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Abstract: In a companion paper [On semiclassical orthogonal polynomials via
polynomial mappings, J. Math. Anal. Appl. (2017)] we proved that the semiclassi-
cal class of orthogonal polynomials is stable under polynomial transformations. In
this work we use this fact to derive in an unified way old and new properties con-
cerning the sieved ultraspherical polynomials of the first and second kind introduced
by W. Al-Salam, W. R. Allaway, and R. Askey, and subsequently studied by several
authors. Our results are stated in the more general framework of orthogonality
with respect to a quasi-definite (or regular) moment linear functional, not neces-
sarily represented by a weight function or positive Borel measure. This allow us
to derive infinitely many examples of semiclassical functionals such that the pair of
polynomials appearing in each corresponding canonical Pearson-type distributional
differential equation is non-admissible.
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1. Introduction
This is the second of two papers intended to develop the theory of polyno-

mial mappings in the framework of the semiclassical orthogonal polynomial
sequences. Throughout this paper we will use the abbreviations OP and OPS
for orthogonal polynomial(s) and orthogonal polynomial(s) sequence(s), re-
spectively. In our first article [3] we obtained basic properties fulfilled by
monic OPS {pn}n≥0 and {qn}n≥0 linked by a polynomial mapping, in the
sense that there exist two polynomials πk and θm, of (fixed) degrees k and
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m, respectively, where 0 ≤ m ≤ k − 1, such that

pnk+m(x) = θm(x) qn(πk(x)) , n = 0, 1, 2, . . . ,

under the assumption that one of the sequences {pn}n≥0 or {qn}n≥0 is a semi-
classical OPS. In particular, we proved that if at least one of the sequences
{pn}n≥0 or {qn}n≥0 is semiclassical then so is the other one, and we gave
relations between their classes [3, Theorem 3.1].

Our present goal is to apply the results stated in [3] to the sieved OPS,
introduced by Al-Salam, Allaway, and Askey [1], and subsequently studied
by several authors (see e.g. [8, 4, 9, 11, 20, 2, 5, 6, 14, 10]). The connection
between sieved OPS and polynomials mappings has been observed by Geron-
imo and Van Assche [11], who showed how many results involving sieved OPS
follow by taking particular polynomial transformations. For instance, take
πk the monic Chebyshev polynomial of the first kind of degree k. Then (up
to normalization) taking for qn the monic ultraspherical polynomial of degree
n of parameter λ+ 1 and choosing m = 0 and θm ≡ 1, {pn}n≥0 becomes the
monic sieved ultraspherical OPS of the first kind. Similarly, taking for qn
the monic ultraspherical polynomial of degree n of parameter λ and choosing
m = k − 1 and θm the monic Chebyshev polynomial of the second kind of
degree k − 1, {pn}n≥0 becomes the monic sieved ultraspherical OPS of the
second kind.

The structure of the paper is as follows. In Section 2 we introduce some
background, including the definitions of sieved ultraspherical polynomials
and some basic facts concerning semiclassical OPS, complementing the in-
formation appearing in [3]. In Sections 3 and 4 we consider the sieved ul-
traspherical OPS of the first and of the second kind, respectively. Among
other results, we prove that both families are semiclassical of class exactly
k−1 except for one choice of the parameter λ (being classical in such a case).
Using this fact and the theory of semiclassical OP presented by Maroni [15],
we give the structure relation that such sieved OPS satisfy, and then we
use these relations (together with general facts of the theory of semiclassical
OPS) to derive the linear homogeneous second order ordinary differential
equation (ODE) that sieved orthogonal polynomial fulfills. This ODE was
obtained (by a different process) for the sieved OP of the second kind by
Bustoz, Ismail, and Wimp [2]. As far as we know, the ODE for the sieved
OPS of the first kind did not appeared before in the literature. The interest
on such ODE comes at once from the original paper by Al-Salam, Allaway,
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and Askey, where in a final section devoted to some open problems they
wrote that “A potentially very important result would be the second order
differential equation these polynomials satisfy.” The results presented here
based on polynomial mappings in the framework of semiclassical OPS allow
to obtain similar results for other sieved OPS, mutatis mutandis.

2. Background
For reasons of economy of exposition, we assume familiarity with most of

the results and notation appearing in Sections 2 and 3 of our previous article
[3]. Let {pn}n≥0 be a monic OPS, so that, according to Favard’s theorem it
is characterized by a three-term recurrence such as

pn+1(x) = (x− βn)pn(x)− γnpn−1(x) , n = 0, 1, 2, . . . , (2.1)

with p−1(x) := 0 and p0(x) := 1, where βn ∈ C and γn+1 ∈ C \ {0} for each
n ∈ N0. In the framework of polynomial mappings, it is useful to write the
recurrence relation in terms of blocks of recurrence relations as

(x− b(j)
n )pnk+j(x) = pnk+j+1(x) + a

(j)
n pnk+j−1(x) ,

j = 0, 1, . . . , k − 1 ; n = 0, 1, 2, . . . .
(2.2)

Without loss of generality, we assume a
(0)
0 := 1. In general, the a

(j)
n ’s and

b
(j)
n ’s are complex numbers with a

(j)
n 6= 0 for all n and j. With these numbers

we may construct the determinants ∆n(i, j;x) introduced by Charris, Ismail,
and Monsalve [5, 6], so that

∆n(i, j;x) :=


0 if j < i− 2

1 if j = i− 2

x− b(i−1)
n if j = i− 1

(2.3)

and, if j ≥ i ≥ 1,

∆n(i, j;x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− b(i−1)
n 1 0 . . . 0 0

a
(i)
n x− b(i)

n 1 . . . 0 0

0 a
(i+1)
n x− b(i+1)

n . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . x− b(j−1)
n 1

0 0 0 . . . a
(j)
n x− b(j)

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.4)
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for every n ∈ N0. Taking into account that ∆n(i, j; ·) is a polynomial whose

degree may exceed k, and since in (2.2) the a
(j)
n ’s and b

(j)
n ’s were defined only

for 0 ≤ j ≤ k − 1, we adopt the convention

b(k+j)
n := b

(j)
n+1 , a(k+j)

n := a
(j)
n+1 i, j, n ∈ N0 , (2.5)

and so the following useful equality holds:

∆n(k + i, k + j;x) = ∆n+1(i, j;x) . (2.6)

Theorem 2.1. [10, Theorem 2.1] Let {pn}n≥0 be a monic OPS characterized
by the general blocks of recurrence relations (2.2). Fix r0 ∈ C, k ∈ N, and
m ∈ N0, with 0 ≤ m ≤ k − 1 and k ≥ 3. Then, there exist polynomials πk
and θm of degrees k and m (respectively) and a monic OPS {qn}n≥0 such that
q1(0) = −r0 and

pkn+m(x) = θm(x) qn(πk(x)) , n = 0, 1, 2, . . . (2.7)

if and only if the following four conditions hold:

(i) b
(m)
n is independent of n for n ≥ 0;

(ii) ∆n(m + 2,m + k − 1;x) is independent of n for n ≥ 0 and for every
x;

(iii) ∆0(m+2,m+k−1; ·) is divisible by θm, i.e., there exists a polynomial
ηk−1−m with degree k − 1−m such that

∆0(m+ 2,m+ k − 1;x) = θm(x) ηk−1−m(x) ;

(iv) rn(x) is independent of x for every n ≥ 1, where

rn(x) := a
(m+1)
n ∆n(m+ 3,m+ k − 1;x)− a(m+1)

0 ∆0(m+ 3,m+ k − 1;x)

+ a
(m)
n ∆n−1(m+ 2,m+ k − 2;x)− a(m)

0 ∆0(1,m− 2;x) ηk−1−m(x) .

Under such conditions, the polynomials θm and πk are explicitly given by

πk(x) = ∆0(1,m;x) ηk−1−m(x)− a(m+1)
0 ∆0(m+ 3,m+ k − 1;x) + r0 ,

θm(x) := ∆0(1,m− 1;x) ≡ pm(x) ,
(2.8)

and the monic OPS {qn}n≥0 is generated by the three-recurrence relation

qn+1(x) = (x− rn) qn(x)− snqn−1(x) , n = 0, 1, 2, . . . (2.9)

with initial conditions q−1(x) = 0 and q0(x) = 1 , where

rn := r0 + rn(0) , sn := a(m)
n a

(m+1)
n−1 · · · a

(m+k−1)
n−1 , n = 1, 2, . . . . (2.10)



SIEVED ULTRASPHERICAL POLYNOMIALS REVISITED 5

Moreover, for each j = 0, 1, 2, . . . , k − 1 and all n = 0, 1, 2, . . .,

pkn+m+j+1(x) =
1

ηk−1−m(x)

{
∆n(m+ 2,m+ j;x) qn+1(πk(x))

+
(∏j+1

i=1 a
(m+i)
n

)
∆n(m+ j + 3,m+ k − 1;x) qn(πk(x))

}
.

(2.11)

Remarks 2.1. Notice that for j = k − 1, (2.11) reduces to (2.7).

Theorem 2.2. [10, Theorem 3.4] Under the conditions of Theorem 2.1,
choose r0 = 0 and assume that {pn}n≥0 is a monic OPS in the positive-
definite sense with respect to some positive measure dµ . Then {qn}n≥0 is
also a monic OPS in the positive-definite sense, orthogonal with respect to a
measure dτ . Further, assume that the following conditions hold:

(i) [ξ, η] := co (supp(dτ)) is a compact set;
(ii) if m ≥ 1, ∫ η

ξ

dτ(x)

|x− πk(zi)|
<∞ (i = 1, 2, . . . ,m) ,

where z1 < z2 < · · · < zm are the zeros of θm ;
(iii) either πk(y2i−1) ≥ η and πk(y2i) ≤ ξ (for all possible i) if k is odd,

or πk(y2i−1) ≤ ξ and πk(y2i) ≥ η if k is even, where y1 < · · · < yk−1

denote the zeros of π′k ;
(iv) θmηk−1−m and π′k have the same sign at each point of the set π−1

k ([ξ, η]).

Then the Stieltjes transforms F (·; dµ) and F (·; dτ) are related by

F (z; dµ) =
−v0 ∆0(2,m− 1; z) +

(∏m
j=1 a

(j)
0

)
ηk−1−m(z)F (πk(z); dτ)

θm(z)
,

z ∈ C \
(
π−1
k ([ξ, η]) ∪ {z1, . . . , zm}

)
,

where the normalization condition v0 :=
∫ η
ξ dτ =

∫
supp(dσ) dµ =: u0 is

assumed. Further, up to constant factors, the measure dµ can be obtained
from dτ by

dµ(x) =
m∑
i=1

Mi δ(x− zi) dx+

∣∣∣∣ηk−1−m(x)

θm(x)

∣∣∣∣ dτ(πk(x))

π′k(x)
, (2.12)
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where if m ≥ 1

Mi :=
v0 ∆0(2,m− 1; zi)/

(∏m
j=1 a

(j)
0

)
− ηk−1−m(zi)F (πk(zi); dτ)

θ′m(zi)
≥ 0

(2.13)
for all i = 1, · · · ,m. The support of dµ is contained in the set

π−1
k ( [ξ, η] ) ∪ {z1, . . . , zm} ,

an union of k intervals and m possible mass points.

Remarks 2.2. In statement (i), co(A) means the convex hull of a set A. Un-
der the conditions of Theorem 2.2, if dτ is an absolutely continuous measure
with density wτ , then the absolutely continuous part of dµ has density

wµ(x) :=

∣∣∣∣ηk−1−m(x)

θm(x)

∣∣∣∣ wτ(πk(x))

with support contained in an union of at most k closed intervals, and it may
appear mass points at the zeros of θm.

In [3, Section 3] we stated several results concerning OPS and polynomial
mappings in the framework of the theory of semiclassical OPS. In particular,
in the proof of part (ii) of [3, Theorem 3.1], we implicitly proved the following

Theorem 2.3. Under the conditions of Theorem 2.1, let u and v be the mo-
ment regular functionals with respect to which {pn}n≥0 and {qn}n≥0 are monic
OPS, respectively. Let Su(z) := −

∑
n≥0 un/z

n+1 and Sv(z) := −
∑

n≥0 vn/z
n+1

(where un := 〈u, xn〉 and vn := 〈v, xn〉) be the corresponding (formal) Stielt-

jes series, respectively. Suppose that there exist polynomials Φ̃, C̃, and D̃,
such that

Φ̃(z)S ′v(z) = C̃(z)Sv(z) + D̃(z) .

Then Su(z) fulfils

Φ1(z)S ′u(z) = C1(z)Su(z) +D1(z) ,
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where Φ1, C1, and D1 are polynomials given explicitly by

Φ1 := v0θmηk−1−mσπk[Φ̃] ,

C1 := v0

(
η′k−1−mθm − v0θ

′
mηk−1−mσπk[Φ̃] + ηk−1−mθmπ

′
kσπk[C̃]

)
,

D1 := u0v0

(
∆0(2,m− 1, ·)η′k−1−m −∆′0(2,m− 1, ·)ηk−1−m

)
σπk[Φ̃]

+u0

(
κmηk−1−mσπk[D̃] + v0∆0(2,m− 1, ·)σπk[C̃]

)
ηk−1−mπ

′
k ,

and σπk[f ](z) := f
(
πk(z)

)
for each polynomial f .

Besides the basic facts concerning semiclassical OPS given in [3, Section
2], we recall that such families are characterized by a structure relation and
a linear homogeneous second order ODE. Indeed, let {pn}n≥0 be a monic
semiclassical OPS. This means that {pn}n≥0 is an OPS with respect to a
linear functional u : P → C (P being the space of all polynomials with
complex coefficients) which fulfils a distributional differential equation of
Pearson type

D(Φu) = Ψu ,

where Φ and Ψ are nonzero polynomials (i.e., they do not vanish identically),
and deg Ψ ≥ 1. According to the theory presented by Maroni in [15], {pn}n≥0

fulfills the structure relation

Φ(x)p′n(x) = Mn(x)pn+1(x) +Nn(x)pn(x) , n = 0, 1, 2, . . . , (2.14)

where Mn and Nn are polynomials that may depend of n, but they have
degrees (uniformly) bounded by a number independent of n, which can be
computed successively using the relations

Nn = −C −Nn−1 − (x− βn)Mn

γn+1Mn+1 = −Φ + γnMn−1 + (x− βn)(Nn−1 −Nn) ,
(2.15)

with initial conditions N−1 := −C, M−1 := 0, and M0 := u−1
0 D. Here βn

and γn are the parameters appearing in the three-term recurrence relation
(2.1), u0 := 〈u, 1〉, and C and D are polynomials, being C := Ψ−Φ′, and the
definition of D may be seen in [3, Section 2.2]. The structure relation (2.14)
is a characteristic property of semiclassical OPS. Another characterization of
semiclassical OPS is the second order ODE

Jn(x)p′′n(x) +Kn(x)p′n(x) + Ln(x)pn(x) = 0 , (2.16)
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where Jn, Kn, and Ln are polynomials that may depend of n, but their
degrees are (uniformly) bounded by a number independent of n. Moreover,
if {pn}n≥0 satisfies the structure relation (2.14)–(2.15) then Jn, Kn, and Ln
are given by

Jn := ΦMn

Kn := W (Mn,Φ) + CMn = ΨMn − ΦM ′
n

Ln := W (Nn,Mn) + (γn+1MnMn+1 −Nn(Nn + C))Mn/Φ ,
(2.17)

where W (f, g) := fg′ − f ′g.

3. Sieved ultraspherical polynomials
Let {Cλ

n}n≥0 be the ultraspherical (or Gegenbauer) OPS, defined by the
recurrence relation

2(n+ λ)xCλ
n(x) = (n+ 1)Cλ

n+1(x) + (n+ 2λ− 1)Cλ
n−1(x) , n ∈ N ,

with initial conditions Cλ
0 (x) := 1 and Cλ

1 (x) := 2λx, where λ 6= 0. This
definition appears in [19, Equation (4.7.17)], where the condition λ > −1/2
is assumed, so that the polynomials are orthogonal in the positive-definite
sense. If λ = 0 then a compatible definition is [19, Equation (4.7.8)]

C0
0(x) := 1 , C0

n(x) := Tn(x) =
n

2
lim
λ→0
λ 6=0

Cλ
n(x)

λ
, n ∈ N .

Here we allow orthogonality with respect to a quasi-definite (or regular)
functional in P , not necessarily positive-definite. Therefore we assume that
the range of values of the parameter λ is

λ ∈ C \ {−n/2 : n ∈ N} . (3.1)

(This follows e.g. from [3, Table 1], noticing that Cλ
n is, up to normalization,

a Jacobi polynomial P
(α,β)
n with parameters α = β = λ− 1/2.) We recall the

definition of the sieved ultraspherical polynomials, as presented in [1] and [8].
Rogers [17, 18] studied the OPS {Cn(·; β|q)}n≥0 defined by C0(x; β|q) := 1,
C1(x; β|q) := 2x(1− β)/(1− q), and

2x(1− βqn)Cn(x; β|q) = (1− qn+1)Cn+1(x; β|q) + (1− β2qn−1)Cn−1(x; β|q) ,

where β and q are real or complex parameters, and |q| < 1. Nowadays these
polynomials are called continuous q−ultraspherical polynomials, since they
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generalize {Cλ
n}n≥0 in the following sense (see [8]):

lim
q→1

Cn(x; qλ|q) = Cλ
n(x) .

Let {cn(·; β|q)}n≥0 be an OPS obtained renormalizing {Cn(·; β|q)}n≥0, so that

Cn(·; β|q) =
(β2; q)n
(q; q)n

cn(·; β|q) ,

where (a; q)0 := 1 and (a; q)n :=
∏n

j=1(1− aqj−1) for each n ∈ N. The sieved
OP defined by Al-Salam, Allaway, and Askey [1] are limiting cases of the
polynomials Cn(·; β|q) and cn(·; β|q). Indeed, fix k ∈ N and let ωk be an kth
root of the unity, i.e.,

ωk := e2πi/k .

Setting β = sλk and q = sωk, the OPS {cλn(·; k)}n≥0 defined by

cλn(x; k) := lim
s→1

cn(x; sλk|sωk)

is the sequence of the sieved ultraspherical polynomials of the first kind; and
setting β = sλk+1ωk and q = sωk, the OPS {Bλ

n(·; k)}n≥0 defined by

Bλ
n(x; k) := lim

s→1
Cn(x; sλk+1ωk|sωk)

is the sequence of the sieved ultraspherical polynomials of the second kind.
For λ > −1/2 the sieved ultraspherical polynomials are orthogonal in the

positive-definite sense. In such a case, the orthogonality measures were given
in [1, Theorems 1 and 2].

From now on (even if not stated explicitly) we assume that k ≥ 3.

4. On sieved ultraspherical OP of the second kind
4.1. Description via a polynomial mapping. In [4], Charris and Ismail
proved that {Bλ

n(·; k)}n≥0 satisfies

Bλ
kn+j(x; k) = Uj(x)Cλ+1

n (Tk(x)) + Uk−j−2(x)Cλ+1
n−1(Tk(x)) (4.1)

for j = 0, 1, . . . , k − 1 and n = 1, 2, . . ., where {Tn}n≥0 and {Un}n≥0 are
the OPS of the Chebychev polynomials of the first and the second kind,
respectively, defined by

Tn(x) := cos(nθ) , Un(x) :=
sin(n+ 1)θ

sin θ
(x = cos θ , 0 < θ < π) .
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Since U−1 := 0, then for j = k − 1 (4.1) reduces to

Bλ
kn+k−1(x; k) = Uk−1(x)Cλ+1

n (Tk(x)) , n = 0, 1, 2, . . . . (4.2)

Relations (4.1) and (4.2) establish a connection between sieved OP of the
second kind and OPS obtained via a polynomial mapping as described in [3,
Section 2]. This connection was established in a different way by Geronimo
and Van Assche [11], and also in [10] (see also [6]). Next we briefly describe
such connection following the presentation in [10, Section 5.2]. Taking for
{pn}n≥0 the monic OPS corresponding to {Bλ

n(·; k)
}
n≥0

, so that

pkn+j(x) =
n!

2kn+j(λ+ 1)n
Bλ
kn+j(x; k) (4.3)

(n = 0, 1, 2, . . . ; j = 0, 1, . . . , k − 1), where (α)n is the shifted factorial,
defined by (α)0 := 1 and (α)n := α(α + 1) · · · (α + n − 1) whenever n ≥ 1,
and using the three-term recurrence relation for {Bλ

n(·; k)}n≥0 given in [1],
we see that the coefficients appearing in the (block) three-term recurrence
relation (2.2) for {pn}n≥0 are

b
(j)
n := 0 (0 ≤ j ≤ k − 1) , a

(j)
n := 1

4 (1 ≤ j ≤ k − 2) ,

a
(0)
n+1 :=

n+ 1

4(n+ 1 + λ)
, a(k−1)

n :=
n+ 1 + 2λ

4(n+ 1 + λ)

for each n ∈ N0. Hence, for every n ∈ N0 and 0 ≤ j ≤ k − 1, we compute

∆n(1, j − 1;x) = Ûj(x) , ∆n(j + 2, k − 2;x) = Ûk−j−2(x) ,

where T̂n and Ûn denote the monic polynomials corresponding to Tn and Un,

T̂n(x) := 21−n Tn(x) , Ûn(x) := 2−nUn(x) , n ∈ N , (4.4)

and so one readily verifies that the hypothesis of Theorem 2.1 are fulfilled,
with m = k− 1 and being the polynomial mapping described by the polyno-
mials

πk(x) := Ûk(x)− 1
4 Ûk−2(x) = T̂k(x) , θk−1(x) := Ûk−1(x) , η0(x) := 1 .

(4.5)
Moreover, {qn}n≥0 is the monic OPS characterized by

r0 = rn = 0 , sn = 42−k a(0)
n a(k−1)

n =
1

4k
n(n+ 1 + 2λ)

(n+ λ)(n+ 1 + λ)
(n ∈ N) ,
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meaning that, indeed, qn is up to an affine change of variables the ultras-
pherical polynomial of degree n with parameter λ+ 1,

qn(x) =
n!

2kn(λ+ 1)n
Cλ+1
n

(
2k−1x

)
. (4.6)

Thus (4.1) and (4.2) follow immediately from Theorem 2.1. For λ > −1/2
the orthogonality measure for {Bλ

n(·; k)}n≥0 given in [1] may be computed
easily using Theorem 2.2, being absolutely continuous with weight function

w(x) := (1− x2)λ+ 1
2

∣∣Uk−1(x)
∣∣2λ , −1 < x < 1 .

Indeed, in this situation, the masses at the zeros of θm ≡ Ûk−1 given by (2.13)
all vanish, and so the measure given by (2.12) becomes absolutely continuous,
with a density function given by Remark 2.2. For details, see [10, Section
5.2].

4.2. Classification. According to a result by Bustoz, Ismail, and Wimp
[2], Bλ

n(·; k) is a solution of a linear second order ODE with polynomial
coefficients, being the degrees of these polynomials (uniformly) bounded by
a number independent of n. Therefore, {Bλ

n(·; k)}n≥0 is a semiclassical OPS.
In the next theorem we state the semiclassical character of {Bλ

n(·; k)}n≥0 in
an alternative way and we give its (precise) class. It is worth mentioning
that usually the ODE is not the most efficient way to obtain the class of
a semiclassical OPS. Often, being u the regular functional for the given
(semiclassical) OPS, the differential equation fulfilled by the corresponding
(formal) Stieltjes series Su(z) := −

∑
n≥0 un/z

n+1 allow us to obtain the
class in a more simpler way. In the next theorem we determine the class of
{Bλ

n(·; k)}n≥0 using the associated Stieltjes series and the results stated in [3,
Section 3].

Theorem 4.1. Let {pn}n≥0 be the monic OPS corresponding to the sieved
polynomials {Bλ

n(·; k)}n≥0 given by (4.3), being λ ∈ C \ {−n/2 : n ∈ N} and
and k ≥ 3. Let u be the regular functional with respect to which {pn}n≥0 is
an OPS. Then

D(Φu) = Ψu , (4.7)

where Φ and Ψ are polynomials given by

Φ(x) := (1− x2)Ûk−1(x) , Ψ(x) := −
(
2xÛk−1(x) + k(2λ+ 1)T̂k(x)

)
. (4.8)
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Moreover, the corresponding formal Stieltjes series Su(z) fulfils

Φ(z)S ′u(z) = C(z)Su(z) +D(z) , (4.9)

where C and D are polynomials given by

C(z) := −
(
zÛk−1(z) + 2kλT̂k(z)

)
, D(z) := −2u0

(
Ûk−1(z) + kλT̂k−1(z)

)
.

(4.10)
As a consequence, if λ ∈ C \ {−n/2 : n ∈ N0} then {Bλ

n(·; k)}n≥0 is a
semiclassical OPS of class k − 1. If λ = 0 then {B0

n(·; k)}n≥0 is (up to
normalization) the Chebychev OPS of the second kind, and so a classical
OPS.

Proof : Let vλ+1 be the regular functional associated with the ultraspherical
OPS {Cλ+1

n }n≥0, and let v be the regular functional associated with {qn}n≥0

defined by (4.6). The relation between the corresponding formal Stieltjes
series Sv(z) :=

∑
n≥0 vn/z

n+1 and Svλ+1(z) :=
∑

n≥0 v
λ+1
n /zn+1 (where vn :=

〈v, xn〉 and vλ+1
n := 〈vλ+1, xn〉, n ≥ 0) is

Sv(z) = 2k−1Svλ+1

(
2k−1z

)
.

Therefore, using the formal ordinary differential equation fulfilled by Svλ+1

(cf. e.g. [15], or see [3, Eq. (2.4) and Table 2]), we easily deduce

Φ̃(z)S ′v(z) = C̃(z)Sv(z) + D̃(z) , (4.11)

where Φ̃(x) := −x2 + 41−k, C̃(x) := −(2λ + 1)x, and D̃(x) := −2(λ + 1)v0.
Our aim is to prove that u is semiclassical of class k−1. Indeed, by Theorem
2.3,

Φ1(z)S ′u(z) = C1(z)Su(z) +D1(z) , (4.12)

with Φ1, C1, and D1 given by

Φ1(x) := v0θk−1(x)Φ̃(πk(x)) ,

C1(x) := −v0θ
′
k−1(x)Φ̃(πk(x)) + v0θk−1(x)π′k(x)C̃(πk(x))

D1(x) := −u0v0∆
′
0(2, k − 2, x)Φ̃(πk(x))

+u0π
′
k(x)

((∏k−1
j=1 a

(j)
0

)
D̃(πk(x)) + v0∆0(2, k − 2, x)C̃(πk(x))

)
.
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Now, by (4.5) and using the elementary relations

T̂ 2
n(x) + (1− x2)Û 2

n−1(x) = 41−n , Û 2
n(x)− Ûn−1(x)Ûn+1(x) = 4−n ,

xÛn(x)− (1− x2)Û ′n(x) = (n+ 1)T̂n+1(x) , T̂ ′n(x) = nÛn−1(x) ,

T̂n(x) + xÛn−1(x) = 2Ûn(x) ,
(4.13)

after straightforward computations we deduce

Φ1(x) = (1− x2)Û 3
k−1(x) , C1(x) = −Û 2

k−1(x)
(
xÛk−1(x) + 2kλT̂k(x)

)
,

D1(x) = −2u0Û
2
k−1(x)

(
Ûk−1(x) + kλT̂k−1(x)

)
.

Therefore, canceling the common factor Û 2
k−2(x), we find that Su satisfies

(4.9), where Φ, C, and D given as in (4.8) and (4.10). Since Ûk−1(±1) =

k(±1)k−1, T̂k(±1) = (±1)k, and taking into account that Ûk−1 does not share

zeros with T̂k, we see that if λ 6= 0 then the polynomials Φ, C, and D are
co-prime, hence the class of u is equal to s = max{degC−1, degD} = k−1.
It is clear that u satisfies (4.7), taking into account that Ψ(x) = C(x)+Φ′(x).

If λ = 0, then Ûk−1(x) is a common factor of the polynomials Φ, C, and D
in (4.10), hence canceling this factor we see that u is a classical functional,
and so we see that {pn}n≥0 is (up to normalization) the Chebychev OPS of
the second kind.

Remarks 4.1. Some authors define semiclassical functional requiring the
pair (Φ,Ψ) appearing in the corresponding Pearson’s equation to be an ad-
missible pair, meaning that, whenever deg Φ = 1 + deg Ψ the leading coeffi-
cient of Ψ cannot be a negative integer multiple of the leading coefficient of
Φ. Medem [16] gave an example of a semiclassical functional and a corre-
sponding pair (Φ,Ψ) which is not admissible. The above Theorem 4.1 shows
that such a situation is not an isolated phenomenon. Indeed, choose n0 ∈ N
such that n0 + 2 is different from an integer multiple of k, and define

λ := −n0 + 2 + k

2k
.

Then, the functional u fulfilling (4.7) is semiclassical (and so u is regular),
although the corresponding pair (Φ,Ψ) given by (4.8) is not admissible. We
recall, however, that for a classical functional the admissibility condition holds
necessarily, a fact known as early as the work of Geronimus [12].
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4.3. Structure relation and second order linear ODE. In this section
we will give explicitly the structure relation and the second order linear ODE
fulfilled by the monic sieved OPS of the second kind, given by (4.3), so that

pn(x) = νnB
λ
n(x; k) , νn := bn/kc!/

{
2n(λ+ 1)bn/kc} ,

for each n ∈ N0, recovering in an alternative way —in the framework of the
theory of semiclassical OP— the results given in [2]. In what follows next we
determine explicitly Mn and Nn for the sieved OP.

Theorem 4.2. The monic sieved OPS of the second kind pn(x) = νnB
λ
n(x; k)

satisfies the structure relation (2.14), where

Φ(x) = (1− x2)Ûk−1(x) ,

Mnk+j(x) = −2(nk + j + 1 + λk)Ûk−1(x)

−λk
2

(
Ûj−1(x)Ûk−j−2(x)− Ûj(x)Ûk−j−3(x)

)
,

Nnk+j(x) = (nk + j + 2 + 2λk)xÛk−1(x)− λkεjÛk−2(x)

+λk
8

(
Ûj−1(x)Ûk−j−3(x)− Ûj(x)Ûk−j−4(x)

)
(4.14)

for every n = 0, 1, 2, . . . and 0 ≤ j ≤ k − 1, being εk−1 := 1, εk−2 := 0, and
εj := 1

2 for 0 ≤ j ≤ k − 3.

Proof : Making m = k− 1 in (2.11) and taking into account (4.5), we obtain

pkn+j(x) = Ûj(x)qn(T̂k(x)) + 4−ja(0)
n Ûk−j−2(x)qn−1(T̂k(x)) (4.15)

Taking derivatives in both sides of (4.15), we obtain

p′kn+j(x) = Û ′j(x)qn(T̂k(x)) +Aj(x)q′n(T̂k(x))

+ 4−ja
(0)
n Û ′k−j−2(x)qn−1(T̂k(x)) + Bj(x)q′n−1(T̂k(x)) ,

(4.16)

where Aj and Bj are polynomials defined by

Aj(x) := Ûj(x)T̂ ′k(x) , Bj(x) := 4−ja(0)
n Ûk−j−2(x)T̂ ′k(x) .

Multiplying both sides of (4.16) by Ûk−j−2(x) and using (4.15), we deduce

Ûk−j−2(x)
(
Aj(x)q′n(T̂k(x)) + Bj(x)q′n−1(T̂k(x))

)
= Ûk−j−2(x)p′nk+j(x)− Û ′k−j−2(x)pnk+j(x)

+
(
Û ′k−j−2(x)Uj(x)− Ûk−j−2(x)U ′j(x)

)
qn(T̂k(x)) .

(4.17)
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Now, since {qn}n≥0 is a classical OPS, it fulfills the structure relation (see
e.g. [15])

Φ̃(x)q′n(x) = M̃n(x)qn+1(x) + Ñn(x)qn(x) , (4.18)

being Φ̃(x) = 41−k − x2, Ñn(x) = (n + 2λ + 2)x, and M̃n(x) = −2(λ + n +

1). Replacing x by T̂k(x) in (4.18), and then multiplying both sides of the

resulting equation by Aj(x)Ûk−1(x)Ûk−j−2(x), one obtains a first equation.

Similarly, substituting x by T̂k(x) in (4.18), and then changing n into n−1 and

multiplying both sides of the resulting equation by Bj(x)Ûk−1(x)Ûk−j−2(x),
we obtain a second equation. Adding these two equations and using (4.15)
and (4.17), we deduce

L1(x)p′nk+j(x) = L2(x)pnk+j(x) + L3(x)pnk+k−1(x) + L4(x)p(n+1)k+k−1(x) ,
(4.19)

where L1, L2, L3, and L4 are polynomials defined by

L1(x) := Ûk−j−2(x)Ûk−1(x)Φ̃
(
T̂k(x)

)
,

L2(x) := Û ′k−j−2(x)Ûk−1(x)Φ̃
(
T̂k(x)

)
+ Ûk−j−2(x)Ûk−1(x)T̂ ′k(x)Ñn−1

(
T̂k(x)

)
,

L3(x) :=
(
Ûk−j−2(x)Û ′j(x)− Û ′k−j−2(x)Ûj(x)

)
Φ̃
(
T̂k(x)

)
+ Ûk−j−2(x)

(
Aj(x)Ñn

(
T̂k(x)

)
+ Bj(x)M̃n−1

(
T̂k(x)

))
− Ûk−j−2(x)Ûj(x)T̂ ′k(x)Ñn−1

(
T̂k(x)

)
,

L4(x) := Aj(x)Ûk−j−2(x)M̃n

(
T̂k(x)

)
.

(4.20)
Taking into account the three-term recurrence relation for {pn}n≥0, we deduce

p(n+1)k+k−1(x) =
(
xÛk−1(x)− a(0)

n+1Ûk−2(x)
)
pnk+k−1(x)

− a(k−1)
n Ûk−1(x)pnk+k−2(x) , (4.21)

pnk+k−i(x) =Ûk−j−i−1(x)pnk+j+1(x)− 1

4
Ûk−j−i−2(x)pnk+j(x)

for every n ∈ N0 and 0 ≤ j ≤ k− i−2, i = 1, 2. Substituting (4.21) in (4.19),
we obtain

L1(x)p′nk+j(x) = Nnk+j(x)pnk+j(x) +Mnk+j(x)pnk+j+1(x)
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for every n = 0, 1, 2, . . . and 0 ≤ j ≤ k − 4, where

Mnk+j(x) := H1(x)Ûk−j−2(x)−H2(x)Ûk−j−3(x)

Nnk+j(x) := L2(x)− 1
4H1(x)Ûk−j−3(x) + 1

4H2(x)Ûk−j−4(x) ,
(4.22)

being

H1(x) := L3(x) + L4(x)
(
xÛk−1(x)− a(0)

n+1Ûk−2(x)
)
,

H2(x) := L4(x)a
(k−1)
n Ûk−1(x) .

Using some basic properties of Chebyshev polynomials we may verify that,
up to the factor 1

k T̂
′
k(x)Ûk−1(x)Ûk−j−2(x), the relations

L1(x) = (1− x2)Ûk−1(x)

Mnk+j(x) = −2(nk + j + 1 + λk)Ûk−1(x)

−λk
2

(
Ûj−1(x)Ûk−j−2(x)− Ûj(x)Ûk−j−3(x)

)
Nnk+j(x) = (nk + j + 2 + 2λk)xÛk−1(x)− λk

2 Ûk−2(x)

+λk
8

(
Ûj−1(x)Ûk−j−3(x)− Ûj(x)Ûk−j−4(x)

)
(4.23)

hold for every n ∈ N0 and 0 ≤ j ≤ k − 4. Moreover, when j = k − 1, using
the relation pnk+k−1(x) = Ûk−1(x)qn(T̂k(x)) we may write

p′nk+k−1(x) = Û ′k−1(x)qn(T̂k(x)) + Ûk−1(x)T̂ ′k(x)q′n(T̂k(x)) . (4.24)

Multiplying both sides of (4.18) by Û 2
k−1(x)T̂ ′k(x) and taking into account

(4.24) and (4.21), we obtain, up to the factor 1
k T̂
′
k(x)Ûk−1(x),

L1(x)p′kn+k−1(x) = Nnk+k−1(x)pnk+k−1(x) +Mnk+k−1(x)pnk+k(x) ,

where

Mnk+k−1(x) := −2k(λ+ n+ 1)Ûk−1(x) ,

Nnk+k−1(x) := (nk + k + 2λk + 1)xÛk−1(x)− λkÛk−2(x) .
(4.25)

Taking into account (2.15), (4.10), and (4.25), and using again some basic
properties of the Chebyshev polynomials, we deduce

Nnk+k−2(x) =−Nnk+k−1(x)− xMnk+k−1(x)− C(x)

=k(n+ 1 + 2λ)xÛk−1(x) . (4.26)
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Combining relations (2.15) and taking into account (4.10), we deduce(
x2 − 1

4

)
Nnk+k−3(x)

= x
(
− Φ(x) + 1

4Mnk+k−4(x) + xNnk+k−4(x)
)

+ 1
4 (C(x) +Nnk+k−2(x))

=
(
x2 − 1

4

)(
(k − 1− nk)xÛk−1(x)− λk

2

(
2Ûk−2(x)− 4xÛk−1(x)− xÛk−3(x)

))
,

so that

Nnk+k−3(x) =
(
nk+ k− 1 + 2λk

)
xÛk−1(x)− λk

2 Ûk−2(x) + λk
8 Ûk−4(x) . (4.27)

Finally, using (2.15), (4.10), (4.26), and (4.27), we obtain

xMnk+k−2(x) = −Nnk+k−3(x)−Nnk+k−2(x)− C(x)

= −2(nk + k − 1 + λk)xÛk−1(x)− λk
2 xÛk−3(x)

xMnk+k−3(x) = −Nnk+k−4(x)−Nnk+k−3(x)− C(x)

= −2(nk + k − 2 + λk)xÛk−1(x)− λk
8 xÛk−5(x) ,

hence

Mnk+k−2(x) = −2(nk + k − 1 + λk)Ûk−1(x)− λk
2 Ûk−3(x)

Mnk+k−3(x) = −2(nk + k − 2 + λk)Ûk−1(x)− λk
8 Ûk−5(x) .

(4.28)

Thus the proof is complete.

Remarks 4.2. We can give alternative expressions for the polynomials Mn

and Nn appearing in (4.14). Indeed, since

Ûn(x)Ûm(x)− Ûn−1(x)Ûm+1(x) =

{
4−nÛm−n(x) if 0 ≤ n ≤ m ;

−4−m−1Ûn−m−2(x) if 0 ≤ m < n ,
(4.29)

we may write

Mnk+j(x) = −2(nk + j + 1 + λkδj)Ûk−1(x)− λk
2 Uk,j(x) ,

Nnk+j(x) = (nk + j + 2 + 2λkδj)xÛk−1(x)− λk
2 Ûk−2(x) + 2λkVk,j(x) ,

where δj := 1 if 0 ≤ j ≤ k − 2, δk−1 := 0, and Uk,j and Vk,j are polynomials
defined by

Uk,j(x) :=

{
−4−jÛk−3−2j(x) if j = 0, 1, . . . , bk−3

2 c
4−k+j+2Û2j−k+1(x) if j = 1 + bk−3

2 c, . . . , k − 1 ,
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Vk,j(x) :=

{
−4−j−2Ûk−4−2j(x) if j = 0, 1, . . . , bk−4

2 c
4−k+j+1Û2j−k+2(x) if j = 1 + bk−4

2 c, . . . , k − 1 .

Remarks 4.3. Theorem 4.2 allows us to recover Theorem 3.1 in [2]. Indeed,
taking into account the three-term recurrence relation for {pn}n≥0, as well as
(4.4) and the first identity in (4.13), setting yn(x) := Bλ

n(x; k), we obtain(
1− T 2

k (x)
)
y′n(x) = gn(x)yn−1(x) + hn(x)yn(x) ,

where gn and hn are polynomials defined by

gnk+j(x) := Uk−1(x) {(nk + j + 1 + λk)Uk−1(x) + λkUk,j(x)} ,
hnk+j(x) := −Uk−1(x) {(nk + j)xUk−1(x) + λkUk−2(x) + λkWk,j(x)}

for every n ∈ N0 and 0 ≤ j ≤ k− 1, being Uk,j and Wk,j polynomials defined
by

Uk,j(x) :=

{
−Uk−2j−3(x) if j = 0, 1, . . . , bk−3

2 c
U2j−k+1(x) if j = 1 + bk−3

2 c, . . . , k − 1 ,

Wk,j(x) :=

{
−Uk−2j−2(x) if j = 0, 1, . . . , bk−2

2 c
U2j−k(x) if j = 1 + bk−2

2 c, . . . , k − 1 .

The second order linear ODE fulfilled by the sieved OPS of the second kind
follows now easily.

Theorem 4.3. The monic sieved OPS of the second kind pn(x) = νnB
λ
n(x; k)

satisfies the second order ODE (2.16), where

Jnk+j(x) = Φ(x)Mnk+j(x) ,

Knk+j(x) = Ψ(x)Mnk+j(x)− Φ(x)M ′
nk+j(x) ,

Lnk+j(x) = Nnk+j(x)M ′
nk+j(x) +

(
Ωj(x)−N ′nk+j(x)

)
Mnk+j(x)

(4.30)

for all n ≥ 1 and 0 ≤ j ≤ k− 1, being Mnk+j and Nnk+j given by (4.14), and

Φ(x) := (1− x2)Ûk−1(x) , Ψ(x) := −
(
2xÛk−1(x) + k(2λ+ 1)T̂k(x)

)
,

Ωj(x) = (nk + j + 1)(nk + j + 2 + 2λk)Ûk−1(x)− λk
2 Ûj(x)Ûk−j−3(x) .

Proof : The first two equalities in (4.30) follow immediately from (2.17). To
prove the third equality in (4.30), we only need to take into account the third
equality in (2.17) and noticing that, using basic properties of the Chebyshev
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polynomials, as well as the relations Û 2
m(x) − Ûm+1(x)Ûm−1(x) = 4−m (m =

0, 1, 2, . . .), the equality

a
(j+1)
n Mnk+j(x)Mnk+j+1(x)−Nnk+j(x)

(
Nnk+j(x) + C(x)

)
Φ(x)

= Ωj(x)

holds for every n ∈ N0 and 0 ≤ j ≤ k − 1.

It is worth mentioning that a misprint appeared in the ODE given in [2,
Theorem 3.2], as Professor Bustoz kindly commented to the third author
of the present work during a visited to the Arizona State University at the
1990’s.

5. On sieved ultraspherical OP of the first kind
5.1. Description via a polynomial mapping. Taking for {pn}n≥0 the
monic OPS corresponding to {cλn(·; k)

}
n≥0

, so that

pkn+j+1(x) =
(1 + 2λ)n

2kn+j(λ+ 1)n
cλkn+j+1(x; k) (5.1)

(n = 0, 1, 2, . . . ; j = 0, 1, . . . , k − 1), and using the three-term recurrence
relation for {cλn(·; k)}n≥0 given in [1], we see that the coefficients appearing
in the (block) three-term recurrence relation (2.2) for {pn}n≥0 are given by

b
(j)
n := 0 (0 ≤ j ≤ k − 1) , a

(j)
n := 1

4 (2 ≤ j ≤ k − 1) ,

a(0)
n :=

n

4(n+ λ)
, a(1)

n :=
n+ 2λ

4(n+ λ)

for each n ∈ N0. Hence, for every n ∈ N0 and 0 ≤ j ≤ k − 1, we compute

∆n(2, j;x) = Ûj(x) , ∆n(j + 3, k − 1;x) = Ûk−j−2(x) ,

and so one sees that the hypothesis of Theorem 2.1 are fulfilled, with m = 0
and being the polynomial mapping described by the polynomials

πk(x) := Ûk(x)− 1
4 Ûk−2(x) = T̂k(x) , ηk−1(x) := Ûk−1(x) , θ0(x) ≡ 1 .

(5.2)
Moreover, {qn}n≥0 is the monic OPS characterized by

r0 = rn = 0 , sn = 42−k a(0)
n a

(1)
n−1 =

1

4k
n(n− 1 + 2λ)

(n+ λ)(n− 1 + λ)
(n ∈ N) ,
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meaning that qn is up to an affine change of variables the ultraspherical
polynomial of degree n with parameter λ:

qn(x) =
n!

2kn(λ)n
Cλ
n

(
2k−1x

)
. (5.3)

For λ > −1/2, the orthogonality measure for {cλn(·; k)}n≥0—given in [1]—may
be computed using Theorem 2.2, being absolutely continuous with weight
function

w(x) := (1− x2)λ−
1
2

∣∣Uk−1(x)
∣∣2λ , −1 ≤ x ≤ 1 .

5.2. Classification.

Theorem 5.1. Let {pn}n≥0 be the monic OPS corresponding to the sieved
polynomials {cλn(·; k)}n≥0, given by (5.1), being λ ∈ C \ {−n/2 : n ∈ N} and
k ≥ 3. Let u be the regular functional with respect to which {pn}n≥0 is an
OPS. Then

D(Φu) = Ψu , (5.4)

where Φ and Ψ are polynomials given by

Φ(x) := (1− x2)Ûk−1(x) , Ψ(x) := −k(2λ+ 1)T̂k(x) . (5.5)

Moreover, the corresponding formal Stieltjes series Su(z) fulfils

Φ(z)S ′u(z) = C(z)Su(z) +D(z) , (5.6)

where C and D are polynomials given by

C(z) := zÛk−1(z)− 2kλT̂k(z) , D(z) := −2kλu0Ûk−1(z) . (5.7)

As a consequence, if λ ∈ C\{−n/2 : n ∈ N0} then {cλn(·; k)}n≥0 is a semiclas-
sical OPS of class k− 1. If λ = 0 then {c0

n(·; k)}n≥0 is (up to normalization)
the Chebychev OPS of the first kind, hence it is a classical OPS.

Proof : The case λ = 0 is trivial, so we will assume λ 6= 0. Let vλ be the
regular functional associated with the ultraspherical OPS {Cλ

n}n≥0, and let
v be the regular functional associated with {qn}n≥0 defined by (5.3). The
relation between the corresponding formal Stieltjes series is

Sv(z) = 2k−1Svλ
(
2k−1z

)
.

Moreover,

Φ̃(z)S ′v(z) = C̃(z)Sv(z) + D̃(z) , (5.8)
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where Φ̃(x) := −x2 + 41−k, C̃(x) := −(2λ− 1)x, and D̃(x) := −2λv0. Hence,
by Theorem 2.3,

Φ1(z)S ′u(z) = C1(z)Su(z) +D1(z) , (5.9)

where Φ1, C1, and D1 are given by

Φ1(x) := v0ηk−1(x)Φ̃(πk(x)) ,

C1(x) := v0η
′
k−1(x)Φ̃(πk(x)) + v0ηk−1(x)π′k(x)C̃(πk(x))

D1(x) := u0η
2
k−1(x)π′k(x)D̃(πk(x)) .

Now, taking into account (5.2), and using relations (4.13), after straight-

forward computations and canceling a common factor Û 2
k−1(x), we deduce

Φ(z)S ′u(z) = C(z)Su(z) +D(z) , (5.10)

where Φ, C, and D are given by (5.5) and (5.7). Since Ûk−1(±1) = k(±1)k−1,

T̂k(±1) = (±1)k, and taking into account that λ 6= 0 and Ûk−1 does not share

zeros with T̂k, we see that the polynomials Φ, C, and D are co-prime, hence
the class of u is equal to s = max{degC − 1, degD} = k − 1.

5.3. Structure relation and second order linear ODE. In this section
we derive the structure relation and the second order linear ODE fulfilled by
the monic sieved OPS of the first kind given by (5.1), so that

pn+1(x) = ϑnc
λ
n+1(x; k) , ϑn := (2λ+ 1)bn/kc/

{
2n(λ+ 1)bn/kc}

for each n ∈ N0, and p0(x) ≡ 1.

Theorem 5.2. The monic sieved OPS of the first kind pn(x) = ϑn−1c
λ
n(x; k)

satisfies the structure relation (2.14), where

Φ(x) = (1− x2)Ûk−1(x) ,

Mnk+j(x) = −2(nk + j + λk)Ûk−1(x)

−λk
2

(
Ûj−1(x)Ûk−j−2(x)− Ûj−2(x)Ûk−j−1(x)

)
,

Nnk+j(x) = (nk + j + 2λk)xÛk−1(x)− λkεjÛk−2(x)

+λk
8

(
Ûj−1(x)Ûk−j−3(x)− Ûj−2(x)Ûk−j−2(x)

)
(5.11)

for every n = 0, 1, 2, . . . and 0 ≤ j ≤ k − 1, being εk−1 := 1, ε0 := 0, and
εj := 1

2 for 1 ≤ j ≤ k − 2.
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Proof : Making m = 0 in (2.11) and taking into account (5.2), we obtain

pkn+j(x) = Aj(x)qn+1(T̂k(x)) + 41−ja(1)
n Bj(x)qn(T̂k(x)) (5.12)

where Aj(x) := Ûj−1(x)/Ûk−1(x) and Bj(x) := Ûk−j−1(x)/Ûk−1(x). Taking
derivatives in both sides of (5.12), we obtain

p′kn+j(x) = A′j(x)qn+1(T̂k(x)) + Cj(x)q′n+1(T̂k(x))

+ 41−ja
(1)
n B′j(x)qn(T̂k(x)) +Dj(x)q′n(T̂k(x)) ,

(5.13)

where Cj(x) := Aj(x)T̂ ′k(x) and Dj(x) := 41−ja
(1)
n Bj(x)T̂ ′k(x). Multiplying

both sides of (5.13) by Bj(x) and using (5.12), we deduce

Bj(x)
(
Cj(x)q′n+1(T̂k(x)) +Dj(x)q′n(T̂k(x))

)
= Bj(x)p′nk+j(x)− B′j(x)pnk+j(x)

+
(
Aj(x)B′j(x)−A′j(x)Bj(x)

)
qn+1(T̂k(x)) .

(5.14)

Now, since {qn}n≥0 is a classical OPS, it fulfills the structure relation (see
e.g. [15])

Φ̃(x)q′n(x) = M̃n(x)qn+1(x) + Ñn(x)qn(x) , (5.15)

being Φ̃(x) = 41−k−x2, Ñn(x) = (n+2λ)x, and M̃n(x) = −2(λ+n). Substi-

tuting x by T̂k(x) in (5.15), and then multiplying both sides of the resulting
equation by Bj(x)Dj(x), one obtains a certain equation. Similarly, substitut-

ing x by T̂k(x) in (5.15), and then changing n into n+1 and multiplying both
sides of the resulting equation by Bj(x)Cj(x), we obtain a second equation.
Adding these two equations and using (5.12) and (5.14), we deduce

S1(x)p′nk+j(x) = S2(x)pnk+j(x)+S3(x)p(n+1)k(x)+S4(x)p(n+2)k(x) , (5.16)

where S1, S2, S3, and S4 are polynomials defined by

S1(x) := Bj(x)Φ̃
(
T̂k(x)

)
,

S2(x) := B′j(x)Φ̃
(
T̂k(x)

)
+ Bj(x)T̂ ′k(x)Ñn

(
T̂k(x)

)
,

S3(x) :=
(
A′j(x)Bj(x)−Aj(x)B′j(x)

)
Φ̃
(
T̂k(x)

)
+ Bj(x)

(
Cj(x)Ñn+1

(
T̂k(x)

)
+Dj(x)M̃n

(
T̂k(x)

))
−Aj(x)Bj(x)T̂ ′k(x)Ñn

(
T̂k(x)

)
,

S4(x) := Bj(x)Cj(x)M̃n+1

(
T̂k(x)

)
.

(5.17)
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Taking into account the three-term recurrence relation for {pn}n≥0, we deduce

p(n+2)k(x) =
(
xÛk−1(x)− a(1)

n+1Ûk−2(x)
)
p(n+1)k(x)

−a(0)
n+1Ûk−1(x)p(n+1)k−1(x) ,

pnk+k−i(x) = Ûk−j−i−1(x)pnk+j+1(x)− 1
4Ûk−j−i−2(x)pnk+j(x)

(5.18)

for every n ∈ N0 and 1 ≤ j ≤ k− i−1, i = 0, 1. Substituting (5.18) in (5.16),
we obtain

S1(x)p′nk+j(x) = Nnk+j(x)pnk+j(x) +Mnk+j(x)pnk+j+1(x)

for every n = 0, 1, 2, . . . and 1 ≤ j ≤ k − 2, where

Mnk+j(x) := K1(x)Ûk−j−1(x)−K2(x)Ûk−j−2(x)

Nnk+j(x) := S2(x)− 1
4K1(x)Ûk−j−2(x) + 1

4K2(x)Ûk−j−3(x) ,
(5.19)

being

K1(x) := S3(x) + S4(x)
(
xÛk−1(x)− a(1)

n+1Ûk−2(x)
)
,

K2(x) := S4(x)a
(0)
n+1Ûk−1(x) .

Using some basic properties of Chebyshev polynomials we may verify that,
up to the factor Ûk−j−1(x), the relations

S1(x) = (1− x2)Ûk−1(x)

Mnk+j(x) = −2(nk + j + λk)Ûk−1(x)

−λk
2

(
Ûj−1(x)Ûk−j−2(x)− Ûj−2(x)Ûk−j−1(x)

)
Nnk+j(x) = (nk + j + 2λk)xÛk−1(x)− λk

2 Ûk−2(x)

+λk
8

(
Ûj−1(x)Ûk−j−3(x)− Ûj−2(x)Ûk−j−2(x)

)
(5.20)

hold for every n ∈ N0 and 1 ≤ j ≤ k − 2. Moreover, when j = 0, then using
the relation pnk(x) = qn(T̂k(x)) we may write

p′nk(x) = T̂ ′k(x)q′n(T̂k(x)) . (5.21)

Substituting x by T̂k(x) in (5.15) and multiplying both sides of (5.15) by

T̂ ′k(x) and taking into account (5.21) and (5.18), we obtain, up to the factor

Ûk−1(x),

S1(x)p′kn(x) = Mnk(x)pnk+1(x) +Nnk(x)pnk(x) ,
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where

Mnk(x) := −2k(λ+ n)Ûk−1(x) , Nnk(x) := k(n+ 2λ)xÛk−1(x) . (5.22)

Taking into account (2.15), (5.7), (5.20), and (5.22), and using again some
basic properties of the Chebyshev polynomials, we deduce

Nnk+k−1(x) = 1
x

(
− Φ(x) + 1

4Mnk+k−2(x)− a(0)
n+1M(n+1)k(x)

)
+Nnk+k−2(x)

=
(
nk + k − 1 + 2λk

)
xÛk−1(x)− λkÛk−2(x) .

(5.23)
Finally, taking into account (2.15), (5.7), (5.20), and (5.23), we obtain

xMnk+k−1(x) = −Nnk+k−1(x)−Nnk+k−2(x)− C(x)

= −2(nk + k − 1 + λk)xÛk−1(x) + λk
2 xÛk−3(x)

hence

Mnk+k−1(x) = −2(nk + k − 1 + λk)Ûk−1(x) + λk
2 Ûk−3(x) . (5.24)

Thus the proof is complete.

Remarks 5.1. We can give alternative expressions for the polynomials Mn

and Nn appearing in (5.11). Indeed, taking into account (4.29), we may write

Mnk+j(x) = −2(nk + j + λkδj)Ûk−1(x)− λk
2 Uk,j(x) ,

Nnk+j(x) = (nk + j + 2λk)xÛk−1(x)− λk
2 Ûk−2(x) + λk

2 Vk,j(x) ,

where δj := 1 if 1 ≤ j ≤ k − 1, δ0 := 0, and Uk,j and Vk,j are polynomials
defined by

Uk,j(x) :=

{
41−jÛk−1−2j(x) if j = 0, 1, . . . , bk−1

2 c
−4−k+j+1Û2j−k−1(x) if j = 1 + bk−1

2 c, . . . , k − 1 ,

Vk,j(x) :=

{
4−jÛk−2−2j(x) if j = 0, 1, . . . , bk−2

2 c
−4−k+j+1Û2j−k(x) if j = 1 + bk−2

2 c, . . . , k − 1 .

Theorem 5.3. The monic sieved OPS of the first kind pn(x) = ϑn−1c
λ
n(x; k)

satisfies the second order ODE (2.16), where

Jnk+j(x) = Φ(x)Mnk+j(x) ,

Knk+j(x) = Ψ(x)Mnk+j(x)− Φ(x)M ′
nk+j(x) ,

Lnk+j(x) = Nnk+j(x)M ′
nk+j(x) +

(
Ωj(x)−N ′nk+j(x)

)
Mnk+j(x)

(5.25)
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for all n ≥ 1 and 0 ≤ j ≤ k− 1, being Mnk+j and Nnk+j given by (4.14), and

Φ(x) := (1− x2)Ûk−1(x) , Ψ(x) := −k(2λ+ 1)T̂k(x) ,

Ωj(x) = (nk + j + 1)(nk + j + 2λk)Ûk−1(x) + λk
2 Ûj−1(x)Ûk−j−2(x) .

Proof : The first two equalities in (5.25) follow immediately from (2.17). To
prove the third equality in (5.25), we only need to take into account the third
equality in (2.17) and noticing that, using basic properties of the Chebyshev

polynomials, as well as the relations Û 2
m(x) − Ûm+1(x)Ûm−1(x) = 4−m (m =

0, 1, 2, . . .), the equality

a
(j+1)
n Mnk+j(x)Mnk+j+1(x)−Nnk+j(x)

(
Nnk+j(x) + C(x)

)
Φ(x)

= Ωj(x)

holds for every n ∈ N0 and 0 ≤ j ≤ k − 1.
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3504-510 Viseu, Portugal

E-mail address: mnasce@estv.ipv.pt

J. Petronilho
CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address: josep@mat.uc.pt


	1. Introduction
	2. Background
	3. Sieved ultraspherical polynomials
	4. On sieved ultraspherical OP of the second kind
	4.1. Description via a polynomial mapping
	4.2. Classification
	4.3. Structure relation and second order linear ODE

	5. On sieved ultraspherical OP of the first kind
	5.1. Description via a polynomial mapping
	5.2. Classification
	5.3. Structure relation and second order linear ODE

	References

