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COMPLETE CONTROLLABILITY

OF THE KINEMATIC EQUATIONS DESCRIBING

PURE ROLLING OF GRASSMANNIANS

F. PINA AND F. SILVA LEITE

Abstract: This paper studies the controllability properties of certain nonholo-
nomic control systems, describing the rolling motion of Grassmann manifolds over
the affine tangent space at a point. The control functions correspond to the free-
dom of choosing the rolling curve. The nonholonomic constraints are imposed by
the non-slip and non-twist conditions on the rolling. These systems are proved to
be controllable in some submanifold of the group of isometries of the space where
the two rolling manifolds are embedded. The constructive proof of controllability
is also partially addressed.
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1. Introduction

The present paper addresses a mathematical problem, the controllability
properties of a rolling system, but is motivated by the various applications of
the Grassmann manifold. These manifolds play an important role in many
engineering applications that deal with sets of images, such as face recog-
nition problems under varying illumination conditions, or reconstruction of
planar scenes from multiple views (see, for instance, [ST16] for several in-
teresting problems about this thematic). Rolling motions of Riemannian
manifolds have lately attracted the attention outside the mathematical com-
munity also due to its importance in robotics and computer vision. One
recent interesting application concerning the use of rolling manifolds for rec-
ognizing human actions from 3D skeletal data is nicely treated in [VC16].
The basis for our work is the article [HL07], where the kinematic equations

of rolling the grassmann manifold over its affine tangent space at a point have
been derived. Section 2 contains an overview of those results. Our main
contribution is contained in Section 3, where we prove that the kinematic
equations, which can be seen as a nonlinear nonholonomic control system
evolving on a certain Lie group, is controllable. The question about how to
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control the system is partially answered in Section 4, by showing how the
forbidden motion of twisting can be accomplished by rolling without breaking
the nonholonomic constraints of non-slip ands non-twist.

2. Revisiting Grassmannians

2.1. The geometry of Grassmann manifolds. Grassmann manifolds (or
Grassmannians), hereafter denoted by Gk,n, are smooth manifolds consisting
of all k-dimensional subspaces of Rn (0 < k < n). Its dimension is k(n− k).
We use a matrix representation of Gk,n in which each point is an n × n
projection matrix. More precisely,

Gk,n := {P ∈ s(n) : P 2 = P, rank(P ) = k}, (1)

where s(n) denotes de vector space of all n×n symmetric matrices. For more
details concerning this representation we refer to [HM94].
These matrices are isospectral, with eigenvalues 1 (of multiplicity k) and 0

(of multiplicity n − k). So, for each P ∈ Gk,n, there exists Θ ∈ SO(n) such
that P = Θ⊤

[
Ik 0
0 0

]
Θ.

Consider s(n) equipped with the metric induced by the Frobenius norm
〈A,B〉 := tr(AB), so that Gk,n is a Riemannian manifold embedded in
(s(n), 〈., .〉). The tangent space at any point P ∈ Gk,n is given by

TPGk,n = {S ∈ s(n) : PS + SP = S.} (2)

Another useful representation of the tangent space is the following, where
so(n) is the set of all skew symmetric matrices, and [., .] denotes the commu-
tator.

TPGk,n = {[Ω, P ] : Ω ∈ so(n) and PΩ + ΩP = Ω}. (3)

With respect to the above metric, the normal space at a point P ∈ Gk,n is
defined as

T⊥
P Gk,n := {N ∈ s(n) : tr(NV ) = 0, ∀V ∈ TPGk,n}

= {S − [P, [P, S]], S ∈ s(n)}.
(4)

In particular, for the point P0 =
[
Ik 0
0 0

]
, elements in TP0

Gk,n and in T⊥
P0
Gk,n

are respectively represented by matrices with the following structure
[
0 Z
Z⊤ 0

]

and

[
S1 0
0 S2

]

, (5)

where Z is any real k × (n− k) matrix, S1 ∈ s(k) and S2 ∈ s(n− k).
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2.2. Rolling Grassmann over the affine tangent space at a point.

The rolling motion of a manifold M1 over another manifold M0 of the same
dimension, both isometrically embedded in a higher dimensional Riemannian
manifold M , is described by the action of the group of isometries of the
embedding space. For the sake of completeness, we recall here the formal
definition of rolling map. This definition is adapted from that given in [S97].
Depending on the context, there are other variations of this definition in the
literature, for instance in [MGML12] and [HML08].

Definition 2.1. Let M1 and M0 be two n-dimensional connected manifolds
isometrically embedded in a higher dimensional complete Riemannian mani-
fold M and let G be the connected component of the group of isometries of M
that contains the identity. A smooth rolling map of M1 over M0, without slip
and without twist, is a smooth curve χ : [0, τ ] → G, satisfying the following
three properties, for all t ∈ [0, τ ]:

(1) Rolling conditions:

There exists a smooth curve α1 : [0, τ ] → M1, such that

(a) χ(t)α1(t) ∈ M0;
(b) Tχ(t)α1(t) χ(t)M1 = Tχ(t)α1(t)M0.

The curve α1 is called the rolling curve and the curve α0 : [0, τ ] → M0,
defined by α0(t) := χ(t)α1(t), is called the development of α1 on M0.

(2) No-slip condition:
(
χ̇(t)χ(t)−1

)
α0(t) = 0. (6)

(3) No-twist conditions:
(a) (Tangential part)

(
χ̇(t)χ(t)−1

)

∗
Tα0(t)M0 ⊂ (Tα0(t)M0)

⊥, (7)

(b) (Normal part)
(
χ̇(t)χ(t)−1

)

∗
(Tα0(t)M0)

⊥ ⊂ Tα0(t)M0. (8)

�

We note that χ̇(t)χ(t)−1 is a mapping from M to TM defined by:

(
χ̇(t)χ(t)−1

)
(p) :=

d

dσ

∣
∣
σ=t

[
(χ(σ)

(
χ(t)−1) (p)

)]
,
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and
(
χ̇(t)χ(t)−1

)

∗
denotes its differential map. The previous definition can

be adjusted to piecewise-smooth rolling maps and rolling curves, simply re-
placing “for all t” by “for almost all t”. We use the term pure rolling for
rolling motions subject to the constraints of no-slip and no-twist.

Rolling motions of Grassmann manifolds have been studied in [HL07] and
we refer to this paper for details that are not included here. In which concerns
the Grassmann manifold rolling over the affine tangent space at a point P0,

M1 = Gk,n, M0 = T aff
P0
Gk,n := P0 + TP0

Gk,n, M = s(n),

and the isometry group of M is the semi-direct product

G = SO(n)⋉ s(n).

Elements in G are represented by pairs (Θ, X), and the action of G on s(n)
is defined by (Θ, X)S = ΘSΘ⊤ +X.
Assume, without loss of generality, that P0 =

[
Ik 0
0 0

]
. Notice that Gk,n ∩

T aff
P0
Gk,n = {P0}. A rolling map consists of a curve in G whose velocity

vector field is restricted to a certain distribution due to the nonholonomic
constraints of no-slip and no-twist. This distribution caracterizes the kine-
matic equations of the rolling motion. The following result has been derived
in [HL07] and will be the starting point for the main results in the next
section.

Theorem 2.1 ([HL07]). If (Θ, X) is the solution of the following coupled
system of differential equations (the kinematic equations)







Θ̇(t) = Θ(t)

[
0 −U(t)

U⊤(t) 0

]

Ẋ(t) =

[
0 U(t)

U⊤(t) 0

] (9)

with t 7→ U(t) ∈ R
k×(n−k), and satisfying (Θ(0), X(0)) = (In, 0n), then t 7→

χ(t) = (Θ⊤(t), X(t)) ∈ G is a rolling map along the curve t 7→ α1(t) =
Θ(t)P0Θ

⊤(t) ∈ Gk,n, with development curve t 7→ α0(t) = P0 + X(t) ∈

T aff
P0
Gk,n.

It is clear that the choice of the function U completely determines the
rolling curve (or equivalently its development, since α0(t) = χ(t)α1(t)). So,
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the kinematic equations (9) may be seen as a control system, with control
function U , evolving on the Lie group G = SO(n) × V , where V = TP0

Gk,n

is an additive Lie group. A natural question to ask is whether or not this
system is controllable. The next section addresses this issue, following a
procedure that has been used to prove controllability of the rolling sphere in
[J97] and [Z05].

3. Controllability of the kinematic equations

In the language of geometric control theory, the kinematic equations (9)
form a sub-Riemannian control system without drift, evolving on the con-
nected Lie group G = SO(n) × V , where V = TP0

Gk,n. The Lie algebra
of this group is L(G) = so(n) ⊕ V , equipped with the Lie bracket which is
the commutator in the first component and the trivial bracket in the second
component of the direct sum. Controllability means that every two points in
G can be joined by trajectories of the system in finite time.
In which concerns proving controllability of the kinematic equations, the

first thing that needs to be checked is the algebraic property, known in the
literature as the bracket generating property. This is a necessary condition
for controllability but, in general, it is not sufficient. We refer to [JS72] and
[J97] for details concerning controllability of systems evolving on Lie groups.
However, in the present situation, we can use a pioneer result about control
systems on Lie groups which guarantees that, under some conditions, the
bracket generating property is equivalent to controllability. The following is
a paraphrase of Theorem 7.1 in [JS72].

Theorem 3.1. A left-invariant control system without drift, evolving on a
connected Lie group G is controllable if and only if the control vector fields
generate the Lie algebra of G, i.e, satisfy the bracket generating property.

It is not clear from the kinematic equations above that we are in the pres-
ence of a control system that fits the conditions of this theorem, namely that
it is a left-invariant control system. To convince the readers that this is the
case, we rewrite (9) in the form

Ż(t) = Z(t)

(
r∑

i=1

ui(t)Wi

)

︸ ︷︷ ︸

W (t)

, Z ∈ G, Wi ∈ L(G),
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where r = n(n− k).
For that, first define

A(t) :=

[
0 −U(t)

U⊤(t) 0

]

and B(t) :=

[
0 U(t)

U⊤(t) 0

]

,

so that the kinematic equations are written in the form
{

Θ̇(t) = Θ(t)A(t)

Ẋ(t) = B(t)
(10)

Now, define Z in terms of Θ and X, and W in terms of A and B, as block
diagonal matrices:

Z := diag

(

Θ,

[
In X
0n In

])

,

W := diag

(

A,

[
0n B
0n 0n

])

.

(11)

With these identifications, the kinematic equations (9) can be written as

Ż(t) = Z(t)W (t), (12)

which is a left-invariant control system without drift, evolving on the con-
nected Lie group G = SO(n) × V . So, according to Theorem 3.1, what
remains to be proved is that the control vector fields generate the Lie alge-
bra of G. To do this without getting too wired notations, we work with the
first representation of the kinematic equations, i.e, with equations (9).
Let Eij denote the square matrix with entry (i, j) equal to 1 and all other

entries equal to 0. Define Aij := Eij − Eji and Bij := Eij + Eji. To simplify
notations, whenever one of the two indices is the sum of two integers we put
a comma between the indices (for instance, Ai(k+l) will be written as Ai,k+l).
With these notations, a canonical basis for the Lie algebra L(G) is defined
as:

{(Aij, 0), 1 ≤ i < j ≤ n} ∪ {(0, Bi,k+j), i = 1, · · · k; j = 1, · · ·n− k}. (13)

The left-invariant control vector fields in (9) can be identified with the fol-
lowing elements in L(G):

{(Ai,k+j, Bi,k+j), i = 1, · · · k; j = 1, · · ·n− k}. (14)
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Note that dim(L(G)) = k(n − k) + n(n − 1)/2, while the system has only
k(n − k) control functions, which are the entries of the matrix function U .
So, we are in the presence of an underactuated control system. The following
commutator properties, where δij denotes the Kronecker delta (which is 1 if
i = j and 0 if i 6= j), will be important:

[Aij, Afl] = δilAjf + δjfAil − δifAjl − δjlAif . (15)

In our situation, to prove that the kinematic equations (9) are controllable
reduces to showing that every element in the canonical basis (13) can be
written as linear combinations of the k(n − k) control vector fields in (14)
and their Lie brackets.

Theorem 3.2. The control vector fields in (9) are bracket generating, except
when k(n− k) = 1.

Proof : It is enough to show that every element in the canonical basis (13) can
be written as linear combinations of the k(n− k) elements in (14) and their
Lie brackets. Recall that if (Y1, Z1) and (Y2, Z2) belong to L(G) = so(n)⊕V ,
then

[(Y1, Z1), (Y2, Z2)]L(G) = ([Y1, Y2]so(n), 0). (16)

Using (15) and (16), we show that all the basis elements can be obtained
by, at most, second order brackets of elements in (14).
First, we generate basis elements of the form (Aij, 0) and (Ai,k+j, 0):

For 1 ≤ i < j ≤ k,

(Aij, 0) = − [(Ai,k+l, Bi,k+l), (Aj,k+l, Bj,k+l)] ;
(17)

For 1 ≤ i, j ≤ n− k,

(Ak+i,k+j, 0) = [(Am,k+j, Bm,k+j), (Am,k+i, Bm,k+i)] .
(18)

Second, we generate basis elements of the form (Ai,k+j, 0) using elements
from (14) and from (17):

For i = 1, · · · , k; j = 1, · · · , n− k,

(Ai,k+j, 0) = [(Ail, 0), (Al,k+j, Bl,k+j)] .
(19)
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Finally, we generate elements of the form (0, Bi,k+j) using elements from (14)
and from (19):

For i = 1, · · · , k; j = 1, · · · , n− k,

(0, Bi,k+j) = (Ai,k+j, Bi,k+j)− (Ai,k+j, 0).
(20)

This completes the decoupling and proves the statement. Notice that we
have to exclude the situation when k(n− k) = 1, or equivalently k = 1 and
n = 2, since in this case dim(L(G)) = 2 and there is only one control vector
field that can’t generate a 2-dimensional Lie algebra.

Corollary 3.3. Whenever k(n − k) 6= 1, the control system (9), describing
the pure rolling motions of the Grassmann manifold Gk,n over the affine
tangent space at the point P0, is controllable in G = SO(n)× TP0

Gk,n.

4. How to generate the forbidden motions

Due to the nonholonomic constraints, there are some motions resulting
from the action of G on Gk,n that are forbidden. These are the slips and the
twists that we define next.

Definition 4.1. A slip is any motion of Gk,n that results from the action of
elements in G of the form (In, X), where X ∈ TP0

Gk,n. That is, a slip is a
pure translation (in the embedding space) by the vector X.

Definition 4.2. A twist is any motion that results from the action of ele-
ments in G that keep P0 invariant.

Remark 4.1. Notice that for (Θ, X) to keep P0 invariant we must have

ΘP0Θ
⊤+X = P0, which implies that P0 −X ∈ Gk,n ∩T aff

P0
Gk,n. But the only

point that belongs to this intersection is P0, so X = 0. Moreover, we must
have ΘP0Θ

⊤ = P0, that is, Θ belongs to the isotropy subgroup of SO(n) at
P0, which is defined as

K := {Θ ∈ SO(n), such that ΘP0Θ
⊤ = P0}.

We conclude that twists are generated by elements in G of the form (Θ, 0),
with Θ ∈ K. Also notice that elements in K have the following structure:

K =

{

Θ =

[
Θ1 0
0 Θ2

]

, Θ1 ∈ SO(k), Θ2 ∈ SO(n− k)

}

.
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Controllability of the kinematic equations also means that the forbidden
motions (slips and twists) can be performed using admissible motions only,
that is, by rolling without twisting or slipping. So, a natural question to ask
at this point is: how can we generate the forbidden motions?
The generation of a twist using only admissible motions appears to be

much simpler than the generation of a slip. But, in both cases, and similarly
to what happens for the rolling sphere, Cartan decompositions of the Lie
algebra so(n) and corresponding decompositions of SO(n) seem to play a
crucial role to address these problems. We are inspired by the work [KHL06]
to generate forbidden motions.

4.1. How to generate twists. It is known that any element in SO(n) can
be written as a finite product of Givens rotations, which are elements of the
form eτAij , τ ∈ R (see, for instance, [KHL06] for some details). So, every
twist can also be decomposed as a finite product of elements of the form

[
eτ1Aij 0
0 eτ2Ak+l,k+m

]

, (21)

where 1 ≤ i < j ≤ k and 1 ≤ l < m ≤ n− k.
In order to generate a twist out of admissible motions it is enough to show

that each one of the block diagonal elements in (21) can be decomposed into
products of Givens rotations generated by elements of the form Ar,k+s, for
r = 1, · · · , k and s = 1, · · · , n − k, so that the sum of all angles of rotation
add up to zero. Note that these are the elements in the Lie algebra of SO(n)
related to the control vector fields.
In order to show that this is indeed possible, we first prove the following

result.

Proposition 4.1. Let A,B and C be any three square matrices of the same
arbitrary order that satisfy the following commuting relations:

[A,B] = C and [A,C] = −B. (22)

Then, for any real parameter τ ,

eτC = e(π/2)AeτBe−(π/2)A

= e−(π/2)A e−τB e(π/2)A,
(23)
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and, consequently,

eτC = e(π/2)A e(τ/2)B e−πA e−(τ/2)B e(π/2)A. (24)

Proof : The proof of the identities (24) is based on the commuting relations
above and on properties of the exponential mapping, including the Campbell-
Hausdorff formula

etAB e−tA = etadA B =
+∞∑

i=0

ti

i!
adiAB,

where adA is the adjoint operator defined by adAB := [A,B], adiAB :=
adi−1

A (adAB). Indeed, in this case,

etAB e−tA = B cos t+ C sin t,

so, choosing t = ±π/2, we get

C = e±(π/2)A (±B) e∓(π/2)A,

which implies
eτC = e±(π/2)A e±τB e∓(π/2)A.

The identity (24) is obtained from the previous, with a convenient choice of
the signals, as follows.

eτC = e(τ/2)C e(τ/2)C

= e(π/2)A e(τ/2)B e−πA e−(τ/2)B e(π/2)A.

Corollary 4.2. The following identities hold:

a) For 1 ≤ i < j ≤ k, l ∈ {1, · · · , n− k} and τ1 ∈ R,

eτ1Aij = e(π/2)Aj,k+l e(τ1/2)Ai,k+l e−πAj,k+l

e−(τ1/2)Ai,k+l e(π/2)Aj,k+l.
(25)

b) For 1 ≤ l < m ≤ n− k, i ∈ {1, · · · , k} and τ2 ∈ R,

eτ2Ak+l,k+m = e(π/2)Ai,k+m e(τ2/2)Ai,k+l e−πAi,k+m

e−(τ2/2)Ai,k+l e(π/2)Ai,k+m .
(26)

Proof : This is an immediate consequence of the fact that the triples

{Aij, Aj,k+l, Ai,k+l} and {Ak+l,k+m, Ai,k+m, Ai,k+l}

satisfy the commuting relations (22), as the triple {A,B, C} does.
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4.2. How to generate slips. A complete description of a slip in terms
of the admissible motions is still under investigation. We expect to obtain
concrete results soon, at least for small dimensions.

5. Conclusion

We proved that the kinematic equations that describe the pure rolling
motion of the Grassmann manifold Gk,n (with k(n− k) 6= 1) over the affine
tangent space at a point, is controllable in

G = SO(n)× TP0
Gk,n.

This is the counterpart of a result about controllability of the rolling n-sphere
that can be found for instance in [J97] and [Z05]. We have also shown how
the forbidden motions of twisting can be generated just by rolling without
twisting or slipping.
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