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1.Introduction

Let
�

pn

	
n∈N be a sequence of orthonormal polynomials with respect to a

probability measure, µ, supported on an infinite subset of the real line. It is
well known that

�
pn

	
n∈N satisfies a three term recurrence relation

x pn(x) = an+1 pn+1(x)+ bn pn(x)+ an pn−1(x), n ≥ 0 ,

with initial conditions p0(x) = 1, p−1(x) = 0, where
�

an

�
n∈N and
�

bn

�
n∈N are

sequences of real numbers with an 6= 0. If we assume that an → a 6= 0 and
bn→ b, then Nevai [9] proved that the convergence

lim
n→∞

pn(z)

pn−1(z)
=

z− b+
p
(z− b)2− 4a2

2a
, z ∈ C \ supp (u) , (1)

holds uniformly on compact subsets of C \ supp (µ).
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The functions of second kind,
�
qn

	
n∈N , defined as

qn(z) =

∫
pn(x)

z− x
dµ(x) , n ∈ N , z ∈ C \ supp (u) ,

satisfy the same three term recurrence relation as
�

pn

	
n∈N , but with initial

conditions q−1(z) = 1
�
a0, q0(z) =
∫

dµ(x)
�
(z− x) .

By the Poincaré’s theorem for difference equations [11] it is possible con-
clude that

lim
n→∞

qn(z)

qn−1(z)
=

z− b−
p
(z− b)2− 4a2

2a
, z ∈ C \ supp (u) , (2)

uniformly on compact subsets of C\ supp (µ). From this, Van Assche [14] (see
also [12]) showed that

lim
n→∞

pn(z)qn(z) =
1

p
(z− b)2− 4a2

, z ∈ C \ supp (u) , (3)

and the convergence holds uniformly on compact subsets of C \ supp (u) .
Now, taking into account [6], we consider a positive definite N × N matrix

of measures and its corresponding sequence of matrix orthonormal polynomi-
als
�

Pn

	
n∈N satisfying a recurrence relation

x Pn(x) = An+1 Pn+1(x) + Bn Pn(x) + A⊤
n

Pn−1 , n≥ 0 ,

with initial conditions P0(x) = IN , P−1(x) = 000, where, An, are nonsingular
matrices and Bn are Hermitian matrices; then the outer ratio asymptotics of
two consecutive polynomials belonging to the matrix Nevai class, i.e. if An→ A

and Bn → B with A a nonsingular matrix, then
�

Pn−1 P−1
n

A−1
n

	
n∈N uniformly

converges on compact subsets ofC\Γ(0) to
∫

dWA,B(y)
�
(x − y), where Γ(0) will

be defined later, cf. (9), and WA,B is the matrix weight for the Chebyshev matrix
polynomials (cf. [5]). A more general case was studied in [4, Theorem 4] for
matrix biorthogonal polynomials (cf. also [2]).

In the present contribution we are interested to analyze the analogous re-
sults in the matrix biorthogonal case (cf. [1] for a fresh introduction on matrix
biorthogonal polynomials) of those given in (2) and (3).

Observe that in this matrix scenario the Poincaré’s theorem is no longer
valid. The answers to these problems are given as Corollaries of the main
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result of this paper (cf. Theorem 6). Here we present the result for matrices
of linear functionals (and biorthogonal polynomials).

The structure of this manuscript is as follows. In Section 2, we exhibit the
basic theory of linear difference equations on the noncommutative ring of ma-
trices. In Section 3, we introduce the concept of matrix of linear functionals
and its associated families of matrix biorthogonal polynomials. Recall that the
families of biorthogonal polynomials are solutions of a second order linear
difference equation but these are no the unique ones. With this background,
in Section 4, we present results concerning the independence of solutions for
linear difference equations with matrix coefficients, as well as an explicit rep-
resentation for these solutions. In Section 5, we study the outer ratio asymp-
totics for the second kind matrix functions (see Theorem 6) generalizing for
the matrix case the results given in (2) and (3).

2.Linear difference equations on the ring of matrices

First of all we will fix some notation. Let R and C be the set of complex
and real numbers, respectively, and denote by CN×N (respectively, RN×N) the
linear space of N × N matrices with complex entries (respectively, the linear
space of N × N matrices with real entries).

For an arbitrary finite or infinite matrix A , the matrix A⊤ is its transpose. The
matrix 000 will be understand as the null matrix of size N × N .

In the sequel, we will use the definition of quasideterminants coming from
the last corner of the block matrix to obtain connection formulas between
some families of orthogonal polynomials. They constitute a generalization of
the determinants when the entries of the matrix belong to a noncommutative
ring, and they share several properties with them.

Let A ∈ CM×M , B ∈ CM×N , C ∈ CN×M and D ∈ CN×N , with A a nonsingular

matrix. For the 2 × 2 block matrix

�
A B

C D

�
, the last quasideterminants is

defined by

Θ∗

�
A B

C D

�
:= D− CA−1B .

Notice that the last quasideterminant is just the Schur complement of the
block A .
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Proposition 1. Given the block matrix,

�
A B

C D

�
, where A, B, C, and D are ma-

trices of size N × N, then:

1. det

�
A B

C D

�
= det

�
−C −D

A B

�
.

2. If A is nonsingular then det

�
A B

C D

�
= det (A) det (D− C A−1B) .

3. If A and D− C A−1B are nonsingular matrices, then

�
A B

C D

�−1

=

�
A−1+ A−1B (D− C A−1B)−1C A−1 −A−1B (D− C A−1B)−1

−(D− C A−1B)−1C A−1 (D− C A−1B)−1

�
.

Recall that if R is a ring, we say that a left module over R is a set M together
with two operations

⊕ : M ×M → M and ⊙ : R×M → M ,

such that for m, n ∈ M and a, b ∈ R we have:
1. (M ,⊕) is an Abelian group.
2. (a⊕ b)⊙m= (a⊙m)⊕ (b⊙m) and a⊙ (m⊕ n) = (a⊙m)⊕ (a⊙ n).
3. (a⊙ b)⊙m = a⊙ (b⊙m).

In a similar way, one defines a right module on R. If M is a left and right
module over R, then M is said to be a bimodule (cf. [10, 13]).

The module M is said to be a free left module (respectively, right module)
over R if M admits a basis, that is, there exists a subset S of M such that S is
not empty, S generates M , i.e. M = span (S) and S is linearly independent.

Recall that for matrices Ak ∈ C
N×N , 0 ¶ k ¶ n, with det (An) 6= 0, the matrix

P(x) = An xn+An−1 xn−1+ · · ·+A1 x +A0 is said to be a matrix polynomial of
degree n. In particular, if An = IN , i.e. An is the identity N×N matrix, then the
polynomial is said to be monic. The set of matrix polynomials with coefficients
in CN×N will be denoted by CN×N[x].

Observe that CN×N[x] with the usual sum and product for matrices is a
free bimodule and, in particular, a left module, on the ring CN×N with ba-
sis
�

xnIN

	
n∈N . Important submodules of CN×N[x] are the sets CN×N

n
[x] of ma-

trix polynomials of degree less than or equal to n with the basis
�

IN , . . . , xnIN

	

of cardinality n+ 1.
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The complex number, x0, is said to be a zero of P if det P(x0) = 0. Clearly,
as a consequence, we have that P has at most n N zeros.

Now, we consider a sequence of matrices
�
An

�
n∈N in CN×N[x] and take the

following k-th order difference equation

yn+k + An+k−1 yn+k−1+ · · ·+ An yn = 0, n ∈ N , (4)

with initial conditions y0 = c0, . . . , yk−1 = ck−1 , in CN×N[x]. We denote by�
yn(c)
�

n∈N , which belong to CN×N[x], the solution of (4) with the initial
condition c =
�
c0, c1, . . . , ck−1

�
.

Proposition 2. The equation (4) with initial condition c has a unique solution.

Proof : It is clear from the fact that given an initial condition c, yn(c) is com-
pletely determined.

Now, we introduce the operator L as follows

L yn =

k∑

i=0

An+k−i yn+k−i with An+k = IN .

Observe that if
�

yn

�
n∈N is a solution of (4), then L yn = 000. It is easy verify

that the operator L is a right linear operator, i.e.

L (ynα+ znβ) = (L yn)α+ (L zn)β , α,β ∈ CN×N[x] .

We will denote by S the set of solutions of (4).
Notice that if
�

yn

�
n∈N and
�
zn

�
n∈N are solutions of (4), then since the oper-

ator L is right linear, we have ynα+ znβ is also a solution of (4).
Moreover, it is clear that S is an Abelian group under addition and since

yn (α+β) = ynα+ ynβ and (ynα)β = yn (αβ) ,

then we can conclude that S is also a right module over the noncommutative
ring CN×N[x].

Proposition 3. Let
�

yn(e0)
�

n∈N ,
�

yn(e1)
�

n∈N , . . . ,
�

yn(ek−1)
�

n∈N be the solu-

tion of (4) with the initial conditions

e0 = (IN , 0, . . . , 0), e1 = (0, IN , . . . , 0), . . . , ek−1 = (0, 0, . . . , IN) .

Given a solution of (4),
�

yn(c)
�

n∈N , with the set of initial conditions given by

c =
�
c0 · · · ck−1

�
, then
�

yn(c)
�

n∈N can be expressed as a linear combination of�
yn(ei)
�

n∈N , i = 0, . . . , k− 1 .
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Proof : Let zn =
∑k−1

i=0 yn(ei) ci . Since S is a right module on CN×N[x], then∑k−1
i=0 yn(ei) ci ∈ S . Moreover, observe that zi = ci, for i = 0, . . . , k − 1 . The

above implies that
�
zn

�
n∈N is a solution of (4) with initial condition c, but

from Proposition 2, zn = yn for every n ∈ N .

Given a set of functions
�

fi,n

	
n∈N , i = 0, . . . , k− 1, fi,n : N→ CN×N[x] . The

set of functions
�

fi,n

	
n∈N , i = 0, . . . , k−1 , are said to be linearly independent if

for all n ∈ N ,

k−1∑

i=0

fi,nαi = 000 , αi ∈ CN×N[x], implies αi = 000 . (5)

Corollary 1. The set of solutions
��

yn(ei)
�

n∈N : i = 0, . . . , k−1
	

is a basis for S ,

or equivalently, S is a free right module.

Proof : This fact follows from Proposition 3.

Given a set of functions
�

fi,n

	
n∈N , i = 0, . . . , k−1, we define the block Caso-

rati matrix as

W ( f0,n, . . . , fk−1,n) =




f0,n · · · fk−1,n
... . . . ...

f0,n+k−1 · · · fk−1,n+k−1


 .

Theorem 1. A sufficient condition for the set of functions
�

fi,n

	
n∈N , i = 0, . . . , k−

1 be linearly independent is that there exists n̂ ∈ N such that

det W ( f0,n̂, . . . , fk−1,n̂) 6= 0 .

Proof : If (5) holds for some n̂ ∈ N , then




000
...
000


 =




f0,n̂ · · · fk−1,n̂
... . . . ...

f0,n̂+k−1 · · · fk−1,n̂+k−1






α1
...
αk


 .

The above system has a unique solution if and only if W ( f1,n̂, . . . , fk,n̂) is a
nonsingular matrix (see [8]).
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3.Matrix biorthogonal polynomials

A sesquilinear form on the bimodule CN×N[x], with real variable, is a map

〈·, ·〉 : CN×N[x]×CN×N[x]→ CN×N ,

such that for any triple P,Q, R ∈ CN×N[x] of matrix polynomials we have
for all A, B ∈ CN×N :

1. 〈A P(x) + B Q(x), R(x)〉 = A〈P(x), R(x)〉+ B 〈Q(x), R(x)〉;
2. 〈P(x), AQ(x)+ B R(x)〉 = 〈P(x),Q(x)〉A⊤+ 〈P(x), R(x)〉B⊤.

If 〈P(t),Q(t)〉 = 〈Q(t), P(t)〉⊤, 〈·, ·〉 is called a symmetric sesquilinear form.
Given a matrix of linear functionals, i.e.

u=




u1,1 · · · u1,p
... . . . ...

up,1 · · · up,p


 ,

where ui, j belong to the the dual space of C[x] , we define its associated
sesquilinear form 〈P,Q〉u as follows

�
〈P,Q〉u
�

i, j :=
p∑

k,l=1

¬
uk,l , Pi,k(x)Q j,l(x)

¶
.

In this case the support is defined as supp (u) :=
⋃p

k,l=1 supp (uk,l) .
An important property of the sesquilinear form defined in terms of a matrix

of linear functional is that 〈x P(x),Q(x)〉 = 〈P(x), x Q(x)〉.
Let
�

Vn

	
n∈N and
�

Gn

	
n∈N be two sequences of matrix polynomials satisfying


Vn(x), Gm(x)
�

u = IN δn,m , n, m ∈ N .

The sequences of matrix polynomials
�

Vn

	
n∈N ,
�

Gn

	
n∈N are said to be biorthog-

onal with respect to u .
It is well known, cf. for instance [3], that for the sequences of matrix

polynomials
�

Vn

	
n∈N and
�

Gn

	
n∈N there exist sequences of matrices

�
An

�
n∈N ,�

Bn

�
n∈N , and
�
Cn

�
n∈N , with An a lower triangular matrix and Cn a upper tri-

angular matrix, both nonsingular for n = 0, 1, 2, . . ., such that

x Vn(x) = An Vn+1(x) + Bn Vn(x)+ Cn Vn−1(x) , (6)

x G⊤
n
(x) = G⊤

n+1(x)Cn+1+ G⊤
n
(x)Bn+ G⊤

n−1(x)An−1 , (7)

with initial conditions V0(x) = G⊤0 (x) = IN and V−1(x) = G⊤
−1(x) = 000.
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Observe that from definition, C0 = IN . In the same way A−1 = IN . Moreover,
the converse is also true, i.e. if we have two sequences of matrix polynomials�

Vn

	
n∈N and
�

Gn

	
n∈N satisfying (6) and (7), respectively, then there exists a

matrix of linear functionals u, with respect to they are biorthogonal.
Now, from the sequences of matrices

�
An

�
n∈N ,
�
Bn

�
n∈N , and
�
Cn

�
n∈N with

A0 = IN , one defines for each n ∈ N the k-th associated polynomials
�

V (k)
n

	
n∈N

and
�

G(k)
n

	
n∈N by the recurrence formula, for n ∈ N ,

x V (k)
n
(x) = An+k V

(k)

n+1(x) + Bn+k V (k)
n
(x)+ Cn+k V

(k)

n−1(x) , (8)

x G(k)⊤
n
(x) = G

(k)⊤

n+1 (x)Cn+k+1+ G(k)⊤
n
(x)Bn+k+ G

(k)⊤

n−1 (x)An+k−1 ,

with initial conditions V
(k)

−1 (x) = 0 , V
(k)

0 (x) = IN and G
(k)

−1(x) = 0 , G
(k)

0 (x) =

IN .
In [4] is proved that for every n ∈ N , V (k)

n
(x) and G(k)

n
(x) have the same

zeros. Moreover, taking the N -block Jacobi matrix associated with the recur-
rence relation (8), i.e.

J (k) =




Bk Ak 000

Ck+1 Bk+1 Ak+1
. . .

000 Ck+2 Bk+2
. . .

. . . . . . . . .




,

J (0) = J , the zeros of V (k)
n
(x) are the eigenvalues of J (k)

n
, where Jn is the

truncated matrix of J (k) with size nN × nN . So, denoting by ∆(k)
n

the set of
zeros of V (k)

n
(x) (or equivalently, of G(k)

n
(x)), we define

Γ(k) =
⋂

n∈N

M
(k)
N where M

(k)
N =
⋃

n∈N

∆
(k)
n . (9)

If An, Bn, and Cn converge, then by the Gershgorin disk theorem, there exists

a real number M > 0 such that
⋃

n∈N∆n ⊂ DDDM , where DDDM =
�

x : |x | ≤ M
	
.

Moreover, since J (k) is a submatrix of J , then again from the Gershgorin disk
theorem, we have

⋃
k∈NΓ

(k) ⊂DDDM .
For y /∈ supp (u), the corresponding families of second kind functions,

�
Qn

	
n∈N

and
�
Rn

	
n∈N , are defined by

Qn(y) =

�
Vn(x),

IN

y − x

�

u

and R⊤
n
(y) =

�
IN

y − x
, Gn(x)

�

u

.



MATRIX BIORTHOGONAL POLYNOMIALS 9

Observe that the families of second kind functions
�
Qn

	
n∈N and
�
Rn

	
n∈N

also satisfy the following three term recurrence relations

y Qn(y) = An Qn+1(y) + Bn Qn(y) + Cn Qn−1(y) ,

y R⊤
n
(y) = R⊤

n+1(y)Cn+1+ R⊤
n
(y)Bn+ R⊤

n−1(y)An−1 ,

with Q0(y) =
D

IN , IN

y−x

E
u
, Q−1(y) = C−1

0 , R⊤0 (y) =
D

IN

y−x
, IN

E
u
, and

R⊤
−1(y) = A−1

−1.

Proposition 4 (Christoffel-Darboux type formulas). Let
�

Vn

	
n∈N and
�

Gn

	
n∈N

be the sequences of biorthogonal polynomials with respect to u . Let
�
Qn

	
n∈N

and
�
Rn

	
n∈N be, respectively, the corresponding families of second kind func-

tions, then

(x − y)

n∑

m=0

G⊤
m
(y)Qm(x) = G⊤

n
(y)An Qn+1(x)− G⊤

n+1(y)Cn+1 Qn(x) + IN , (10)

and its confluent formula

n∑

m=0

G⊤
m
(x)Qm(x) = (G

⊤
n+1(x))

′ Cn+1 Qn(x)− (G
⊤
n
(x))′An Qn+1(x) . (11)

Moreover, we get the analogous Christoffel-Darboux and confluent formulas

(x − y)

n∑

m=0

R⊤
m
(y)Vm(x) = R⊤

n
(y)An Vn+1(x)− R⊤

n+1(y)Cn+1 Vn(x)− IN , (12)

n∑

m=0

R⊤
m
(x)Vm(x) = R⊤

n
(x)An V ′

n+1(x)− R⊤
n+1(y)Cn+1 V ′

n
(x) . (13)

Proof : We only prove (10) and (11). The formulas (12) and (13) follow in a
similar way. From recurrence formulas for

�
Qm

	
m∈N (respectively,

�
Gm

	
m∈N)

multiplied on the left by G⊤
m

(respectively, multiplied on the right by
�
Qm

	
m∈N),

we have

x G⊤
m
(y)Qm(x)

= G⊤
m
(y)Am Qm+1(x)+ G⊤

m
(y)Bm Qm(x) + G⊤

m
(y)Cm Qm−1(x) , (14)

y G⊤
m
(y)Qm(x)

= G⊤
m+1(y)Cm+1 Qm(x) + G⊤

m
(y)Bm Qm(x)+ G⊤

m−1(y)Am−1 Qm(x) . (15)
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From here, if we subtract (15) from (14)

(x − y)G⊤
m
(y)Qm(x) =
�
G⊤

m
(y)Am Qm+1(x)− G⊤

m−1(y)Am−1 Qm(x)
�

−
�

G⊤
m+1(y)Cm+1 Qm(x)− G⊤

m
(y)Cm Qm−1(x)

�
.

Summing the later from 0 to n and taking into account the initial conditions,
the result follows. To show the confluent formula notice that

G⊤
n
(y)An Qn+1(y)− G⊤

n+1(y)Cn+1 Qn(y) + IN = 000 .

Now, observe that the Christoffel-Darboux formula can successively be rewrit-
ten as

n∑

m=0

G⊤
m
(y)Qm(x) =

G⊤
n+1(y)Cn+1 Qn(y)− G⊤

n
(y)An Qn+1(y) + C−1

0

x − y

+ G⊤
n
(y)An

Qn+1(x)−Qn+1(y)

x − y
− G⊤

n+1(y)Cn+1

Qn(x)−Qn(y)

x − y
,

= G⊤
n
(y)An

Qn+1(x)−Qn+1(y)

x − y
− G⊤

n+1(y)Cn+1

Qn(x)−Qn(y)

x − y
;

and taking x → y we get the desired result.

Now, we state a sort of reciprocal of Proposition 4.

Proposition 5. Suppose that we have two sequences,
�

Vn

	
n∈N and
�

Gn

	
n∈N ,

of matrix polynomials, and two matrices of linear functionals u1, u2 such that

Vn, IN

�
u1 = δn,0 and



IN , Gn

�
u2 = δn,0, n ∈ N . We define the matrix functions

Qn(y) =
D

Vn(x),
IN

y−x

E
u1

, R⊤
n
(y) =
D

IN

y−x
, Gn(x)
E

u2
and we assume that (10)

and (12) are satisfied, then u1 ≡ u2.

Proof : Observe that from the confluent formula

n∑

m=0

G⊤
m
(x)Qm(x) =

n−1∑

m=0

G⊤
m
(x)Qm(x) + G⊤

n
(x)Qn(x) ;

we get using (10)

G⊤
n
(x)Qn(x) =
�
(G⊤

n+1(x))
′Cn+1+ (G

⊤
n−1(x))

′An−1

�
Qn(x)

− (G⊤
n
(x))′
�
An Qn+1(x) + Cn Qn−1(x)

�
.



MATRIX BIORTHOGONAL POLYNOMIALS 11

or, equivalently,

IN = G−⊤
n
(x)
�
G⊤

n+1(x)Cn+1+ G⊤
n−1(x)An−1

�′
Qn(x)

− G−⊤
n
(x) (G⊤

n
(x))′
�
An Qn+1(x) + Cn Qn−1(x)

�
Q−1

n
(x) . (16)

Now, for every n ∈ N ,

IN = G⊤
n+1(x)Cn+1 Qn(x)− G⊤

n
(x)An+1 Qn+1(x) , (17)

and as (G−⊤
n
(x))′ = −G−⊤

n
(x) (G⊤

n
(x))′G−⊤

n
(x) , we can rewrite (16) as follows

IN = G−⊤
n
(x)
�
G⊤

n+1(x)Cn+1+ G⊤
n−1(x)An−1

�′
Qn(x)

+ (G−⊤
n
(x))′
�
G⊤

n+1(x)Cn+1+ G⊤
n−1(x)An−1

�
,

and so IN =
�

G−⊤
n
(x)
�
G⊤

n+1(x)Cn+1+G⊤
n−1(x)An−1

��′
. Integrating the above

with respect to the variable x , we get that
�

Gn

	
n∈N satisfies the following

recurrence relation

G⊤
n
(x) (x I − Bn) = G⊤

n+1(x)Cn+1+ G⊤
n−1(x)An−1 . (18)

A similar procedure for
�
Qn

	
n∈N yield

(x I − eBn)Qn(x) = An Qn+1(x)+ Cn Qn−1(x) . (19)

From (17), (18) and (19), we obtain
∑n

k=0 G⊤(x) (eBk − Bk)Qn(x) = 0 , and
this implies that eBn = Bn, for every n ∈ N .

Since
�
Qn

	
n∈N and
�

Vn

	
n∈N satisfy the same recurrence relation (with dif-

ferent initial conditions), from the Favard’s theorem we can conclude, that
there exist a matrix of linear functionals such that

�
Vn

	
n∈N and
�

Gn

	
n∈N are

biorthogonal.

Lemma 1. For every n ∈ N , Qn−1(x)G
⊤
n−1(x)− Vn−1(x)R

⊤
n−1(x) = 000 .

Proof : From the definition of second kind functions we get

Qn−1(x)G
⊤
n−1(x)− Vn−1(x)R

⊤
n−1(x)

=

�
Vn−1(y),

Gn−1(x)

x − y

�

u

−

�
Vn−1(x)

x − y
, Gn−1(y)

�

u

=

�
Vn−1(y),

Gn−1(x)− Gn−1(y)

x − y

�

u

−

�
Vn−1(y)− Vn−1(x)

x − y
, Gn−1(y)

�

u

,
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and from the orthogonality conditions the result follows.

Proposition 6 (Liouville-Ostrogradski type formulas). Let
�

Vn

	
n∈N ,
�

Gn

	
n∈N

be the sequences of biorthogonal polynomials with respect to a matrix of linear

functionals u and let
�
Qn

	
n∈N and
�
Rn

	
n∈N be their respective sequences of sec-

ond kind functions, then

Qn−1(x)G
⊤
n
(x)− Vn−1(x)R

⊤
n
(x) = C−1

n
, (20)

Vn(x)R
⊤
n−1(x)−Qn(x)G

⊤
n−1(x) = A−1

n−1 . (21)

Proof : We will prove (20) and (21) follows by using analogous arguments. We
proceed by induction. For n = 0 the result is obtained from initial conditions.
Suppose now that

Qk−1(x)G
⊤
k
(x)− Vk−1(x)R

⊤
k
(x) = C−1

k
, k = 0, 1, . . . , n− 1 .

Then, from the recurrence relation for G⊤
n

and R⊤
n

Qn−1(x)G
⊤
n
(x)− Vn−1(x)R

⊤
n
(x) =
�
Vn−1 R⊤

n−1−Qn−1 G⊤
n−2

�
An−2 C−1

n

+
�
Qn−1(x)G

⊤
n−1− Vn−1 R⊤

n−1

�
(x − Bn−1)C

−1
n

.

Thus from Lemma 1,

Qn−1(x)G
⊤
n
(x)− Vn−1(x)R

⊤
n
(x) =
�

Vn−1(x)R
⊤
n−1(x)−Qn−1(x)G

⊤
n−2(x)
�

An−2 C−1
n

.

If now we use the recurrence formulas for Vn−1 and Qn−1, then from induction
hypothesis and Lemma 1, we get
�

Vn−1(x)R
⊤
n−1(x)−Qn−1(x)G

⊤
n−2(x)
�

An−2 C−1
n

= A−1
n−2(x − Bn−2)
�
Vn−2(x)R

⊤
n−2(x)−Qn−2(x)G

⊤
n−2(x)
�

An−2 C−1
n

+ A−1
n−2Cn−2

�
Qn−3(x)G

⊤
n−2(x)− Vn−3(x)R

⊤
n−2(x)
�

An−2 C−1
n

= A−1
n−2 Cn−2

�
Qn−3(x)G

⊤
n−2(x)− Vn−3(x)R

⊤
n−2(x)
�

An−2 C−1
n

,

and the result follows from the induction hypothesis.

4.Casorati determinants.

Consider the matrix second-order recurrence relations

x yn = An yn+1+ Bn yn+ Cn yn−1 , n≥ 0 , (22)

x tn = tn+1 Cn+1+ tn Bn+ tn−1 An−1 , n≥ 0 . (23)
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Theorem 2. If
�

wn

	
n∈N and
�

vn

	
n∈N are solutions of (22), then

det
�
W (wn, vn)
�
= det (A−1

n
) det (Cn) det
�
W (wn−1, vn−1)
�

. (24)

Proof : First of all we recall that W (wn, vn) =

�
wn vn

wn+1 vn+1

�
. Thus from Schur

complement

det
�
W (wn, vn)
�
= det (wn) det
�

vn+1−wn+1w−1
n

vn

�
.

Since
�

wn

�
n∈N and
�

vn

�
n∈N are solutions of (22), then

vn+1 = A−1
n
(x vn− Bn vn− Cn vn−1), wn+1 = A−1

n
(x wn− Bn wn− Cn wn−1) .

(25)

Thus

−wn+1w−1
n

vn = −A−1
n

�
x vn− Bn vn− Cn wn−1 w−1

n
vn

�
. (26)

If we subtract (26) from the first equation in (25)

vn+1− wn+1w−1
n

vn = −A−1
n

Cn

�
vn−1− wn−1 w−1

n
vn

�
. (27)

As a consequence,

det
�
W (wn, vn)
�

= (−1)p det (wn) det (A−1
n
) det (Cn) det (vn−1− wn−1w−1

n
vn) . (28)

On the other hand, if now we consider the matrix W (wn−1, vn−1), using the
fact that�

wn−1 vn−1

wn vn

��
−w−1

n
vn w−1

n

IN 0

�
=

�
vn−1− wn−1w−1

n
vn wn−1w−1

n

0 IN

�
,

and�
wn−1 vn−1

wn vn

��
IN 0

−v−1
n−1wn−1 v−1

n−1

�
=

�
0 IN

wn−1− vnv−1
n−1wn−1 vnvn−1

�
,

and Proposition 1, we have that

det
�
W (wn−1, vn−1)
�
= (−1)p det (wn) det (vn−1−wn−1w−1

n
vn)

= (−1)p det (vn−1) det (wn− vnv−1
n−1wn−1) .

Replacing the above in (28) we get (24).
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Proposition 7. The sequences
�

Vn

	
n∈N and
�

V
(1)
n−1

	
n∈N with initial conditions

(V−1, V0) = (0, IN) and (V
(1)
−2 , V

(1)
−1 ) = (−A0,0) are linearly independent solutions

of (22). Moreover, they constitute a basis of S .

Proof : Since
�

Vn

	
n∈N and
�

V
(1)
n−1

	
n∈N are solutions of (22), then using Theo-

rem 2, we successively get

det
�
W (Vn, V

(1)
n−1)
�
= det (A−1

n
) det (Cn) det
�
W (Vn−1(x), V

(1)
n−2(x))
�

=

n∏

j=1

det (A−1
j
) det (C j) det
�
W (V−1(x), V

(1)
−2 (x))
�

= det (A0)

n∏

j=1

det (A−1
j
) det (C j) .

Now, as for every n ∈ N , det (An) 6= 0 and det (Cn) 6= 0, we get that
�

Vn

	
n∈N

and
�

V
(1)
n−1

	
n∈N are linearly independent.

Recall that if
�

yn(ei)
�

n∈N , i = 0, 1 are the solutions of (22) with initial con-
ditions (IN , 0) and (0, IN), respectively, then

Vn(x) = yn(e1) , V
(1)
n−1(x) = −yn(e0)A0 ,

and so
�

V
(1)
n−1(x) Vn(x)
�
=
�

yn(e0) yn(e1)
��−A0 0

0 IN

�
;

which implies that
�

Vn

	
n∈N and
�

V
(1)
n−1

	
n∈N constitute a basis for S .

From Proposition 7 it follows that every solution of (22) is a linear combi-
nation of
�

Vn

	
n∈N and
�

V
(1)
n−1

	
n∈N . In particular

V
(k)

n−k
(x) = Vn(x)γk+ V

(1)
n−1(x)ηk . (29)

Taking n= k and n = k− 1, we get the representation

γk = Θ∗

�
V
(1)
k−2(x) Vk−1(x)

V
(1)
k−1(x) Vk(x)

�−1

and ηk =Θ∗

�
Vk−1(x) V

(1)
k−2(x)

Vk(x) V
(1)
k−1(x)

�−1

.

In particular, if we take k = 2, from (27) we obtain

x V
(1)
n−1(x) = Vn(x)A0+ V

(1)
n−1(x)A

−1
0 B0 A0+ V

(1)
n−2(x)A

−1
1 C1 A0 .
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Proposition 8. Let
�

Vn

	
n∈N and
�

V
(k)

n−1

	
n∈N satisfies (22) with initial conditions

(V−1, V0) = (0, IN) and (V
(k)

−2 , V
(k)

−1 ) = (−C−1
k−1Ak−1,0). Then,

x V
(k)

n−1(x)

= V (k−1)
n

(x)Ak−1+ V
(k)

n−1(x)A
−1
k−1Bk−1 Ak−1+ V

(k+1)
n−2 (x)A

−1
k

Ck Ak−1 . (30)

Proof : From (29) and taking into account (27) we get

V
(k+1)
n−2 (x)A

−1
k

Ck = −V
(1)

n+k−2(x)
�
V
(1)
k−2(x)− Vk−1(x) (Vk(x))

−1V
(1)
k−1

�−1

− Vn+k−1(x)
�
Vk−1(x)− V

(1)
k−2(x) (V

(1)
k−1(x))

−1Vk(x)
�−1 . (31)

On the other hand, observe that

A−1
k−1(x IN − Bk−1) =

�
V
(1)
k−1(x)+ A−1

k−1Ck−1 V
(1)
k−3(x)
�
(V
(1)
k−2(x))

−1 ,

A−1
k−1(x IN − Bk−1) =

�
Vk(x)+ A−1

k−1Ck−1 Vk−2(x)
�
(Vk−1(x))

−1 .

Thus, from the recurrence relation (22) and (27)

�
Vk(x)− V

(1)
k−1(x) (V

(1)
k−2(x))

−1Vk−1(x)
�−1

A−1
k−1(x IN − Bk−1)

=
�

V
(1)
k−2(x) (V

(1)
k−3)
−1C−1

k−1Ak−1 Vk(x)+
�
V
(1)
k−2(x) (V

(1)
k−1(x))

−1Vk(x)−Vk−1(x)
�−1

− V
(1)
k−2(x) (V

(1)
k−3(x))

−1C−1
k−1Ak−1 V

(1)
k−1(x) (V

(1)
k−2(x))

−1Vk−1(x)
�−1 ,

and so

�
Vk(x)− V

(1)
k−1(x) (V

(1)
k−2(x))

−1Vk−1(x)
�−1

A−1
k−1(x IN − Bk−1)

= −
�

Vk−1(x)− V
(1)
k−2(x) (V

(1)
k−1(x))

−1Vk(x)
�−1

+
�
Vk−1(x)− V

(1)
k−2(x) (V

(1)
k−3(x))

−1Vk−2(x)
�−1 . (32)

In the same way, we obtain

�
V
(1)
k−1(x)− Vk(x) (Vk−1(x))

−1V
(1)
k−2(x)
�−1

A−1
k−1(x IN − Bk−1)

= −
�

V
(1)
k−2(x)− Vk−1(x) (Vk(x))

−1V
(1)
k−1(x)
�−1

+
�
V
(1)
k−2(x)− Vk−1(x) (Vk−2(x))

−1V
(1)
k−3(x)
�−1 . (33)
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Replacing (32) and (33) in (31)

V
(k+1)
n−2 (x)A

−1
k

Ck =
�

Vn+k−1(x)γk+ V
(1)
n+k−2(x)ηk

�
A−1

k−1(x IN − Bk−1)

−
�
Vn+k−1(x)γk−1+ V

(1)
n+k−2(x)ηk−1

�

and so

V
(k+1)
n−2 (x)A

−1
k

Ck = V
(k)

n−1(x)A
−1
k−1(x IN − Bk−1)− V (k−1)

n
(x) ,

and the result follows.

In a similar way, we get the following result.

Proposition 9. The sequences of matrix polynomials,
�

Gn

	
n∈N and
�

G
(1)
n−1

	
n∈N

are linearity independent solutions of (23). Moreover, for every k ∈ N ,

G
(k)⊤

n−k
(x) = eγk G⊤

n
(x)+ eηk G

(1)⊤
n−1 (x) ,

where

eγk = Θ∗

�
G
(1)⊤
k−2 (x) G

(1)⊤
k−1 (x)

G⊤
k−1(x) G⊤

k
(x)

�−1

and eηk = Θ∗

�
G⊤

k−1(x) G⊤
k
(x)

G
(1)⊤
k−2 (x) G

(1)⊤
k−1 (x)

�−1

;

moreover, the following relation holds

x G
(k)⊤

n−1 (x) = CkG(k−1)⊤
n

(x) + CkBk−1C−1
k

G
(k)⊤

n−1 (x) + Ck Ak−1C−1
k+1G

(k+1)⊤
n−2 (x) .

Since
�
Qn

	
n∈N and
�
Rn

	
n∈N are also solutions of (22) with initial conditions

Q0(y) =
D

IN , IN

y−x

E
u
, Q−1(y) = C−1

0 , R⊤0 (y) =
D

IN

y−x
, IN

E
u

, and R⊤
−1(y) = A−1

−1 ;

then for x ∈ C \ supp (u) it is clear that

Qn(x) = Vn(x)Q0(x)− V
(1)
n−1(x)A

−1
0 , (34)

R⊤
n
(x) = R⊤0 (x)G

⊤
n
(x)− C−1

1 G
(1)⊤
n−1 (x) . (35)

From here we get

V
(1)
n−1(x) =

�
Vn(x)− Vn(y)

x − y
, IN

�

u

A0, G
(1)⊤
n−1 (x) = C1

�
IN ,

Gn(x)− Gn(y)

x − y

�

u

.

Using a similar argument as in Proposition 7,

det (W (Qn, V
(k)

n−k
)) =

n∏

j=k

det (A−1
j
) det (C j) det (Qk−1(x)) ,
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Proposition 10. The sequences
�
Qn

	
n∈N and
�

V
(k)

n−k

	
n∈N are linearly indepen-

dent solutions of (22) in x ∈ C \ supp (u). Moreover,

V
(k)

n−k
(x) = Vn(x)αk−Qn(x)βk ,

with

αk = Θ∗

�
Qk−1(x) Vk−1(x)

Qk(x) Vk(x)

�−1

and βk = Θ∗

�
Vk−1(x) Qk−1(x)

Vk(x) Qk(x)

�−1

.

In the same way,
�
R⊤

n

	
n∈N and
�

G
(k)⊤

n−k

	
n∈N also are linearly independent solu-

tions of (23) in x ∈ C \ supp (u); moreover,

(G
(k)

n−k
(x))⊤ = eαk G⊤

n
(x)− eβk R⊤

n
(x) ,

with

eαk = Θ∗

�
R⊤

k−1(x) R⊤
k
(x)

G⊤
k−1(x) G⊤

k
(x)

�−1

and eβk = Θ∗

�
G⊤

k−1(x) G⊤
k
(x)

R⊤
k−1(x) R⊤

k
(x)

�−1

.

Proposition 11. The following Christoffel-Darboux formulas hold

n∑

k=1

V
(k)

n−k
(y)A−1

k−1 Vk−1(x) =
Vn(x)− Vn(y)

x − y
,

n∑

k=1

G⊤
k−1(x)C

−1
k

G
(k)⊤

n−k
(y) =

G⊤
n
(x)− G⊤

n
(y)

x − y
,

as well as its confluent expression

n∑

k=1

V
(k)

n−k
(x)A−1

k−1Vk−1(x) = V ′
n
(x) ,

n∑

k=1

G⊤
k−1(x)C

−1
k

G
(k)⊤

n−k
(x) = (G⊤

n
(x))′ .

Proof : For k ≤ n

y V
(k)

n−k
(y)A−1

k−1 = V
(k−1)
n−k+1(y) + V

(k)

n+k
(y)A−1

k−1 Bk−1+ V
(k+1)
n−k−1(y)A

−1
k

Ck ,

x A−1
k−1Vk−1(x) = Vk(x) + A−1

k−1Bk−1 Vk−1(x)+ A−1
k−1Ck−1 Vk−2(x) .
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From here

(y−x)V
(k)

n−k
(y)A−1

k−1Vk−1(x) =
�

V
(k−1)
n−k+1(y)Vk−1(x)−V

(k)

n−k
(y)Ak−1 Ck−1 Vk−2(x)

�

−
�
V
(k)

n−k
(y)Vk(x)− V

(k+1)
n−k−1(y)Ak Ck Vk−1(x)

�
.

Summing the above on k from 1 to n and taking into account that for every
k ∈ N , V

(k)

0 (x) = IN and V
(k)

−1 (x) = 000 we get the result. The confluent form
is obtained when y tends to x . Formulas for the sequences

�
Gn

	
n∈N and�

G(1)
n

	
n∈N are deduced in a similar way.

As a consequence of Proposition 11, we find that for k = 1, . . . , n,

V
(k)

n−k
(x)A−1

k−1 =

n∑

j=1

V
( j)

n− j(x)A
−1
j−1

¬
Vj−1(y), Gk−1(y)

¶
u
=

�
Vn(y)− Vn(x)

y − x
, Gk−1

�

u

,

C−1
k

G
(k)⊤

n−k
(x) =

n∑

j=1

¬
Vk−1(y), G j−1(y)

¶
u

C−1
j

G
( j)⊤

n− j (x)

=

�
Vk−1(y),

Gn(y)− Gn(x)

y − x

�

u

.

When k = 1, we recover the classical formula for V
(1)
n−1(x), G

(1)
n−1(x). Algebraic

manipulations for the above equations yield

V
(k)

n−k
(x)A−1

k−1 = Vn(x)R
⊤
k−1(x)−Qn(x)G

⊤
k−1(x) ,

C−1
k

G
(k)⊤

n−k
(x) =Qk−1(x)G

⊤
n
(x)− Vk−1(x)R

⊤
n
(x) .

The above, together with Proposition 10, yield

R⊤
k−1 Ak−1 = Θ∗

�
Qk−1(x) Vk−1(x)

Qk(x) Vk(x)

�−1

, G⊤
k−1(x)Ak−1 = Θ∗

�
Vk−1(x) Qk−1(x)

Vk(x) Qk(x)

�−1

,

Ck Qk−1(x) = Θ∗

�
R⊤

k−1(x) R⊤
k
(x)

G⊤
k−1(x) G⊤

k
(x)

�−1

, Ck Vk−1(x) = Θ∗

�
G⊤

k−1(x) G⊤
k
(x)

R⊤
k−1(x) R⊤

k
(x)

�−1

.

5.Outer Ratio Asymptotics

First of all, we are going to state two important theorems which can be find
in [3, 4], see also [5, 7].
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Theorem 3 (Markov type Theorem). Let
�

Vn

	
n∈N and
�

Gn

	
n∈N be the se-

quence of matrix biorthogonal polynomials with respect to u and
�

V (1)
n

	
n∈N and�

G(1)
n

	
n∈N be the corresponding sequences of associated polynomials. Then,

lim
n→∞

V−1
n
(x)V

(1)
n−1(x) =

�
IN

x − y
, IN

�

u

A0 , x ∈ C \ Γ(0)

lim
n→∞

G
(1)⊤
n−1 (x)G

−⊤
n
(x) = C1

�
IN

x − y
, IN

�

u

, x ∈ C \ Γ(0)

and the convergence holds uniformly on compact subsets of C \ Γ(0).

In the sequel, given three matrices α,γ (nonsingular) and β , we define the
left-orthogonal second kind Chebyshev matrix polynomials,

�
Uγ,β ,α

n

	
n∈N, by the

recurrence formula

x Uγ,β ,α
n
(x) = γU

γ,β ,α
n+1 (x) +β Uγ,β ,α

n
(x) +αU

γ,β ,α
n−1 (x), n ≥ 0 , (36)

with initial conditions U
γ,β ,α
0 (x) = IN and U

γ,β ,α
−1 (x) = 000, as well as the right-

orthogonal second kind Chebyshev matrix polynomial,
�

Tα,β ,γ
m
(x)
	

m∈N, given by

x Tα,β ,γ
n
(x) = T

α,β ,γ
n+1 (x)α+ Tα,β ,γ

n
(x)β + T

α,β ,γ
n−1 (x)γ , n≥ 0 ,

with initial conditions T
α,β ,γ
0 (x) = IN and T

α,β ,γ
−1 (x) = 000. We denote by uγ,β ,α

the matrix of linear functionals for which the polynomials Uγ,β ,α
n
(x) and Tα,β ,γ

n
(x)

are biorthogonal.

Theorem 4 (Outer Ratio Asymptotics). Let
�

Vn

	
n∈N and
�

Gn

	
n∈N be the se-

quences of matrix biorthonormal polynomials with respect to u . If An → A,

Bn→ B, and Cn→ C with A, C nonsingular matrices, then

lim
n→∞

Vn−1(x)V
−1
n
(x)A−1

n−1 =

�
IN

x − y
, IN

�

uC ,B,A

, x ∈ C \ Γ(0) ,

lim
n→∞

C−1
n

G−⊤
n
(x)G⊤

n−1(x) =

�
IN

x − y
, IN

�

uC ,B,A

, x ∈ C \Γ(0) ;

and the convergence holds uniformly on compact subsets of C \Γ(0). Moreover, if

FC ,B,A(x) =
D

IN

x−y
, IN

E
uC ,B,A

, then FC ,B,A(x) is an analytic matrix function satisfy-

ing the matrix equation

C FC ,B,A(x)A FC ,B,A(x)+ (B− x IN) FC ,B,A(x)+ IN = 0 .
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Corollary 2. With the conditions of Theorem 4, for x ∈ C \ Γ(0), the following

limits hold uniformly on compact subsets of C \ Γ(0):

lim
n→∞

V−1
n
(x)Qn(x) = 000 , lim

n→∞
G−1

n
(x)Rn(x) = 000 , (37)

lim
n→∞

V−1
n−1(x)C

−1
n

G−⊤
n
(x) = 0 , lim

n→∞
V−1

n
A−1

n−1 G−⊤
n−1(x) = 0 . (38)

Proof : The limits in (37) are obtained from (34)-(35) and Markov theorem.
On the other hand, from Liouville-Ostrogradski formulas we get

V−1
n−1(x)Qn−1(x)− R⊤

n
(x)G−⊤

n
(x) = V−1

n−1(x)C
−1
n

G−⊤
n

,

R⊤
n−1(x)G

⊤
n−1(x)− Vn(x)Qn(x) = V−1

n
(x)A−1

n−1 G−⊤
n−1 .

Taking the limit when n→∞ in the above identities we get (38).

Theorem 5. Let assume the moment problem for u is determined and
�

Vn

	
n∈N

and
�

Gn

	
n∈N be the sequence of matrix biorthogonal polynomials with respect

to u, as well as
�

V (k)
n

	
n∈N and
�

G(k)
n

	
n∈N be the respective sequences of the k-th

associated polynomials. Then, for all k ∈ N , the following limits

lim
n→∞

V−1
n
(x)V

(k)

n−k
(x) = R⊤

k−1(x)Ak−1 , x ∈ C \ Γ(k)

lim
n→∞

G
(k)⊤

n−k
(x)G−⊤

n
(x) = Ck Qk−1(x) , x ∈ C \Γ(k)

holds uniformly on compact subsets of C \ Γ(k).

Proof : We only prove the first formula. The second one follows in a similar
way. We use induction on k. When k = 1 the result is a straightforward
consequence of the matrix Markov theorem. Now assume that the result holds
true for a k, by (30) we have that

V
(k+1)
n−k−1(x) =
�

x V
(k)

n−k
(x)A−1

k−1− V
(k−1)
n−k+1(x)− V

(k)

n−k
(x)A−1

k−1 Bk−1

�
C−1

k
Ak ,

so, from induction hypothesis

lim
n→∞

V−1
n
(x)V

(k+1)
n−k−1(x) = (x R⊤

k−1(x)− R⊤
k−2(x)Ak−2−Q⊤

k−1(x)Bk−1)C
−1
k

Ak ,

and so the convergence of
�

V−1
n
(x)V

(k+1)
n−k−1(x)
	

holds uniformly on compact
subsets of C \Γ(k) to R⊤

k
(x)Ak.
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Let u(k) be the matrix of linear functionals and
�

V (k)
n

	
n∈N ,
�

G(k)
n

	
n∈N the cor-

responding matrix biorthogonal polynomials with respect to u. From Markov
theorem

lim
n→∞
(V (k)

n
(x))−1V

(k+1)
n−1 (x) =

�
IN

x − y
, IN

�

u(k)
Ak , x ∈ C \Γ(k) ,

lim
n→∞

G
(k+1)⊤
n−1 (x) (G(k)

n
(x))−⊤ = Ck+1

�
IN

x − y
, IN

�

u(k)
, x ∈ C \Γ(k) ,

and the fact that

(V (k)
n
(x))−1V

(k+1)
n−1 (x) = (V

(k)
n
(x))−1Vn+k(x)V

−1
n+k
(x)V

(k+1)
n−1 (x) ,

G
(k+1)⊤
n−1 (x) (G(k)

n
(x))−⊤ = G

(k+1)⊤
n−1 (x)G−⊤

n+k
(x)G⊤

n+k
(x) (G(k)

n
(x))−⊤ ,

we obtain that, for every x ∈ C \ Γ(k),
�

IN

x − y
, IN

�

u(k)
= A−1

k−1 R−⊤
k−1(x)R

⊤
k
(x) , (39)

�
IN

x − y
, Ip

�

u(k)
=Qk(x)Q

−1
k−1(x)C

−1
k

.

Theorem 6. Let
�

V (k)
n

	
n∈N and
�

G(k)
n

	
n∈N be the sequences of k-th associated

polynomials which are biorthonormal with respect to the matrix of linear func-

tionals u(k). If An→ A, Bn→ B, and Cn→ C with A, C nonsingular matrices, then

lim
k→∞

�
IN

z − x
, Ip

�

u(k)
=

�
IN

z− x
, IN

�

uA,B,C

, z ∈ C \
⋃

k

Γ(k) ,

and the convergence is uniform on compact subsets of C \
⋃

k Γ
(k).

Proof : Firs of all, we will prove that

lim
k→∞

¬
U

A,B,C
ℓ
(x), IN

¶
u(k)
= IN δℓ,0 , (40)

Since
�

V (k)
n

	
n∈N is a basis of the bimodule of matrix polynomials, then for each

ℓ ∈ N there exists a set of matrices
�
∆i,ℓ,k

�l
i=0 such that

U
A,B,C
ℓ
(x) =

ℓ∑

j=0

∆ j,ℓ,kV
(k)

j (x) .
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From orthogonality

¬
U

A,B,C
ℓ
(x), IN

¶
u(k)
=

ℓ∑

j=0

∆ j,ℓ,k

D
V
(k)

j
(x), IN

E
u(k)
=∆0,ℓ,k . (41)

Observe that (40) is proved if limk→∞∆ j,ℓ,k = IN δℓ, j . We proceed by induction
on ℓ. For ℓ = 0 the result is immediate since from (41), ∆0,0,k = IN , and for
j 6= 0, ∆ j,0,k = 0. Now suppose the result is valid up to ℓ . From (36) we get

∆ j,ℓ+1,k =
D

U
A,B,C
ℓ+1 (x), G

(k)

j (x)
E

u(k)

=
D

A−1�x U
A,B,C
ℓ
(x)− B U

A,B,C
ℓ
(x)− C U

A,B,C
ℓ−1 (x)
�
, G
(k)

j (x)
E

u(k)

= A−1
D

x U
A,B,C
ℓ
(x), G

(k)

j (x)
E

u(k)
− A−1B∆ j,ℓ,k − A−1C∆ j,ℓ−1,k .

On the other hand, from the symmetry condition

A−1
D

U
A,B,C
ℓ
(x), x G

(k)

j (x)
E

u(k)

= A−1
D

U
A,B,C
ℓ
(x), C⊤

j+k+1G
(k)

j+1(x) + B⊤
j+k

G
(k)

j (x)+ A⊤
j+k−1G

(k)

j−1(x)
E

u(k)

= A−1�∆ j+1,ℓ,k Ck+ j+1+∆ j,ℓ,k Bk+ j +∆ j−1,ℓ,k Ak+ j−1

�
.

From here we get that

∆ j,ℓ+1,k = A−1�∆ j+1,ℓ,k Ck+ j+1+∆ j,ℓ,k Bk+ j +∆ j−1,ℓ,k Ak+ j−1

− B∆ j,ℓ,k − C∆ j,ℓ−1,k

�
. (42)

Observe that for j ≤ ℓ−2 or j ≥ ℓ+2 the induction hypothesis and (42) show
that limk→∞∆ j,ℓ+1,k = 0. Now, for j = ℓ− 1, ℓ and ℓ+ 1 we get

lim
k→∞

∆ℓ−1,ℓ+1,k = A−1C − A−1C = 0 ,

lim
k→∞

∆ℓ,ℓ+1,k = A−1B− A−1B = 0 ,

lim
k→∞

∆ℓ+1,ℓ+1,k = A−1A= IN .

We are now ready to prove that

lim
k→∞

�
IN

z− x
, IN

�

u(k)
=

�
IN

z − x
, IN

�

uA,B,C

, z ∈ C \
⋃

k

Γ(k) .
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If the above is not true, then there exist an z ∈ C \
⋃

k Γ
(k) and a sequence of

nonnegative integers
�

km

�
m∈N , such that






�

IN

z − x
, IN

�

u(km)

−

�
IN

z − x
, IN

�

uA,B,C






2

> C > 0 , (43)

where C is a constant. Since
�
u(k)
	

k∈N is a sequence of matrices of linear func-
tionals with compact support contained in

⋃
k Γ
(k) and such that



IN , IN

�
u(k) =

IN , then from Banach-Alaoglu’s theorem, there is a subsequence
�
sm

�
m∈N from�

km

�
m∈N such that du(sm) converge to a matrix of linear functionals v with

compact support contained in DDDM , for every matrix polynomial f , i.e.

lim
m→∞



f , IN

�
u(sm) =



f , IN

�
v .

In particular, if we take f = U
A,B,C
ℓ
(x), then
¬

U
A,B,C
ℓ
(x), IN

¶
v
= IN δℓ,0 . Since�

UA,B,C
n

	
n∈N is a basis of CN×N[x] and v, uA,B,C have compact support, we get

v ≡ uA,B,C but the inequality (43) is not possible. The uniform convergence
follows from Stieltjes-Vitali theorem.

Corollary 3. Under the hypotesis of Theorem 6 we have that,
�
Qn Q−1

n−1 C−1
n

	
n∈N

and
�
A−1

n−1R−⊤
n−1 R⊤

n

	
n∈N uniformly converges to FA,B,C on compact subsets

of C \
⋃

k Γ
(k).

Since the recurrence relations for
�
Qn

	
n∈N and
�
Rn

	
n∈N can be rewritten as

x IN =An

�
Qn+1(x)Q

−1
n
(x)C−1

n+1

�
Cn+1+ Bn+ (Qn(x)Q

−1
n−1(x)C

−1
n
)−1 ,

x IN =An

�
A−1

n
R−⊤

n
(x)Q⊤

n+1(x)
�

Cn+1+ Bn+ (A
−1
n−1R−⊤

n−1(x)Q
⊤
n
(x))−1 ,

then the analytic function FA,B,C also satisfies a matrix equation

A FA,B,C(x)C FA,B,C(x) + (B− x IN) FA,B,C(x) + IN = 000 .

Corollary 4. Under the hypothesis of Theorem 6 we have that the sequences�
R−⊤

n
V−1

n

	
n∈N and
�

G−⊤
n

Q−1
n

	
n∈N uniformly converge on compact subsets of

C \
⋃

k Γ
(k) to F−1

C ,B,A(x)− A FA,B,C(x)C .

Proof : As a consequence of Christoffel-Darboux formulas when x = y
�

Gn+1(x)G
−1
n
(x)
�⊤

Cn+1− An Qn+1(x)Q
−1
n
(x) = Gn(x)

−⊤Q−1
n
(x)

An Vn+1(x)V
−1
n
(x)−
�
Rn+1(x)R

−1
n
(x)
�⊤

Cn+1 = Rn(x)
−⊤V−1

n
(x) ,

from here the limit follows.
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When the sesquilinear form, 〈., .〉, is associated with a positive definite sym-
metric matrix of measures, µ, we have the representation

〈P(x),Q(x)〉 =

∫
P(x) dµQ⊤(x) .

Here we have orthonormality i.e. Vn ≡ Gn and they satisfy a recurrence rela-
tion

x Vn(x) = AnVn+1(x)+ BnVn(x) + A⊤
n−1Vn−1(x) , n ≥ 0 ,

with initial conditions V−1(x) = 0 and V0(x) = IN , An nonsingular matrices
and Bn Hermitian matrices. Thus, if

�
V (k)

n

	
n∈N is the sequence of k-th asso-

ciated matrix polynomials which are orthonormal with respect to the matrix
of measures dµ(k) and An → A, Bn → B with A a nonsingular matrix and B a
Hermitian matrix, then

lim
k→∞

∫
dµ(k)(x)

z− x
=

∫
dWA⊤,B⊤(x)

z − x
,

and the convergence holds uniformly on compact subsets of C \
⋃

k Γ
(k).

Here, dWA⊤,B⊤ denotes the matrix of measures for which the polynomials

UA⊤,B⊤

n
(x) defined by the recurrence formula

x UA⊤,B⊤

n
(x) = AU

A⊤,B⊤

n+1 (x) + B UA⊤,B⊤

n
(x) + A⊤U

A⊤,B⊤

n−1 (x), n≥ 0 ,

are orthonormal.
Moreover, if we assume that the matrix A is positive definite and the matrix B

is Hermitian, then in [5] is showed that
∫

dWA⊤,B⊤(x)

z− x
=

1

2
A−1(zIN − B)A−1

−
1

2
A−1/2 �pA−1/2 (B− zIN)A

−1(B− zIN)A
−1/2− 4IN

�
A−1/2 ,

for z /∈ supp (WA⊤,B⊤) .
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