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ON LINKS MINIMIZING THE TUNNEL NUMBER
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Abstract: We determine a large class of links, including satellite and hyperbolic
links, for each of which the tunnel number is the minimum possible, the number
of its components minus one, and observe that the rank versus genus conjecture is
valid for this class of links.
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1. Introduction
Given a link L in S3, an unknotting tunnel system for L is a collection of

arcs, properly embedded in the exterior of L, with the exterior of a regular
neighborhood of their union with L being a handlebody. The minimum
cardinality of an unknotting tunnel system for L is referred to as the tunnel
number of L and is denoted by t(L). The purpose of this paper is to study
the tunnel number of a large class of links, which we refer to as band links,
and to prove that these links have the lowest possible tunnel number. That
is, given a link with n components its tunnel number must be at least n− 1,
and we will show that for links in this class that minimum is attained.

We define band links as follows. Consider and embedding H × I in S3,
where H ≡ H×0 is a Heegaard surface of S3. Let K be a link in H× I lying
in H× 0 except near crossings where the overstrand touches H× 1. Suppose
that the projection DK of K onto H separates H into a collection of disks.
The projection DK is a graph with a 4-valent vertex in each crossing of K in
H, where we introduce at least a 2-valent vertex in each arc of the projection.
From DK we construct a new graph DL by replacing each 4-valent vertex of
DK by two pairs of parallel arcs crossing at a square, each 2-valent vertex of
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DK by two arcs crossing in two points and each edge of DK by two parallel
(possibly twisted) arcs connecting to the corresponding endpoints of the arcs
in the replacements of the vertices. A link L with regular projection DL

onto H is called an n-band link over K, where n is the number of connected
components of L. In Figure 1 we have an illustration of this construction of
L from DK .

Figure 1. A graph DK , a constructed graph DL and a corre-
sponding band link L.

Notice that all components of a band link L are unknotted. Moreover,
in the projection DL, each component intersects two other components in
two crossings and at most one component in four crossings. We observe also
that L can be a satellite link, with companion K, or a hyperbolic link, for
instance, when DL is alternating on the 2-sphere (from Corollary 2 of [5]).

In this paper we study the tunnel number of an n-band link L over a
regular projection DK of a generic link K, and its relation with the rank of
the exterior of L, denoted E(L). If the projection DK of K is a simple circle
on a sphere, it is straightforward to observe, as in Section 4, that the tunnel
number of a n-band link L over K is n − 1. In the following theorem we
prove that this is also the case for every regular projection DL of a link L.

Theorem 1.1. The tunnel number of an n-band link exterior is n− 1.
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If we consider the Heegaard genus g(E(L)) of the exterior of L, then it is
well known that g(E(L)) = t(L) + 1. Therefore, Theorem 1.1 states that the
Heegaard genus of a n-band link exterior is n.

Waldhausen [8] asked whether the rank r(M) of M , that is, the minimal
number of generators of π1(M), can be realized geometrically as the genus
of a Heegaard splitting decomposing M into one handlebody and a com-
pression body, that is if r(M) = g(M), for every compact 3-manifold M .
This question became to be known as the Rank versus Genus Conjecture. In
[1] Boileau–Zieschang provided the first counter-examples by showing there
are Seifert manifolds where the rank is strictly smaller than the Heegaard
genus. Later Schultens and Weidman [7] generalized these counter-examples
to graph manifolds. Very recently, Li [4] proved that the conjecture also
doesn’t hold true for hyperbolic 3-manifolds. As far as we know, the conjec-
ture remains open for link exteriors in S3. The first author [2] proved this
conjecture to be true for augmented links. Theorem 1.1 shows that this is
also the case for band links, as stated in the following corollary.

Corollary 1.2. If L is an n-band link, then r
(
E(L)

)
= g

(
E(L)

)
.

In fact, by the “half lives, half dies” theorem ([3], Lemma 3.5) applied to
E(L), we have r

(
E(L)

)
≥ |L|, where |L| denotes the number of components

of L. The corollary now follows simply from Theorem 1.1 and the observation
that

n = |L| ≤ r
(
E(L)

)
≤ g

(
E(L)

)
= n,

Therefore, r
(
E(L)

)
= g

(
E(L)

)
= n.

This paper is organized as follows. In Section 2 we describe a procedure to
determine an unknotting tunnel system for links from a projection diagram.
In Section 3 we present a combinatorial version of this procedure. Finally, in
Section 4 we use this combinatorial procedure to find the tunnel number of
band links. We use the survey [6] by Yoav Moriah as a reference for context
on Heegaard decompositions of knot exteriors.

2.Minimal number of vertical tunnels
Before we proceed we introduce and review some terminology. A stabiliza-

tion of a genus-g Heegaard surface in S3 is a surface of genus g+ 1 obtained
by adding a trivial 1-handle, that is, a handle whose core is parallel to the
surface. A destabilization of a Heegaard surface is a surface obtained from
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the reversed procedure. Note that a surface obtained by (de)stabilization of
a Heegaard surface is also a Heegaard surface.

Let K be a link in S3 with a regular projection DK onto a Heegaard surface
H of S3, such that the complement of DK in H is a collection of disks. Note
that we always have such a property when H is a 2-sphere. We refer to these
disks, together with its boundary edges and vertices, as faces.

We can construct an unknotting tunnel system for K from the crossings of
DK in H. In fact, for each crossing v of DK , consider an arc in S3 connecting
the understrand to the overstrand, of the form v× I, as in Figure 2. We call
such an arc vertical.

Figure 2. A vertical arc on a crossing v of DK .

This collection of vertical arcs, together with K determines a 1-complex ho-
motopically equivalent to DK , which we also denote by DK . As DK separates
the Heegaard surface H into disks, the exterior of DK in S3 is characterized
by two handlebodies connected along 1-handles (with co-core the disks of
H −DK). Hence, the exterior of DK is a handlebody, and the collection of
vertical arcs is an unknotting tunnel system of H.

Instead of adding one vertical arc at each crossing, we want to find the
minimal number of vertical arcs needed to constitute an unknotting tunnel
system. To do this, we will add vertical arcs only at certain crossings and de-
termine if the exterior of the resulting 1-complex is a handlebody, by showing
that the corresponding decomposition of E(K) is connected by a sequence
of (de)stabilizations to the Heegaard decomposition of E(K) obtained by
adding one vertical arc at each crossing.

In this context, we will use the following remark to establish an upper
bound for the minimal number of vertical arcs defining an unknotting tunnel
system of a band link.
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Remark 1. Suppose one starts to add vertical arcs and, at some point,
there is a face f determined by the projection DK such that all but one of
the crossings of f has a vertical arc. Let v represent this crossing. Then,
the vertical arc on the crossing v is trivial with respect to the exterior of K
with the vertical arcs added up to this stage, as it is parallel to the edges and
vertical arcs with respect to f . Hence, if we add the vertical arc at v, which
we refer to as an automatic arc, we have a stabilization of the decomposition
defined by K and the vertical arcs added towards the decomposition defined
by DK . Therefore, we can add or remove the vertical arc at v, without
changing the decomposition defined by the collection of vertical arcs added
being a Heegaard decomposition. When the last vertex v of f is colored
automatically, we also color the face f for notation, as in Figure 3.

Figure 3. Coloring a vertex automatically

3. Percolation on link projections
Let G be an embedded graph in a Heegaard surface H with complement in

H being a collection of disks, which we refer to as faces, as mentioned before.
Consider the following coloring rule (percolation rule) on the set V (G), the
vertex set of G.

3.1. Coloring Rule (Percolation Rule). Vertices will either be manually
colored or automatically colored. At each step s ∈ {0, 1, . . . , k, . . . } some
subset (possibly empty) of vertices is manually colored. A vertex v will be
automatically colored at step s + 1 if it belongs to a face in which all other
vertices have already been colored (either manually or automatically) at some
previous step.

We say a subset V ′ ⊂ V (G) percolates G if manually coloring all vertices
in V ′ implies all remaining vertices of V (G) will be automatically colored at
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some step. A hull set for G is a minimal subset H ⊂ V (G) such that H
percolates G. The hull number for G is the size of a hull set, denoted h(G).

3.2. Relationship between hull number and tunnel number. Let K
be a link with a regular projection DK onto a Heegaard surface H of S3, such
that the complement of DK in H is a collection of disks.

Lemma 3.1. t(K) ≤ h(DK).

Proof : Let V be a hull set of DK .
At each crossing corresponding to a vertex in V we add a vertical arc to K,
and denote this collection of arcs by Va. We proceed by adding a vertical arc
at each crossing corresponding to an automatically colored vertex at each
step of the percolation of V . As V percolates DK , we stop this process only
when all crossings of DK have a vertical arc attached.
At each step of the percolation of V , a vertex w is automatically colored
because it belongs to a face f with all the other vertices already colored
at that step. This translates into having vertical arcs at all crossings of f ,
except at w. From Remark 1, adding a vertical arc at w corresponds to a
stabilization of the decomposition of E(K) determined by the vertical arcs
added up to this step. We add a vertical arc at w and proceed to the next
step, untill all crossings have a vertical arc added.
This process determines a sequence of stabilizations from the decomposition
of E(K) determined by Va, to the decomposition of E(K) determined by
the collection of a vertical arc at each crossing. Following observations from
Section 2, as the collection of vertical arcs at each crossing determines a
Heegaard decomposition, this means that Va is an unknotting tunnel system
for K.

4. Tunnel number of band links
In this section we prove Theorem 1.1. We first prove for a regular projection

DL of a n-band link L, on some Heegaard surface, that we have n−1 ≤ t(L) ≤
h(DL) ≤ n− 1. Then, by using the above percolation on these diagrams, we
show that h(DL) ≤ n − 1, and Theorem 1.1 immediately follows from the
inequalities n− 1 ≤ t(L) ≤ h(DL) ≤ n− 1.

As a warm-up, we look at the case when L is a band over the unknot. Here,
it is fairly easy to see that t(L) = n− 1. In fact, if the components of L are
cyclically labeled C1, C2, . . . , Cn, adding one vertical arc between all pairs of
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consecutive components Ci, Ci+1, for i = 1, . . . , n − 1, yields an unknotting
tunnel system for L. This procedure is illustrated in Figure 4.

Figure 4. Left:1-complex K ′ (tunnels are the bold segments);
Middle: collapse tunnels to vertices; Right: K ′ can be made
planar after a sequence of handle slides.

If we attempt this procedure for a generic band link L, by adding one
vertical arc between all pairs of consecutive components, we see that the
resulting 1-complex has a similar diagram to the knot K. What this means
is that, following this approach, we would need to add another t(K) arcs to
this 1-complex in order to obtain an unknotting tunnel system for L. Instead,
we will follow a different strategy to realize that adding n − 1 vertical arcs
suffices to obtain an unknotting tunnel system for a n-band links, which is
the minimum possible. This is achieved by the above percolation procedure
applied to DL. First we observe the following lemma.

Lemma 4.1. Let DL be a projection of an n-band link. Then h(DL) ≥ n−1.

Proof : We know that the tunnel number of a link L is at least its number of
components minus 1. Combining this with Lemma 3.1, we obtain n − 1 ≤
t(L) ≤ h(DL).

We are now ready to present

Proof of Theorem 1.1: Let L be an n-band link with corresponding projection
DL, as in the definition of band link. We will show that h(DL) ≤ n− 1. The
theorem then follows by considering Lemma 4.1.

First we will deal with the case in which all arcs of DL are untwisted. In
this situation, the projection of each component of L is a simple closed curve
and intersections on the projection are as in Figure 5. We refer to these
simple closed curves by circle components.

There are two types of faces in the projection DL: those which arise from
faces of the projection DK and those which are within a projection of a circle
component of L.
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Figure 5. Left: a crossing of DK ; Right: portion of the band
corresponding to this crossing.

Step 1. Choose a face f0 of DL corresponding to a face of the projection
DK .

In the face f0, manually color all vertices except one. By the coloring rule,
the remaining vertex is automatically colored. Notice that if the face f0 has
m vertices, then there are m circle components making up f0.

Since the projection of every component of L intersects at most one other
component in four crossings, then, by allowing further automatic colorings,
we observe that all faces sharing a vertex with f0 have their remaining vertices
automatically colored. As mentioned in Remark 1, we also color all these
faces having all of their vertices colored, and denote this region by R. These
steps are illustrated in Figure 6.

Figure 6. Left: black vertices are colored; Right: white vertices
are colored automatically and faces sharing a vertex with f0 are
colored.

Step 2. Consider a face f1 of DL, corresponding to a face of DK , adjacent
to R. Assume f1 has m1 vertices, other than the ones in R. Again, since the
projection of every component of L intersects at most one other component in
four crossings, then these vertices are given by intersections of m1 − 1 circle
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components in which vertices have not been colored yet. Manually color
m1 − 1 vertices of f1. Since all vertices in R are already colored, only one
vertex of f1 remains to be colored, and thus it is automatically colored. Color
the face f1, together with all faces within a projection of a circle components
and which share a vertex with f1. We denote the new colored region also by
R.

Step 3. Now we repeat Step 2 inductively, each time to a face of DL

adjacent to R, corresponding to a face of DK .
Eventually all faces of DL will be colored, that is all vertices of DL will be

colored, either automatically or manually. With the above steps we deter-
mined a subset of vertices of DL, the ones which were manually colored, that
percolates DL. Observe also that we manually colored exactly n−1 vertices.
Therefore, h(DL) ≤ n−1. This proves the theorem in the case where all arcs
of DL are untwisted.

For the general case, we just need to observe that all additional vertices
coming from twisting will be colored automatically when we color one cross-
ing between two different components.
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