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Introduction

The notion of Jordan algebra appeared in 1934 as the underlying algebraic
structure for certain operators in quantum mechanics [13]. Recall that a Jordan
algebra is a commutative algebra over a field F (char (F) 6= 2) satisfying the
so-called Jordan identity

(xy)x2 = x
(
yx2
)
. (1)

Since then, the theory of Jordan algebras has been developed, not only in purely
algebraic aspects, but also intertwined with other subjects and applications. For
instance, the vast class of noncommutative Jordan algebras (it includes, e.g., alter-
native algebras, Jordan algebras, quasiassociative algebras, quadratic flexible al-
gebras, and anticommutative algebras) attracted a lot of attention. Schafer proved
that a simple noncommutative Jordan algebra is either a simple Jordan algebra or
a simple quasiassociative algebra or a simple flexible algebra of degree 2 [23].
Concerning the intervention of Jordan algebras in other areas, and just to men-
tion a couple of these, we can find applications in differential geometry (see [5]
and [27]) and in optimization methods (see [7]). For more details about a motiva-
tion and a general overview of Jordan algebras (including applications) see [18]
and [10].
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A related issue is an attempt to generalize the Jordan algebra structure to the
case of algebras with n-ary multiplication, with an emphasis to the ternary case.
Mostly, these generalizations include Jordan triple systems (as in [2] and [9]), but
also other ternary versions (e.g, [4]). In the present paper we follow a different
approach.

According to [19] and [25], a Lie triple algebra is a commutative nonassociative
algebra A over a field F (char (F) 6= 2) satisfying(

a, b2, c
)

= 2b (a, b, c) , (2)

where (., ., .) stands for the associator

(a, b, c) = (ab)c− a(bc).

It is not difficult to check that this identity is equivalent to the operator identity

R(x,y,z) = [Ry, [Rx, Rz]] , (3)

where [., .] stands for the commutator

[a, b] = ab− ba,

and Rx is the right multiplication operator by x, i.e.

y 7→ yRx = yx.

It is easy to observe that every Jordan algebra is a Lie triple algebra, although the
opposite is not necessarily true. Further, on a commutative algebra A the identity
(3) is equivalent to

[Rx, Ry] ∈ Der (A) , (4)

whereDer (A) stands for the Lie algebra of derivations of A. WritingDx,y instead
of [Rx, Ry], it means that

Dx,y (ab) = Dx,y(a)b+ aDx,y(b). (5)

It is also known that, in a Jordan algebra J,

Inder (J) =
{∑

[Rxi, Ryi] : xi, yi ∈ J
}
,

where Inder (J) stands for the Lie algebra of inner derivations of J. Thus, in every
Jordan algebra J the commutator of two arbitrary right multiplication operators is
a derivation (an inner derivation, to be precise) of J (see [6]).
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Let A be an n-ary algebra with a multilinear multiplication J., . . . , .K : ×nV →
V, where V is the underlying vector space. We propose the following definition:
A is said to be an n-ary Jordan algebra if

Jxσ(1), . . . , xσ(n)K = Jx1, . . . , xnK (6)

for every permutation σ ∈ Sn and for every x1, . . . , xn ∈ V, and if[
R(x2,...,xn), R(y2,...,yn)

]
∈ Der (A) , (7)

for every x2, . . . , xn, y2, . . . , yn ∈ V, where [., .] stands again for the commutator
and R(x2,...,xn), R(y2,...,yn) are the right multiplication operators, defined in the usual
way

y 7→ yR(x2,...,xn) = Jy, x2, . . . , xnK.

For the sake of simplicity, we often writeRx instead ofR(x2,...,xn) and, analogously
to the binary case, Dx,y instead of [Rx, Ry]. Further, every non-commutative n-
ary Jordan algebra will be called a Dx,y-derivation algebra, i.e., it is an arbitrary
n-ary algebra with the operator identity (7). Under this notation (7) can be written
in the following way

Dx,y Jz1, . . . , znK =
n∑
i=1

Jz1, . . . , Dx,y (zi) , . . . , znK. (8)

Throughout this paper, (6) is the total commutativity property and (7) (or, equiva-
lently (8)) is the Dx,y-identity.

The paper is organized in the following way. In the first section we consider
some ternary algebras defined on the direct sum of a field and a vector space,
by equipping this space with a product, which depends on three given forms.
Discussing the possible cases for these forms, we obtain the first examples of
ternary Jordan algebras.

The second section is devoted to a particular case of the ternary product defined
in the previous section, restricted to a vector space (over a field of characteristic
zero). It turns out that this provides a new example of ternary Jordan algebra,
denoted by TJn, which is simple. We study its identities of degrees 1 and 2
concluding that these result from the total commutativity. Finally, we conclude
that the proposed notion of ternary Jordan algebra doesn’t coincide with the notion
of Jordan triple system.

In the third section we study the derivation algebra of TJn concluding that it
coincides with so(n) and that all derivations of TJn are inner.



4 I. KAYGORODOV, A. P. POZHIDAEV AND P. SARAIVA

The last sections are focused on giving other examples of ternary Jordan alge-
bras. There, dealing with matrix algebras, we obtain two non-isomorphic sym-
metrized matrix ternary Jordan algebras, one of which is simple. Further, defining
a certain ternary product on the algebras obtained by the Cayley-Dickson doubling
process, we construct a 4-dimensional Dx,y-algebra over the generalized quater-
nions. We also present an analog of the TKK-construction to the case of ternary
algebras, obtaining new examples of ternary Jordan algebras.

Finally, we recall the concept of reduced algebras of n-ary algebras. After this,
we conclude that, oppositely to some other classes of algebras, the reduced alge-
bras of the ternary Jordan algebra TJn are not Jordan algebras in general. We note
that other generalizations of Jordan algebras (e.g., Jordan triple systems) also fail
this property.

1.Ternary algebras of multilinear forms
Consider an n-dimensional vector space V over a field F equipped with two

bilinear, symmetric and nondegenerate forms f and h, and also with a trilinear,
symmetric, and nondegenerate form g (we also let them be zero). Given a basis
B = {b1, . . . , bn} of V, these forms are such that

f (bi, bj) = δij, h (bi, bj) = δij, and g (bi, bj, bk) = δijk, (9)

where δij is the Kronecker delta (and δijk by analogy).
Consider now a binary multiplication ∗ on the vector space F⊕ V defined by

(α + u) ∗ (β + v) = αβ + f(u, v) + αv + βu, α, β ∈ F, u, v ∈ V.
Then we obtain a Jordan algebra of a symmetric bilinear form f , which is de-

noted by J(V, f) and is simple iff dimV > 1 and f is nondegenerate.
Searching an analogue of J(V, f) in the case of ternary algebras, we consider

the same vector space F ⊕ V, where we define a (most general) trilinear product
J., ., .K such that

Jα1 + v1, α2 + v2, α3 + v3K = (10)
= (α1α2α3 + α1f (v2, v3) + α2f (v1, v3) + α3f (v1, v2) + g (v1, v2, v3)) +

+ (α2α3 + h (v2, v3)) v1 + (α1α3 + h (v1, v3)) v2 + (α1α2 + h (v1, v2)) v3
for arbitrary αi ∈ F and vi ∈ V. The obtained ternary algebra will be denoted by
Vf,g,h.

Under this assumption, it is clear that J., ., .K is totally commutative, that is

Jασ(1) + vσ(1), ασ(2) + vσ(2), ασ(3) + vσ(3)K = Jα1 + v1, α2 + v2, α3 + v3K (11)
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for all σ ∈ S3, αi ∈ F, and vi ∈ V.
Our purpose is to check if the commutator of right multiplications defines a

derivation of the ternary algebra Vf,g,h, that is, considering the linear operators Rx

and Dx,y such that
zRx = zR(x1,x2) = Jz, x1, x2K, (12)

and
Dx,y = [Rx, Ry] = RxRy −RyRx, (13)

we want to know if the ternary version of the Dx,y-identity

Dx,y Jz1, z2, z3K = JDx,y (z1) , z2, z3K + Jz1, Dx,y (z2) , z3K + Jz1, z2, Dx,y (z3)K
(14)

holds.
Before answering this question, observe some immediate properties of (14). It

is straightforward that each linear operator D(x1,x2),(y1,y2) is also linear in each xi
and in each yi. Further, we have the following symmetry properties

D(x1,x2),(y1,y2) = D(x1,x2),(y2,y1) = D(x2,x1),(y1,y2) = D(x2,x1),(y2,y1).

Finally, it is also obvious that

Dx,y = −Dy,x and Dx,x = 0.

The following result solves the above problem.

Theorem 1. The ternary algebra Vf,g,h is a ternary Jordan algebra only in the
following cases:

I. V0,0,0; II. V0,0,h, if char (F) = 3 and dimV = 1;
III. V0,g,0 if char (F) = 2 and dimV = 1; IV. Vf,0,h if char (F) = 2;
V. Vf,g,h if char (F) = 2 and dimV = 1.

Proof : I. Prove that V0,0,0 is a ternary Jordan algebra.
Obviously, for x = (αx + vx, βx + ux), y = (αy + vy, βy + uy) and every

α ∈ F, z ∈ V, we have

JJα + z, αx + vx, βx + uxK, αy + vy, βy + uyK =

α(αxβxαyβy + αxβxαyuy + αxβxβyvy + αyβyαxux + αyβyβxvx) + αxβxαyβyz.

It is easy to see that Dx,y is identically zero on V0,0,0 and we have a ternary Jordan
algebra.

The second part of the theorem has seven cases:

(f 6= 0, g = 0, h = 0), (f = 0, g 6= 0, h = 0), . . . , (f 6= 0, g 6= 0, h 6= 0).
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Below we only consider those that lead to the ternary Jordan algebras in modular
characteristic, since the proof for the remaining cases is similar.

II. (f = 0, g = 0, h 6= 0). In this case, (10) is reduced to

Jα1 + v1, α2 + v2, α3 + v3K = α1α2α3 + (α2α3 + h (v2, v3)) v1

+ (α1α3 + h (v1, v3)) v2 + (α1α2 + h (v1, v2)) v3.

Being V0,0,h = 〈1, b〉F, the multiplication table for the basis elements is given by

(i) J1, 1, 1K = 1, (ii) J1, 1, bK = b, (iii) J1, b, bK = 0 and (iv) Jb, b, bK = 3b.

Thus, with respect to this basis, we have

R(1,1) = E, R(1,b) = e12, and R(b,b) = 3e22,

where eij are the usual matrix units. Recalling the properties of the operatorsDx,y,
in order to verify the Dx,y-identity it suffices to do it for

D = D(1,b),(b,b) = R(1,b)R(b,b) −R(b,b)R(1,b) = 3e12.

Now, it is clear that D = 0 if char (F) = 3, and V0,0,h is a ternary Jordan alge-
bra. So, admit that char (F) 6= 3. Hereinafter, LHSD(z1, z2, z3) (respectively,
RHSD(z1, z2, z3)) denotes the left (right) hand side of (14) with D = Dx,y. It is
easy to see that, concerning (iii), we have

LHSD(1, b, b) = 0, while RHSD(1, b, b) = 9b.

Therefore, V0,0,h is not a ternary Jordan algebra.
Consider again char (F) = 3 with V0,0,h = 〈1, b1, . . . , bn〉F, n > 1. Then

(i) J1, 1, 1K = 1, (ii) J1, 1, biK = bi, (iii) J1, bi, biK = 0, (iv) Jbi, bi, biK = 0,

(v) J1, bi, bjK = 0, (i 6= j), (vi) Jbi, bi, bjK = bj (i 6= j),

and (vii) Jbi, bj, bkK = 0 (i, j, k are pairwise different).
Then, with respect to the considered basis, we have

R(1,1) = E, R(1,bi) = e1,i+1, R(bi,bi) = ej+1,j+1, and R(bi,bj) = ei+1,j+1+ej+1,i+1 (i 6= j).

Now, D = D(1,b1),(b1,b2) = e13, so D(1) = b2, and D (b1) = D (b2) = 0. Concern-
ing the product (i), it is easy to observe that

LHSD(1, 1, 1) = b2, while RHSD(1, 1, 1) = 3JD(1), 1, 1K = 0.

III. (f = 0, g 6= 0, h = 0). Under these conditions, (10) is reduced to

Jα1+v1, α2+v2, α3+v3K = (α1α2α3 + g (v1, v2, v3))+α2α3v1+α1α3v2+α1α2v3.
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Being V0,g,0 = 〈1, b〉F, the multiplication table for the basis elements is given by

(i) J1, 1, 1K = 1, (ii) J1, 1, bK = b, (iii) J1, b, bK = 0, and (iv) Jb, b, bK = 1.

Thus, with respect to this basis, we have

R(1,1) = E, R(1,b) = e12, and R(b,b) = e21.

Henceforth, in order to verify the Dx,y-identity it suffices to do it for

D = D(1,b),(b,b) = R(1,b)R(b,b) −R(b,b)R(1,b) = e11 − e22.

Thus, D(1) = 1 and D(b) = −b. Checking the Dx,y-identity in the four cases of
the multiplication table, it is possible to observe that (10) holds iff char (F) = 2.

Consider now char (F) = 2 and n = dimV = 2. Taking V0,g,0 = 〈1, b1, b2〉F,
we have the following multiplication table

J1, 1, 1K = 1, J1, 1, b1K = b1, J1, 1, b2K = b2, J1, b1, b1K = J1, b2, b2K = 0,

Jb1, b1, b1K = Jb2, b2, b2K = 1 and J1, b1, b2K = Jb1, b1, b2K = Jb2, b2, b1K = 0.

Taking D = D(1,b1),(b1,b1), we see that D(1) = 1 and D(b2) = 0. Therefore,
LHSD(b2, b2, b2) = 1, while RHSD(b2, b2, b2) = 0. Thus, V0,g,0 is a ternary
Jordan algebra only if char (F) = 2 and dimV = 1.

IV. (f 6= 0, g = 0, h 6= 0). In this case, (10) is reduced to

Jα1+v1, α2+v2, α3+v3K = (α1f (v2, v3) + α2f (v1, v3) + α3f (v1, v2) + α1α2α3)

+ (α2α3 + h (v2, v3)) v1 + (α1α3 + h (v1, v3)) v2 + (α1α2 + h (v1, v2)) v3.

Being Vf,0,h = 〈1, b〉F, the multiplication table for the basis elements is given by

(i) J1, 1, 1K = 1, (ii) J1, 1, bK = b, (iii) J1, b, bK = 1, and (iv) Jb, b, bK = 3b.

Thus, with respect to this basis, we have

R(1,1) = E, R(1,b) = e12 + e21, and R(b,b) = e11 + 3e22.

Now, in order to verify the Dx,y-identity it suffices to do it for

D = D(1,b),(b,b) = R(1,b)R(b,b) −R(b,b)R(1,b) = 2(e12 − e21).

Thus, D(1) = 2b and D(b) = −2. Checking the Dx,y-identity in the four cases
of the multiplication table, it is possible to observe that the identity holds iff
char (F) = 2.
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Admit that char (F) = 2 and n = dimV > 1. Take Vf,0,h = 〈1, b1, . . . , bn〉F,
with the following multiplication table

J1, 1, 1K = 1, J1, 1, biK = bi, J1, bi, biK = 1,

Jbi, bi, biK = bi (since char (F) = 2 ), J1, bi, bjK = 0 (i 6= j),

Jbi, bi, bjK = bj (i 6= j), Jbi, bj, bkK = 0 (i, j, k are pairwise different and n ≥ 3).

Then, with respect to the considered basis we have

R(1,1) = R(bi,bi) = E, R(1,bi) = e1,i+1+ei+1,1, and R(bi,bj) = ei+1,j+1+ej+1,i+1 (i 6= j).

In order to verify the Dx,y-identity it suffices to do it for

D = D(1,bi),(bi,bj) = e1,j+1 − ej+1,1.

Then, D(1) = bj, D(bi) = 0, D(bj) = −1 (j 6= i), and D(bk) = 0 (for the
pairwise different i, j, k and n ≥ 3). Considering all possible cases of the multi-
plication table for elements in B, it is not difficult to verify that the Dx,y-identity
holds. Thus, in this case Vf,0,h is a ternary Jordan algebra.

V. (f 6= 0, g 6= 0, h 6= 0). In this case, (10) is in its most general form. Taking
Vf,g,h = 〈1, b〉F, the multiplication table for the basis elements is given by

(i) J1, 1, 1K = 1, (ii) J1, 1, bK = b, (iii) J1, b, bK = 1, and (iv) Jb, b, bK = 1 + 3b.

Thus, with respect to this basis we have

R(1,1) = E, R(1,b) = e12 + e21, and R(b,b) = e11 + e21 + 3e22.

This way, in order to verify the Dx,y-identity it suffices to do it for

D = D(1,b),(b,b) = R(1,b)R(b,b) −R(b,b)R(1,b) = e11 − e22 + 2(e12 − e21).
Observe that D(1) = 1 + 2b and D(b) = −2− b. Concerning the above multipli-
cation table for the basis elements, it is easy to see that the Dx,y-identity holds iff
char (F) = 2.

Assume now that char (F) = 2 and dimV = 2. Consider Vf,g,h = 〈1, b1, b2〉F.
Then

J1, 1, 1K = 1, J1, 1, biK = bi, i = 1, 2, J1, bi, biK = 1, i = 1, 2, Jbi, bi, biK = 1 + bi,

J1, b1, b2K = 0, and Jbi, bi, bjK = bj, i, j = 1, 2, (i 6= j).

Taking D = D(1,b1),(b1,b1) = e11 − e22, we have

D(1) = 1, D (b1) = −b1 and D (b2) = 0.

Then LHSD(b2, b2, b2) = 1, while RHSD(b2, b2, b2) = 0. Thus, we will not
obtain a ternary Jordan algebra if char (F) = 2 and dimV > 1.
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The remaining 3 cases can be considered analogously.

Thus, we obtained the first examples of ternary Jordan algebras. In the case of
V0,0,0, we have a vector space F ⊕ V equipped with the following ternary multi-
plication:

Jα1 + v1, α2 + v2, α3 + v3K = α1α2α3 + α2α3v1 + α1α3v2 + α1α2v3,

where αi ∈ F, vi ∈ V.
Recall that, given a ternary algebra A, a subalgebra B of A is a vector subspace

of A such that JB,B,BK ⊆ B. The algebra A is Abelian iff JA,A,AK = 0. An
ideal of A is a subalgebra I of A such that

JI,A,AK ⊆ I, JA, I,AK ⊆ I, JA,A, IK ⊆ I.

The ideals {0} and A are trivial. The algebra A is simple if it is not Abelian and
it lacks nontrivial ideals.

Remark 2. As we can see from the following part of the paper, the ternary algebra
Vf,0,h has a ternary simple Jordan subalgebra.

Lemma 3. The ternary algebra V0,0,0 is not simple and every subspace of V is an
ideal of V0,0,0. If I is a proper ideal of V0,0,0 then I is a subspace of V. Among
the modular ternary Jordan algebras obtained in the previous theorem only the
following are simple:

• V0,g,0 with char (F) = 2 and dimV = 1;
• Vf,0,h with char (F) = 2 and dimV > 1.

Proof. It is easy to see that, for every subspace U of V,

JU,F⊕ V,F⊕ VK = JU,F,FK = U.
On the other hand, let I be an ideal of V0,0,0. If 1+v ∈ I then J1+v, 1, zK = z ∈ I

for every z ∈ I, and either I is a subspace of V or I = F⊕ V.
Consider the ternary Jordan algebra V0,0,h = 〈1, b〉F with char (F) = 3. The

multiplication table for the basis elements is given by

(i) J1, 1, 1K = 1, (ii) J1, 1, bK = b, (iii) J1, b, bK = 0, and (iv) Jb, b, bK = 0.

It is clear that I = 〈b〉F is an ideal of V0,0,h and so this ternary Jordan algebra is
not simple.

Consider the ternary Jordan algebra V0,g,0 = 〈1, b〉F with char (F) = 2. The
multiplication table for the basis elements is given by

(i) J1, 1, 1K = 1, (ii) J1, 1, bK = b, (iii) J1, b, bK = 0, and (iv) Jb, b, bK = 1.



10 I. KAYGORODOV, A. P. POZHIDAEV AND P. SARAIVA

Admit that I is an ideal of V0,g,0 and consider x = α 1+βb ∈ I\{0}. We see from
the multiplication table that if 1 ∈ I or b ∈ I then I = V0,g,0. So, we may assume
that none of the scalars is zero. Then

Jx, 1, bK = αb ∈ I,

and so b ∈ I leading to I = V0,g,0. Thus, V0,g,0 is simple.
Consider now Vf,0,h = 〈1, b1, . . . , bn〉F with char (F) = 2 and n = dimV. We

divide the proof in two cases: n = 1 and n > 1. Recall that, when n = 1, the
multiplication table with respect to the basis {1, b} is given by

J1, 1, 1K = 1, J1, 1, bK = b, J1, b, bK = 1, and Jb, b, bK = b.

It is easy to see that I = 〈1 + b〉F is an ideal of Vf,0,h, whence this ternary Jordan
algebra is not simple. Admit now that n > 1. The multiplication table for the
basis elements of Vf,0,h is given by

J1, 1, 1K = 1, J1, 1, biK = bi, J1, bi, biK = 1, Jbi, bi, biK = bi,

J1, bi, bjK = 0, Jbi, bi, bjK = bj, and Jbi, bj, bkK = 0

for all pairwise different i, j, k = 1, . . . , n. Let I be an ideal of Vf,0,h. It is clear
that if any of the basis elements lies in I then I = Vf,0,h, and this ternary Jordan

algebra is simple. Consider x = α 1 +
n∑
i=1

βi bi ∈ I\{0} with βj 6= 0 for some j.

Then
Jx, 1, bjK = α bj + βj ∈ I,

i.e., we may assume that 1 + γbj ∈ I for some nonzero γ ∈ F. Then

J1 + γbj, bj, biK = γbi ∈ I,

which proves the required simplicity.
The case Vf,g,h, with char (F) = 2 and dimV = 1, is perfectly similar to the

subcase dimV = 1 of the previous case.
�

Lemma 4. Let D be an arbitrary derivation of V0,0,0. Then
(1) if char (F) 6= 2 then Der(V0,0,0) ∼= End(V)(−);
(2) if char (F) = 2 and dimV = 1 then Der(V0,0,0) ∼= End(V0,0,0)

(−);
(3) if char (F) = 2 and dimV > 1 then D(V) ⊆ V, Der|V(V0,0,0) ∼=

End(V)(−), and D(1) may be an arbitrary element in V0,0,0, where
Der|V(V0,0,0) is the algebra of derivations of V0,0,0 restricted on V.
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Proof. Let D be a derivation of V0,0,0. If char (F) 6= 2 then it is easy to see that
D(1) = 0. Now, given an arbitrary element v ∈ V, we have D(v) = vF + vD, for
some vF ∈ F, vD ∈ V, and

D(v) = D Jv, 1 + v, 1 + vK = D(v) + 4vFv.

It follows that D(V) ⊆ V. Given D ∈ End(V), extend D to a linear mapping in
End(V0,0,0) such that D(1) = 0. Now,

D Jα1 + v1, α2 + v2, α3 + v3K = D(α1α2α3 + α1α2v3 + α1α3v2 + α2α3v1) =

α1α2D(v3) + α1α3D(v2) + α2α3D(v1) =

Jα1+v1, α2+v2, D(v3)K+Jα1+v1, D(v2), α3+v3K+JD(v1), α2+v2, α3+v3K =

JD(α1 + v1), α2 + v2, α3 + v3K + Jα1 + v1, D(α2 + v2), α3 + v3K+

Jα1v1, α2 + v2, D(α3 + v3)K.
Thus, D is a derivation of V0,0,0.

Suppose that char (F) = 2 and V0,0,0 = 〈1, b〉F. Then we have the following
multiplication table (up to commutativity):

J1, 1, 1K = 1, J1, 1, bK = b, J1, b, bK = Jb, b, bK = 0. (15)

Let D ∈ Der (V0,0,0), D(1) = α 1 + β b and D(b) = α′ 1 + β′ b for some
α, β, α′, β′ ∈ F. Applying D to (15) we see that D can be an arbitrary endomor-
phism of V0,0,0.

Consider the case char (F) = 2 and dimV > 1. Let {b1, b2, . . . , bn} be a basis
for V. The multiplication table in this case is the following (up to commutativity
and zero products):

J1, 1, 1K = 1, J1, 1, biK = bi, i = 1, . . . , n.

Take D ∈ Der (V0,0,0). Then D (bi) = αi1 + βibi for some αi, βi ∈ F, i =
1, . . . , n. It is easy to see that only the action of D on J1, bi, bjK = 0 gives some
restrictions on αi. Namely, from

D(J1, bi, bjK) = JD(1), bi, bjK + J1, D(bi), bjK + J1, bi, D(bj)K

we infer that αi = αj = 0 for all i 6= j. Thus, D(V ) ⊆ V , and for every bi the
image D(bi) may be an arbitrary element in V.

In each case, the reciprocal assertion on the isomorphism is trivial.
�
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2.The simple ternary Jordan algebra of a bilinear form
Restrict the algebra V0,0,h to V, an n-dimensional vector space over a field F,

and denote the bilinear form h by (., .), with the same properties with respect to
a given basis B = {b1, . . . , bn} of V. Consider the following ternary product
defined on V:

Jx, y, zK = (y, z)x+ (x, z) y + (x, y) z. (16)

Denote the obtained ternary algebra by TJn. It is clear that (16) is a particular
case of the general product (10).

Further, when n = 4 it is interesting to observe that (16) can be seen as a
multiple of the symmetrization of the multiplication

{x, y, z} =
1

6
(− (y, z)x+ (x, z) y − (x, y) z + [x, y, z]) ,

defined on the ternary Filippov algebra A1 with anticommutative multiplication
[., ., .] (see [1]). Indeed, being

{x, y, z}(+) = sym ({x, y, z})
= {x, y, z}+ {x, z, y}+ {y, x, z}+ {y, z, x}+ {z, x, y}+ {z, y, x} ,

it is easy to see that
Jx, y, zK = −3 {x, y, z}(+) .

Clearly, (16) defines a totally commutative multiplication on TJn. Further,
adopting the notations Rx and Dx,y introduced in the previous section, now con-
cerning the multiplication (16) in TJn, we have the following result.

Theorem 5. TJn is a ternary Jordan algebra.

Proof : According to the definition of ternary Jordan algebra, we must prove that

Dx,yJz1, z2, z3K = JDx,y (z1) , z2, z3K+ Jz1, Dx,y (z2) , z3K+ Jz1, z2, Dx,y (z3)K (17)

holds. Due to the linearity of Dx,y (where x = (x1, x2) and y = (y1, y2), with
xi, yi ∈ V) and its symmetry properties stated in the previous section, it suffices
to verify (17) for z1, z2, z3 ∈ B in the following cases:

1) x1, x2, y1, y2 ∈ {bi, bj, bk, bl} and are all pairwise different;
2) x1, x2, y1, y2 ∈ {bi, bj, bk} and only two among these are equal;
3) x1, x2, y1, y2 ∈ {bi, bj} and aren’t all equal;
4) x1, x2, y1, y2 ∈ {bi}.
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Using the definition of Dx,y and (16) it is immediate that in the cases 1 and 4 (17)
holds trivially, since then we have

Dx,y = 0.

Considering the case 2, we have to check two subcases.
2.1. x1 = x2 = bi, y1 = bj, and y2 = bk.
Under these circumstances,

Rbi,bi = E + 2eii, Rbj ,bk = ejk + ekj,

whence Dx,y = 0, and (17) holds trivially.
2.2. x1 = y1 = bi, x2 = bj, and y2 = bk.
Developing D(z) = Dx,y (z), we have

D (z) = (z, bj) bk − (z, bk) bj.

Concerning (17), it is easy to conclude that

LHSD(z1, z2, z3) = [(z1, z2) (z3, bj) + (z1, z3) (z2, bj) + (z2, z3) (z1, bj)] bk

− [(z1, z2) (z3, bk) + (z1, z3) (z2, bk) + (z2, z3) (z1, bk)] bj

= RHSD(z1, z2, z3).

Thus, (17) holds.
Analyze the third case, dividing it in three subcases:

3.1. x1 = x2 = bi and y1 = y2 = bj;
3.2. x1 = y1 = bi and x2 = y2 = bj;
3.3. x1 = x2 = y1 = bi and y2 = bj.

Since in the first two subcases (17) trivially holds (Dx,y is zero), we have to
check only the last subcase. We see that Dx,y acts as in the case 2.2 (up to the
scalar 2), which finishes the proof.

Theorem 6. The ternary Jordan algebra TJn is simple except for dim V = 2 and
char (F) = 2.

Proof : Let B = {b1, . . . , bn} be an orthonormal basis for V. The assertion is
trivial if n = 1, so admit that n ≥ 2. The multiplication table for the basis
elements is given by

(i) Jbi, bi, biK = 3bi, (ii) Jbi, bi, bjK = bj, (i 6= j),

and (iii) Jbi, bj, bkK = 0 for pairwise different i, j, k.
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Let I 6= {0} be an ideal of TJn. Clearly, it follows from (ii) in the multiplication
table that if bi ∈ I for some i then I = TJn, and TJn is simple.

Let z =
p∑

i = 1

αibi be an element in I\{0} with minimal length p 6= 1 and

α1 6= 0 (otherwise, we reorder the indices). We have

w = Jz, b1, b1K = 3α1b1 + α2b2 + . . .+ αpbp ∈ I\{0},
whence w − z = 2α1b1 ∈ I\{0}. If char (F) 6= 2 then b1 ∈ I, and I = TJn.

Assume that char (F) = 2. Admit first that dimV = 2. Let z = b1 + b2. From

Jz, b1, b1K = z, Jz, b2, b2K = z, and Jz, b1, b2K = z

it is clear that I = 〈z〉F is a non-trivial ideal of TJn, so TJn is not simple. Assume
now that dimV > 2 and consider a non-zero ideal I of TJn. As above, take

z =
p∑

r = 1

αrbr ∈ I\{0} of minimal length p 6= 1 and such that α1 6= 0, αi 6= 0

for some i ∈ {2, . . . , p}. Take j 6= 1, i. Then

w = Jz, bi, bjK = αibj + αjbi ∈ I\{0}.
On the other hand, Jw, bj, b1K = αib1 ∈ I\{0}, and I = TJn.

Recall now that an identity satisfied by a ternary algebra is said to be of degree
(or level) k, with k ∈ N, if k is the number of times that the multiplication appears
in each term of the identity (see [1]). Next, we are going to study the multilinear
identities of degrees 1 and 2, respectively, valid in the ternary Jordan algebra TJn
of characteristic not 3.

The identities of degree 1 satisfied by TJn are of the following shape:∑
σ ∈ S3

ασJxσ(1), xσ(2), xσ(3)K = 0, ασ ∈ F.

Due to the total commutativity of the multiplication (16), this sum is reduced to
one summand and it is easy to observe that the identities of degree 1 are resumed
by that property.

Again by the total commutativity of the multiplication, the degree 2 identities
valid in TJn are of the following form:∑

σ ∈ S5

σ(1) < σ(2) < σ(3)
σ(4) < σ(5)

ασJJxσ(1), xσ(2), xσ(3)K, xσ(4), xσ(5)K = 0, ασ ∈ F,
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which can be expanded in the following way:

α1JJx, y, zK, u, vK + α2JJx, y, uK, z, vK + α3JJx, y, vK, z, uK + α4JJx, z, uK, y, vK+
α5JJx, z, vK, y, uK + α6JJx, u, vK, y, zK + α7JJy, z, uK, x, vK + α8JJy, z, vK, x, uK+
α9JJy, u, vK, x, zK + α10JJz, u, vK, x, yK = 0.

(18)
Let us find what conditions must the αi satisfy.

1. If dimV = 1, being V = 〈b〉F, since Jb, b, bK = 3b from (18) we get

10∑
i=1

αi = 0. (19)

Now, choose an orthonormal basis {b1, b2} for V. Then

Jbi, bi, biK = 3bi, i = 1, 2, and Jbi, bi, bjK = bj, i 6= j.

In order to analyze what relations between the scalars can be derived from (18),
we are going to check all non redundant possible cases with x, y, z, u, v in the
considered basis.

2. Suppose that among x, y, z, u, v only four are equal (e.g., to b1). Then, we
have do consider 5 subcases:

(2.1) x = y = z = u = b1 and v = b2; (2.2) x = y = z = v = b1 and u = b2;
(2.3) x = y = u = v = b1 and z = b2; (2.4) x = z = u = v = b1 and y = b2;
(2.5) y = z = u = v = b1 and x = b2.

Replacing in (18) for each subcase, we obtain:

(2.1)→ 3α1 + 3α2 + α3 + 3α4 + α5 + α6 + 3α7 + α8 + α9 + α10 = 0,
(2.2)→ 3α1 + α2 + 3α3 + α4 + 3α5 + α6 + α7 + 3α8 + α9 + α10 = 0,
(2.3)→ α1 + 3α2 + 3α3 + α4 + α5 + 3α6 + α7 + α8 + 3α9 + α10 = 0,
(2.4)→ α1 + α2 + α3 + 3α4 + 3α5 + 3α6 + α7 + α8 + α9 + 3α10 = 0,
(2.5)→ α1 + α2 + α3 + α4 + α5 + α6 + 3α7 + 3α8 + 3α9 + 3α10 = 0.

3. Admit now that among x, y, z, u, v only three are equal (e.g., to b1). Then,
we have to consider ten subcases:

(3.1) x = y = z = b1 and u = v = b2; (3.2) x = y = u = b1 and z = v = b2;
(3.3) x = y = v = b1 and z = u = b2; (3.4) x = z = u = b1 and y = v = b2;
(3.5) x = z = v = b1 and y = u = b2; (3.6) x = u = v = b1 and y = z = b2;
(3.7) y = z = u = b1 and x = v = b2; (3.8) y = z = v = b1 and x = u = b2;
(3.9) y = u = v = b1 and x = z = b2; (3.10) z = u = v = b1 and x = y = b2.
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Analogously to what we have done in the case 2., we will obtain the following
equations:

(3.1)→ 3α1 + α2 + α3 + α4 + α5 + 3α6 + α7 + α8 + 3α9 + 3α10 = 0,
(3.2)→ α1 + 3α2 + α3 + α4 + 3α5 + α6 + α7 + 3α8 + α9 + 3α10 = 0,
(3.3)→ α1 + α2 + 3α3 + 3α4 + α5 + α6 + 3α7 + α8 + α9 + 3α10 = 0,
(3.4)→ α1 + α2 + 3α3 + 3α4 + α5 + α6 + α7 + 3α8 + 3α9 + α10 = 0,
(3.5)→ α1 + 3α2 + α3 + α4 + 3α5 + α6 + 3α7 + α8 + 3α9 + α10 = 0,
(3.6)→ 3α1 + α2 + α3 + α4 + α5 + 3α6 + 3α7 + 3α8 + α9 + α10 = 0,
(3.7)→ α1 + α2 + 3α3 + α4 + 3α5 + 3α6 + 3α7 + α8 + α9 + α10 = 0,
(3.8)→ α1 + 3α2 + α3 + 3α4 + α5 + 3α6 + α7 + 3α8 + α9 + α10 = 0,
(3.9)→ 3α1 + α2 + α3 + 3α4 + 3α5 + α6 + α7 + α8 + 3α9 + α10 = 0,
(3.10)→ 3α1 + 3α2 + 3α3 + α4 + α5 + α6 + α7 + α8 + α9 + 3α10 = 0.

Now, the linear system consisting of (19) and the other 15 equations has only
the trivial solution. Therefore, the only identities of degree 2 in TJn are those that
result from lifting the identities of degree 1.

Thus, we have the following result.

Lemma 7. All degrees 1 and 2 identities on TJn (char (F) 6= 3) are a conse-
quence of the total commutativity of (16).

Remark 8. Recall that a Jordan triple system (see [3] and also [9], where this
notion also appears under the name of ”ternary Jordan algebra”) is a ternary
algebra A with a ternary multiplication J., ., .K satisfying a partial commutativity
property

Jx, y, zK = Jz, y, xK
and the following identity:

JJx, y, zK, u, vK + Jz, u, Jx, y, vKK = Jx, y, Jz, u, vKK + Jz, Jy, x, uK, vK. (20)

According to the previous computations, it is also clear thatA doesn’t satisfy (20),
clarifying that we are working with a different generalization.

3.Derivations of TJn
Now, we are going to describe the derivations of TJn. Consider a linear map

D : V → V. Using the definition of derivation of a ternary algebra and (16), one
may see that D ∈ Der (TJn) if and only if(

(D (y) , z) + (y,D(z))
)
x+

(
(D (x) , z) + (x,D(z))

)
y+(

(D (x) , y) + (x,D(y))
)
z = 0 (21)
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for all x, y, z ∈ V. It is clear that it suffices to work with (21) for all x, y, z in
the orthonormal basis B of V we have chosen before.

It is easy to see that

(D (bi) , bj) = − (D (bj) , bi) with i 6= j. (22)

This way, we have

D (bj) =
n∑
i=1

αibi =
n∑
i=1

(bi, D (bj)) bi.

It means that D is a skew-symmetric operator on V for every derivation D with
respect to our form.

Now, observe that the algebra Inder (TJn) of inner derivations of TJn is just
the Lie algebra generated by the right multiplication operators Rx. By definition,

Inder (TJn) = L(TJn) ∩Der(TJn),

where L(TJn) is the Lie transformation algebra of TJn. From the proof of
Theorem 5 we know the operators Rbi,bj . So, it is easy to see that L(TJn) =
〈eij − eji〉F. On the other hand, D ∈ L(TJn) by (22). Thus, we have

Theorem 9. Der (TJn) = Inder (TJn) = so(n).

Remark 10. In 1955 Jacobson proved that if a finite-dimensional Lie algebra L
over a field of characteristic zero has an invertible derivation then L is nilpotent
[12]. The same result was proved for the Jordan algebras [15] but as we can see
from Theorem 9 the Jacobson Theorem is not true for the ternary Jordan algebras.
We can take a ternary Jordan algebra TJ4 and consider the map defined by the
following matrix

∑
1≤i<j≤4(eij− eji). As follows, there is a simple ternary Jordan

algebra with an invertible derivation.

4.Ternary symmetrized matrix algebras
Consider the following ternary algebras

A = (Mn (F) , J., ., .K) ,

where J., ., .K is the symmetrized ternary multiplication defined by

JA1, A2, A3K = sym (A1, A2, A3) =
∑
σ∈S3

Aσ(1)Aσ(2)Aσ(3) with A1, A2, A3 ∈Mn (F) .
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This multiplication, also known as the ternary anticommutator, is clearly totally
commutative. It is easy to see that A is not a ternary Jordan algebra in general. In
fact, the identity

Dx,y JA,B,CK = JDx,y(A), B, CK + JA,Dx,y(B), CK + JA,B,Dx,y(C)K

does not hold in A. To see this, we can consider n = 3 and evaluate both sides by
the following elements of the canonical basis of M3 (F):

x = (e23, e32), y = (e22, e23), A = e12, B = e23, and C = e32.

Then LHSD(A,B,C) = 0, while RHSD(A,B,C) = −3e13, where D = Dx,y.
However, we have the following

Theorem 11. Given different i, j ∈ {1, . . . , n}, the following 2-dimensional sub-
algebras of Mn (F)

S1 = 〈eii, eij〉F and S2 = 〈eij, eji〉F , (i 6= j),

are non-isomorphic ternary Jordan algebras. Furthermore, S2 is simple if
char F 6= 2.

Proof. The proof of the first assertion will only be done in the case of the subal-
gebra S1, since the other case could be proved analogously.

The multiplication table for the basis elements of S1 is given by

Jeii, eii, eiiK = 6eii, Jeii, eii, eijK = 2eij, and Jeii, eij, eijK = Jeij, eij, eijK = 0.

Thus, considering the matrix representation of the right multiplication operators
R(eii,eii), R(eii,eij), and R(eij ,eij) with respect to the basis {f1 = eii, f2 = eij}, we
have

R(eii,eii) = 6f11 + 2f22, R(eii,eij) = 2f12, and R(eij ,eij) = 0.

Defining D(x1,x2),(y1,y2) as before, the only non-trivial case for these operators is
given by

D = D(eii,eii),(eii,eij) = 8f12.

Now, to verify the Dx,y-identity it suffices to do it in the four cases of the multi-
plication table above. In the first case, we have

LHSD(eii, eii, eii) = 48eij = 3JD (eii) , eii, eiiK = RHSD(eii, eii, eii).

For the other three cases, both sides of the identity are zero, proving that S1 is a
ternary Jordan algebra.

It is easy to see that 〈eij〉F is an ideal of S1.
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Assume now that I is an ideal of S2 and consider x = αeij + βeji ∈ I\{0}.
Observing that the multiplication table for the basis elements in S2 is given by

Jeij, eij, eijK = Jeji, eji, ejiK = 0, Jeij, eij, ejiK = 2eij, and Jeij, eji, ejiK = 2eji,

we have
Jx, eij, eijK = 2βeij.

If β 6= 0 then eij ∈ I. Then

Jeij, eji, ejiK = 2eji ∈ I

which implies eji ∈ I, and I = S2. If β = 0 then x = αeij ∈ I\{0} implies
eij ∈ I, and we arrive at the same conclusion.

Finally, it is clear that these two algebras are not isomorphic.
�

Concerning the identities verified in A, it is possible to prove the same results we
have achieved about the algebra in the third section, by using similar techniques.
Thus,
• the identities of degree 1 satisfied by A are resumed in its total commuta-

tivity;
• all degree 2 identities satisfied by A result from lifting the total commuta-

tivity of the anticommutator.

5.Ternary algebras defined on the Cayley-Dickson algebras
Recall the Cayley-Dickson doubling process ( [21], [24]). Consider a unital

algebra A over a field F of characteristic not 2. Assume that A is equipped with
an involution x 7→ x such that

x+ x, xx ∈ F, for all x ∈ A.

Take µ ∈ F\ {0} and define a new algebra (A, µ) as follows:

A⊕A, the underlying vector space,
(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) , the addition,
c (x1, x2) = (cx1, cx2) , the scalar multiplication (c ∈ F),
(x1, x2) (y1, y2) = (x1y1 + µy2x2, x1y2 + y1x2) , the multiplication.

The corresponding involution in (A, µ) is given by

(x1, x2) = (x1,−x2) .
The symmetric bilinear form 〈x, y〉 = 1

2(xȳ+yx̄) defined on A is nonsingular and
we can define the norm of an element a ∈ A by the rule n(a) = 〈a, a〉.
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Starting with F such that char (F) 6= 2, we obtain a sequence of 2t-dimensional
algebras denoted by Ut, among which

U0 = F, the scalars,
a commutative and associative algebra;
U1 = C (µ) = (F, µ) , the generalized complex numbers,
a commutative and associative algebra;
U2 = H (µ, β) = (C (µ) , β) , the generalized quaternions,
a not commutative and associative algebra;
U3 = O (µ, β, γ) = (H (µ, β) , γ) , the generalized octonions,
a not commutative, not associative and alternative algebra;

are the most notable examples. Define on each Ut, t = 2, 3, . . . , the ternary
multiplication:

Jx, y, zK = (xy) z (23)

and take
Dt = (Ut, J., ., .K) .

Clearly, this ternary multiplication is not totally commutative, so these algebras
are not ternary Jordan algebras. Before going on, recall some properties of com-
position algebras (thus, valid in particular in U2 and U3).

Lemma 12. Let A be a composition algebra with unit 1, with an involution and
a bilinear symmetric non-degenerate form 〈., .〉. For all a, b, c ∈ A, we have

(1) (aa)b = a(ab) = n(a)b = (ba)a = b(aa);
(2) (ab)c+ (ac)b = 2〈b, c〉a;
(3) a(bc) + b(ac) = 2〈a, b〉c.

If additionally a, b, c are different elements in an orthonormal basis then
(4) aba = −b;
(5) (ab)c = −(ac)b;
(6) a(bc) = −b(ac).

Theorem 13. D2 is a simple ternary Dx,y-derivation algebra.

Proof : Consider arbitrary x = (x1, x2), y = (y1, y2), with xi, yi ∈ H(µ, β), i =
1, 2. It is clear that every linear operator Dx,y is also linear in each xi and each
yi, so we can consider that these elements belong to B = {1, a, b, ab}, the usual
orthonormal basis of H(µ, β). Recall that U2 is associative. State some properties
of J., ., .K and of each operator Dx,y in D2.
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First of all, by the previous lemma we note that for pairwise different elements
x, y, z ∈ B we have

Jx, y, zK = −Jy, x, zK = −Jx, z, yK.

Moreover, by Lemma 12, Rx,y = −Ry,x for all x, y ∈ B, x 6= y.
Further, if xi, yi ∈ B, x1 6= x2, y1 6= y2, then

D(x1,x2),(y1,y2) = −D(x1,x2),(y2,y1) = −D(x2,x1),(y1,y2).

In order to verify the Dx,y-identity we consider the following cases:

(1) x1 = x2 = y1 = y2;
(2) only three elements among {x1, x2, y1, y2} are equal;
(3) two pairs of elements among {x1, x2, y1, y2} are equal;
(4) only two elements among {x1, x2, y1, y2} are equal;
(5) all {x1, x2, y1, y2} are pairwise different.

In the first case, D(x1,x1),(x1,x1) = 0, and the Dx,y-identity trivially holds.
Admit that among {x1, x2, y1, y2} only three are equal. By above, we may as-

sume that x1 = x2 = y1, y2 6= x1. Thus,

D(x1,x1),(x1,y2)(z) = zx1x1x1y2 − zx1y2x1x1 = 0 for all z ∈ B,

and the Dx,y-identity trivially holds.
Concerning the case (3), we may assume that we have two subcases:

(i) x1 = x2, y1 = y2, x1 6= y1; (ii) x1 = y1, x2 = y2.

The case (ii) is a trivial one. In the subcase (i) we easily have Dx,y = 0 by Lemma
12.

Analyze the case (4). By above, we may assume that we have two subcases:

(i) x1 = x2, x1, y1, y2 are pairwise different;
(ii) x1 = y1, x1, x2, y2 are pairwise different.

Concerning the subcase (i), for every z ∈ B we have

D(x1,x1),(y1,y2)(z) = JJz, x1, x1K, y1, y2K− JJz, y1, y2K, x1, x1K
= zx1x1y1y2 − zy1y2x1x1 = zy1y2 − zy1y2 = 0

for all z ∈ B, concluding this case.



22 I. KAYGORODOV, A. P. POZHIDAEV AND P. SARAIVA

Consider the subcase (ii). Put D := D(x1,x2),(x1,y2). Then for every z ∈ B we
have

D(z) = JJz, x1, x2K, x1, y2K− JJz, x1, y2K, x1, x2K = zx1x2x1y2 − zx1y2x1x2
= −zx2y2 + zy2x2 = −2zx2y2.

Compute both sides of the Dx,y-identity for z1, z2, z3 ∈ B. We have

D(x1,x2),(x1,y2) (Jz1, z2, z3K) = −2z1z2z3x2y2.

On the other hand,

JD(x1,x2),(x1,y2)(z1), z2, z3K = −2z1x2y2z2z3,

Jz1, D(x1,x2),(x1,y2)(z2), z3K = −2z1y2x2z2z3,

Jz1, z2, D(x1,x2),(x1,y2)(z3)K = −2z1z2z3x2y2.

Since x2y2 = −y2x2, the Dx,y-identity is proved.
The simplicity of D2 follows from the simplicity of U2 putting y = 1 in (23).

Consider H(µ, β) = 〈1〉F ⊕H(µ, β)s, where H(µ, β)s is the set of all elements
in H(µ, β) that are invariant under the involution.

Theorem 14. D ∈ Der(D2) if and only if D = Φ + Ψ for some Φ,Ψ ∈
End (H(µ, β)) such that Φ ∈ Der(H(µ, β)), Ψ(x) = xΨ(1) for all x ∈ H(µ, β),
and Ψ(1) ∈ H(µ, β)s.

Proof : Admit that D ∈ Der(D2). Then from

D Jx, y, zK = JD (x) , y, zK + Jx,D (y) , zK + Jx, y,D (z)K (24)

and (23) we obtain

D (xy) = D (x1y) = D(x)y + xD(1)y + xD(y).

Setting x = y = 1 in this equality we get

D(1) +D(1) = 0,

which implies that D(1) ∈ H(µ, β)s, and

D (xy) = D(x)y − xD(1)y + xD(y). (25)

Consider g ∈ End (H(µ, β)) such that

g(x) = D(x)− xD(1). (26)

By (25)

g(xy) = D(xy)−xyD(1) = D(x)y−xD(1)y+xD(y)−xyD(1) = g(x)y+xg(y)
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for all x, y ∈ H(µ, β). By (26), D(x) = g(x) + xD(1).
Reciprocally, admit that D ∈ End (H(µ, β)) is such that

D = Φ + Ψ

where Φ,Ψ ∈ End (H(µ, β)) are such that Φ ∈ Der (H(µ, β)), Ψ(x) = xΨ(1)
for all x ∈ H(µ, β)s, and Ψ(1) ∈ H(µ, β)s. Note that Ψ(x) = xΨ(1) also holds if
x ∈ H(µ, β). Then, for all x, y, z ∈ H(µ, β)s we have

Ψ Jx, y, zK = Ψ (xyz) = xyz Ψ(1).

Furthermore,

JΨ (x) , y, zK + Jx,Ψ (y) , zK + Jx, y,Ψ (z)K = xΨ (1) yz + xyΨ (1)z + xyzΨ (1)

= xΨ (1) yz − xΨ (1) yz + xyzΨ (1)

= xyz Ψ(1).

Note that this also holds if x, y, z ∈ 〈1〉F, so Ψ ∈ Der(D2).
Since Φ ∈ Der (H(µ, β)), Φ(1) = 0. It is well-known that Φ (H(µ, β)) ⊆

H(µ, β)s, whence for every y = µ 1 + ys, ys ∈ H(µ, β)s we have

Φ(y) = Φ (ys) = −Φ (ys) = Φ (y) .

Thus, if x, y, z ∈ H(µ, β) then

Φ Jx, y, zK = Φ (xyz)

= Φ(x)yz + xΦ (y) z + xyΦ (z)

= Φ(x)yz + xΦ (y)z + xyΦ (z)

= JΦ (x) , y, zK + Jx,Φ (y) , zK + Jx, y,Φ (z)K,

whence Φ ∈ Der(D2), and the same holds for D.

Lemma 15. All degree 1 identities of D2 are consequences of

Jy, x, xK = Jx, x, yK.

All degree 2 identities of D2 are consequences of (15) and the following degree 2
identities:

JJx, y, zK, u, vK = Jx, y, Jz, u, vKK,
JJx, y, zK, u, vK = Jx, Ju, z, yK, vK.

From the definition of O(µ, β, γ) we have

Lemma 16. D3 is not a ternary Dx,y-derivation algebra.
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Proof : Consider the canonical orthonormal basis B = {1, a, b, ab, c, ac, bc, (ab)c}
for O(µ, β, γ) with the usual multiplication in this composition algebra [24]. Take

x1 = a = y1, x2 = b, and y2 = c.

Then,

D(z) = Dx,y(z) = (((za) b) a) c− (((za) c) a) b for all z ∈ O(µ, β, γ).

Take z1 = ab, z2 = 1, and z3 = c. Then, Jz1, z2, z3K = Jab, 1, cK = (ab)c, and we
have

LHSD(z1, z2, z3) = D ((ab)c) = 2αβγa,

where α = 1
4(4µ+ 1) 6= 0 (see [24]). On the other hand, since D(ab) = −2αβac,

D(1) = −2αbc, and D(c) = 2αγb; therefore,

RHSD(z1, z2, z3) = JD(ab), 1, cK + Jab,D(1), cK + Jab, 1, D(c)K = −2αβγa.

Thus, D3 is not a Dx,y-derivation algebra.

6.An analog of the TKK-construction for ternary algebras
We recall the Tits-Kantor-Koecher (TKK for short) construction, which con-

nects Lie and Jordan algebras (see [14], [16] and [26]). In this section we use an
analogue of this construction to define ternary multiplications and ternary Jordan
algebras.

Let L = L−1⊕L0⊕L1 be a 3-graded ternary algebra with the product [x, y, z].
By definition, we have

[Li, Lj, Lk] ⊆ Li+j+k,

where the addition is considered modulo 3. Following I. Kantor, we define a
ternary operation on J := L0 by the rule

Jx, y, zK = symx,y,z[[[u−1, x, u1], y, v−1], z, v1], (27)

where symx,y,z is the symmetrization operator in x, y, z, and ui, vi ∈ Li, i =
−1, 1.

Let L = A1 be the simple 4-dimensional Filippov algebra over C with the
standard basis {e1, e2, e3, e4} and the multiplication table

[e1, . . . , êi, . . . , e4] = (−1)iei.

Change this basis to

a =
i

2
e1, b =

1

2
e2, a−1 = e3 − ie4, a1 = e3 + ie4, where i2 = −1.
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Then
〈a−1〉 ⊕ 〈a, b〉 ⊕ 〈a1〉

is a 3-grading on A1 with J = L0 = 〈a, b〉. Indeed, due to the anticommutativity
of the multiplication [., ., .], to reach this conclusion it suffices to observe that

[a, a−1, a1] = −2b and [b, a−1, a1] = −2a.

Putting u−1 = v−1 = a−1, u1 = v1 = a1 in (27), we obtain the following
multiplication table in J:

Ja, a, aK = 6b, Ja, a, bK = 2a, Ja, b, bK = −2b, and Jb, b, bK = −6a.
(28)

Then we have

R(a,a) = 6e12 + 2e21, R(a,b) = 2e11 − 2e22, and R(b,b) = −2e12 − 6e21.

Thus,

D(a,a),(a,b)
.
= −3e12+e21, D(a,a),(b,b)

.
= e11−e22, and D(a,b),(b,b)

.
= −e12+3e21

where .
= denotes an equality up to a scalar and eij is the matrix unit in the basis

{a, b}. Now, we may consider a ternary commutative algebra J over an arbitrary
field with the multiplication table (28). The inclusion

Dx,y ∈ 〈−3e12 + e21, e11 − e22,−e12 + 3e21〉

is immediate. Verifying the Dx,y-identity, we conclude that it holds if and only if
char (F) = 2.

In the Kantor article the product was defined on the space L−1 by the rule xy =
[[a, x], y] for a fixed a ∈ L1. We proceed analogously. Put

Jx, y, zK = symx,y,z[[[u0, x, u1], y, v1], z, v0],

where ui, vi ∈ Li, i = 0, 1, x, y, z ∈ L−1. In this case we have

Ja−1, a−1, a−1K = a−1,

with

a−1 = e3 − ie4, u0 =
i
4
e1, v0 = e2, u1 = v1 = a1 = e3 + ie4.

It is easy to notice that every one-dimensional ternary algebra J is a ternary Jordan
algebra, and J is simple if and only if {J, J, J} 6= 0.
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7.On the reduced algebras of n-ary Jordan algebras
Given an arbitrary class A of n-ary algebras with n > 2 and an algebra A ∈ A

with a product J, . . . , K, fix a ∈ A and for each i ∈ {1, . . . , n} define an (n−1)-ary
algebra Ai,a by putting

Jx2, . . . , xnKi,a = Jx2, . . . , a︸︷︷︸
i-th entry

, . . . , xnK, x2, . . . , xn ∈ A.

Each algebra Ai,a is called a reduced algebra of A. Under the total commutativity
or the anticommutativity of J, . . . , K, it suffices to consider i = 1, which may be
omitted by simply writing Aa and

Jx2, . . . , xnKa = Ja, x2, . . . , xnK, x2, . . . , xn ∈ A.

It may happen that each reduced algebra of an n-ary algebra belongs to the same
class. Indeed, it is known that
• reduced algebras of n-ary totally associative algebras are (n−1)-ary totally

associative algebras;
• reduced algebras of n-ary totally (anti)commutative algebras are (n − 1)-

ary totally (anti)commutative algebras;
• reduced algebras of n-ary Leibniz algebras are (n − 1)-ary Leibniz alge-

bras;
• reduced algebras of n-ary Filippov algebras are (n− 1)-ary Filippov alge-

bras [8];
• reduced algebras of n-ary Malcev algebras are (n−1)-ary Malcev algebras

[20].
So, it is natural to put the following question: whether the reduced algebras of
n-ary Jordan algebras are (n− 1)-ary Jordan algebras?

Lemma 17. The reduced algebras of the ternary Jordan algebra TJn are not
Jordan algebras in general.

Proof : A counterexample may be constructed for every n > 1. Assume that
{b1, b2} belong to an orthonormal basis for TJn. Put a = b1. Take x = b2 and
y = b1. Then

x2 = Ja, x, xK = b1 = y, y2 = 3b1 = 3y, xy = b2 = x.

Now, x(yx2) = y2x = 3x, (xy)x2 = xy = x. Assuming that the ground field is
of characteristic not 2, we see that (1) fails.
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Remark 18. Since the ternary multiplication of a Jordan triple system (see Re-
mark 8) is only partially commutative, it is straightforward that its reduced alge-
bras may not be Jordan algebras.

Remark 19. One of subclasses of n-ary Jordan algebras is the subclass of totally
commutative and totally associative n-ary algebras. As it is easy to see from def-
inition, the reduced algebras of every totally commutative and totally associative
n-ary algebra are totally commutative and totally associative (n − 1)-ary alge-
bras.

References
[1] Beites, P.D., Nicolas, A.P., Pozhidaev, A.P. and Saraiva, P. (2011), On identities of a ternary quaternion

algebra, Communications in Algebra, 39 (3), 830–842.
[2] Bremner, M. and Hentzel, I. (2000), Identities for generalized Lie and Jordan products on totally

associative triple systems, Journal of Algebra, 231 (1), 387–405.
[3] Bremner, M.R. and Peresi, L.A. (2007), Classification of trilinear operations, Communications in

Algebra, 35 (9), 2932–2959.
[4] Bremner, M. (2001), New ternary versions of Jordan algebras, Algebra Colloquium, 8 (1), 11–24.
[5] Faraut, J. and Koranyi, A. (1994), Analysis on symmetric cones, Oxford Mathematical Monographs,

The Clarendon Press, Oxford University Press, New York.
[6] Faulkner, J.R. (1967), The inner derivations of a Jordan algebra, Bull. Amer. Math. Soc., 73 (2), 208–

210.
[7] Faybusovich, L. (2010), Jordan-algebraic aspects of optimization: randomization, Optimization Meth-

ods and Software 25 (5), 763–779.
[8] Filippov, V.T. (1985), n-Lie algebras, Sib. Math. J., 26 (6), 126–140.
[9] Gnedbaye, A.V. and Wambst, M. (2007), Jordan triples and operads, Proceedings of Renaissance

Conferences, American Mathematical Society, 202, 83–113.
[10] Iordanescu, R. (2011), Jordan structures in mathematics and physics, arXiv1106.4415
[11] Jacobson, N. (1949), Lie and Jordan triple systems, Am. J. Math., 71, 149–170.
[12] Jacobson, N. (1955), A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math.

Soc., 6, 281–283.
[13] Jordan, P.; von Neumann, J.; Wigner, E. (1934), On an Algebraic Generalization of the Quantum

Mechanical Formalism, Annals of Mathematics, Princeton, 35 (1), 29–64.
[14] Kantor, I.L. (1972), Some generalizations of Jordan algebras. Trudy Sem. Vektor. Tenzor. Anal., 16,

407–499.
[15] Kaygorodov, I. and Popov, Yu. (2016), A characterization of nilpotent nonassociative algebras by

invertible Leibniz-derivations, J. Algebra, 456, 323–347.
[16] Koecher, M.(1967), Imbedding of Jordan algebras into Lie algebras I. Amer. J. Math., 89, 787–816.
[17] Loos, O. (1975), Jordan pairs, Lect. Notes in Math., 460, Springer-Verlag, Berlin and New York.
[18] McCrimmon, K. (2004), A taste of Jordan algebras, Universitext, Springer-Verlag, Berlin and New

York.
[19] Osborn, J.M. (1969), Lie triple algebras with one generator, Math. Z., 110, 52–74.
[20] Pozhidaev, A.P. (2001), n-ary Mal’tsev algebras, Algebra and Logic, 40 (3), 309–329.
[21] Schafer, R.D. (1954), On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76,

435–446.
[22] Schafer, R.D. (1966), An Introduction to Nonassociative Algebras, Academic Press, New York.



28 I. KAYGORODOV, A. P. POZHIDAEV AND P. SARAIVA

[23] Schafer, R.D. (1955), Noncommutative Jordan algebras of characteristic 0, Proc. Amer. Math. Soc., 6,
472–475.

[24] Shestakov, I.P., Shirshov, A.I., Slin’ko, A.M., and Zhevlakov, K.A. (1978), Rings that are Nearly
Associative, M.: Nauka. (English translation: Acad. Press N. Y. 1982.)

[25] Sidorov, A.V. (1981), Lie triple algebras, Algebra and Logic, 87, 72–78.
[26] Tits, J. (1962), Une classe de algebres de Lie en relation avec les algebres de Jordan. Indag. Math., 24,

530–534.
[27] Upmeier, H. (1985), Symmetric Banach manifolds and Jordan C∗ Algebras, North Holland Mathe-

matics Studies 104, Elsevier.

IVAN KAYGORODOV
UNIVERSIDADE FEDERAL DO ABC, SANTO ANDRE, BRASIL

E-mail address: kaygorodov.ivan@gmail.com

A. P. POZHIDAEV
SOBOLEV INSTITUTE OF MATHEMATICS, PR. KOPTYUGA 4, NOVOSIBIRSK, RUSSIAN FEDERATION, DE-
PARTMENT OF MATHEMATICS AND MECHANICS, NOVOSIBIRSK STATE UNIVERSITY,, PIROGOVA 2, NOVOSI-
BIRSK, RUSSIAN FEDERATION

E-mail address: app@math.nsc.ru

P. SARAIVA
CMUC, CEBER AND FACULTY OF ECONOMICS, UNIVERSITY OF COIMBRA, 3004-512, COIMBRA, PORTU-
GAL

E-mail address: psaraiva@fe.uc.pt


	1. Ternary algebras of multilinear forms
	2. The simple ternary Jordan algebra of a bilinear form
	3. Derivations of TJn
	4. Ternary symmetrized matrix algebras
	5. Ternary algebras defined on the Cayley-Dickson algebras
	6. An analog of the TKK-construction for ternary algebras
	7. On the reduced algebras of n-ary Jordan algebras
	References

