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Abstract: Sublocales of a locale (frame, generalized space) can be equivalently
represented by frame congruences. In this paper we discuss, a.o., the sublocales
corresponding to complete congruences, that is, to frame congruences that respect
all joins, and present a “geometric” condition for a sublocale to be complete. To this
end we make use of an operator of closure type that allows not only to formulate the
condition but also to analyze certain weak separation properties akin to subfitness
or T1.

Trivially, every open sublocale is complete. We specify a very wide class of frames,
containing all the subfit ones, where there are no others. In consequence, e.g., in
this class of frames, complete homomorphisms are automatically Heyting.
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Introduction

Sublocales S ⊆ L of a frame (locale) are, up to isomorphism, precisely
the frames (locales) S embedded into L by extremal monomorphisms in the
category of locales. Thus, if we view a frame as a generalized space we have
here the natural geometric concept of a generalized subspace. Unlike classical
subspaces of a topological space, they have also an algebraic aspect, being in
a natural one-one correspondence with the congruences on L. Now, among
frame congruences, that is, the congruences respecting all joins and all finite
meets, we have the special case of complete lattice congruences (respecting
all joins and all meets). The question naturally arises what are the geomet-
ric features of complete sublocales, that is, of sublocales corresponding to
complete congruences.
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In particular, each open sublocale is complete. The case of finite frames
immediately shows that there are complete sublocales that are not open. On
the other hand, under not too demanding separation axioms, complete frame
homomorphisms coincide with the open (Heyting) ones and hence one can
expect that under such circumstances also complete and open sublocales will
coincide. Thus the questions naturally arise

– what is the geometric relation between complete and open sublocales
in general,

– in view of such a relation, what makes the two concepts coincide in
special frames,

– and what is the weakest condition under which they still coincide.

It turns out that the key is an operator S 7→ S◦ of closure type (that is,
it is monotone, expansive and idempotent and preserves finite joins) which
we call fitting (following the Isbell terminology of fitted sublocales [8]). We
will answer the questions above by presenting a formula in terms of that
operator (S is complete iff for each open U , (S ∩ U)◦ is open; assuming
just the openness of S◦ also makes a special sense), explain the coincidence
under special conditions by the behaviour of this operator, and specify the
conditions in these terms.

The paper is organized as follows. After necessary preliminaries in Section
1 we discuss in Section 2 the operator of fitting. An analogous construction
in spaces is not a restriction of the general pointfree one; the differences are
analyzed in Section 3. Section 4 is devoted to the behavior of completeness
(and of its weaker variant) in terms of the fitting operator, and to showing
what happens in the context of the separation axiom of subfitness. The last
section is concerned with the “border of the coincidence” of completeness and
openness. A necessary and sufficient condition for the coincidence in the form
of a relaxed subfitness (c-subfitness) is found, and it is also shown that this is
precisely the condition under which complete homomorphisms automatically
preserve the Heyting operation. It should be stated, though, that while c-
subfitness is weaker than subfitness formally, the question whether it is really
weaker remains an open problem.
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1. Preliminaries
1.1. The terminology and notation concerning posets (here they will be
mostly complete lattices) is standard. For A ⊆ (X,≤) we write

↑A = {x ∈ X |x ≥ a for some a ∈ A}

and

↓A = {x ∈ X |x ≤ a for some a ∈ A}.
A join (supremum) of A ⊆ (X,≤) will be denoted by

∨
A, and we write a∨b

for
∨
{a, b}; similarly we write

∧
A and a ∧ b for infima.

The smallest resp. largest element in a poset will be denoted by 0 resp. 1.

1.2. Adjoint maps. IfX, Y are posets we say that monotone maps f : X →
Y , g : Y → X are adjoint, f to the left and g to the right, and write f a g, if

f(x) ≤ y iff x ≤ g(y).

Recall that this is characterized by fg(y) ≤ y and x ≤ gf(x), that if f a g
then f (resp. g) preserves all the existing suprema (resp. infima), and

1.2.1. if X, Y are complete lattices then an f : X → Y preserving all
suprema (resp. a g : Y → X preserving all infima) has a right (resp. left)
adjoint.

1.3. Frames and coframes. A frame, resp. coframe, is a complete lattice
L satisfying the distributivity law

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A}, (frm)

resp. (
∧
A) ∨ b =

∧
{a ∨ b | a ∈ A}, (cofrm)

for all A ⊆ L and b ∈ L; a frame (resp. coframe) homomorphism preserves
all joins and all finite meets (resp. all meets and all finite joins). The
lattice Ω(X) of all open subsets of a topological space X is an example of
a frame, and if f : X → Y is continuous we obtain a frame homomorphism
Ω(f) : Ω(Y )→ Ω(X) by setting Ω(f)(U) = f−1[U ]. Thus we have a functor
Ω from the category of topological spaces into that of frames.

1.4. The Heyting structure. The equality (frm) states that the mappings
(x 7→ x ∧ b) : L → L preserve all joins. Hence, by 1.2.1, every frame is a
Heyting algebra with the Heyting operation → satisfying

a ∧ b ≤ c iff a ≤ b→c.
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1.4.1. Pseudocomplements and supplements. In a frame we have the
pseudocomplement b∗ = b→0 (=

∨
{x |x ∧ b = 0}); dually, in a coframe we

have the supplement b# =
∧
{x |x ∨ b = 1}. Recall the standard De Morgan

formulas (
∨
ai)
∗ =

∧
a∗i and (

∧
ai)

# =
∨
a#
i .

An element a is said to be complemented if there exists a b such that
a ∧ b = 0 and a ∨ b = 1; such b will be referred to as the complement of
a. In a distributive lattice the complement, if it exists, is uniquely deter-
mined, and is simultaneously the pseudocomplement and the supplement of
a. Therefore we will also denote it by a∗ (it will be always clear we have in
mind a complement which in the case in question happens to exist).

1.5. The concrete category Loc. The functor Ω: Top→ Frm from 1.3
is a contravariant full embedding on an important part of Top, the subcate-
gory of sober spaces. Thus we can regard frames as a natural generalization
of spaces; it is useful to view it as a covariant functor into the category of lo-
cales Loc, the dual of the category of frames. Furthermore, it is of advantage
to represent Loc as a concrete category with specific maps as morphisms.
For this purpose one defines a localic map f : L→M as the right adjoint of a
frame homomorphism h = f ∗ : M → L. This can be done since frame homo-
morphisms preserve suprema; but, of course, not every mapping preserving
infima is a localic one: they are precisely the infima-preserving mappings
f : L→ M that satisfy f(f ∗(b)→a) = b→f(a) and (f(a) = 1⇒ a = 1) for
every a ∈ L and b ∈M .

1.6. The coframe of sublocales. A sublocale of a frame L is a subset
S ⊆ L such that

(1) M ⊆ S implies
∧
M ∈ S, and

(2) if a ∈ L and s ∈ S then a→s ∈ S.

Note that sublocales are the natural subobjects in the category Loc: ex-
tremal monomorphisms in Loc are up to isomorphism precisely the embed-
dings of sublocales.

The set of all sublocales ordered by inclusion, denoted by S(L), is a
coframe, with lattice operations∧

i∈J
Si =

⋂
i∈J

Si and
∨
i∈J

Si = {
∧
A |A ⊆

⋃
i∈J

Si}.

The top of S(L) is L and the bottom is the set O = {1} (the empty sublocale).
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We have the closed resp. open sublocales

c(a) = ↑a resp. o(a) = {x | a→x = x} = {a→x |x ∈ L}

modeling closed resp. open subspaces (and corresponding precisely to the
closed resp. open parts in [8]). They are complements of each other, and we
have (see e.g. [12]):

(a) o(0) = O, o(1) = L, o(a) ∩ o(b) = o(a ∧ b),
∨

o(ai) = o(
∨
ai),

(b) c(0) = L, c(1) = O, c(a) ∨ c(b) = c(a ∧ b),
⋂

c(ai) = c(
∨
ai).

(c) The closed (resp. open) sublocales of a sublocale S are precisely the
c(a) ∩ S (resp. o(a) ∩ S) for a ∈ S.

1.6.1. Partial frame distributivity in S(L). In S(L) we have the dis-
tributivity rule (cofrm) from 1.3, and (frm) does not generally hold. But,
maybe somewhat surprisingly,

if (Ti)i∈J is any system of sublocales and if S is complemented then

(
∨
i∈J

Ti) ∩ S =
∨
i∈J

(Ti ∩ S)

(see e.g. [12, VI.4.4.3]).

1.6.2. Frame congruences. Another representation of subobjects is as
(natural equivalence classes of) surjective frame homomorphisms, the left
adjoints to the embeddings of sublocales. Or, we can take the associated
frame congruences E ⊆ L×L (the sublocale associated with E can be given
by the formula SE = {

∨
Ea | a ∈ L}). The natural correspondence of sublo-

cales and frame homomorphisms gives rise to a contravariant isomorphism
between S(L) and the frame of congruences.

The frame congruences associated with the open resp. closed sublocales
are

∆a = {(x, y) |x ∧ a = y ∧ a} resp. ∇a = {(x, y) |x ∨ a = y ∨ a};

One speaks of open resp. closed congruences.

1.7. Quotients of frames. Let R ⊆ L × L be an arbitrary relation. The
quotient by the congruence generated by R can be constructed as follows
(see e.g. [12, III.11]). An element s ∈ L is R-saturated if

∀a, b, c aRb ⇒ a ∧ c ≤ s iff b ∧ c ≤ s
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(if R respects meets, in particular if it is already a congruence, the condition
simplifies to aRb ⇒ a ≤ s iff b ≤ s). It is easy to see that the set of R-
saturated elements is a sublocale of L (usually denoted by L/R). We have a
map νR : L→ L called the nucleus of R (or of the resulting sublocale) which
restricts to a quotient frame homomorphism L→ L/R.

1.8. Subfit, fit and regular. A frame is subfit (conjunctive in [16]) if

∀a, b, a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c, (sfit)

and fit if

∀a, b, a � b ⇒ ∃c, a ∨ c = 1 and c→b 6= b. (fit)

A frame is subfit iff each open sublocale is a join of closed ones, and fit iff each
closed sublocale is a meet of open ones (those were the original definitions in
[8]). A frame is fit iff each of its sublocales is subfit.

In spaces, subfitness is slightly weaker than T1 (together with TD — see [1]
— it is precisely T1; for more about low separation axioms see e.g. [4, 5]).
The fitness, however, is, surprisingly, a strong separation property akin to
regularity (see [13]).

Regularity: Write x ≺ y if x∗ ∨ y = 1. A frame L is regular if, for each
a ∈ L, a =

∨
{x |x ≺ a}, and this corresponds precisely to the regularity of

spaces.

For more about frames see, e.g., [9] or [12]. We use only the most standard
facts about categories; the reader may consult, e.g., [11].

2. Fitting: the other closure
2.1. A sublocale S is fitted (Isbell, [8]) if it is a meet of open ones. For a
sublocale S ⊆ L set

S◦ =
⋂
{o(a) |S ⊆ o(a)}.

We call S◦ the fitting of S.

2.2. Proposition. (S 7→ S◦) is an operator of a closure type; indeed,

O◦ = O, S ⊆ T ⇒ S◦ ⊆ T ◦, (S◦)◦ = S◦, and (S ∨ T )◦ = S◦ ∨ T ◦.
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Proof : The facts O◦ = O, S ⊆ T ⇒ S◦ ⊆ T ◦, (S◦)◦ = S◦ and (S∨T )◦ ⊇
S◦ ∨ T ◦ are obvious. Finally, by the coframe distributivity we have

S◦ ∨ T ◦ =
⋂
{o(a) |S ⊆ o(a)} ∨

⋂
{o(b) |T ⊆ o(b)} =

=
⋂
{o(a) ∨ o(b) |S ⊆ o(a), T ⊆ o(b)} =

=
⋂
{o(a ∨ b) |S ⊆ o(a), T ⊆ o(b)} ⊇

⊇
⋂
{o(c) |S ∨ T ⊆ o(c)} = (S ∨ T )◦.

2.2.1. Remark. Note that the “closed” elements under the operator S 7→ S◦

are the fitted sublocales. The formula in 2.1 should be also viewed as

S◦ =
⋂
{T |T fitted, S ⊆ T}.

2.3. Observation. The supplements of fitted sublocales are, obviously, the
joins of closed elements:

S# = (
⋂
{o(a) |S ⊆ o(a)})# =

∨
{c(a) |S ∩ c(a) = O}.

2.4. In the notation of this section we have (see e.g. [8]) that

– a frame L is fit iff for all a ∈ L, c(a)◦ = c(a), and, equivalently,

– a frame L is fit iff for all sublocales S ⊆ L, S◦ = S, that is, if fitting
is trivial.

2.5. Images and preimages. ([12]) For a localic map f : L→M the image
f [S] of any sublocale S ⊆ L is a sublocale of M . On the other hand, the
set-theoretic preimage f−1[S] of a sublocale S is not necessarily a sublocale.
It is a meet-closed subset, though, and hence (see the formula for the join of
sublocales in 1.6) there is the largest sublocale

f−1[S] =
∨
{T ∈ S(L) | T ⊆ f−1[S]}

contained in f−1[S]. This defines the localic preimage function f−1 : S(M)→
S(L) right adjoint to the image. For closed sublocales we have f−1[c(a)] =
f−1[c(a)] = c(f ∗(a)). For open sublocales the localic and set-theoretic preim-
ages do not necessarily coincide, but we do have f−1[o(a)] = o(f ∗(a)).

Proposition. Let f : L → M be a localic map, S ∈ S(L) and T ∈ S(M).
Then:

(1) f [S◦] ⊆ f [S]◦.
(2) f−1[T ]◦ ⊆ f−1[T

◦].
(3) If f is injective, then f−1[f [S]◦] = S◦.
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Proof : (1) First, notice that one of the defining properties of a localic map
means that f [o(f ∗(b))] ⊆ o(b) for any b ∈M . Then, we have

f [S◦] ⊆
⋂
{f [o(a)] | S ⊆ o(a)} ⊆

⋂
{f [o(f ∗(b))] | S ⊆ o(f ∗(b))} =

=
⋂
{f [o(f ∗(b))] | f [S] ⊆ o(b)} ⊆

⋂
{o(b) | f [S] ⊆ o(b)} = f [S]◦.

(2) It is equivalent to (1) by adjunction.
(3) By the previous property, one has always

S◦ ⊆ f−1[f [S]]◦ ⊆ f−1[f [S]◦].

Moreover,

f−1[f [S]◦] =
⋂
{o(f ∗(b)) | f [S] ⊆ o(b)} =

⋂
{o(f ∗(b)) | S ⊆ o(f ∗(b))}

and this is S◦ whenever f ∗ is onto, that is, whenever f is one-one.

Note that property (1) together with 2.2 make the fitting operator a closure
operator in the sense of Dikranjan-Giuli [3].

2.6. Codense sublocales. Let S be a sublocale of L. We say that S is
codense if, for every a ∈ L,

c(a) ∩ S = O ⇒ c(a) = O.

Note. Compare this property with density, with the analogous implication
concerning open sublocales. One should also keep in mind that this notion
is consistent with the standard use of the term codense homomorphism for
the frame homomorphisms h : L → M such that h(a) = 1 implies a = 1: S
is codense iff the associated frame homomorphism L→ S is codense.

2.6.1. Codensity is to the operator S◦ as density is to the standard closure
S. We have

Proposition. S is codense in T iff T ⊆ S◦.

Proof : If T ⊆ S◦ and S ∩ c(a) = O then S ⊆ o(a), hence T ⊆ S◦ ⊆ o(a), and
T ∩ c(a) = O. Thus, S is codense in T . Conversely, if S is codense in T and
S ⊆ o(a) then S ∩ c(a) = O, hence T ∩ c(a) = O, and T ⊆ o(a).

Then, using 2.5, we immediately obtain

Corollary. Let f : L→M be a localic map, S, T ∈ S(L). If S is codense in
T , then f [S] is codense in f [T ]. The converse holds whenever f is injective.
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3. What happens in spaces
3.1. Preparing for examples. Consider an infinite set X and the cofinal
topology on X, that is, open sets are the UA = X r A with A finite, and ∅.
The resulting space will be denoted by Xcf .

The Heyting operation in Ω(Xcf) is easily computed to be

UA→UB = UBrA and UA→∅ = ∅
so that the open sublocales are

o(UA) = {UB |B ∩ A = ∅} ∪ {∅} and o(∅) = O.

3.2. The spatial fitting. In analogy with 2.1 we define in a space X =
(X, τ), for a subset A of X, the spatial fitting

A◦ =
⋂
{U |U ∈ τ, A ⊆ U}.

Again, one easily deduces that

∅◦ = ∅, A ⊆ B ⇒ A◦ ⊆ B◦, (A◦)◦ = A◦, and (A ∪B)◦ = A◦ ∪B◦.
3.2.1. Using the same symbol of ◦ in the superscript like in the pointfree
case will, hopefully, not create confusion. One has to have in mind, however,
that the spatial fitting of a subspace (subset) in a space X = (X, τ) does not
have to agree with the fitting of the associated sublocale in Ω(X). Take the
space Xcf from 3.1. For a subset M ⊆ X one has there, trivially, M = M ◦

but
for any non-empty sublocale S ⊆ Ω(Xcf), S◦ is dense

(each non-empty open sublocale of Ω(Xcf) contains ∅) while for instance no
closed sublocale c(UA) is dense.

3.3. The relation of subfitness and fitness to the spatial fitting is quite
different to that of the fitting in the pointfree case.

First of all, due to the both-sided De Morgan formulas, unlike in the general
pointfree case, the conditions

– every closed subset (resp. every subset) is an intersection of open sets,

– every open subset (resp. every subset) is an intersection of closed sets,

in spaces coincide.

We have

3.3.1. Proposition. The following statements are equivalent for a topological
space X:
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(i) For every M ⊆ X, M ◦ = M .
(ii) Each M ⊆ X is a union of closed subsets.
(iii) X is T1.

Proof : (i)⇔(ii) by De Morgan formulas.

(ii)⇒(iii): {x} is a union of closed subsets, hence {x} ⊆ {x}.
(iii)⇒(ii): M =

⋃
{{x} |x ∈M}.

3.3.2. Recall that a space is said to be symmetric (see e.g. [6]) if for all
x, y ∈ X

x ∈ {y} iff y ∈ {x}. (sym)

This is obviously equivalent with

for every open U and x ∈ U, {x} ⊆ U. (sym’)

(Indeed, if (sym) holds, x ∈ U and y ∈ {x} then x ∈ {y} and, since x ∈ U
open, y ∈ U . On the other hand, if (sym’) holds and x ∈ {y}, and if y ∈ U ,

then x ∈ {y} ⊆ U and hence y ∈ {x}.)

3.3.3. Proposition. The following statements are equivalent for a topological
space X:

(i) For every closed M ⊆ X, M ◦ = M .
(ii) Each open M ⊆ X is a union of closed subsets.
(iii) X is symmetric.

Proof : Again, (i)⇔(ii) by De Morgan formulas. Now we will use (sym’).
(ii)⇒(iii): If x ∈ U with U open then x ∈ F ⊆ U for some closed F and

hence {x} ⊆ F ⊆ U .

(iii)⇒(ii): U =
⋃
{{x} |x ∈ U}.

3.3.4. Note the contrast with the pointfree case: the open vs. closed con-
ditions are here equivalent, while, on the other hand, M ◦ = M for all M and
for closed M are here not equivalent.

3.4. The following is a well known result ([8, 16]). We will present a proof,
because it is very short and because we wish to stress the equivalence of (1)
and (2) which will contrast with 3.5.1 below.

Proposition. The following statements about a space X are equivalent:

(i) Ω(X) is subfit, that is, if A * B for open A,B, then there is an open
C such that A ∪ C = X 6= B ∪ C.
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(ii) The condition (i) holds for the generic B = Xr {x} that is, for open A

and x ∈ A there is an open C such that A ∪ C = X 6= (X r {x}) ∪ C.

(iii) For every open U and x ∈ U there is a y ∈ {x} such that {y} ⊆ U .

Proof : (i)⇒(ii) is trivial.
(ii)⇒(iii): For an open U and x ∈ U choose an open C with

U ∪ C = X 6= (X r {x}) ∪ C.

Pick a y /∈ (X r {x}) ∪ C, that is, y ∈ {x} and y /∈ C. Then {y} ∩ C = ∅
and, finally, {y} ⊆ U .

(iii)⇒(i): Let A * B. Choose an x ∈ A r B and a y ∈ {x} such that

{y} ⊆ A. Set C = X r {y}. Then A ∪ C = X and y /∈ B ∪ C.

Note. Compare the statement in (iii) with (sim’). Symmetry is a stronger
property, not only formally so (for an example see [14]).

3.5. Fitness. In spite of the formal similarity of 2.4 and the statements in
3.3, fitness is in fact a much stronger condition than the conditions concerning
M ◦ = M for spaces (while, as shown in 3.4, subfitness is in fact weaker than
the analogous spatial conditions). For a full characterization of fitness in
spaces see [13]. Here, let us just show that even a weaker condition is close
to regularity.

Recall that in Heyting terms we have U ∗ = U→∅. The fitness formula

A * B ⇒ ∃C, A ∨ C = X and C→B 6= B

implies a weaker prefitness [13]

A 6= ∅ ⇒ ∃D ≺ A, D 6= ∅ (pfit)

(indeed, in the formula above take B = ∅ and D = C∗ = C→∅).
Now prefitness implies “regularity up to density”. That is, we have

Proposition. If Ω(X) is prefit then, for every open A,

A ⊆
⋃
{B |B ≺ A}

Proof : If U ∩ A 6= ∅ choose ∅ 6= D ≺ U ∩ A. Then D ⊆
⋃
{B |B ⊆ A}.

In Proposition 3.4 we saw that the subfitness condition could be reduced
to the generic primes X r {x} for the B’s. For fitness, the situation is quite
different.
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3.5.1. Proposition. We have the implication

A * X r {x} ⇒ ∃C open, C ∪ A = X and C→(X r {x}) 6= X r {x},

for every open A in X, iff X is symmetric.

Proof : I. Explicitly, the implication says that

x ∈ A ⇒ ∃C open, C ∪A = X and int((X rC)∪ (X r {x})) ⊃ X r {x}.

Thus, there is a y /∈ X r {x}, that is, y ∈ {x}, and an open U with y ∈ U ⊆
(X r C) ∪ (X r {x}). Since y ∈ U open and y ∈ {x}, x ∈ U , and hence

x ∈ X rC, which is closed, and finally {x} ⊆ X rC ⊆ A, the last inclusion
because C ∪ A = X.

II. Conversely, if X is symmetric and x ∈ A, then {x} ⊆ A and we have

(X r {x}) ∪ A = X. Set C = X r {x}. Then

C→(X r {x}) = C→C = X 6= X r {x}.

3.6. Note. In the conditions similar to fitness, very small variations can cause
big differences. One may think of the relaxation to the generic elements as
in 3.5.1 as fairly radical (even if such a change did not cause anything in the
subfit case), but consider the following implication.

a � b 6= 0 ⇒ ∃c, c ∨ a = 1 and c→b 6= b. (fit-0)

Here the fitness is relaxed only by assuming the b non-zero. But it is sat-
isfied by Ω(Xcf) which is really very far from being fit (for instance, in this
frame there is no non-trivial occurrence of x ≺ y). Note that, furthermore,
in Ω(Xcf) the bottom can be obtained as a meet of already two non-zero
elements so that the anomaly is not caused by a special status of the bottom
(in particular, this frame is subfit).

It might be of interest to discuss (fit-0), perhaps also in combination with
the weak subfitness ([7], puny in [17])

a 6= 0 ⇒ ∃c 6= 1, a ∨ c = 1 (wsfit)

to dismiss the trivial cases of the frame with immediate successor of 0.
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4. Complete and weakly complete sublocales
4.1. A (frame) congruence is said to be complete if it respects all joins and
all meets. For instance, each ∆a (recall 1.6.2) is complete.

4.1.1. Proposition. A congruence E ⊆ L×L is complete iff each congruence
class Ea contains a least element.

Proof : The implication ‘⇒’ is obvious.
Now consider the quotient map q : L→ L/E as in 1.7. From the saturation

formula xEy ⇒ (x ≤ s ≡ y ≤ s) we immediately see that q(a) is the
maximum element of the equivalence class Ea. For x ∈ L/E = q[L] define
φ(x) as the minimum element of Ex. Then, as φ(x)Ex, we have

q(φ(x)) = x. (4.1.1)

We claim that φ is monotone: indeed, if x ≤ y for x, y ∈ q[L], we have
(φ(x) ∧ φ(y))E(x ∧ y) = xEφ(x) and hence φ(x) ∧ φ(y) = φ(x), by the
minimality of φ(x). Now, by (4.1.1) and the obvious inequality φ(q(x)) ≤ x,
we infer that φ is a left adjoint of q, hence q preserves all meets, and E is
complete.

4.2. Recall the following fact from [12, IV.1.4.1]:

Theorem. Let S be a sublocale of L. Then, for the corresponding congruence
ES, we have

ES = {(a, b) | ↑a ∩ S = ↑b ∩ S} = {(a, b) | o(a) ∩ S = o(b) ∩ S}.

(For the equivalence of the two formulas see also the proof in [12].)

4.2.1. For a sublocale S, and for an element a ∈ L, set

uaS =
∧
{x | o(x) ∩ S = o(a) ∩ S} =

∧
{x | o(a) ∩ S ⊆ o(x)}

(the second equality holds since o(a)∩S ⊆ o(x) implies o(a)∩S = o(x∧a)∩S).
Note that

{x | o(x) ∩ S = o(a) ∩ S} = ESa and hence uaS =
∧
ESa.

4.2.2. Lemma. For any S and a ∈ L,

o(uaS) ⊆ ((o(a) ∩ S)◦)## ⊆ (o(a) ∩ S)◦.
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Proof : Obviously ↑uaS ⊇
∨
{↑x | o(a) ∩ S ⊆ o(x)} in L and hence

↑uaS ⊇
∨
{o(x)# | o(a) ∩ S ⊆ o(x)} =

= (
⋂
{o(x) | o(a) ∩ S ⊆ o(x)})# = ((o(a) ∩ S)◦)#

so that o(uaS) = (↑uaS)# ⊆ ((o(a) ∩ S)◦)##.

4.2.3. Lemma. If ESa has a least element then (o(a) ∩ S)◦ ⊆ o(uaS).

Proof : The least element is uaS and hence o(uaS) ∩ S = o(a) ∩ S so that
o(a) ∩ S ⊆ o(uaS) and, since o(uaS) is open, (o(a) ∩ S)◦ ⊆ o(uaS).

4.2.4. Proposition. ESa has a least element iff (o(a) ∩ S)◦ is open.

Proof : Let (o(a)∩S)◦ = U be open. Since o(a)∩S is codense in U , it is also
codense in o(a) ∩ U and we see that U = o(b) with o(b) ⊆ o(a) and hence
b ≤ a. We have

↑b ∩ S = ↑b ∩ S ∩ (o(a) ∨ ↑a) = (↑b ∩ (o(a) ∩ S)) ∨ (↑a ∩ ↑b ∩ S) = ↑a ∩ S
so that bESa. Now, if cESa we have o(a) ∩ S = o(c) ∩ S ⊆ o(c) and hence
o(b) = (o(a) ∩ S)◦ ⊆ o(c) and b ≤ c. Thus, b is the least element of ESa.

On the other hand, if ESa has a least element, it is uaS and we have, by
4.2.2 and 4.2.3,

o(uaS) ⊆ (o(a) ∩ S)◦ ⊆ o(uaS),

that is, (o(a) ∩ S)◦ = o(uaS).

4.3. A sublocale S is said to be complete if the congruence ES is complete.
A congruence E (resp. a sublocale S) is said to be weakly complete if E1

(resp. ES1) has a least element.

4.3.1. Theorem. A sublocale S ⊆ L is complete iff for every open U , (S∩U)◦

is open.
S is weakly complete iff S◦ is open.

Proof : The first statement follows immediately from 4.1.1 and 4.2.4; for the
second one apply 4.2.4 with o(1) = L.

4.3.2. Notes. (1) It is easy to find examples of weakly complete but not
complete sublocales (if we assume no separation axiom; but see 4.4.1 below).
For instance, in the unit interval 〈0, 1〉 with the natural order, we have o(a) =
〈0, a) ∪ {1}; if we consider

S = {s1 < s2 < · · · < sn < · · · }
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where sn converges to 1
2 , we have ES1 = 〈12 , 1〉 with least element 1

2 , so that

S is weakly complete, while the other congruence classes ESa with 0 < a < 1
2

are not. Or take the topology on X = 〈0, 1〉 consisting of the standard
open sets not containing 0, plus X. Then any subset containing 0 makes
for a weakly complete sublocale, but many of these are not complete: for
S = 〈0, 1

2〉 and U = (0, 1), S ∩ U = (0, 1
2〉 is closed (in U and X) for the

closure operator (−)◦ but S ∩ U is not open in U .

(2) A closer scrutiny of the proofs shows that we can be more specific, that
is, in the case of weak completeness we know that the open set is o(u1S),
while in the case of completeness it is o(uaS). Hence, we have:

– a sublocale S ⊆ L is weakly complete iff S◦ = o(u1S), and

– S is complete iff for each a ∈ L (S ∩ o(a))◦ = o(uaS).

4.3.3. Recall that a localic map f : L→M is said to be open if the image
of each open sublocale S ⊆ L is open (note that for TD-spaces this agrees
with the open continuous maps — see [10, 12, 2]; TD, an axiom weaker than
T1, appeared, first, in [1]).

Corollary. Open localic maps preserve weakly complete sublocales.

Proof : Let f : L → M be an open localic map and S a weakly complete
sublocale of L. By 2.5, f [S]◦ ⊇ f [S◦] ⊇ f [S]. Since S◦ is open, f [S◦] is also
open and hence f [S]◦ = f [S◦].

4.3.4. By 4.2, ES1 = {x | o(x) ∩ S = S} = {x |S ⊆ o(x)}. Since S ⊆ o(x)
iff S◦ ⊆ o(x) we have

ES◦1 = ES1. (∗)

Lemma. If S is weakly complete then

↓(S r {1}) = ↓(o1S r {1}).

Proof : The equality states that x(nonES)1 iff x(nonEo(u1S))1, that is, xES1
iff xEo(u1S)1. If S is weakly complete then, by 4.3.2(2), S◦ = o(u1S). Use
(∗).

4.4. Theorem. [Another characterization of subfitness] A frame L is subfit
iff each weakly complete sublocale of L is open.

Proof : ⇒: If S is weakly complete then it is codense in an open U ⊆ L.
Every open sublocale of a subfit L is subfit (in fact, every complemented one
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is — see e.g. [13, 4.2.1]; but it also immediately follows from 1.6.1), and
hence we can apply [14, 5.3] and conclude that S = U .

⇐: Let S be codense in L. Since L is open, S is weakly complete and hence
open, and an open codense S ⊆ L is equal to L (consider the complement of
S). Use [14, 5.3].

4.4.1. Corollary. Let L be subfit. Then the following statements are equiv-
alent.

(i) S is weakly complete.
(ii) S is complete.
(iii) S is open.

5. A formal relaxation of subfitness

5.1. The “trivial top” characterization in terms of fitting. Yet an-
other well known characterization of subfitness is as follows (Isbell, [8]).

if E1 = {1} for a congruence E on L then E is trivial. (sfit’)

This has a very concise reformulation (and a very easy proof at least in one
direction) in terms of fitting.

5.1.1. Lemma. S◦ = L if and only if ES1 = {1}.
Proof : aES1 iff a ≤ s ∈ S implies that s = 1, in other words, iff ↑a∩ S = O.
Thus, ES1 = {1} iff S is codense.

5.1.2. Theorem. The following statements are equivalent for a frame L:

(i) L is subfit.
(ii) E1 = {1} only if E is trivial.
(iii) S◦ = L ⇒ S = L.

Proof : (iii) is by 5.1.1 only a reformulation of (ii).
(i)⇒(iii): Let L be subfit and let S◦ = L. Since L is open, S is weakly
complete by 4.4.1, hence open by 4.4.1, and consequently S = S◦ = L.
(iii)⇒(i): Let a � b. Hence ↑b * ↑a, and ↑b 6= ↑b ∩ ↑a.

Set S = ↑a ∨
∨
{↑c | c ∨ a = 1}. Let ↑x ∩ ↑a = O, that is, ↑(a ∨ x) = O;

hence a ∨ x = 1 and ↑x ⊆
∨
{↑c | a ∨ c = 1}. Thus, S is codense, and by the

assumption, S = L.
Hence, ↑b = ↑b ∩ S, and since ↑b 6= ↑b ∩ ↑a we have

↑b ∩ (
∨
{↑c | a ∨ c = 1}) 6= O,
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and since ↑b is complemented, we have, by 1.6.1, ↑b∩↑c 6= O, that is, b∨c 6= 1,
for some c such that a ∨ c = 1.

5.2. A formal relaxation. We will formally relax the condition of (sfit’)
by assuming the triviality for complete sublocales only; we will speak of
c-subfitness. We will require for a congruence E on L just that

if E1 = {1} and E is complete, then E is trivial. (c-sfit)

Since for a sublocale S, aES1 means that a ≤ s ∈ S implies that s = 1, (sfit’)
can be rewritten as

if S◦ = L, that is, if ↓(S r {1}) is cofinal in Lr {1}, then S = L (sfit)

and our c-subfitness as

for complete S, if S◦ = L then S = L. (c-sfit)

We will present two necessary and sufficient conditions for c-subfitness, one
of them technical, another stating that this is precisely the borderline of the
coincidence of completeness and openness (analogous to the characterization
of subfitness in 4.4).

5.3. Theorem. A frame L is c-subfit iff for every complete sublocale S and
every open U ,

↓(S r {1}) = ↓(U r {1}) ⇒ S = U.

Proof : ⇐ is trivial.
⇒: Let ↓(Sr{1}) = ↓(o(a)r{1}). We shall show that c(a)∩S = O. Indeed,
if 1 6= s ∈ S and if a ≤ s, then a ∈ ↓(o(a) r {1}), hence a ≤ a→x 6= 1 for
some x. But then a ≤ x and therefore a→x = 1, a contradiction.

5.4. Theorem. A frame L is c-subfit iff each complete sublocale S ⊆ L is
open.

Proof : ⇒: Let L be c-subfit and let S ⊆ L be complete. Then it is weakly
complete and hence, by 4.3.4, ↓(S r {1}) = ↓(o(u1S) r {1}). Thus, by 5.3,
S = o(u1S) is open.

⇐: By 5.3 it suffices to prove that

↓(o(b)r {1}) = ↓(o(a)r {1}) ⇒ b = a.

Let the first equality hold and let b � a. Then 1 6= b→a ∈ o(b)r {1}. Then
b→ a ∈ ↓(o(a) r {1}) and b→ a = a→ x for some x such that a→ x 6= 1.
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Therefore, a ∧ (b→ a) ≤ x but, since a ≤ b→ a, this yields a ≤ x and
a→x = 1, a contradiction.

5.5. Complete Heyting homomorphisms. By a theorem of Joyal and
Tierney ([10]) a localic map f : L → M is open iff its associated frame
homomorphism f ∗ : M → L is a complete Heyting homomorphism. It is
known (see e.g. [13]) that for a subfit M each complete frame homomorphism
h : M → L is a complete Heyting homomorphism; that is, we obtain the
preservation of the Heyting operation for free. Now we will show that this is
true precisely for c-subfit frames.

5.5.1. Lemma. Let h : M → L be a frame homomorphism. Then we have,
for congruences associated with sublocales,

(h× h)−1[ES] = Eh∗[S].

Proof : Use 4.4. From the adjunction h a h∗ we have that (x, y) ∈ (h ×
h)−1[ES], that is,

∀s ∈ S, h(x) ≤ s iff h(y) ≤ s

if and only if

∀s ∈ S, x ≤ h∗(s) iff y ≤ h∗(s),

that is, (x, y) ∈ Eh∗[S].

5.5.2. Theorem. Each complete frame homomorphism h : M → L is a com-
plete Heyting homomorphism iff M is c-subfit.

Proof : ⇐: Let M be c-subfit and let h : M → L be a complete frame ho-
momorphism. Let S be an open sublocale of L. Then, in particular, it is
complete, and hence ES is complete. From the completeness of h and from
5.5.1 we now immediately infer that Eh∗[S] is complete. Thus, h∗[S] is com-
plete and, by 5.4, it is open. We conclude that h is an open homomorphism
and apply the Joyal-Tierney theorem.

⇒: Let S be a complete sublocale of M . Consider the quotient homomor-
phism h : M → S adjoint to the embedding j : S ⊆M . Then h is a complete
homomorphism and hence it is a Heyting one. Thus, it is an open homomor-
phism and, in particular, S = j[S] is an open sublocale.

5.6. Note. Restricting in (c-sfit) the condition from general sublocales to
(very special) complete ones seems to be a very radical reduction. Yet, it is
still an open problem whether it is not, after all, just another formula for
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subfitness. It has defied solution for years, even in modified contexts like
that of Heyting meet-semilattices ([15]).

Any answer to this problem would be of interest. And if it should turn out
that c-subfitness were strictly weaker then fitness, there would be of interest
to find a first order formula akin to (sfit) in 1.8.
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