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1. Introduction
The main objective of studies in fixed point theory is to find solutions for

the following equation, which is commonly known as fixed point equation:

F (x) = x (1)

where F is a self-map of an ambient space X and x ∈ X.
The most well-known result in fixed point theory is Banach’s contraction

mapping principle; it guarantees that a contraction mapping of a complete
metric space to itself has a unique fixed point which may be obtained as the
limit of an iteration scheme defined by repeated images under the mapping
of an arbitrary starting point in the space. As such, it is a constructive fixed
point theorem and hence, may be implemented for the numerical computation
of the fixed point.

To solve equations given by (1), two types of methods are normally used:
direct methods and iterative methods. Due to various reasons, direct meth-
ods can be impractical or fail in solving equations (1) because it leads to
the inversion of a certain function, thing that is not easy to do and thus,
iterative methods become a viable alternative. For this reason, the iterative
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approximation of fixed points has become one of the major and basic tools
in the theory of equations.

[Mann(1953)] introduced an iterative scheme and employed it to approxi-
mate the solution of a fixed point problem defined by non-expansive mapping
where Picard’s iterative scheme fails to converge. Later, [Ishikawa(1974)] in-
troduced an iterative method to obtain the convergence of a Lipschitzian
pseudo-contractive operator when Mann’s iterative scheme is not applicable.
Many authors studied the convergence theorems and stability problems in
Banach spaces and metric spaces (see; e.g. [Berinde(2007), Cegielski(2012),
Chang(1998), Kang(2016), Osilike(1998), Panyanak(2007), Shahzada(2009),
Xu(1992)]) using the Mann’s iteration scheme or the Ishikawa’s iteration
scheme in deterministic frame. Some theoretical results on Mann-Ishikawa al-
gorithm with errors can be found in various literatures (see e.g. [Agarwal(2001),
Chang(2003), Huang(199), Kazmi(1997), Kim(2001), Liu(1995), Kang(2001),
Kim(2002), Osilike(1997), Xu(1998)]).

In the last twenty years, many papers have been published on random
fixed point theory. The study of random fixed point theory is playing an
increasing role in mathematics and engineering sciences. Recently, it received
considerable attention due to enormous applications in many important areas
such as nonlinear analysis, probability theory and for the study of random
equations arising in various engineering sciences.

[Choudhury(2003), Choudhury(1999)] has suggested and analyzed random
Mann’s iterative sequence in separable Hilbert spaces for finding random
solutions and random fixed points for some kind of random equations and
random operators. Kim and [Okeke(2015)], introduced the random Picard-
Mann hybrid iterative process. They have established the strong convergence
theorems and summable almost T -stability of the random Picard-Mann hy-
brid iterative process and the random Mann-type iterative process generated
by a generalized class of random operators in separable Banach spaces.

[Chugh(2016)] studied the strong convergence and stability of a new two-
step random iterative scheme with errors for accretive Lipschitzian mapping
in real Banach spaces, while [Cho(2008)], has built a random Ishikawa’s iter-
ative sequence with errors for random strongly pseudo-contractive operator
in separable Banach spaces and proved that under suitable conditions, this
random iterative sequence with errors converges to a random fixed point of
the operator.
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[Saluja(2013)] proved that if a random Mann’s iteration scheme defined
by two random operators is convergent under some contractive inequality,
the limit point is a common fixed point of each of two random operators in
Banach space.

In [Arunchai(2013)], a random fixed point theorem was obtained for the
sum of a weakly-strongly continuous random operator and a non-expansive
random operator which contains as a special Krasnoselskii type of Edmund
and O’Regan via the method of measurable selectors. We note some recent
works on random fixed points in [Tufa(2016), Agrawa (2016), Beg(2014),
Chugh(2014), Chugh(2016), Hussaina(2016), Okeke(2015)].

In this paper, we deal with iteration methods for approximating a fixed
point of the function using the Mann’s algorithm with functional random er-
rors. We first show its complete convergence to the fixed point by mean of an
exponential inequality. This inequality will allow us to specify a convergence
rate and the possibility of building a confidence set for the present fixed point.

1.1. Some fixed point algorithms. Let X be a normed linear space and
F : X → X a given operator. Let x0 ∈ X be arbitrary. The sequence
(xn)n ⊂ X defined by

xn+1 = F (xn) (2)

is called the Picard’s iteration (see. [Picard(1890)]).
The sequence (xn)n ⊂ X defined by

xn+1 = (1− an)xn + anF (xn) , n ∈ N∗ (3)

where (an)n is a real sequence of positive numbers satisfying the following
conditions

1. a0 = 1

2. 0 ≤ an < 1,∀ n ≥ 1

3.
∑
n

an = +∞

is called the Mann’s iteration or Mann’s iterative scheme (see. [Mann(1953)]).
The sequence (xn)n ⊂ X defined by

xn+1 = (1− an)xn + anF (yn) , n ≥ 1 (4)

yn = (1− bn)xn + bnF (xn) , n ≥ 1
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where (an)n and (bn)n are real sequences of positive numbers satisfying the
conditions

1. 0 ≤ an, bn < 1 for all n

2. lim
n→+∞

bn = 0

3.
∑
n

anbn = +∞

and x0 ∈ X is arbitrary. This procedure is called the Ishikawa’s iteration or
Ishikawa’s iterative procedure (see. [Ishikawa(1974)]).

The sequence (xn)n ⊂ X defined by

xn+1 =
1

2
(F (xn) + xn)

is called the Krasnoselskii’s iteration (see. [Krasnosel’skii(1955)]).

Remark 1. For an = 1
2, the iteration (3) reduces to the so-called Krasnosel-

skii’s iteration while for an = 1 we obtain the Picard’s iteration (2), or the
method of successive approximations, as it is commonly known. Obviously,
for bn = 0 the Ishikawa’s iteration (4) reduces to (3).

2. Preliminaries
Let (Ω,F ,P) be a probability space and B a real separable Banach space.

Let (B,B) be a measurable space, where B denotes the σ-algebra of all Borel
subsets generated by all open subsets in B, and F : B→ B a contraction
mapping

∀ x, y ∈ B, ‖F (x)− F (y)‖ ≤ c ‖x− y‖ , c ∈ (0, 1)

Under this condition, the Banach’s fixed point theorem states that F has a
unique fixed point x∗.

Let (xn)n be a sequence obtained by a certain fixed point iteration proce-
dure that ensures its convergence to a fixed point x∗ of F . Specifically for
the Mann’s algorithm, when calculating (xn)n, we usually follow these steps:

(1) We choose the initial approximation x0 ∈ B.
(2) We compute x1 = (1− a0)x0 + a0F (x0) but, due to various errors

that occur during computations (rounding errors, numerical approxi-
mations of functions, derivatives or integrals, etc.), we do not get the
exact value of x1, but a different one, say y1, which is however close
enough to x1, i.e., y1 − x1 = ξ1.
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(3) Consequently, when computing x2 = (1− a1)x1 + a1F (x1) , we will
actually compute x2 as x2 = (1− a1) y1 + a1F (y1) and so, instead of
the theoretical value x2, we will obtain in fact another value, say y2,
again close enough to x2, i.e., y2 − x2 = ξ2, · · · , and so forth.

In this way, instead of the theoretical sequence (xn)n defined by the given
iterative method, we will practically obtain an approximate sequence (yn)n.
We shall consider the given fixed point iteration method to be numerically
stable if and only if, for yn close enough (in some sense) to xn at each stage,
the approximate sequence (yn)n still converges to the fixed point of F. That
is to say,

xn+1 = (1− an)xn + anF (xn) + ξn

Unfortunately, the definitions of [Liu(1995)], which depend on the conver-
gence of the error terms, is against the randomness of errors. Hence, we need
a new definition as follows,

xn+1 = (1− an)xn + anF (xn) + bnξn

with (ξn)n a sequence of independent functional random variables denoting
noise which is defined on (Ω,F ,P) with values into Banach spaces B. More-
over, assume that (ξn)n is zero mean and sup

n
E ‖ξn‖ <∞.

In this paper, we use the following stochastic Mann’s algorithm

xn+1 = (1− an)xn + anF (xn) + bnξn (5)

satisfying,
∞∑
n=1

an =∞ and
∞∑
n=1

bn <∞

(The condition
+∞∑
n=1

an = +∞ is sometimes replaced by
∞∑
n=1

an (1− an) = +∞).

Without loss of generality, we take

an =
a

n
and bn =

a

n2

In this case, the stochastic Mann’s algorithm (5) takes the form

xn+1 =
(

1− a

n

)
xn +

a

n

(
F (xn) +

1

n
ξn

)
(6)
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Lemma 2. By using the formula of the algorithm (6), one obtains for

‖x1 − x∗‖ ≤ N,

the following inequality

‖xn+1 − x∗‖ ≤ N
n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
‖ξi‖ (7)

Proof : By adding and subtracting x∗ and using that F (x∗) = x∗, we obtain

xn+1 − x∗ =
(

1− a

n

)
(xn − x∗) +

a

n

(
F (xn)− F (x∗) +

1

n
ξn

)
Using the last formula and the contraction of F , we get

‖xn+1 − x∗‖ ≤
(

1− a (1− c)
n

)
‖xn − x∗‖+

a

n2
‖ξn‖

≤ ‖x1 − x∗‖
n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
‖ξi‖

≤ N
n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
‖ξi‖

as required.

Lemma 3. For every positive constant a such that a ∈ (0, 1), we have the
following inequality

n∏
j=i+1

(
1− a (1− c)

j

)
≤
(
i+ 1

n+ 1

)a(1−c)
(8)

Proof : We have,

n∏
j=i+1

(
1− a (1− c)

j

)
≤ exp

(
−a (1− c)

n∑
j=i+1

1

j

)
≤
(
i+ 1

n+ 1

)a(1−c)

which is what had to be shown.

3. Main results
3.1. Exponential inequalities. In this subsection, we establish an expo-
nential inequality of Bernstein-Frechet type for the stochastic Mann’s scheme.
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Theorem 4. For all ε > 0, if for some constants σ and L > 0, the inequality

E ‖ξi‖m ≤
m!

2
σ2Lm−2 (9)

is fulfilled, and if we denote by,

S1 =
∞∑
i=1

(i+ 1)a(1−c)

i2
and S2 = 4a2σ2

∞∑
i=1

(i+ 1)2a(1−c)

i4

then,

P (‖xn+1 − x∗‖ > ε) ≤ K1 exp
(
−K2n

2a(1−c)−ρε2
)

(10)

where,

0 < ρ < 2a (1− c) , K1 ≤ exp

(
2

(
N2 +

(
aS1 max

i
E ‖ξi‖

)2))
and K2 = min

(
1,

1

16S2

)
.

Proof : By using the formula (7), we get,

P (‖xn+1 − x∗‖ > ε) ≤ P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
‖ξi‖ > ε

)

≤ P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
E ‖ξi‖ ≥

ε

2

)

+ P

(
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
(‖ξi‖ − E ‖ξi‖) >

ε

2

)
(11)

Let us define the random variables (ζi)i as follows,

ζi = ‖ξi‖ − E ‖ξi‖ .

It is clear that Eζi = 0 and E |ζi|m ≤ 2m!σ2 (2L)m−2. Firstly, we have

P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
E ‖ξi‖ >

ε

2

)
≤ K1e

−n2a(1−c)−ρε2

(12)

where,

K1 ≤ exp

(
2

(
N 2 +

(
aS1 max

i
E ‖ξi‖

)2
))
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On the other hand, under Markov inequality, we have for all t > 0,

P

(
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
(‖ξi‖ − E ‖ξi‖) >

ε

2

)

= P

(
n∑
i=1

at (n+ 1)a(1−c)

i2

n∏
j=i+1

(
1− a (1− c)

j

)
ζi >

εt (n+ 1)a(1−c)

2

)

≤ exp

(
−tε (n+ 1)a(1−c)

2

)
E

(
exp

(
t

n∑
i=1

a (n+ 1)a(1−c)

i2

n∏
j=i+1

(
1− a (1− c)

j

)
ζi

))

The functions x 7−→ ‖x‖ and x 7−→ ex are continuous, and hence are Borel

functions. Therefore, the random variables

(
exp

(
n∑
i=1

at(n+1)a(1−c)

i2

n∏
j=i+1

(
1− a(1−c)

j

)
ζi

))
i

are also independent and we have,

E

(
exp

(
n∑
i=1

at (n+ 1)a(1−c)

i2

n∏
j=i+1

(
1− a (1− c)

j

)
ζi

))

=
n∏
i=1

E

(
exp

(
at (n+ 1)a(1−c)

i2

n∏
j=i+1

(
1− a (1− c)

j

)
ζi

))
The expansion of the exponential function around zero, inequality (8) as

well as Cramer’s condition (9) give us,

E

(
exp

(
at

i2

n∏
j=i+1

(
1− a (1− c)

j

)
ζi

))
≤ 1 +

+∞∑
m=2

amtmE |ζi|m

i2mm!

(
i+ 1

n+ 1

)a(1−c)m

≤ 1 +
2a2t2σ2

i4

(
i+ 1

n+ 1

)2a(1−c) +∞∑
m=2

am−2tm−2 (2L)m−2

i2(m−2)

(
i+ 1

n+ 1

)a(1−c)(m−2)

Note that the function x 7−→ (x+1)
a(1−c)

x2 is decreasing and its maximum on

the interval [1,+∞) is 2a(1−c). Thus, for suitably chosen t, take for instance,

t ≤ (n+ 1)a(1−c)

2a(1−c)+2aL
(13)

and using the inequality, 1 + x ≤ ex, we obtain,

n∏
i=1

E

(
exp

at

i2

n∏
j=i+1

(
1− a (1− c)

j
ζi

))
≤ exp

(
n∑
i=1

4a2t2σ2

i4

(
i+ 1

n+ 1

)2a(1−c)
)
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Consequently,

P

(
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
ζi >

ε

2

)
≤ exp

(
−εt

2
+

n∑
i=1

4a2t2σ2

i4

(
i+ 1

n+ 1

)2a(1−c)
)

≤ exp

(
−εt

2
+

t2S2

n2a(1−c)−ρ

)
(14)

The quantity on the right-hand side of (14) is minimal at

t∗ =
εn2a(1−c)−ρ

4S2
(15)

Thus, by substituting t∗ in (14), we obtain

P

(
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
ζi >

ε

2

)
≤ exp

(
−ε

2n2a(1−c)−ρ

16S2

)
. (16)

The conclusion of theorem (4) can be obtained from (11), (12) and (16)
immediately.

Remark 5. The condition (9) is known under Cramer’s condition and the
first example that pops into our head is the bounded random variables and
also the Gaussian random variables.

Remark 6. Notice that both choices of t in (13) and (15) are not contradic-
tory. Indeed,

lim
n→+∞

(n+ 1)a(1−c)

na(1−c)−ρ
= +∞⇐⇒ ∀A ∈ R+,∃ n0 ∈ N : n ≥ n0 =⇒ (n+ 1)a(1−c)

na(1−c)−ρ
> A

For A = ε2a(1−c)+2aLS2

4S2
, we have

εna(1−c)−ρ

4S2
<

(n+ 1)a(1−c)

2a(1−c)+2aL

3.2. Almost complete convergence. As a direct consequence of theo-
rem (4), we obtain the almost complete convergence (a.co.) of the Mann’s
stochastic scheme.

Corollary 7. Under the assumptions of theorem (4), the algorithm (5) con-
verges almost completely (a.co.) to the unique fixed-point x∗ of F.

Proof : Indeed, since the series of general term

un = K1 exp
(
−K2n

a(1−c)−ρε2
)

(17)
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is convergent, we have, for all ε > 0,

∞∑
n=1

P (‖xn+1 − x∗‖ > ε) < +∞ (18)

which ensures the almost complete convergence.

Remark 8. Notice that if (xn)n converges almost completely towards x∗ then
it also converges almost surely to x∗. In other words, if the sequence (xn)n
converges in probability to x∗ sufficiently quickly (i.e. the above sequence of
tail probabilities is summable for all ε > 0), then the sequence (xn)n also
converges almost surely to x∗. This is a direct implication from the Borel–
Cantelli’s lemma.

3.3. Confidence set. In this subsection, we build a confidence set for the
fixed point of a contraction mapping determined by the stochastic Mann’s
algorithm.

Corollary 9. Under the assumptions of theorem (4), for a given level α,
there exists a natural integer nα for which the fixed point x∗ of F belongs to
the closed ball of center xnα+1 and radius ε with a probability greater than or
equal to 1− α, i.e.,

∀ ε > 0,∀ α > 0,∃ nα ∈ N : P (‖xnα+1 − x∗‖ ≤ ε) ≥ 1− α (19)

Proof : We have,

lim
n→+∞

K1 exp
(
−K2n

a(1−c)−ρε2
)

= 0. (20)

Since there exists a natural integer nα such that

∀ n ∈ N, n ≥ nα =⇒ K1 exp
(
−K2n

a(1−c)−ρε2
)
≤ α (21)

then, (19) arises from (10) and (21).

Remark 10. Conversely, if the sample size is given, we can also determine
by (10) the level of significance α required in the construction of the confidence
set.
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3.4. Rate of convergence. In this subsection, we study the rate of conver-
gence of the Mann’s stochastic algorithm (6). We say that xn−x∗ = O (rn) ,
almost completely (a.co.) where (rn)n is a sequence of real positive numbers,
if there exists ε0 > 0, ε0 = O (1) such that

+∞∑
n=1

P (‖xn − x∗‖ > ε0rn) < +∞

Theorem 11. For every strictly positive number a, satisfying a (1− c) < 1,
we have

xn+1 − x∗ = O(

√
lnn

na(1−c)−ρ ) a.co. (22)

Proof : Indeed, we have

P (‖xn+1 − x∗‖ > ε) ≤ K1e
−K2n

a(1−c)−ρε2 (23)

where K1 and K2 are positive constants. Consequently,

P

(
‖xn+1 − x∗‖ > ε0

√
lnn

na(1−c)−ρ

)
≤ K1n

−k2ε20 (24)

For ε0 well chosen, for example ε0 =
√

1+d
K2
, d > 0, the right hand-side of the

inequality (23) is a general term of a convergent series. Hence, the desired
result (22) is proved.

4. Numerical illustrations
In order to ask the feasibility of the presented algorithm and check the

obtained results of convergence, we consider a numerical example where we
take a known contraction function F and thus possessing a unique fixed point.
By using the Mann’s algorithm, we obtain the approximated fixed point and
we compare it with the exact one by giving the absolute and relative error.
Concerning the independent random errors (ξn)n introduced in the algorithm,
we take them following a centred normal distribution.

Consider B = R and the following function F defined by

F : R→ R
x 7→ F (x) = 1

1+x2
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It is clear that F is a contraction, moreover, we have

|F (x)− F (y)| ≤ 9

8
√

3
|x− y| < 0.65 |x− y|

Consequently, the function F has a unique fixed point given by:

3

√√
31

108
+

1

2
− 1

3 3

√√
31
108 + 1

2

' 0.682327803828019

(1) The approximated values of the fixed point

Here, we give the approximated values of the fixed point for differ-
ent number of iterations n. To compare the fixed point to the ap-
proximated ones, we give the absolute error and relative one. For an
arbitrary choice of x1, namely x1 = 0.5, the obtained numerical results
are represented in the following table.

n xn Absolute error Relative error
10 0.751990575294321 0.069662771466302 0.102095753793818
100 0.689797221706968 0.007469417878949 0.010946963962254
1000 0.683175136988214 8.473331601946965 e− 004 1.241827103397 e− 003
104 0.682471996264786 1.441924367667768 e− 004 2.113242871795981 e− 004
105 0.682336379893621 8.576065601673122 e− 006 1.256883502850006 e− 005
106 0.682328662137050 8.583090307379138 e− 007 1.257913023509519 e− 006
107 0.682327889660202 8.583218269464510 e− 008 1.257931777264628 e− 007

Note that from n = 1000, the approximated fixed points are very
close to the real one. These results show the efficiency of the Mann’s
iterative scheme, also this method is very easy to implement under
the programming package Matlab.

(2) Level of significance α

In the following two tables, we take a level of significance α and for dif-
ferent values of ε, we give the order of number of iterations and hence after
implementing the algorithm, we obtain the corresponding approximated fixed
point and consequently a confidence interval.
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(i): α = 0.01

ε n Confidence interval
0.01 107 [0.672327889660202, 0.692327803828019]
0.05 105 [0.632336379893621, 0.782336379893621]
0.1 104 [0.582471996264786, 0.782471996264786]

(ii): α = 0.05

ε n Confidence interval
0.01 106 [0.672328662137050, 0.692328662137050]
0.05 104 [0.632471996264786, 0.732471996264786]
0.1 103 [0.583175136988214, 0.783175136988214]
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