
Pré-Publicações do Departamento de Matemática
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Abstract: The q-permanent linear preservers are described, and several expansion
formulas for the q-permanent of a square matrix are given. Some of these formulas
are valid for all matrices, but others are not; for each such formula Φ we determine all
digraphs D such that Φ holds for all matrices with digraph D. The proof technique
is based on a combinatorial result where we accurately evaluate what happens to the
the number of inversions of a permutation π when one of its cycles if excised from
π. In the last section some structural issues are raised concerning the q-permanent
expansions previously studied, and some open problems are presented.
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1. Introduction
This paper is a continuation of [19], on the q-permanent of an n-square

matrix A = (aij), a polynomial given by

perq A =
∑

σ∈Sn
q`(σ)

∏n
i=1 aiσi ,

where Sn is the symmetric group of order n, and `(σ) is the number of in-
versions of the permutation σ, here called the length of σ. In [14, 5, 21, 24]
the reader will find the genesis and uses of this function in the areas of math-
ematical physics, and quantum groups and algebras. Further developments
may be found in [1, 11, 2, 12].

Section 3 describes the q-permanent linear preservers. In [22, 23] the q-
permanent is generalized to multivariable quantum parameters and, in this
context, some expansions are obtained for the q-permanent which are remi-
niscent of the archetypal expansions of Laplace along a set of rows or columns.
The expansions considered below (sections 4, 6, 7) are of a different nature
in that we collect the q-permanent terms according to the cycle structure
of the digraph of the matrix A, as has been done for the determinant in

Received July 5, 2017.
This work was partially supported by the Centre for Mathematics of the University of Coimbra –

UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded
by the European Regional Development Fund through the Partnership Agreement PT2020.

1



2 EDUARDO MARQUES DE SÁ

[16, 18, 17]. In section 5 we get a result on ‘cycle surgery’ that may have
an independent life: the variation in length is determined when we excise
from a permutation one of its cycles. This paves the way to section 6 where
the main q-permanent expansion formula is modified in several ways. Each
modified formula Φ is combinatorially solved, i.e., all digraphs D are found
such that Φ holds for all matrices with digraph D. In the last section we
discuss in abstracto other possibilities of expanding the q-permanent using
the cycle structure, and leave some open problems.

2. Preliminaries
On digraphs, graphs and matrices we follow the traditional concepts as may

be seen in, e.g., [6, 7], with minor changes. Here, the set V (D) of the vertices
of a digraph D is a subset of [n] = {1, . . . , n}. Notations like (i, j) ∈ D ⊆ D′

mean that (i, j) is an arc of D, and D is a subdigraph of D′; an arc is also
denoted i→j. We write [r, s], ]r, s], etc. to refer integer intervals. A k-cycle
c, or cycle of order k, is a digraph on k vertices, say v1, . . . , vk, ordered
so that vi→vi+1 are the arcs of c, with i read modulo k; the short notation
c = (v1v2 · · · vk) will be used, and we say c is a cycle through each one of its
vertices. With due care, we may identify c with the set V (c) of its vertices.
The set of all cycles through a given vertex v is denoted by Cv, or Cv(n) if
needed. The sole 1-cycle of Cv is the loop (v). Given σ ∈ Sn, we define
Mov(σ) = {i ∈ [n] : σ(i) 6= i}; the permutation digraph ∆σ has arcs i→σ(i),
for i ∈ [n]. Each cycle c = (v1v2 · · · vk) determines a permutation of Sn, also
denoted c and called cyclic permutation, or just cycle, given by c(vi) = vi+1,
for i ∈ [k], and c(j) = j, for j a non-vertex of c; in this way, all loops are
mapped into the identity e ∈ Sn; this mapping is a bijection between non-
loop cycles and cyclic permutations 6= e, a fact that allows an identification of
the two concepts. A cycle of a permutation π is a permutation corresponding
to a cycle of ∆π.

Of course all this framework may be naturally extended to an arbitrary
K = {k1, . . . , kr} ⊆ [n], k1 < · · · < kr. For example, we may consider the
group SK of all permutations of K, and permutation digraphs on K. A
permutation of K, say ω : K → K, may be represented in the traditional
complete, or one-line notation ω = ω(k1)ω(k2) · · ·ω(kr), and in short notation
if ω is a cyclic permutation.
Mn denotes the set of n-square matrices over a field F with more than n

elements. So an F-polynomial f(x1, . . . , xN), of degree 6 n, satisfying f(a) =
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0 for all a ∈ FN , is necessarily the zero polynomial (e.g., [9, p. 235 ff ]). For
A ∈ Mn and S ⊆ [n], A(S) or AS denote the principal submatrix obtained
by eliminating the rows and columns of A indexed by elements of S; the
notations A{i}, A{i,j}, AV (c), where c is a cycle, will be simplified to Ai, Aij, Ac.
The digraph of A, denoted D(A), has (i, j) as arc iff aij 6= 0. A matrix A is
said to be generic if its nonzero entries are independent commuting variables
over the base field. For a digraph D and a permutation σ, the weight of D
in A and the total weight of σ in A are defined by

wtD(A) =
∏

(i,j)∈D aij and twtσ(A) =
∏

i∈[n] aiσi.

Clearly wt∆σ
(A) = twtσ(A). We define Pσ as the permutation matrix with

ij-entry δσ(i),j; this is designed so that perq Pσ = q`(σ). The transpose of A

is denoted AT , and AR denotes the reverse of A, obtained by reversing the
order of the rows and the columns of A. Hence AR = Pw◦APw◦, where w◦ is
the so-called reversal permutation, given by w◦(i) = n+ 1− i. This w◦ is the
top element of Sn in the Bruhat order, the unique permutation of maximum
length, `(w◦) =

(
n
2

)
; and the identity e is the only permutation of length 0

(e.g., [3]).
As with digraphs, the graphs G that will be considered are on a vertex

subset of [n]. An edge is a 2-set {i, j} (i 6= j). The underlying digraph of
G, denoted DG, has (i, j) as arc iff i = j or {i, j} is an edge of G. So the
underlying digraph is symmetric and has all loops. The graph of A, denoted
G(A), has {i, j} as edge iff i 6= j and either aij 6= 0 or aji 6= 0. A is said to
be a generic matrix with graph G if A is generic and aij 6= 0 if and only if:
i = j or {i, j} is an edge of G.

Recall from [10, 20] that R, S ⊆ [n] are said to be crossing sets, or that
they cross, if there exist r, r′ ∈ R and s, s′ ∈ S such that r < s < r′ < s′ or
s < r < s′ < r′.

3. q-Permanent linear preservers
This section is a small token to the theory of linear preservers (see, e.g.,

[15, 4, 13, 8]). A linear mapping L : Mn → Mn is said to preserve the
q-permanent, if perq L (X) = perqX for all X ∈Mn.

Proposition 3.1. The set of linear mappings L that preserve the q-permanent
is the group generated by the transformations of the following three kinds: (a)
X  DXE, where D and E are diagonal matrices such that per(DE) = 1;
(b) X  XT ; and (c) X  XR.
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Proof : By [15, 4] the set of the permanent linear preservers is the group
generated by (a), (b) and the transformations X  PXQ, where P,Q are
permutation matrices. Clearly (a) and (b) preserve the q-permanent. To
handle X  PXQ note that

perq PXQ =
∑

σ∈Sn
q`(ασβ)

∏n
i=1 xiσ(i), (1)

where α, β are uniquely determined by (Pα, Pβ) = (Q,P ). So we are faced
with an `-preserver problem: which α, β ∈ Sn satisfy the equation `(ασβ) =
`(σ) for all σ. Plugging σ = e in this equation we get `(αβ) = `(e), and so
αβ = e. Therefore σ  ασβ must be an inner automorphism of Sn; it is
well-known [3, p. 38 ff ], and elementary, that the only inner automorphisms
preserving the Bruhat order of Sn are the identity and the one afforded by
α = w◦, the reversal permutation. So only two linear mappings of the kind
X  PXQ preserve the q-permanent, namely the identity and the reversion.
The remaining proof details are left to the reader.

4. Some expansions of the q-permanent
Following the strategy of [16, 18, 17], we get generalized versions of known

determinantal expansions based on cycle decompositions (cf. theorems 2 and
3 of [17]).

Fix a set I ⊆ [n]. Let F be the set of all digraphs f that are joins of disjoint
cycles and V (f) ⊇ I. For f ∈ F, define f∧ I as the join of the cycles of f that
intersect I. LetMI be the set of those f such that f ∧ I = f. For f ∈MI let
Ef be the set of all σ ∈ Sn such that f ⊆ ∆σ. It is easily seen that σ ∈ Ef if
and only if ∆σ ∧ I = f. Therefore {Ef}f∈MI

is a partition of Sn.

Theorem 4.1. For any set I ⊆ [n] and matrix A, we have

perq A =
∑

f∈MI
wtf(A) perq Z(A, f), (2)

where Z(A, f) denotes the matrix obtained from A by zeroing out all rows and
all columns indexed by the vertices of f, except the entries in the positions
(i, j) ∈ f, which are replaced by 1’s.

Proof : For each f ∈ MI , we transform A into Z(A, f) in two steps: first we
get a matrix Z∗(A, f) by zeroing out all rows and all columns indexed by the
vertices of f, except the auw for (u,w) ∈ f which keep their values; in a second
step we replace these auw with 1’s. For σ ∈ Ef, twtσ(A) = twtσ(Z∗(A, f)) =
wtf(A) twtσ(Z(A, f)). For σ 6∈ Ef, there is u→w in f such that σ(u) 6= w;
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by definition, in row u of Z∗(A, f) the only eventually nonzero entry is auw;
therefore twtσ(Z∗(A, f)) = 0. So we get

perq A =
∑

f∈MI

∑
σ∈Ef q

`(σ) twtσ(A) =
∑

f∈MI

∑
σ∈Sn

q`(σ) twtσ(Z∗(A, f))

=
∑

f∈MI
wtf(A)

∑
σ∈Sn

q`(σ) twtσ(Z(A, f)),

and the theorem is proved.

For f ∈ F, let r = ]V (f), write V (f) = {i1, . . . , ir} and [n] r V (f) =
{j1, . . . , jn−r}, with i1 < · · · < ir and j1 < · · · < jn−r, and let κ be the
permutation (in one-line notation) i1 · · · irj1 · · · jn−r. Clearly, we may view f
as a permutation (the product of the cycles of f); then κ−1fκ fixes all points
of ]r, n], and so it fixes the set [r]. Denote by f′ ∈ Sr the restriction of κ−1fκ
to [r]. Then we have

Z(A, f) = P T
κ

[
Pf′ ⊕ A(V (f))

]
Pκ. (3)

(In case V (f) = [r], one has κ = e and f′ is the restriction of f to [r].) LetM◦
I

be the set of those f such that V (f) = I. For f ∈ M◦
I , the κ of (3) does not

depend on f. We have M◦
I = κM◦

[r]κ
−1, and the mapping M◦

I → Sr, f f′,

is a group isomorphism. Detaching from the right hand side of (2) the sum
over M◦

I we get∑
f∈M◦I

wtf(A) perq Z(A, f) =
∑

f∈M◦I
wtf(A) perq P

T
κ

[
Pf′ ⊕ A(I)

]
Pκ. (4)

In case I = [r], this expression transforms into

perq A[I] perq A(I),

where A[I] is the principal submatrix of A corresponding to the rows and
columns indexed by I. So, for I = [r], theorem 4.1 yields a neat generaliza-
tion of the determinantal formula [17, Th. 3]. However, for a general I, the
permutation similarity by Pκ produces in (4) a seemingly hopeless situation
upon application of perq; so formula (2) was kept with no further ado.

In case I is a singleton, say I = {v}, then MI = Cv, and we get

Corollary 4.2. Let A be any matrix. For any vertex v ∈ [n], we have

perq A =
∑

c∈Cv
wtc(A) perq Z(A, c). (5)
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In the case q = −1, the similarity by Pκ in (3) is of no effect under the
determinant. So we retrieve [17, Th. 2] from (5) as follows:

detA =
∑

c∈Cv
wtc(A) detZ(A, c) =

∑
c∈Cv

wtc(A) det(Pc′ ⊕ Ac)

=
∑

c∈Cv
(−1)`(c) wtc(A) detAc. (6)

This method goes equally well for q = 1, and (6) suggests to accept the
expansion

perq A =
∑

c∈Cv
q`(c) wtc(A) perq Ac (7)

as true for any matrix and any v ∈ [n], as has been done in p. 227 of
[C. Fonseca, Lin. Mult. Alg., 53(2005), pp. 225-230]. Although (7) has sim-
ple counterexamples, it leaves in between our hands the interesting problem
of giving a combinatorial solution to equation (7), i.e., to find the set of
all digraphs D such that (7) holds for a generic A with digraph D. We
solve this and other related problems in section 6, but to do so we need the
combinatorial result of the next section.

5. A theorem on cycle surgery
Fix a permutation π ∈ Sn, and a cycle c of the digraph ∆π, maybe a loop

of ∆π, and denote by θ the permutation πc−1. The surgery we have in mind
consists in extracting the whole c (arcs and vertices) from ∆π. We get a
digraph on [n]rV (c) which is itself a permutation digraph corresponding to
a permutation of the set S[n]rV (c), denoted by πr c, and called excision of c
from π. If θ|S denotes the restriction of θ to a set S, we have πrc = θ|[n]rV (c).

The multiplicity of θ over a vertex k is the number

mult(θ, k) = ]{i : i < k < θ(i) or θ(i) < k < i}.
The multiplicity of θ over a set F ⊆ [n], denoted mult(θ, F ), is the sum of
the multiplicities of θ over the vertices of F . If F is a set of fixed points of
θ, it is easy to see that mult(θ, F ) is an even number, and [19, Lemma 4.2]
implies

`(θ) = `(θ|[n]rF ) + mult(θ, F ). In particular

`(θ) = `(π r c) + mult(θ, V (c)). (8)

Given two arcs i→j and r→s, we say that i→j lies under r→s (and r→s lies
above i→j) if r < i 6 j < s or r > i > j > s. If the cycle c is not a loop, we
define

Aθc = ]{(α, β) : α, β are arcs, α ∈ θ, β ∈ c, and α lies above β}.
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If c = (v), we define Aθ(v) = 1
2 mult(θ, v).

Theorem 5.1. With the above notation we have `(π) = `(c)+`(πrc)+2Aθc.
Before the proof we give an example to show the geometrical nature of

these concepts. Figure 1 depicts the digraph ∆π, in case π = (173)(264), in
‘linear style’ [20], i.e., with all vertices uniformly and orderly disposed on a
line, and non-loop arcs represented by similar circular arrows. The arcs of
cycle c = (264) are dotted and those of θ = (173) are in solid black. The

1 2 3 4 5 6 7

Figure 1. The case c = (264), θ = (173).

loop at 5 lies under two arcs of θ, while the arc 6→4 lies under a sole arc of
θ (note that 1→7 is not above 6→4 due to ‘wrong’ orientation). Excision of c
from π transforms π into a permutation of {1, 3, 5, 7}, which is, in complete
notation: π r c = 7153; therefore `(π r c) = 4. A glimpse at the picture
shows that Aθc = 2, and a simple inversions count leads to `(π) = 14 and
`(c) = 6. So the theorem holds in this example.

Proof : If c is a loop, the theorem follows from (8). We now treat the case of
a transposition c = (rs), r < s. From [19, Lemma 3.1] we have

`(π) = `(θ) + 2]{i ∈]r, s[: θi ∈]r, s[}+ 1. (9)

Define T1 = [1, r[, T2 =]r, s[, T3 =]s, n], and let Ti be the cardinality of Ti.
Denote by tij the number of indices of Ti that are mapped by θ into Tj.
Obviously the i-th row [column] of the matrix (tij) has sum Ti. Using these
notations we have

`(π) = `(θ) + 2t22 + 1 (from (9))

`(c) = 2(s− r)− 1 = 2T2 + 1

Aθ(rs) = t13 + t31

mult(θ, {r, s}) = t12 + t13 + t21 + t31 + t23 + t13 + t32 + t31

= 2(T2 − t22 +Aθ(rs)).
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By (8), `(θ) = `(πr(rs))+mult(θ, {r, s}). Combining all these pieces proves
the theorem in case c = (rs).

We now proceed by induction, assuming the theorem holds for cycles c
of a given order k, k > 2. Let π be a permutation having a cycle c of
order k + 1, and define θ by θc̄ = π. Let m be the vertex of c such that
f := c(m) is the maximum of all the vertices of c. In short notation, we may
write c = (ab . . .mf). The transposition (mf) transforms c into c := c(mf).
Define π = θc. Clearly, c is the k-cycle (ab . . .m), and f is a fixed point of
π. The surgery done is the replacement of the path m→f→a of c by the arc
m→a of the shorter cycle c; in complete notation we write c = c1c2 . . . cn (so
a is renamed as cm). The situation is depicted in figure 2, where we assume
that cm < m. This assumption is made with no loss of generality, because
the roles of m and cm may be reversed by inverting π, and it is easy to see
(from (8) and the definition of Aθc) that the theorem’s formula is invariant
under inversion of π (and of c and θ). Next, consider Kπ,m,f defined by

Kπ,m,f = ]{i ∈]m, f [: πi ∈]cm, f [}. (10)

As π and c both have an inversion at (m, f), we get from [19, Lemma 3.1]

`(π)− `(π) = 2Kπ,m,f + 1 and `(c)− `(c) = 2Kc,m,f + 1. (11)

cm m f

X1 X2 X3 X4

Figure 2. Replacing m→f→cm by m→cm.

In figure 2, the symbols X1,X2,X3,X4 denote the intervals [1, cm[, ]cm,m[,
]m, f [, ]f, n], respectively. We let Xi = ]Xi, and let xij be the number of
indices of Xi that are mapped by θ into Xj. For example, in figure 2, xi,i+1

is the number of arcs of θ that cross from left to right the vertical grey bar
separating Xi from Xi+1. In the case of the vertical grey bar over f , we have

mult(θ, f) = x14 + x24 + x34 + x41 + x42 + x43 = 2(X4 − x44). (12)

Clearly πi = ci iff θ fixes i. So, to evaluate Kπ,m,f−Kc,m,f using the definitions
(10) of the K’s, we only have to take into account the set Iθ of those i ∈]m, f [
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that are moved by θ. As ci = i for i ∈ Iθ, we have

Kπ,m,f −Kc,m,f = ]{i ∈ Iθ : θi ∈]cm, f [} − ]{i ∈ Iθ : ci ∈]cm, f [}
= ]{i ∈ Iθ : θi ∈]cm, f [} − ]Iθ
= −]{i ∈ Iθ : θi 6∈]cm, f [} = −]{i ∈]m, f [: θi 6∈]cm, f [}
= −x31 − x34. (13)

Clearly we have Aθc −Aθc = Aθm→f +Aθf→cm −A
θ
m→cm, and from this we get

Aθc −Aθc = (x14 + x24) + x41 − (x31 + x41) = x14 + x24 − x31. (14)

Define Ω(π, c) = `(π) − `(c) − `(π r c), and compute using (8), (11), (12),
(13):

Ω(π, c)− Ω(π, c) = [`(π)− `(π)]− [`(c)− `(c)] + mult(θ, V (c))−mult(θ, V (c))

= 2Kπ,m,f − 2Kc,m,f + mult(θ, f)

= −2x31 − 2x34 + 2(X4 − x44) = 2(x14 + x24 − x31)

From (14) we obtain Ω(π, c)−Ω(π, c) = 2Aθc−2Aθc. The induction hypothesis
is Ω(π, c) = 2Aθc. Hence we get Ω(π, c) = 2Aθc, which is the desired formula.

6. Prospective q-permanent expansions
The combinatorial solution of (7) is now an easy matter.

Theorem 6.1. Let v ∈ [n]. Formula (7) holds for a generic matrix with
digraph D, if and only if for any permutation digraph ∆σ ⊆ D, the cycle c
of ∆σ passing through v satisfies one of the following equivalent conditions

(a) `(σ) = `(c) + `(σ r c);
(b) No arc of c lies under an arc of another cycle of ∆σ.

Proof : The equivalence (a)⇔ (b) follows from theorem 5.1.
LetA[σ] denote the generalized permutation matrix whose ij-entry is aijδσ(i),j.

It is easy to prove that (7) holds if and only if it holds for all A[σ]. So we
only have to prove the theorem when D = ∆σ. In this case, (7) reduces to

q`(σ)a1σ1 · · · anσn = q`(c) wtc(A) perq
[
A[σ](c)

]
,

where c is the cycle of ∆σ passing through v. After canceling all aiσi in both
members, we get q`(σ) = q`(c) perq(Pσ)c; we clearly have (Pσ)c = Pσrc, and so

perq(Pσ)c = q`(σrc). So, in case A = A[σ], (7) is equivalent to (a).
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We now replace in (7) Ac by AXc , a matrix already considered in [19]. AXc is
obtained from A by zeroing out all entries of A in rows and columns indexed
by the vertices of c, except the diagonal entries aii for i ∈ c that are replaced
by 1’s.

Theorem 6.2. A generic matrix A with digraph D satisfies

perq A =
∑

c∈Cv
q`(c) wtc(A) perq A

X
c , (15)

if and only if for any permutation digraph ∆σ ⊆ D the orbit of σ containing
v does not cross any other orbit of σ.

Proof : We adopt the strategy and the notation of the pervious proof. So
we only need to prove the theorem when D = ∆σ. After replacing A with
A[σ] in (15) and after canceling the aiσi in both members, we get q`(σ) =

q`(c) perq(Pσ)Xc , where c is the cycle of ∆σ through v. We have (Pσ)Xc = Pθ,
where θ := σc−1. Therefore (15), for A = A[σ], is equivalent to the equation
`(cθ) = `(c) + `(θ); according to [19, Th. 4.3], this equation holds if and only
if c crosses no orbit of θ.

Theorems 6.1 and 6.2 are easily remade for graphs G, by adequate handling
of the underlying digraph.

Corollary 6.3. Let G be a graph. All matrices having G as graph satisfy (7),
with Cv denoting the set of cycles through v in the underlying digraph DG, if
and only if the following two conditions hold: (i) there is no edge {r, s} of G
such that r < v < s; (ii) if γ is a cycle of G through v, no edge of G disjoint
from all edges of γ lies above an edge of γ.

Proof : We have to show that (b) of theorem 6.1 is equivalent to (i) ∧ (ii).
Assume (b) holds for any ∆σ ⊆ DG. If there is an edge {r, s} of G such
that r < v < s, then ∆(rs) is a subdigraph of DG, because DG has all
loops; in ∆(rs), the cycle through v is the loop c = (v), which lies under
r→s, contradicting (b); so (i) holds. We now get a contradiction from the
assumption that γ is a cycle of G through v, and G has an edge {r, s}, disjoint
from all edges of γ, which lies above an edge of γ. We choose an orientation
for γ and call c the oriented γ; then ∆c(rs) is a subdigraph of DG; clearly (b)
fails for ∆c(rs). So (ii) holds.

Now assume (i)∧(ii) holds; we seek for a contradiction from the assumption
that (b) fails for some ∆σ ⊆ DG. Let c = (v1 . . . vk) be the cycle of ∆σ through
v; for some j, vj→vj+1 lies under an arc u→w of another cycle of ∆σ. As DG
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is symmetric we may assume u < vj 6 vj+1 < w. If k = 1, 2 then u < v < w,
contradicting (i). For k > 3, {vj, vj+1} and {u,w} are edges of G, and the
former lies under the latter; this goes against (ii).

Corollary 6.4. All matrices with a given graph G satisfy (15), with Cv de-
noting the set of cycles through v in the underlying digraph DG, if and only if
the following two conditions hold: (α) no edge of G with endpoint v is crossed
by another edge of G, and (β) if γ is a cycle of G through v, no edge of G
disjoint from all edges of γ crosses an edge of γ.

Proof : This corollary is similar to the previous one, with the ‘crossing’ rela-
tion replacing the ‘lie above’ relation of corollary 6.3. The proof may follow
the same pattern with adequate small changes which are left to the reader.

In case of an acyclic graph G, the equations (7) and (15) may be written
as

perq A = avv perq Av +
∑

i6=v q
`((vi))aviaiv perq Avi

perq A = avv perq A
X
v +

∑
i6=v q

`((vi))aviaiv perq A
X
vi.

Of course the combinatorial solutions to these two equations are obtained by
eliminating conditions (ii) and (β) from corollaries 6.3 and 6.4, respectively.

7. Aligned matrices and q-permanent expansions
In this section A denotes a generic matrix with no zero entries. We saw

that (7) and (15) do not hold for such A. It is natural to ask if the submatrix
Ac may be replaced by some other matrix S(A, c), depending on A and c,
such that

perq A =
∑

c∈Cv
q`(c) wtc(A) perq S(A, c). (16)

We shall assume that perq S(A, c) is a polynomial in the entries of A that
does not depend on the ars for (r, s) ∈ c. Clearly perq Z(A, c) is a sum

of monomials in the aij, (i, j) 6∈ c, each monomial multiplied by some q`(π),
where π has c as cycle; theorem 5.1 implies `(π) > `(c), therefore perq Z(A, c)

is a multiple of q`(c); with the help of theorem 4.2 it is easy to prove that
(16) is equivalent to

perq S(A, c) = q−`(c) perq Z(A, c), (17)

for all c ∈ Cv. For some cycles c it is not difficult to find matrices S(A, c)
satisfying (17). We collect in a lemma, with proof left to the reader, two
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classes of examples which follow from theorems 6.1 and 6.2 applied to the
complete digraph on [n].

Lemma 7.1. A cycle c satisfies (17) for S(A, c) = Ac if and only if any
arc of c has a vertex outside the interval generated by [n] r c. A cycle c
satisfies (17) for S(A, c) = AXc if and only if one of the sets c or [n] r c is
an interval.

Lemma 7.2. We have Z(A, c)T = Z(AT , c−1) and Z(A, c)R = Z(AR, w◦cw◦).
Moreover, if S(A, c) satisfies (17), then

S(AT , c) = q−`(c
−1) perq Z(A, c−1), S(AR, c) = q−`(w◦cw◦) perq Z(A,w◦cw◦).

Proof : We only give a sketchy proof to the case of AR. For a cycle c =
(v1 . . . vk), we have w◦cw◦ = (w◦(v1) . . . w◦(vk)). Let aRij := aw◦(i),w◦(j) be

the ij-entry of AR. To zero out the row [column] k in A will zero out row
[column] w◦(k) of AR; to replace avivi+1

by 1 in A, is equivalent to replacing
aRw◦(vi),w◦(vi+1) by 1. Then the identity Z(A, c)R = Z(AR, w◦cw◦) follows at

once. Next, from (17) we get perq S(AR, c) = q−`(c) perq Z(AR, c) and the
rest is a simple manipulation using theorem 3.1.

Two entries of a matrix are said to be aligned whenever they lie in the
same row or in the same column of the matrix. We say that a matrix S is
aligned with A if each entry of S is either a constant, or an entry of A and,
whenever two entries of A occur in S and are aligned in A, they are aligned
in S as well.

Note that the matrices Ac and AXc are aligned with A, and other matrices
aligned with A may be defined in a natural manner. For example, if α ⊆ c,
we let Aα

c be the submatrix of AXc obtained by deleting the rows and columns
indexed by α (Aα

c is the matrix A(c, α) of [19]). These matrices are shown
in the following table where, for n = 3, 4, 5, in each line, on the right of a
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matrix Aα
c , we list cycles c for which (17) holds with S(A, c) = Aα

c :

n = 3 AXc (2)

n = 4 AXc (2), (3), (23)

′′ Ac (13), (24)

n = 5 AXc (2), (3), (4), (23), (34), (234), (243)

′′ Ac (13), (14), (25), (35), (124), (142), (135), (153), (245), (254)

′′ A
{3}
c (134), (143), (235), (253)

′′ ? (24)

(18)

For all the cycles c that are not in the table, both matrices Ac and AXc satisfy
(17). The table is build with the help of lemmas 7.1 and 7.2. Lemma 7.1 tells
that in case n = 5, c = (134), the matrices Ac and AXc are of no use. Once
a cycle is placed in the table, lemma 7.2 gives as bonus the location in the
table of c−1, w◦cw◦ and w◦c

−1w◦. The question mark upon n = 5, c = (2 4)
is the object of the next lemma.

Lemma 7.3. For n = 5, c = (24), no S(A, c) aligned with A satisfies (17).

Proof : Assume that B = (bij) ∈Mm is aligned with A, and (17) holds with
S(A, c) = B. We seek for a contradiction. Expanding S(A, c) in (17) we get

perq B = a11a33a55 + (a11a35a53 + a13a31a55)q+ (19)

+ (a13a35a51 + a15a31a53)q
4 + a15a33a51q

7.

The term a11a33a55q
0 in the right hand side of (19) indicates that

b11b22 · · · bmm = a11a33a55. (20)

So a11, a33, a55 are diagonal entries of B; let {a11, a33, a55} = {brr, bss, btt},
with r < s < t, and call C the submatrix of B of rows and columns r, s, t.
The variables aij, i, j ∈ {1, 3, 5} all occur in B, so they are the entries of
C because B is aligned with A. So, up to transposition and permutation
similarity, C has the form a11 a13 a15

a31 a33 a35

a51 a53 a55

 , (21)

and the entries of C occur nowhere else inB. The term (a11a35a53+a13a31a55)q
in perq B means that a11a35a53 +a13a31a55 is the sum of the total weights in B
of the transpositions of consecutive indices; this implies that, for some i, j ∈
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[m], {a13, a31} = {bi,i+1, bi+1,i} and {a35, a53} = {bj,j+1, bj+1,j}. Therefore
r, s, t are consecutive integers and bss = a33.

Let F be the set of σ ∈ Sm that fix r, s and t. The sum of all terms
of perq B that are multiple of a11a33a55 is a11a33a55 perq B

X
(rst). From (19)

perq B
X
(rst) = 1. Let ω be one of the cycles (rst) or (tsr); for any σ ∈ F ,

`(ωσ) = 2 + `(σ). By (20) twtω(B) = wtω(B), and so twtω(B) is one of the
monomials a13a35a51 or a15a31a53. The sum of all terms of perq B that are
multiple of twtω(B) is∑

σ∈F q
`(ωσ) twtωσ(B) = q2 twtω(B)

∑
σ∈F q

`(σ) twtσ(BX(rst))

= q2 twtω(B) perq B
X
(rst) = q2 twtω(B). (22)

So a13a35a51 and a15a31a53 should occur in perq B multiplied by q2; but (19)
has the factor q4 instead. This contradiction finishes the proof.

Lemma 7.4. If n = 6 and c is one of the cycles (246), (264), (135) or (153),
no S(A, c) aligned with A satisfies (17).

Proof : The case c = (246). The proof starts as that of lemma 7.3, with a
matrix S(A, (246)) =: B satisfying (17). We seek for a contradiction. This
time we get

perq B = a11a33a55 + (a11a35a53 + a13a31a55)q+ (23)

a13a35a51q
2 + a15a31a53q

4 + a15a33a51q
5.

As before, we get a principal submatrix C which, up to transposition and
permutational similarity, is (21); and C lies in consecutive rows and columns
r, s, t. The proof continues with the arguments of the previous proof lead-
ing to (22). Now the desired contradiction is that a15a31a53 occurs in (23)
multiplied by q4, instead of q2 as (22) determines.

The other three cycles, (264), (135), (153), result from (246) by a combi-
nation of inversion with conjugation by w◦. So we may apply lemma 7.2.

Theorem 7.5. If all S(A, c) are required to be aligned with A, then (16) fails
for n = 5 and v ∈ {2, 4}, and fails for n > 6 and all v ∈ [n].

Proof : The cases n = 5 and n = 6 were handled in lemmas 7.3 and 7.4.
Now fix an arbitrary (n, v), with n > 6, v ∈ [n]. Assume that (16) holds,

where all S(A, c) are aligned with A, and seek for a contradiction. Choose
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an integer p such that 1 6 p + 1 6 v 6 p + 6 6 n. For each ω ∈ S6, let
ω∗ ∈ Sn be defined by

ω∗(i) =

{
ω(i− p) + p, for i ∈ [p+ 1, p+ 6]

i, otherwise.

This is a group isomorphism onto the subgroup S ∗
n of the permutations that

fix all indices outside [p + 1, p + 6]; clearly `(ω∗) = `(ω). This isomorphism
maps Cv−p(6) onto the set C ∗v := Cv ∩S ∗

n . We now let X be a generic 6× 6
matrix with no zero entry, and use (16) to compute

perqX = perq(Ip ⊕X ⊕ In−6−p)

=
∑

c∗∈C ∗v
q`(c

∗) twtc∗(Ip ⊕X ⊕ In−6−p) perq S(Ip ⊕X ⊕ In−6−p, c
∗)

=
∑

c∈C6,v−6
q`(c) twtc(X) perq S(Ip ⊕X ⊕ In−6−p, c

∗).

We just got (16) for the generic matrix X, where the S(Ip ⊕X ⊕ In−6−p, c
∗)

are obviously aligned with X. This contradicts lemma 7.4.

Open Problems
As alignment proved to be too restrictive to satisfy (16)-(17), we suggest

Problem 1. The quest for matrices S(A, c) satisfying (16), whose
entries are either constant or entries of A.

In such less demanding setting, the case n = 5, c = (24) is solved with the
following 7× 7 matrix

S(A, (24)) =



1 0 0 0 1 0 0
1 1 0 0 0 0 0
0 a15 a11 a13 0 0 0
0 0 a31 a33 a35 0 0
0 0 0 a53 a55 a51 0
0 0 0 0 0 1 1
0 0 1 0 0 0 1


.

The proof that this matrix satisfies (17) is an easy exercise with the help
of its digraph to exploit sparsity. This example and the table (18) give a
positive answer to problem 1 for n 6 5. An alternative to problem 1 is to
relax the condition that S is a function of only A and c:

Problem 2. Find matrices S(A, c, q), with entries depending also on
q, to satisfy formula (16).
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This is suggested by the definition given by H. Tagawa in [22] of a multivari-
able q-permanent. His paper gives a very interesting sort of Laplace expan-
sion, that do not really look like the traditional expansion for the determinant
and the permanent in that the algebraic complements depend heavily on the
quantum parameter(s).
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