

m−s
1 + α0(1 + α1)]

+f2[v0α
m−l
1 + α0(1 + α1)]− 3f 2

1

)
= −v20f

2
2 [α

m−l+s
1 + 2αm+l−s

1 ] + v0f
2
1f2[α

m−l
1 + αm−s

1 + αm
1 ]
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we obtain by replacing µ(s, l),
κ(s, l,m) = αm

1 f4
[{
c0 − 4v0d0 + 3v30 + 3v0(v

2
0 − d0)α1 + (3α0d0 − c0)α

2
1

+(7v0d0 − 6v30 − c0)α
3
1 + 3v0(d0 − 2v20)α

4
1 + (6v30 − 6v0d0 + c0)α

5
1

}
αl+s
1

+v0(1 + α1 + α2
1 + α3

1)[d0(1− α2
1)− v20(1 + α1 − 2α2

1)](2α
l
1 + αs

1)

+v0(1 + α1 + α2
1)(1 + α2

1)[(1 + α1)v
2
0 + (d0(1− α1) + v20(2α1 − 1))αl−s

1 ]
]
,

for any m ≥ l ≥ s ≥ 0.
Finally, the fourth-order central moments of X are given by

µ̃(s, l,m) = κ(s, l,m) + v0α
s
1f2v0α

m−l
1 f2 + v0α

l
1f2v0α

m−s
1 f2 + v0α

l−s
1 f2v0α

m
1 f2

= κ(s, l,m) + v20f
2
2α

m−l+s
1 + 2v20f

2
2α

m+l−s
1 .

Appendix 3. Covariance matrix of the asymptotic distribution of
CLS estimators in CP-INARCH(1) model

To obtain the entries of the covariance matrix V−1WV−1, let us begin by
deducing the inverse of V.

V−1 =
(1− α1)(1− α2

1)

v0α0

[
α0(v0+α0(1+α1))

(1−α1)(1−α2
1)

− α0

1−α1

− α0

1−α1
1

]
=

[
1 + α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0
(1− α2

1)
(1−α1)(1−α2

1)

v0α0

]
.

Furthermore, considering ut(α) = Xt − g(α,Xt−1),

E
[
f(Xt−1) · u2t (α)

]
= E

[
f(Xt−1) · E

[
(Xt − α0 − α1Xt−1)

2|Xt−1

]]
= E [f(Xt−1) · V [Xt − α0 − α1Xt−1|Xt−1] + 0]

= E [f(Xt−1) · V [Xt|Xt−1]] = E [f(Xt−1) · v0(α0 + α1Xt−1)] ,

because of the conditional compound Poisson distribution, and then

W =

 E
(
u2t

∂g
∂α0

∂g
∂α0

)
E
(
u2t

∂g
∂α0

∂g
∂α1

)
E
(
u2t

∂g
∂α1

∂g
∂α0

)
E
(
u2t

∂g
∂α1

∂g
∂α1

) 
=

[
E[1 · v0 (α0 + α1Xt−1)] E[Xt−1 · v0 (α0 + α1Xt−1)]

E[Xt−1 · v0 (α0 + α1Xt−1)] E[X2
t−1 · v0 (α0 + α1Xt−1)]

]
=

v0α0

1− α1

[
1 v0α1+α0(1+α1)

1−α2
1

v0α1+α0(1+α1)
1−α2

1

v0α0(1+2α1)
(1−α1)(1−α2

1)
+ α2

0

(1−α1)2
+ α1(d0+(3v20−d0)α

2
1)

(1−α2
1)(1−α3

1)

]
,

since
E[v0 (α0 + α1Xt−1)] = v0

[
α0 + α1

α0

1− α1

]
=

v0α0

1− α1

,
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E[Xt−1·v0 (α0 + α1Xt−1)] = v0

[
α2
0

1− α1

+
α1α0(v0 + α0(1 + α1))

(1− α1)(1− α2
1)

]
=

v0α0

1− α1

·v0α1 + α0(1 + α1)

1− α2
1

,

E[X2
t−1 · v0 (α0 + α1Xt−1)] = v0

[
α2
0(v0 + α0(1 + α1))

(1− α1)(1− α2
1)

+
α1α0

(1− α1)3

(
d0 + (3v20 − d0)α

2
1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1

+ α2
0

)]

=
v0α0

1− α1

[
v0α0(1− α1) + 3v0α0α1

(1− α1)2(1 + α1)
+

α2
0(1− α1) + α2

0α1

(1− α1)2
+

α1(d0 + (3v20 − d0)α
2
1)

(1− α2
1)(1− α3

1)

]

=
v0α0

1− α1

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2
0

(1− α1)2
+

α1(d0 + (3v20 − d0)α
2
1)

(1− α2
1)(1− α3

1)

]
,

using again the expressions stated in Theorem 2.1.
Now, the product of V−1W is given by[
1 + α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0
(1− α2

1)
(1−α1)(1−α2

1)

v0α0

][
1 v0α1+α0(1+α1)

1−α2
1

v0α1+α0(1+α1)

1−α2
1

v0α0(1+2α1)

(1−α1)(1−α2
1)
+

α2
0

(1−α1)2
+

α1(d0+(3v20−d0)α2
1)

(1−α2
1)(1−α3

1)

]

=

[
a11 a12
a21 a22

]
=

 1− α1
v0α1

1−α2
1
− α0α1

1−α1
− α1(d0+(3v20−d0)α2

1)
v0(1−α3

1)
α1(1−α1)

α0
1 + α1 +

α1(d0+(3v20−d0)α2
1)

v0α0(1+α1+α2
1)

 ,

since

a11 = 1 +
α0(1 + α1)

v0
− 1− α2

1

v0

v0α1 + α0(1 + α1)

1− α2
1

= 1− α1,

a12 =

(
1 +

α0

v0
(1 + α1)

)
v0α1 + α0(1 + α1)

1− α2
1

−1− α2
1

v0

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2
0

(1− α1)2
+

α1(d0 + (3v20 − d0)α
2
1)

(1− α2
1)(1− α3

1)

]
=

v0α1

1− α2
1

+
α0

1− α1
+

α0α1

1− α1
+

α2
0(1 + α1)

v0(1− α1)
− α0(1 + 2α1)

1− α1

−α2
0(1 + α1)

v0(1− α1)
− α1(d0 + (3v20 − d0)α

2
1)

v0(1− α3
1)

=
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v20 − d0)α

2
1

)
v0(1− α3

1)
,
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a21 = −(1− α2
1)

v0
+

(1− α1)(1− α2
1)(v0α1 + α0(1 + α1))

v0α0(1− α2
1)

= −(1− α2
1)

v0
+

α1(1− α1)

α0
+

(1− α2
1)

v0
=

α1(1− α1)

α0
,

a22 = −(1− α2
1)(v0α1 + α0(1 + α1))

v0(1− α2
1)

+
(1− α1)(1− α2

1)

v0α0

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2
0

(1− α1)2
+

α1(d0 + (3v20 − d0)α
2
1)

(1− α2
1)(1− α3

1)

]
= −α1 −

α0(1 + α1)

v0
+ 1 + 2α1 +

α0(1 + α1)

v0
+

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

= 1 + α1 +
α1(d0 + (3v20 − d0)α

2
1)

v0α0(1 + α1 + α2
1)

.

So, the asymptotic covariance matrix is such that

V−1WV−1 =

[
b11 b12
b21 b22

]

=
v0α0

1− α1

 1− α1
v0α1

1−α2
1
− α0α1

1−α1
− α1(d0+(3v20−d0)α2

1)
v0(1−α3

1)
α1(1−α1)

α0
1 + α1 +

α1(d0+(3v20−d0)α2
1)

v0α0(1+α1+α2
1)

[ 1 + α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0
(1− α2

1)
(1−α1)(1−α2

1)

v0α0

]

where

b11 =
α0

1− α1

(
α0(1 + α1) +

v20 + (d0 − v20)α1(1 + α1 − α2
1) + (3v20 − d0)α

4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b22 = (1− α2
1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
.

In fact, we have
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b11 =
v0α0

1− α1

[
(1− α1)

(
1 +

α0

v0
(1 + α1)

)
− 1

v0
(1− α2

1)

(
v0α1

1− α2
1

− α0α1

1− α1

− α1 (d0 + (3v20 − d0)α
2
1)

v0(1− α3
1)

)]
=

α0

1− α1

[
v0(1− α1) + α0(1− α2

1)− v0α1 + α0α1(1 + α1)

+
α1 (d0 + (3v20 − d0)α

2
1) (1 + α1)

v0(1 + α1 + α2
1)

]
=

α0

1− α1

[
α0(1 + α1) +

v20(1− 2α1)(1 + α1 + α2
1) + α1 (d0 + (3v20 − d0)α

2
1) (1 + α1)

v0(1 + α1 + α2
1)

]
=

α0

1− α1

(
α0(1 + α1) +

v20 + (d0 − v20)α1(1 + α1 − α2
1) + (3v20 − d0)α

4
1

v0(1 + α1 + α2
1)

)
,

b12 =
v0α0

1− α1

[
−(1− α1)(1− α2

1)

v0

+
(1− α1)(1− α2

1)

v0α0

(
v0α1

1− α2
1

− α0α1

1− α1

− α1 (d0 + (3v20 − d0)α
2
1)

v0(1− α3
1)

)]
= −α0(1− α2

1) + v0α1 − α0α1(1 + α1)−
α1(1 + α1) (d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b21 =
v0α0

1− α1

[
α1(1− α1)

α0

(
1 +

α0(1 + α1)

v0

)
− 1− α2

1

v0

(
1 + α1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)]

= v0α1 + α0α1(1 + α1)− α0(1 + α1)− α0α1(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)(d0 + (3v20 − d0)α

2
1)

v0(1 + α1 + α2
1)

,

b22 =
v0α0

1− α1

[
−α1(1− α1)(1− α2

1)

v0α0

+
(1− α1)(1− α2

1)

v0α0

(
1 + α1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)]
= −α1(1− α2

1) + α1(1− α2
1) + (1− α2

1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
= (1− α2

1)

(
1 +

α1(d0 + (3v20 − d0)α
2
1)

v0α0(1 + α1 + α2
1)

)
.
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