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1. Introduction
Markov’s theorem, dating back to the late 19th century, furnishes a method

for obtaining information about zeros of orthogonal polynomials from the
weight function related to orthogonality. Formally, adopting modern termi-
nology, his result is stated as follows (see [27]):

Theorem 1.1 (Markov, 1886). Let {pn(x, t)} be a sequence of polynomials
which are orthogonal on the interval A = (a, b) with respect to the weight
function ω(x, t) that depends on a parameter t, t ∈ B = (c, d), i.e.,∫ b

a

pn(x, t)pm(x, t)ω(x, t)dx = 0, m 6= n.

Suppose that ω(x, t) is positive and has a continuous first derivative with
respect to t for x ∈ A, t ∈ B. Furthermore, assume that∫ b

a

xk
∂ω

∂t
(x, t)dx, k = 0, 1, . . . , 2n− 1,
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converge uniformly for t in every compact subinterval of B. Then the zeros
of pn(x, t) are increasing (decreasing) functions of t, t ∈ B, provided that

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x, x ∈ A.

Markov’s proof is based on the orthogonality relation (cf. [27, Equation
2]) together with the chain rule (cf. [27, Equation 5], supposing that the
zeros are defined implicitly as differentiable functions of the parameter. In
addition, as an application of this result, Markov established that the zeros
of Jacobi polynomials, which are orthogonal in (−1, 1) with respect to the
weight function ω(x, α, β) = (1 − x)α(1 + x)β, α, β > −1, are decreasing
functions of α and increasing functions of β. Later, in 1939, Szegő, in his
classical book [33, Theorem 6.12.1, p. 115], provided a different proof of
Markov’s theorem. Szegő referred his proof of Theorem 1.1 in the following
way [33, Footnote 31, p. 116]: “This proof does not differ essentially from the
original one due to A. Markov, although the present arrangement is some-
what clearer.”. Szegő’s reasoning (argument, approach) is based on Gauss
mechanical quadrature, which was an approach that Stieltjes suggested to
handle the problem, see [32, Section 5, p. 391]. In 1971, Freud (see [12,
Problem 16, p. 133]) formulated a version of Markov’s theorem that is a
little more general, considering sequences of polynomials orthogonal with re-
spect to measures in the form dα(x, t) = ω(x, t)dν(x). A proof of such result
appears in Ismail [15, Theorem 3.2, p. 183 ] (see also in Ismail’s book [17,
Theorem 7.1.1, p. 204]). Ismail’s argument of the proof is also based on
Gauss mechanical quadrature. As consequence, Ismail provide monotonicity
properties for the zeros of Hahn and Meixner polynomials (see [17, Theorem
7.1.2, p. 205]). Kroó and Peherstorfer [23, Theorem 1], in a more general
context of approximation theory, extended Markov’s result to zeros of poly-
nomials which have the minimal Lp-norm. Their approach is based on the
implicit function theorem.

The main concern of this work derives from Markov’s classic 1886 theorem.
This allows the approach to be tailored towards measures with continuous
and discrete parts, thus extending the Markov’s result. This point at issue
was posed by Ismail in his book as an open problem [17, Problem 24.9.1, p.
660] (see also [15, Problem 1, p. 187]). The question is stated as follows:
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Problem 1.1. Let µ be a positive and nontrivial Radon measure on a com-
pact set A ⊂ R. Assume that dµ(x, t) has the form

dα(x, t) + dβ(x, t), (1.1)

where dα(x, t) := ω(x, t)dν(x) and dβ(x, t) :=
∑∞

i=0 i(t)δyi(t),
∗ with t ∈ B,

B being an open interval on R. Determine sufficient conditions in order
for the zeros of the polynomial Pn(x, t) to be strictly increasing (decreasing)
functions of t.

The manuscript is organized in the following way: in Section 2 the main
result is stated and proved; in Section 3 some conclusions are drawn from
the main result, including Markov’s classic theorem, among others; finally, in
Section 4, illustrative examples are given: in Subsections 4.1 and 4.2 mono-
tonicity properties of zeros of polynomials orthogonal with respect measures
with discrete parts are investigated; in Subsection 4.3 monotonicity proper-
ties of zeros of Jacobi, Gegenbauer and Laguerre orthogonal polynomials are
reviewed; in Subsection 4.4, sharp monotonicity properties involving the zeros
of Gegenbauer-Hermite, Jacobi-Laguerre and Laguerre-Hermite orthogonal
polynomials are derived; at last, in Subsection 4.5, monotonicity properties
of zeros of Charlier, Meixner, Kravchuck, and Hahn orthogonal polynomials
are revisited.

2.Main result
The next result extends Markov’s theorem to measure with continuous and

discrete parts, giving an answer to Problem 1.1. For a result in the context
of polynomials which have minimal Lp-norm see [3, Theorem 1.1].

Theorem 2.1. Assume the notation and conditions of Problem (P). Assume
further the existence and continuity for each x ∈ A and t ∈ B of (∂ω/∂t)(x, t)
and, in addition, suppose that

G(t) :=
∞∑
i=0

gi(t)

converge at t = t0 and

G′(t) :=
∞∑
i=0

gi(t),
∂G

∂xj
(t) =

∞∑
i=0

∂g

∂xj
(t)

∗The Dirac measure δy is a positive Radon measure whose support is the set {y}.
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converge uniformly for t ∈ B, where

gi(t) = i(t)(yi(t)− xk)−1
n∏
j=1

(yi(t)− xj)2

and (x1, . . . , xn) ∈ Rn. Denote by x0(t), . . . , xn(t) the zeros of Pn(x, t). Fix
k ∈ {1, . . . , n} and set

dk,i(t) :=

{
yi(t)− xk(t) if yi(t) 6= xk(t),

1 if yi(t) = xk(t).

Define the rational function

Rk,i(t) :=
n∑
j=0

′ 2− δj,k
yi(t)− xj(t)

,

where the prime means that the sum is over all values j and t for which
yi(t) 6= xj(t). Then xk(t) is a strictly increasing function for those values of
t such that

1

dk,i(t)

{
′i(t)

i(t)
+ y′i(t)Rk,i(t)−

1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

}
≥ 0, (2.1)

and

1

ω(x, t)

∂ω

∂t
(x, t) (2.2)

is an increasing function of x ∈ A, provided that at least the inequality (2.1)
be strict or the function (2.2) be nonconstant on A.

Proof : The proof is based on the implicit function theorem and it is similar
to the Markov’s one. Since it is rather long it will be divided into several
steps:
(i) Differentiability of the zeros: Let Pn(x, t) = (x− x1(t)) · · · (x− xn(t)) be
the n-th orthogonal polynomial with respect to (1.1). In other words Pn(x, t)
satisfies the following orthogonality relations:∫ b

a

q(x)Pn(x, t)ω(x, t)dν(x) +
∞∑
i=0

i(t)q(yi(t))Pn(yi(t), t) = 0 (q ∈ Pn−1).

(2.3)
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Define the map f := (f1, . . . , fn) : U ⊂ Rn × R → Rn, where one has set
x := (x1, . . . , xn), xj ∈ R (j = 1, . . . , n) (note that the xj’s do not depend on
t), and

fk(x, t) := Pn(xk, t). (2.4)

For j 6= k one has

∂fk
∂xj

(x, t) = 0; (2.5)

otherwise

∂fk
∂xk

(x, t) =
∂Pn
∂x

(xk, t). (2.6)

Set x(t) := (x1(t), . . . , xn(t)). From (2.4), (2.5) and (2.6) one obtains f(x(t0), t0) =
0 and

∂f

∂x
(x(t0), t0) = det


∂f0

∂x0
(x(t0), t0)

. . .
∂fn
∂xn

(x(t0), t0)

 6= 0.

According to the implicit function theorem, under these conditions the equa-
tion f(s, t) = 0 has a solution s = x(t) in a neighborhood of (x(t0), t0) that
depends differentiable on t.
(ii) Expression for the derivative of the zeros: Moreover, in view of the above
result,

dxk
dt

(t) = −

∂fk
∂t

(x(t), t)

∂fk
∂xk

(x(t), t)

= −

∂Pn
∂t

(xk(t), t)

∂Pn
∂x

(xk(t), t)

. (2.7)

(iii) Expression for the derivative of fk with respect to t: Take

q(x) = q(x, ν) =
Pn(x, ν)

x− xk(ν)
∈ Pn−1,

and substitute it in the derivative of (2.3) with respect to t, and then let
ν → t. The result is the following:
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∫
[Pn(x, t)]

2

x− xk(t)
∂ω

∂t
(x, t)dν(x) +

∞∑
i=0

{′i(t) + i(t)y
′
i(t)Rk,i(t)}

[Pn(yi(t), t)]
2

yi(t)− xk(t)

+

∫
Pn(x, t)

x− xk(t)
∂Pn
∂t

(x, t)ω(x, t)dν(x)

+
∞∑
i=0

i(t)
Pn(yi(t), t)

yi(t)− xk(t)
∂Pn
∂t

(yi(t), t) = 0. (2.8)

On the other hand, if one takes

q(x) = q(x, t) =

{
∂Pn
∂t

(x, t)− ∂Pn
∂t

(xk(t), t)

}
1

x− xk(t)
∈ Pn−1,

substitutes it in (2.3), and subtractes the result from (2.8) one derives:

− ∂Pn
∂t

(xk(t), t)

{∫
Pn(x, t)

x− xk(t)
ω(x, t)dν(x) +

∞∑
i=0

i(t)
Pn(yi(t), t)

yi(t)− xk(t)

}
=∫

[Pn(x, t)]
2

x− xk(t)
∂ω

∂t
(x, t)dν(x)

+
∞∑
i=0

{′i(t) + i(t)y
′
i(t)Rk,i(t)}

[Pn(yi(t), t)]
2

yi(t)− xk(t)
(2.9)

(iv) Expression for the derivative of fk with respect to xk: Since

q(x) = q(x, t) =

∂Pn
∂x

(xk(t), t)(x− xk(t))− Pn(x, t)

(x− xk(t))2
∈ Pn−2,

by the orthogonality relation (2.3), one obtains

∂Pn
∂x

(xk(t), t)

{∫
Pn(x, t)

x− xk(t)
ω(x, t)dν(x) +

∞∑
i=0

i(t)
Pn(yi(t), t)

yi(t)− xk(t)

}
=

∫
[Pn(x, t)]

2

(x− xk(t))2
ω(x, t)dν(x) +

∞∑
i=0

i(t)
[Pn(yi(t), t)]

2

(yi(t)− xk(t))2
. (2.10)
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Therefore, substituting (2.9) and (2.10) in (2.7) yields

dxk
dt

(t) =∫
[Pn(x, t)]

2

x− xk(t)
∂ω

∂t
(x, t)dν(x) +

∞∑
i=0

{′i(t) + i(t)y
′
i(t)Rk,i(t)}

[Pn(yi(t), t)]
2

yi(t)− xk(t)∫
[Pn(x, t)]

2

(x− xk(t))2
ω(x, t)dν(x) +

∞∑
i=0

i(t)
[Pn(yi(t), t)]

2

(yi(t)− xk(t))2
.

.

(2.11)

Clearly
1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

∫
Pn(x, t)

2

x− xk(t)
dµ(x, t) = 0. (2.12)

Subtracting (2.12) from the numerator of the right-hand side of (2.11) yields∫
[Pn(x, t)]

2

x− xk(t)
∂ω

∂t
(x, t)dν(x) +

∞∑
i=0

{′i(t) + i(t)y
′
i(t)Rk,i(t)}

[Pn(yi(t), t)]
2

yi(t)− xk(t)

=

∫
[Pn(x, t)]

2

x− xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
ω(x, t)dν(x)+

+
∞∑
i=0

{
′i(t) + i(t)y

′
i(t)Rk,i(t)−

i(t)

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

}
[Pn(yi(t), t)]

2

yi(t)− xk(t)
(2.13)

It only remains to note that

1

x− xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
≥ 0.

Thus, the sign of x′k(t) is the same sign as the numerator of (2.11) and the
desired result follows from (2.13).

3.Markov’s theorem and its descendants
In this section, Markov’s classic theorem is derived from Theorem 2.1. In

addition, Markov’s theorem for even weight function is revisited too, together
with other results.

The next result brings us back to Markov’s theorem [27] (see also [33,
Theorem 6.12.1, p. 115] and [17, Theorem 7.1.1, p. 204]).
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Corollary 3.1. Assume the notation and conditions of Theorem 2.1 under
the constraint that dµ(x, t) = ω(x, t)dα(x). In this case (2.11) becomes

dxk
dt

(t) =

∫
[Pn(x, t)]

2

x− xk(t)
∂ω

∂t
(x, t)dν(x)∫

[Pn(x, t)]
2

(x− xk(t))2
ω(x, t)dν(x)

=

∫
[Pn(x, t)]

2

x− xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
ω(x, t)dν(x)∫

[Pn(x, t)]
2

(x− xk(t))2
ω(x, t)dν(x)

.

(3.1)

Then xk(t) is a strictly increasing (decreasing) function of t if

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x ∈ A, provided that the last func-
tion be nonconstant on A.

Markov’s result concerning the zeros of polynomials orthogonal with re-
spect to an even weight function was studied by K. Jordaan, H. Wang, and J
Zhou [18, Theorem 2.1]. This case also appears in [23, Corollary 2] in a more
general context. For further results about these polynomials, see [5, Chapter
1, Sections 8 and 9].

Corollary 3.2 (Markov’s result for even weight function). Assume the no-
tation and conditions of Theorem 2.1 under the constraint that dµ(x, t)
= ω(x, t) dx. Suppose, in addition, that ω(x, t) is an even function of x
in A = (−a, a)†. Then, the positive zeros xk(t) are strictly increasing (de-
creasing) functions of t if

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x ∈ (0, a), provided that the last
function be nonconstant on (0, a).
†In the case of ω(x, t) is an even function in an interval of the form (−a, a) it is well known

that the zeros of the orthogonal polynomial are symmetric with respect to the origin, i.e., xk(t) =
−xn−k+1(t).
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Proof : Since ω(x, t) is an even function, then Pn(−x, t) = (−1)nPn(x, t) (for
further details, see [5, Chapter 1, Section 8]). Therefore, one can write

P2m(x, t) = Sm(x2, t) and P2m+1(x, t) = xTm(x2, t),

where Sm and Tm are polynomials of degree m. Let y
(1)
i = y

(1)
i (t) and y

(2)
i =

y
(2)
i (t), i = 1, . . . ,m, be the zeros of the polynomials Sm and Tm, respectively.

If xi, i = 1, . . . , [n/2], denote the positive zeros of the polynomial Pn, then,

xi =

√
y

(k)
i , i = 1, . . . , [n/2], (3.2)

where k = 1 if n is even and k = 2 if n is odd. Note that∫ a

−a
P2r(x, t)P2l(x, t)ω(x, t)dx =

∫ a

−a
Sr(x

2, t)Sl(x
2, t)ω(x, t)dx

= 2

∫ a

0

Sr(x
2, t)Sl(x

2, t)ω(x, t)dx =

∫ a2

0

Sr(y, t)Sl(y, t)
ω(
√
y, t)
√
y

dy

and∫ a

−a
P2r+1(x, t)P2l+1(x, t)ω(x, t)dx =

∫ a

−a
xTr(x

2, t)xTl(x
2, t)ω(x, t)dx

= 2

∫ a

0

Tr(x
2, t)Tl(x

2, t)x2ω(x, t)dx =

∫ a2

0

Tr(y, t)tl(y, t)
√
y ω(
√
y, t)dy.

Since {Pn(x, t)} is a sequence of orthogonal polynomials with respect to
an even weight function ω(x, t) on (−a, a), it follows that {Sn(y, t)} and
{Tn(y, t)} are sequences of orthogonal polynomials on (0, a2) with respect
to the weight functions ω1(y, t) = ω(

√
y, t)/

√
y and ω2(y, t) =

√
y ω(
√
y, t),

respectively. Now, it is easy to see that

1

ω1(y, t)

∂ω1(y, t)

∂t
=

1

ω2(y, t)

∂ω2(y, t)

∂t
=

1

ω(
√
y, t)

∂ω(
√
y, t)

∂t
.

Therefore, since the function (ω(x, t))−1∂ω(x, t)/∂t increases (decreases)
when x increases in (0, a), then the functions (ω1(y, t))

−1∂ω1(y, t)/∂t and
(ω2(y, t))

−1∂ω2(y, t)/∂t increases (decreases) when y increases in (0, a2). So it

follows from Markov’s theorem that the zeros y
(k)
i = y

(k)
i (t), i = 1, . . . , [n/2],

k = 1, 2, increase (decrease) when t increases in B. Then, the result follows
from (3.2).
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In Markov’s theorem, one can consider the end points of the interval of the
orthogonality as functions of the parameter, i.e., a = a(t) and b = b(t). From
this, the following result can be derived:

Corollary 3.3. Assume the notation and conditions of Theorem 2.1 under
the constraint that dµ(x, t) = ω(x, t)dx. Furthermore, suppose that a = a(t)
and b = b(t) are functions of t with continuous derivatives of the first order.
Then, xk(t) is a strictly increasing (decreasing) function of t if

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x ∈ A = (a(t), b(t)), provided that
this last function be nonconstant on A, and both a(t) and b(t) increase (de-
crease) as t increases.

Proof : By Leibniz’s rule for differentiation under the integral sign one obtains
that the numerator of the right hand side of (3.1) becomes∫ b(t)

a(t)

[Pn(x, t)]
2

x− xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
ω(x, t)dx

+
P 2
n(b(t), t)

b(t)− xk(t)
ω(b(t), t)b′(t)− P 2

n(a(τ), t)

a(t)− xk(t)
ω(a(t), t)a′(t). (3.3)

This establishes the result.

In Corollary 3.3, the hypothesis that the weight function depends on the
parameter t may be replaced by the hypothesis that the weight function does
not depend on t, that is, ω = ω(x). In this case if both a(t) and b(t) increase
(decrease) with t increases (either a or b can be constant), then xk(t) is an
increasing (decreasing) function of t.

Some particular cases of measures of the form

dµ(x, t) = dα(x) + (t)δy (3.4)

were frequently considered in the literature (see [7, 8, 13, 20, 21, 22, 26, 28]).
See [13] for general results concerning zeros of polynomials orthogonal with
respect to (3.4). A bit more general case of (3.4) is presented as follows:

Corollary 3.4. Assume the notation and conditions of Theorem 2.1 under
the constraint that dµ(x, t) = dα(x) +

∑∞
i=0 i(t)δyi. Furthermore suppose
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that yi, i = 0, 1, . . ., are constants, and ′i(t) = 0 for i 6= l. Define the sets

C−l := {t ∈ B | ′l(t) < 0}, C+
l := {t ∈ B | ′l(t) > 0}.

If xk(t) < yl (respectively, xk(t) > yl) for each t ∈ B, then xk(t) is a strictly
increasing (respectively, decreasing) function of t on C+

l (respectively, on C−l ).
In other words, each zero xk(t) on the left-hand side of yl is an increasing
(decreasing) function of t on C+

l (C−l ), whereas each zero xk(t) on the right-
hand side of yl is a decreasing (increasing) function of t on C+

l (C−l ).

Proof : In this case, (2.11) reduces to

dxk
dt

(t) =

′l(t)
[Pn(yl, t)]

2

yl − xk(t)∫
[Pn(x, t)]

2

(x− xk(t))2
ω(x, t)dν(x) +

∞∑
i=0

i(t)
[Pn(yi, t)]

2

(yi − xk(t))2

.

This establishes the result.

The next result was proved firstly in [4, Theorem 2.2]. In order to derive
monotonicity properties of zeros, the location of the mass point outside A is
required (see Subsection 4.2 of this manuscript).

Corollary 3.5. Assume the notation and conditions of Theorem 2.1 under
the constraint that dµ(x, t) = dα(x) + δy(t). Define the sets

B− := {t ∈ B | y(t) ∈ Ac ∩ R ∧ y′(t) < 0},
B+ := {t ∈ B | y(t) ∈ Ac ∩ R ∧ y′(t) > 0}.

Then all the zeros of Pn(x, t) are strictly decreasing (respectively, increasing)
functions of t on B− (respectively, on B+).

Proof : In this case, (2.11) reduces to

dxk
dt

(t) =

 y′(t)
[Pn(y(t), t)]2

y(t)− xk(t)

n∑
j=0

′ 2− δj,k
y(t)− xj(t)∫

[Pn(x, t)]
2

(x− xk(t))2
ω(x, t)dν(x) + 

[Pn(y(t), t)]2

(y(t)− xk(t))2

,

where the prime means that the sum is over all values j and t for which
y(t) 6= xj(t). This establishes the result.
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4. Some applications
4.1. Sharp monotonicity properties of the zeros of orthogonal poly-
nomials derived from Corollary 3.4. Suppose that dµ(x, t) = dx+1δy1+
2δy2 + 3δy3, where 1 = 1(t) = t, 2 = 3 = 1, y1 = 2, y2 = 5, and y3 = 7,
with A = (−1, 1) and B = (0,∞). Let {pn} be the sequence of orthogonal
polynomials with respect to dµ, i.e.,∫ 1

−1

pn(x)pm(x)dx+ tpn(2)pm(2) + pn(5)pm(5) + pn(7)pm(7) = 0, m 6= n.

Then, the zeros of the polynomial pn located on the left-hand side of y1 = 2
are increasing functions of t, while the zeros of pn on the right-hand side of
y1 = 2 are decreasing functions of t, in view of Corollary 3.4.

Table 1 shows the monotonicity of the zeros of p4 from this example. Ob-
serve that two of them are increasing functions of t, while the others ones
are decreasing functions of t.

4.2. Sharp monotonicity properties of the zeros of orthogonal poly-
nomials derived from Corollary 3.5. Suppose that dµ(x, t) = dx+10δy(t),
where y(t) = t, with A = (−1, 1) and B = (−2, 2). Let {pn} be the sequence
of orthogonal polynomials with respect to dµ, i.e.,∫ 1

−1

pn(x)pm(x)dx+ 10pn(y(t))pm(y(t)) = 0, m 6= n.

Then, by Corollary 3.5, the zeros of the polynomial pn are increasing functions
of t, for t ∈ (−2,−1) ∪ (1, 2). On the other hand, for t ∈ (−1, 1) one cannot
guarantee the monotonicity of these zeros.

Table 2 illustrates the behavior of the zeros x1 = x1(t), x2 = x2(t),
x3 = x3(t), and x4 = x4(t), of p4 from this example. Note that they are
not monotonic functions of t, when it varies in (−1, 1). In this regard, the
statements of Theorem 2 and Corollary 3 in arXiv:1501.07235 [math.CA]

appear to be incorrect.

4.3. Monotonicity of the zeros of classical continuous orthogonal
polynomials derived from Corollary 3.1 (Markov’s theorem). In this
subsection, the classical result established by A. Markov in 1886 is reviewed.
It concerns to the monotonicity of zeros of Jacobi orthogonal polynomials.
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t x1(t) x2(t) x3(t) x4(t)
0.0 -0.655077 0.46887 4.98364 6.99699
0.5 -0.528752 1.07504 4.83155 6.97651
1.0 -0.502388 1.33983 4.75758 6.96841
1.5 -0.491188 1.48640 4.71348 6.96408
2.0 -0.485007 1.57951 4.68410 6.96138
2.5 -0.481092 1.64394 4.66310 6.95953
3.0 -0.478390 1.69121 4.64733 6.95820
3.5 -0.476414 1.72736 4.63504 6.95718
4.0 -0.474906 1.75592 4.62520 6.95638
4.5 -0.473717 1.77906 4.61713 6.95574
5.0 -0.472756 1.79818 4.61040 6.95521
5.5 -0.471962 1.81425 4.60470 6.95477
6.0 -0.471297 1.82795 4.59981 6.95439
6.5 -0.470730 1.83977 4.59557 6.95407
7.0 -0.470242 1.85006 4.59185 6.95379
7.5 -0.469817 1.85911 4.58857 6.95354
8.0 -0.469444 1.86713 4.58565 6.95332
8.5 -0.469113 1.87428 4.58304 6.95313
9.0 -0.468819 1.88071 4.58069 6.95295
9.5 -0.468555 1.88651 4.57856 6.95279

10.0 -0.468316 1.89177 4.57662 6.95265

Table 1. Zeros of the polynomial p4 as functions of t.

Moreover, results on zeros of Gegenbauer and Laguerre orthogonal polyno-
mials are revisited too (see Szegő’s book [32, Section 5], and Ismail’s book
[17, Chapter 7]).

Example 4.1 (Zeros of Jacobi polynomials). Let P
(α,β)
n (x) be the n-th Jacobi

polynomial which is orthogonal on (−1, 1) with respect to the weight function
ω(x, α, β) = (1 − x)α(1 + x)β, α, β > −1. Then all its zeros are increasing
functions of β and decreasing functions of α, for α, β > −1.

Proof : Since

1

ω(x, α, β)

∂ω(x, α, β)

∂α
= ln(1− x)
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t x1(t) x2(t) x3(t) x4(t)
-2.0 -1.999850 -0.682492 0.142833 0.818103
-1.8 -1.799760 -0.664794 0.158989 0.821979
-1.6 -1.599570 -0.638982 0.179555 0.826752
-1.4 -1.399200 -0.598464 0.206977 0.832897
-1.2 -1.198540 -0.529080 0.246312 0.841409
-1.0 -0.998028 -0.409306 0.306336 0.854084
-0.8 -0.803116 -0.368260 0.329881 0.859152
-0.6 -0.764270 -0.572827 0.299677 0.853545
-0.4 -0.858748 -0.396400 0.335789 0.860400
-0.2 -0.854976 -0.210785 0.301057 0.856301
0.0 -0.846273 -0.098843 0.098843 0.846273
0.2 -0.856301 -0.301057 0.210785 0.854976
0.4 -0.860400 -0.335789 0.396400 0.858748
0.6 -0.853545 -0.299677 0.572827 0.764270
0.8 -0.859152 -0.329881 0.368260 0.803116
1.0 -0.854084 -0.306336 0.409306 0.998028
1.2 -0.841409 -0.246312 0.529080 1.198540
1.4 -0.832897 -0.206977 0.598464 1.399200
1.6 -0.826752 -0.179555 0.638982 1.599570
1.8 -0.821979 -0.158989 0.664794 1.799760
2.0 -0.818103 -0.142833 0.682492 1.999850

Table 2. Zeros of the polynomial p4 as functions of t.

is a decreasing function of x and, otherwise,

1

ω(x, α, β)

∂ω(x, α, β)

∂β
= ln(1 + x)

is an increasing function of x, for x ∈ (−1, 1), by Observation 3.1 (Markov’s
theorem), the statements holds.

Figure 1 illustrates the monotonicity of the zeros of P
(α,β)
n (x) with respect

to β while Figure 2 shows the monotonicity of the zeros of P
(α,β)
n (x) with

respect to α.

Example 4.2 (Zeros of Laguerre polynomials). Let L
(α)
n (x) be the n-th La-

guerre polynomial which is orthogonal on (0,∞) with respect to the weight
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Figure 1. Zeros of Jacobi polynomials as functions of the pa-

rameter β. Graph of the zeros of P
(1,β)
4 (x).

Figure 2. Zeros of Jacobi polynomials as functions of the pa-

rameter α. Graph of the zeros of P
(α,1)
4 (x).

function ω(x, α) = xαe−x, α > −1. Then, all its zeros are increasing functions
of α, for α > −1.

Proof : In this case,
1

ω(x, α)

∂ω(x, α)

∂α
= lnx

is an increasing function of x, for x ∈ (0,∞). So, by Observation 3.1
(Markov’s theorem), the statement holds.

Figure 3 serves to illustrate the monotonicity of the zeros of Laguerre poly-
nomials with respect to the parameter α.

Example 4.3 (Zeros of Gegenbauer polynomials). Let P
(λ)
n (x) be the n-th

Gegenbauer (or ultraspherical) polynomial which is orthogonal on (−1, 1)
with respect to the weight function ω(x, λ) = (1−x2)λ−1/2, λ > −1/2. Then,
all its positive zeros are decreasing functions of λ, for λ > −1/2 ‡.

‡Because of the symmetry of the zeros of P
(λ)
n (x), its negative zeros are increasing functions of

λ, for λ > −1/2.
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Figure 3. Zeros of Laguerre polynomials as functions of α.

Graph of the zeros of L
(α)
4 (x).

Proof : Since ω(x, λ) is an even function and

1

ω(x, λ)

∂ω(x, λ)

∂λ
= ln(1− x2)

is a decreasing function of x, for x ∈ (0, 1), then, by Observation 3.2 (Markov’s
theorem for even function), the statement holds.

Figure 4 shows the behavior of the zeros of P
(λ)
4 (x) as functions of λ.

Figure 4. Zeros of Gegenbauer polynomials as functions of λ.

Graph of the zeros of P
(λ)
4 (x).

4.4. Sharp monotonicity properties of the zeros of classical contin-
uous orthogonal polynomials derived from Corollary 3.3. The moti-
vation of the next result (Observation 4.1) goes back to a work of Laforgia
[24], raised in 1981. He proved that the quantities λxn,k(λ) are increasing
functions of λ, for λ ∈ (0, 1), where xn,k(λ) are de positive zeros of Gegen-

bauer polynomial P
(λ)
n (x). Later on, Laforgia [25] conjectured that this result

remains valid for λ ∈ (0,∞). In 1988 M.E.H. Ismail and J. Letessier [16] con-

jectured that (λ+ c)
1
2xn,k(λ), k = 1, . . . , [n/2], increase with λ > 0 for c = 0.
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Ismail in [15, Conjecture 3, p. 188], following a suggestion of Askey, con-
jectured this result for c = 1, leading up to the ILA conjecture of the title.
E.K. Ifantis and P.H. Siafarikas [14] showed ILA for k = 1 and λ > −1/2,
as well as D.K. Dimitrov [6]. Ahmed, Muldoon and Spigler [1] proved this
monotonicity result for c = (2n2 + 1)/(4n+ 2) and −1/2 < λ ≤ 3/2. Elbert
and Siafarikas [11] extended the result of Ahmed et al. showing thus ILA for
all λ > −1/2.

Next, using one of the Markov’s descendants’ results, one can proof the
following statement related to ILA conjecture.

Observation 4.1 (Gegenbauer - Hermite). Let xn,1(λ) > · · · > xn,n(λ) be

the zeros of the Gegenbauer polynomial P
(λ)
n (x) and let hn,1 > · · · > hn,n

be the zeros of the Hermite polynomial Hn(x). Then, for all n ∈ N and
c ≤ −1/2, the quantities

(λ+ c)
1
2xn,k(λ), k = 1, . . . , [n/2],

are increasing functions of λ and converge to hn,k when λ goes to infinity.
So, for c = −1/2, one obtains

xn,k(λ) ≤ (λ− 1/2)−
1
2hn,k, k = 1, . . . , [n/2].

Proof : One can assert the asymptotic formula [33, Section 5.6] (see also [19,
formula (2.8.3)])

lim
λ→∞

λ−n/2P (λ)
n (λ−

1
2x) =

Hn(x)

n!
,

where Hn(x) denote the n-th Hermite orthogonal polynomial. Let hn,k, k =
1, . . . , n, be the zeros of Hn(x) arranged in decreasing order. Thus, that gives

lim
λ→∞

λ
1
2xn,k(λ) = hn,k.

Therefore, for f = fn(λ) = (λ+ c)
1
2 , where c is a constant that may depend

on n but does not depend on λ, equivalently that gives

lim
λ→∞

(λ+ c)
1
2xn,k(λ) = hn,k.

Hence, a natural question arises: is there a value of c such that all the
quantities (λ + c)

1
2xn,k(λ), k = 1, . . . , [n/2], are monotonic (increasing or

decreasing) functions of λ? To answer this question one has to perform the
exchange of variables x = z/f to obtain the rescaled Gegenbauer polynomial

P
(λ)
n (z/f) orthogonal on (−f, f) with respect to the weight function ω(z, λ) =
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(f 2 − z2)λ−1/2, λ > −1/2, and whose zeros are zn,k(λ) = fn(λ)xn,k(λ). Then,
a straightforward calculation yields

∂f

∂λ
=

1

2(λ+ c)
1
2

> 0

and

∂

∂z

[
1

ω(z, λ)

∂ω(z, λ)

∂λ

]
=

2z[(z2 − f 2) + (2λ− 1)f∂f/∂λ]

(f 2 − z2)2
> 0

for z ∈ (0, f) and c ≤ −1/2. Therefore, having Observation 3.2 and Observa-

tion 3.3 in mind, for c ≤ −1/2 the quantities (λ+c)
1
2xn,k(λ), k = 1, . . . , [n/2],

are increasing functions of λ and converge to hn,k when λ goes to infinity.
Therefore, for c = −1/2, one obtains

(λ− 1/2)
1
2xn,k(λ) ≤ hn,k, k = 1, . . . , [n/2],

or equivalently

xn,k(λ) ≤ (λ− 1/2)−
1
2hn,k, k = 1, . . . , [n/2].

The right-hand side of the above inequalities are upper bounds for the
positive zeros of Gegenbauer polynomials, and they are sharp for large values
of λ. See Figure 5.

Figure 5. Graph of the zeros x4,k(λ) (continuous lines) and their

upper bounds (λ− 1/2)−
1
2h4,k (dashed lines), for k = 1, 2.

The next example describes a connection between the zeros of Jacobi and
Laguerre orthogonal polynomials. In [9], using Sturm’s comparison theorem
on solutions of Sturm-Liouville differential equation, it was shown mono-
tonicity results for the functions (β + c)(1− xn,k(α, β)), k = 1, . . . , n, where
c = n+ (α + 1)/2 + (1− α2)/(4n+ 2α + 2).
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Observation 4.2 (Jacobi - Laguerre). Let xn,1(α, β) > · · · > xn,n(α, β) be

the zeros of P
(α,β)
n (x) and let `n,1(α) > · · · > `n,n(α) be the zeros of L

(α)
n (x).

Then, for every n ∈ N, 1 ≤ k ≤ n, α > −1, and c ≤ 0, the quantities

(β + c)(1− xn,k(α, β))/2

are increasing functions of β, for β ∈ (−1,∞), and converge to `n,n−k+1(α)
when β goes to infinity. Moreover, the inequalities

1− 2

β
`n,n−k+1(α) ≤ xn,k(α, β)

hold.

Proof : One can find in the literature [33, Section 5.3] (see also [19, formula
(2.8.1)]) the following limit relation between Jacobi and Laguerre polynomials

lim
β→∞

P (α,β)
n (1− 2β−1x) = L(α)

n (x).

Since the zeros are continuous functions of the coefficients of the polynomials
one derives

lim
β→∞

β(1− xn,k(α, β)) = 2`n,n−k+1(α), k = 1, . . . , n.

Therefore, for f = fn(α, β) = β + c, where c is a constant that may depend
on n and α but does not depend on β, one has equivalently that

lim
β→∞

(β + c)(1− xn,k(α, β)) = 2`n,n−k+1(α), k = 1, . . . , n.

The purpose is to find the function f in such a way that all the quantities
f(1−xn,k(α, β)) are monotonic (increasing or decreasing) functions of β. For
this reason, performing the change of variables x = 1−2z/f one obtains that

the rescaled Jacobi polynomial P
(α,β)
n (1−2z/f), whose zeros are zn,k(α, β) =

f(1−xn,k(α, β))/2, k = 1, . . . , n, are orthogonal on (0, f) with respect to the
weight function ω(z, α, β) = zα(f − z)β, for α, β > −1.

In order to apply the Observation 3.3 for z ∈ (0, f), one has to calculate
the following derivatives:

∂f

∂β
= 1 > 0

and

∂

∂z

[
1

ω(z, α, β)

∂ω(z, α, β)

∂β

]
=
z − f + β∂f/∂β

(f − z)2
> 0 if and only if c ≤ 0.



20 K. CASTILLO, M. S. COSTA AND F. R. RAFAELI

Therefore, for c ≤ 0 the quantities (β + c)(1 − xn,k(α, β))/2 are increasing
functions of β and converge to `n,n−k+1(α) when β goes to infinity. Thus, for
c = 0, one obtains

β(1− xn,k(α, β)) ≤ 2`n,n−k+1(α), k = 1, . . . , n,

or equivalently

1− 2

β
`n,n−k+1(α) ≤ xn,k(α, β), k = 1, . . . , n.

This establishes the theorem.

Note that the left-hand side of the above inequalities are lower bounds for
the zeros of Jacobi polynomials, and they are sharp for large values of β. See
Figures 6 and 7.

Figure 6. Graph of z4,k(α, β) = β(1− x4,k(α, β))/2, 1 ≤ k ≤ 4,
(continuous lines). Observe that each z4,k(α, β) is an increasing
function of β and goes to `4,n−k+1(α) as β →∞ (dotted lines).

Figure 7. Graph of the zeros xn,k(α, β) (continuous lines) and
their lower bounds 1− 2`n,n−k+1(α)/β (dashed lines), 1 ≤ k ≤ n,
for the case n = 4 and α = 1.

The last example of this subsection shows the connection between the zeros
of Laguerre and Hermite orthogonal polynomials. The first result in this
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topic was obtained in 1995 by Ifantis and Siafarikas [14]. They showed that
`n,1(α)/(α+1) decreases with α, for α > −1. In 2003, Natalini and Palumbo
[29] proved that `n,k(α)/

√
α + 2n+ 1 are increasing functions of α, for α ∈

(−1,∞). Moreover, they established two additional results on monotonicity
of the functions of the form `n,k(α)/αp, with fix p, and 2 ≤ p ≤ 2n + 1. It

was shown in [10] that [`n,k(α)− (2n+α− 1)]/
√

2(n+ α− 1) are increasing
functions of α, for α ≥ −1/(n − 1). In addition, when k = 1, it was shown
that the last function increases for every α ∈ (−1,∞).

Observation 4.3 (Laguerre-Hermite). Let `n,1(α) > · · · > `n,n(α) be the

zeros of L
(α)
n (x) and let hn,1 > · · · > hn,n be the zeros of Hn(x). Then, for all

n ∈ N and 1 ≤ k ≤ n, the quantities

`n,k(α)− α√
α

are decreasing functions of α, for α > 0, and moreover they converge to√
2hn,k as α→∞. In addition, the inequalities

`n,k(α) ≥ α +
√

2αhn,k

holds for all α > 0.

Proof : Remember the limit relation between Laguerre and Hermite polyno-
mials (see [19, formula (2.11.1)])

lim
α→∞

(
2

α

)n/2
L(α)
n (α + (2α)1/2x) =

(−1)n

n!
Hn(x).

Whence it follows that

`n,k(α)− α√
2α

→ hn,k as α→∞.

Therefore, for any constants c and d that may depend on n but does not
depend on α, one can write

`n,k(α)− (α + c)√
α + d

→
√

2hn,k as α→∞.

To obtain sharp bounds for the zeros of Laguerre polynomials one needs to
determine, if possible, the best constants c and d for which the quantities
[`n,k(α)− (α+c)]/

√
α + d are monotonic (increasing or decreasing) functions

of α. The best constants mean the infimum or supremum of theirs values. To
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go in this direction, one has to perform the change of variables x =
√
α + dz+

α+ c to obtain the rescaled Laguerre polynomial L
(α)
n (
√
α + dz+α+ c) that

is orthogonal on (−(α+ c)/
√
α + d,+∞) with respect to the weight function

ω(z, α) = (α + c +
√
α + dz)αe−(α+c+

√
α+dz), α > −1, and whose zeros are

zn,k(α) = [`n,k(α)−(α+c)]/
√
α + d, 1 ≤ j ≤ n. Now to apply Observation 3.3

for z ∈ (−(α+c)/
√
α + d,+∞), one has to calculate the following derivatives:

∂

∂α

[
− α + c√

α + d

]
= −α + 2d− c

2(α + d)
3
2

(4.1)

and

∂

∂z

[
1

ω(z, α)

∂ω(z, α)

∂α

]
=
c(α + 2d− c) + 2

√
α + d(d− c)z − (α + d)z2

2
√
α + d(α + c+

√
α + dz)2

.

(4.2)
Taking c = d = 0 (4.1) and (4.2) become negative for every α > 0. Then,
Observation 3.3 implies that all the quantities

zn,k(α) =
`n,k(α)− α√

α
, 1 ≤ j ≤ n,

are decreasing functions of α, for α > 0. It was provided that zn,k(α) goes to√
2hn,k as α→∞, so `n,k(α) ≥ α+

√
2αhn,k for all α > 0 and k = 1, . . . , n.

Figure 8 exemplifies the behavior of the zeros zn,k(α) with respect to the
parameter α for c = d = 0. Figure 9 shows the lower bounds for the zeros

`n,k(α) of L
(α)
n (x).

Figure 8. Graph of zn,k(α) =
`n,k(α)−α√

2α
, 1 ≤ k ≤ n, for n =

4 (continuous lines). Observe that each z4,k(α) is a decreasing
function of α and goes to h4,k as α→∞ (dotted lines).
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Figure 9. Graph of the zeros `n,k(α) (continuous lines) and their

lower bounds α+
√

2αhn,k (dashed lines), 1 ≤ j ≤ n, for the case
n = 4.

4.5.Monotonicity of the zeros of classical discrete orthogonal poly-
nomials derived from Corollary 3.1 (Markov’s theorem). In this sub-
section, the monotonicity of the zeros of the families of classical orthogonal
polynomials of a discrete variable, Charlier, Meixner, Kravchuk and Hahn
are revisited. Such results can be found in Ismail’s book [17, Chapter 7] (see
also [2]). For further information to this class of polynomials, see [30].

Example 4.4. Let C
(a)
n (x) be the n-th Charlier orthogonal polynomial. Then

all its zeros are increasing functions of a, for a ∈ (0,∞).

Proof : The Charlier polynomials are orthogonal with respect to ω(x, a) =
ax/Γ(x+ 1) at x = 0, 1, 2, . . .. Let consider its continuous extension on
(0,∞). Then

1

ω(x, a)

∂ω(x, a)

∂a
=

∂

∂a

[
ln

ax

Γ(x+ 1)

]
=

∂

∂a
[x ln(a) + ln(Γ(x+ 1))] =

x

a

is an increasing function of x, for x ∈ (0,∞). Thus, by Observation 3.1

(Markov’s theorem), one concludes that the zeros of C
(a)
n (x) are increasing

function of a, for a > 0.

Figure 10 presents the graph of the zeros of C
(a)
4 (x) as functions of the

parameter a. Note that its zeros are increasing functions of a, for a > 0.

Example 4.5. Let M
(β,c)
n (x) be the n-th Meixner orthogonal polynomial.

Then all its zeros are increasing functions of both β ∈ (0,∞) and c ∈ (0, 1).

Proof : The Meixner polynomials are orthogonal with respect to ω(x, β, c) =
Γ(x+ β)cx/(Γ(β)Γ(x + 1)) at x = 0, 1, 2, . . .. To prove the monotonicity of

the zeros of M
(β,c)
n (x) with respect to the parameters β and c one has to
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Figure 10. Zeros of Charlier polynomials as functions of the

parameter a. Graph of the zeros of C
(a)
4 (x).

consider the analytic extension of ω(x, β, c) = Γ(x+ β)cx/(Γ(β)Γ(x+ 1)) on
(0,∞). Therefore,

lnω(x, β, c) = ln
Γ(x+ β)cx

Γ(β)Γ(x+ 1)

= ln Γ(x+ β) + x ln c− ln Γ(β)− ln Γ(x+ 1). (4.3)

Computing the derivative of (4.3) with respect to β one obtains§

1

ω(x, β, c)

∂ω(x, β, c)

∂β
=
∂ lnω(x, β, c)

∂β
=

Γ′(x+ β)

Γ(x+ β)
− Γ′(β)

Γ(β)

=
x

β(x+ β)
+
∞∑
n=1

x

(β + n)(x+ β + n)

which is an increasing function of x for x ∈ (0,∞), and β > 0. Thus,

Observation 3.1 (Markov’s theorem) implies that the zeros of M
(β,c)
n (x) are

increasing functions of β, for β > 0.
On the other hand, differentiating (4.3) with respect to c one obtains

1

ω(x, β, c)

∂ω(x, β, c)

∂c
=
∂ lnω(x, β, c)

∂c
=
x

c
,

which is an increasing function of x for x ∈ (0,∞), and c ∈ (0, 1). Hence, by

Observation 3.1 (Markov’s theorem), one concludes that the zeros ofM
(β,c)
n (x)

are also increasing function of c, for c ∈ (0, 1).

§One has the identity
Γ′(z)

Γ(z)
= −γ − 1

z
−
∞∑
n=1

[
1

z + n
− 1

n

]
, where γ is the Euler constant (see

[34, Section 12.3], [31, Chapter 7]).
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To exemplify the monotonicity of the zeros of Meixner polynomials as func-
tions of β and c, one presents two graphs. See Figures 11 and 12.

30 60
Β

30

60

Figure 11. Zeros of Meixner polynomials as functions of the

parameter β. Graph of the zeros of M
(β,0.4)
5 (x), β > 0.

0.5 1
c

50

100

Figure 12. Zeros of Meixner polynomials as functions of the

parameter c. Graph of the zeros of M
(6,c)
5 (x), 0 < c < 1.

Example 4.6. Let K
(p,N)
n (x) be the n-th Kravchuck orthogonal polynomial.

Then, all its zeros are increasing functions of the parameter p, for p ∈ (0, 1).

Proof : The Kravchuck polynomials are orthogonal with respect to

ω(x, p,N) =
Γ(N + 1)px(1− p)N−x

Γ(N + 1− x)Γ(x+ 1)

at x = 0, 1, 2, . . . , N . Let ω(x, p,N) be the analytic extension on (0, N) of
the Kravchuk weight. Computing the logarithmic derivative of ω(x, p,N)
with respect to p, one obtains
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1

ω(x, p,N)

∂ω(x, p,N)

∂p
=

∂

∂p

[
ln

Γ(N + 1)px(1− p)N−x

Γ(N + 1− x)Γ(x+ 1)

]
=

∂

∂p
[ln(Γ(N + 1)) + x ln(p) + (N − x) ln(1− p)− ln(Γ(N + 1− x))

− ln(Γ(x+ 1))] =
x

p
− N − x

1− p
=
x−Np
p(1− p)

,

which is obviously an increasing function of x, for x ∈ (0, N), and p ∈ (0, 1).

Then, by Observation 3.1 (Markov’s theorem), all the zeros of K
(p,N)
n (x)

increase when p increases. See Figure 13.

0.5 1
p

20

40

Figure 13. Zeros of Kravchuk polynomials as functions of the

parameter p. Graph of the zeros K
(p,40)
6 , 0 < p < 1.

Example 4.7. Let P
(α,β,N)
n (x) be the n-th Hahn orthogonal polynomial.

Then, all its zeros are increasing functions of α ∈ (−1,∞) and decreasing
functions of β ∈ (−1,∞).

Proof : The Hahn polynomials are orthogonal with respect to

ω(x, α, β,N) =
Γ(α + x+ 1)Γ(β +N − x+ 1)

Γ(α + 1)Γ(x+ 1)Γ(β + 1)Γ(N − x+ 1)

at x = 0, 1, 2, . . . , N . Let ω(x, α, β,N) be the analytic extension on (0, N) of
the Hahn weight. Then,

ln ω(x, α, β,N) = ln
Γ(α + x+ 1)Γ(β +N − x+ 1)

Γ(α + 1)Γ(x+ 1)Γ(β + 1)Γ(N − x+ 1)

= ln Γ(α + x+ 1) + ln Γ(β +N − x+ 1)− ln Γ(α + 1)

− ln Γ(x+ 1)− ln Γ(β + 1)− ln Γ(N − x+ 1).
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Since

1

ω(x, α, β,N)

∂ω(x, α, β,N)

∂α
=
∂ lnω(x, α, β,N)

∂α
=

Γ′(α + x+ 1)

Γ(α + x+ 1)
−Γ′(α + 1)

Γ(α + 1)

=
x

(α + 1)(x+ α + 1)
+
∞∑
n=1

x

(α + n+ 1)(x+ α + n+ 1)

is an increasing function of x for x ∈ (0, N), by Observation 3.1 (Markov’s

theorem), one derives that the zeros of P
(α,β,N)
n (x) are increasing functions

of α, for α ∈ (−1,∞). On the other hand,

1

ω(x, α, β,N)

∂ω(x, α, β,N)

∂β
=
∂ lnω(x, α, β,N)

∂β

=
Γ′(β +N − x+ 1)

Γ(β +N − x+ 1)
− Γ′(β + 1)

Γ(β + 1)

=
N − x

(β + 1)(β +N − x+ 1)
+
∞∑
n=1

N − x
(β + n+ 1)(β +N − x+ 1 + n)

is a decreasing function of x for x ∈ (0, N). Thus, by Observation 3.1

(Markov’s theorem), it implies that the zeros of P
(α,β,N)
n (x) are decreasing

functions of β, for β ∈ (−1,∞).

Figures 14 and 15 illustrate these monotonicities.

20 40
Α

20

40

Figure 14. Monotonicity of zeros of Hahn polynomials.

Graphic of the zeros of P
(α,3,40)
4 (x) as functions of α.
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[23] A. Kroó and F. Peherstorfer, On the zeros of polynomials of minimal Lp-norm, Proc.
Amer. Math. Soc., 101 (1987), pp. 652–656.

[24] A. Laforgia, A monotonic property for the zeros of ultraspherical polynomials, Proc. Amer.
Math. Soc., 83 (1981), pp. 757–758.

[25] , Monotonicity properties for the zeros of orthogonal polynomials and bessel function, in
Polynomes Orthogonaux et Applications, Springer-Verlag, Berlin, 1985, Proceedings of the
Laguerre Symposium, Bar-de-Duk, Spain, 1984, Lecture Notes in Mathematics, Vol. 1171,
pp. 267–277.

[26] F. Marcellán and P. Maroni, Sur l’ adjonction d’ une masse de dirac à une forme
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