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Abstract: We consider the generalized Goursat-Darboux problem for a third or-
der linear PDE with real constant coefficients. Our purpose is to find necessary
conditions for the problem to be well-posed in the Gevrey classes. Since this prob-
lem can be reduced to the Cauchy problem using permutations of independent
variables, we solve it for a ODE with complex coefficients and two unknown initial
data. In order to prove our results, we first construct an explicit solution of a family
of problems with initial data depending on a parameter η > 0 and then we obtain
an asymptotic representation of a solution as η tends to infinity.
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1. Introduction
The generalized Goursat-Darboux problem for a third order linear PDE

with real constant coefficients in the space C∞ was studied in [2], [3]. Given
an open set Ω ⊆ R3+m, neighborhood of the origin, the most general problem
is defined on Ω by

∂t∂x∂yu(t, x, y, z) =
∑

l + k + j+ | ξ |≤ 3
l 6= 3, k 6= 3, j 6= 3

al,k,j,ξ∂
l
t∂
k
x∂

j
y∂

ξ
zu(t, x, y, z)

u(0, x, y, z) = f1(x, y, z)
u(t, 0, y, z) = f2(t, y, z)
u(t, x, 0, z) = f3(t, x, z)

(1.1)

where initial data satisfy the necessary compatibility conditions:
f1(0, y, z) = f2(0, y, z)
f1(x, 0, z) = f3(0, x, z)
f2(t, 0, z) = f3(t, 0, z)
f1(0, 0, z) = f2(0, 0, z) = f3(0, 0, z) .

(1.2)
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It was showed in [3] that if the problem (1.1)-(1.2) is locally C∞ well-posed
in the neighborhood of origin then the coefficients a0,0,0,ξ with | ξ |≤ 3 are
zero.
The necessary conditions for the problem to be C∞ well-posed are very
strong. Our goal is to investigate the local solvability of this problem in
the classes of Gevrey functions [5].

Definition 1.1. (Gevrey classes) Let s > 1 be a real number and Ω be an
open subset of Rn. The Gevrey class of index s on Ω, Γs(Ω), is the space of
all the functions f ∈ C∞(Ω) such that for every compact K ⊂ Ω there exist
constants C > 0 and L > 0 satisfying

sup
x∈K
| ∂αf(x) |≤ CL|α|α!s (1.3)

for all multi-index α.

It is well known that there is a scale of Gevrey classes Γs(Ω) of index s ≥ 1:

1 ≤ s′ < s ⇒ Γs
′
(Ω) ⊂ Γs(Ω) .

In fact these classes play an important role as spaces intermediate between
the spaces of real analytic functions (s = 1) and C∞(Ω). In addition we have

Γ1(Ω) ⊂
⋂
s>1

Γs(Ω) ;
⋃
s>1

Γs(Ω) ⊂ C∞(Ω) .

We need to give a topology for Γs(Ω). Let L be a positive constant, we denote
by ΓsL,K the space of smooth functions f ∈ Ω such that for every compact
K ⊂ Ω,

‖f‖sL,K = sup
α

[L−|α|α!−s sup
x∈K
| ∂αf(x) |] <∞ .

We also consider the space of functions in ΓsL,K with compact support,

ΓsL,K(Ω) = {f ∈ C∞(Ω) : suppf ⊂ K , ‖f‖sL,K <∞} ,

which is a Banach space endowed with the norm ‖f‖sL,K . From a topological
point of view, the Gevrey classes

Γs(Ω) =
⋃

L>0,K⊂Ω

ΓsL,K(Ω)

are projective limits of inductive limits of Banach spaces [9].
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2. Formulation of the generalized Goursat-Darboux prob-
lem

Let m = 1, without loss of generality, and let Ω ⊆ R4 be an open set,
neighborhood of the origin, defined by

Ω = {(t, x, y, z) : |t| < t0 ∧ |x| < x0 ∧ |y| < y0 ∧ |z| < z0}.

We consider the simplest Goursat-Darboux problem on Ω for a third order
linear PDE with real constant coefficients:

∂t∂x∂yu(t, x, y, z) =
∑

0≤j≤3

Aj∂
j
zu(t, x, y, z)

u(0, x, y, z) = f1(x, y, z)
u(t, 0, y, z) = f2(t, y, z)
u(t, x, 0, z) = f3(t, x, z)

(2.1)

where initial data satisfy compatibility conditions (1.2) on characteristic hy-
perplanes:

Σ1 = {(t, x, y, z) ∈ R4 : t = 0} , Σ2 = {(t, x, y, z) ∈ R4 : x = 0} , (2.2)

Σ3 = {(t, x, y, z) ∈ R4 : y = 0} . (2.3)

The problem (2.1)-(1.2) is a generalization of the problem studied by Hasegawa
[7] for a second order linear PDE. It is called the Goursat problem of three
faces.
Let us now introduce the definition of the well posed problem in the Gevrey
classes in the sense of Hadamard [6].

Definition 2.1. (Problem well-posed in the Gevrey classes)
Let s > 1 be a real number and Ω be an open subset of Rn, neighborhood

of origin. We say that the problem (2.1)-(1.2) is Γs(Ω) well-posed on Ω if
there exists a neighborhood U ⊂ Ω such that

• For every fi ∈ Γs(Ω ∩ Σi), the problem (2.1)-(1.2) has a solution
u ∈ Γs(U);
• It is unique;
• It depends continuously on the data. This means that for every com-

pact K ⊂ Ω and every constant L > 0 there exist compacts Ki and
constants Li > 0, i = 1, 2, 3, and C > 0 such that

‖u‖sL,K ≤ C
(
‖f1‖sL1,K1

+ ‖f2‖sL2,K2
+ ‖f3‖sL3,K3

)
. (2.4)
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Our purpose is to find necessary conditions for the problem (2.1)-(1.2) to
be well-posed in the Gevrey classes. We will try to find some critical index
s0 such that if the Goursat-Darboux problem is well posed in Γs for s > s0

then the coefficients of the derivatives with respect to z are zero.
We begin by showing how the problem (2.1)-(1.2) can be reduced to a Cauchy
problem following the ideas of Bronshtein [1]. It is easy to see that the
differential operator

∂t∂x∂y − (A3∂
3
z3 + A2∂

2
z2 + A1∂z + A0)

and the three characteristic hyperplanes Σi remain invariant under any per-
mutation of the independent variables t, x and y. Let µ be the minimum
value between t0, x0 and y0 and

Ωµ = {(t, x, y, z) :| t |< µ ∧ | x |< µ ∧ | y |< µ ∧ | z |< z0 }

be an open set, Ωµ ⊂ Ω. From now on we suppose that the problem (2.1)-
(1.2) is Γs well-posed on Ω. By linearity, if u(t, x, y, z) is a solution of the
problem (2.1)-(1.2) on Ω then

v(t, x, y, z) = u(t, x, y, z) + u(x, y, t, z) + u(y, t, x, z) (2.5)

is a solution of the corresponding problem on Ωµ
∂t∂x∂yv(t, x, y, z) =

∑
j≤3

Aj∂
j
zv(t, x, y, z)

v(0, x, y, z) = f1(x, y, z) + f3(x, y, z) + f2(y, x, z)
v(t, 0, y, z) = f2(t, y, z) + f1(y, t, z) + f3(y, t, z)
v(t, x, 0, z) = f3(t, x, z) + f2(x, t, z) + f1(t, x, z) .

(2.6)

We then reduce the number of the independent variables by setting t = x = y.
We can define a function w by w(r, z) = v(r, r, r, z) on

Ω̃ = {(r, z) :| r |< µ ∧ | z |< z0} ⊆ R2 .

Its partial derivatives with respect to r are given by

∂rw(r, z) = 3∂tv(r, r, r, z) , ∂2
r2w(r, z) = 9∂t∂xv(r, r, r, z) ,

∂3
r3w(r, z) = 27∂t∂x∂yv(r, r, r, z) .

For every parameter η > 0, taking

v(0, x, y, z) = v(t, 0, y, z) = v(t, x, 0, z) = eiηz
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we are looking for a unique solution depending continuously on the data. If
vη is solution of the problem on Ωµ ∂t∂x∂yv(t, x, y, z) =

∑
j≤3

Aj∂
j
zv(t, x, y, z)

v(0, x, y, z) = v(t, 0, y, z) = v(t, x, 0, z) = eiηz
(2.7)

then wη(r, z) = vη(r, r, r, z) is solution of the Cauchy problem on Ω̃{
∂3
r3w(r, z) = 27(A3∂

3
z3 + A2∂

2
z2 + A1∂z + A0)w(r, z)

w(0, z) = eiηz .
(2.8)

Notice that there are two arbitrary data ∂rw(0, z) and ∂2
r2w(0, z).

3. Solving the Cauchy problem
Applying the method of separation of variables we determine a unique

solution of the Cauchy problem (2.8) in the form wη(r, z) = mη(r)e
iηz. Hence

mη(r) is solution of the initial value problem
m′′′(r) = 27(−A3iη

3 − A2η
2 + A1iη + A0)m(r)

m(0) = 1
m′(0) = α
m′′(0) = β

(3.1)

where α and β are unknown. In order to solve a third order linear ODE

m′′′(r) = 27(−A3iη
3 − A2η

2 + A1iη + A0)m(r) (3.2)

we use its characteristic equation

λ3 − 27p(η) = 0 (3.3)

where p(η) = −A3iη
3 − A2η

2 + A1iη + A0 is a polynomial with complex
coefficients.

Lemma 3.1. Let γ and γ be two conjugate complex roots of unity. If Aη 6= 0
is a solution of the equation (3.2) then the solution of the problem (3.1) is
given by

mη(r) = 1
3(1 + aη + bη)e

Aηr + 1
3 (1 + γaη + γbη) e

γAηr+

+1
3 (1 + γaη + γbη) e

γAηr .
(3.4)

where aη =
α

Aη
and bη =

β

A2
η

.
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Proof : Let Aη 6= 0 be a solution of (3.2). If γ and γ are two conjugate
complex roots of unity then by de Moivre’s formula the general solution of
the (3.2) is written in the form

mη(r) = C1e
Aηr + C2e

γAηr + C3e
γAηr

where C1, C2, C3 ∈ C are arbitrary constants, which are determined from
initial data of the problem (3.1) by solving a linear system.

If Aη is a real root of the (3.2) we simplify (3.4) by using the Euler’s
formula.

Theorem 3.1 (Characteristic equation with one real root). If Aη ∈ R − {0}
then

mη(r) = 1
3(1− cη)eAηr + 1

3 (2 + cη) cos (
√

3Aηr/2)e−Aηr/2+

+
√

3
3 dη sin (

√
3Aηr/2)e−Aηr/2

(3.5)

where cη = −aη − bη and dη = −i(aη − bη).

If Aη is a pure imaginary root of the (3.2), (3.4) can be written in a simpler
expression.

Theorem 3.2 (Characteristic equation with a pure imaginary root). If Aη =
−iBη with Bη ∈ R− {0} then

mη(r) = 1
3

[
(2 + cη) cosh (

√
3Bηr/2) +

√
3dη sinh (

√
3Bηr/2)

]
eiBηr/2+

+1
3(1− cη)e−iBηr

(3.6)

where cη =
β

B2
η

− i α
Bη

and dη =
α

Bη
− i β

B2
η

.

4. Asymptotic representation of solutions
In previous works ([2], [3], [7]) an explicit solution of the generalized

Goursat-Darboux problem involves a hypergeometric function of several vari-
ables. However some difficulties for obtaining asymptotic representations for
these functions were pointed out in the paper [4].
In our work we have a linear combination of complex exponential functions
as solution of the Cauchy problem. We provide asymptotic representations,
as η tends to infinity, for the absolute value of complex functions mη on a
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compact, which depends on η and s. Our approach is based on asymptotic
analysis of the initial data in order to have only one exponential function as
dominant term, that is, when one exponential function tends to infinity and
the others tend to zero.
Here <(p(η)) and =(p(η)) denote the real part of p(η) and the imaginary
part of p(η), respectively.

Theorem 4.1. If =(p(η)) = 0, A2 6= 0 and s > 3/2 then there exist a constant
c > 0 and a compact Kη, neighborhood of the origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3
√
|A2|η1/s (4.1)

as η tends to infinity.

Proof : By assumption =(p(η)) = 0 and A2 6= 0. The equation (3.2) has one

real root Aη = −3 3
√
A2η2 − A0, then by Corollary 3.1 the solution of the

problem (3.1), mη(r), is given by (3.5). Let’s see three cases that may occur

depending on complex values cη = − α

Aη
− β

A2
η

and dη = −i
(
α

Aη
− β

A2
η

)
. We

first suppose that

| dη |= O(| 1− cη |)∧ | 2 + cη |= O(| 1− cη |) .

We choose a compact Kη,

Kη = {(r, z) : (r, z) = ±1

3
(η1/s−2/3, 0)} ,

in which

sup
r∈Kη

(Aηr) = 3
√
| A2 |η1/s .

Notice that if s > 3/2 then Kη is a neighborhood of the origin on R2. Since

| (2 + cη) cos (2−1
√

3 3
√
| A2 |η1/s) | e−2−1 3

√
|A2|η1/s = o(| 1− cη | e

3
√
|A2|η1/s)

and

| dη sin (2−1
√

3 3
√
| A2 |η1/s) | e−2−1 3

√
|A2|η1/s = o(| 1− cη | e

3
√
|A2|η1/s)

we obtain

sup
r∈Kη

| mη(r) |∼
1

3
| 1− cη | e

3
√
|A2|η1/s (4.2)
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with 1
3 | 1− cη |≥ c > 0, as η tends to infinity. Then we suppose that

| dη |= O(| 2 + cη |) ∧ | 1− cη |= O(| 2 + cη |) .

If s > 3/2 we choose a compact Kη, neighborhood of the origin on R2, in
which

sup
r∈Kη

(−Aηr) = 2 3
√
| A2 |η1/s .

Moreover, we choose a sequence of η values satisfying sup
r∈Kη

tan (
√

3Aηr/2) = 0.

Since

| 1− cη | e−2 3
√
|A2|η1/s = o(| 2 + cη | e

3
√
|A2|η1/s)

and

| dη sin (
√

3 3
√
| A2 |η1/s) |= o(| (2 + cη) cos (

√
3 3
√
| A2 |η1/s) |)

we obtain

sup
r∈Kη

| mη(r) |∼
1

3
| 2 + cη | e

3
√
|A2|η1/s (4.3)

with 1
3 | 2 + cη |≥ c > 0, as η tends to infinity. Finally we suppose that

| 2 + cη |= O(| dη |)∧ | 1− cη |= O(| dη |) .

If s > 3/2 we choose a compact Kη, neighborhood of the origin on R2, in
which

sup
r∈Kη

(−Aηr) = 2 3
√
| A2 |η1/s ,

and a sequence of η values satisfying sup
r∈Kη

cot (
√

3Aηr/2) = 0. Since

| 1− cη | e−2 3
√
|A2|η1/s = o(| dη | e

3
√
|A2|η1/s)

and

| (2 + cη) cos (
√

3 3
√
| A2 |η1/s) |= o(| dη sin (

√
3 3
√
| A2 |η1/s) |)

we obtain

sup
r∈Kη

| mη(r) |∼
√

3

3
| dη | e

3
√
|A2|η1/s (4.4)

with
√

3
3 | dη |≥ c > 0, as η tends to infinity.
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Theorem 4.2. If <(p(η)) = 0, A3 = 0, A1 6= 0 and s > 3 then there exist a
constant c > 0 and a compact Kη, neighborhood of the origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3
√
|A1|η1/s (4.5)

as η tends to infinity.

Proof : By assumption we have p(η) = A1ηi with A1 6= 0. The equation (3.2)
has a pure imaginary root Aη = −3i 3

√
A1η. We consider iAη = 3 3

√
A1η = Bη

with Bη ∈ R, then by Corollary 3.2 the solution of the problem (3.1), mη(r),

is given by (3.6), where cη =
β

B2
η

− i α
Bη

and and dη =
α

Bη
− i β

B2
η

. We notice

than 2 + cη and dη are not null simultaneously. If we suppose that

| 1− cη |= O(| 2 + cη |)∧ | dη |= O(| 2 + cη |) ,
then for s > 3 we choose a compact Kη,

Kη = {(r, z) : (r, z) = ± 2

3
√

3
(η1/s−1/3, 0)} ,

neighborhood of origin, in which
√

3

2
sup
r∈Kη

(Bηr) = 3
√
| A1 |η1/s .

Since

| 1− cη |= o(| 2 + cη | cosh ( 3

√
| A1 | η1/s))

and

| dη | sinh ( 3

√
| A1 | η1/s) = O(| 2 + cη | cosh ( 3

√
| A1 | η1/s))

we obtain

sup
r∈Kη

| mη(r) |∼
1

3
| 2 + cη | e

3
√
|A1|η1/s (4.6)

with 1
3 | 2 + cη |≥ c > 0, as η tends to infinity. If we suppose that

| 1− cη |= O(| dη |)∧ | 2 + cη |= O(| dη |) ,
then for s > 3 we can choose a compact Kη, neighborhood of the origin, in
which √

3

2
sup
r∈Kη

(Bηr) = 3
√
| A1 |η1/s .
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Since

| 1− cη |= o(| dη | sinh ( 3

√
| A1 | η1/s))

and

| 2 + cη | cosh ( 3

√
| A1 | η1/s) = O(| dη | sinh ( 3

√
| A1 | η1/s))

we obtain

sup
r∈Kη

| mη(r) |∼
√

3

3
| dη | e

3
√
|A1|η1/s (4.7)

with
√

3
3 | dη |≥ c > 0, as η tends to infinity.

Lemma 4.1. Let g1, g2, g3 and h with <(h(η)) > 0 be complex functions of
the real variable η. We consider m defined by

m(η) = g1(η)eh(η) + g2(η)eγh(η) + g3(η)eγh(η)

where γ = −1
2 + i

√
3

2 . If |gj(η)| = O(|g1(η)|), j 6= 1, and |=(h(η))| <√
3<(h(η)) then

|m(η)| ∼ |g1(η)|e<(h(η))

as η tends to infinity.

Proof : By assumption, we have |gj(η)| = O(|g1(η)|), j = 2, 3, that is, there
are constants kj > 0, such that |gj(η)| ≤ kj|g1(η)| for all η ∈]0,+∞[. From
simple calculations we get

<((γ − 1)h(η)) = 3<(h(η)+
√

3=(h(η)) , <((γ − 1)h(η)) = 3<(h(η)−
√

3=(h(η)) .

The condition |=(h(η))| <
√

3<(h(η)) it is equivalent to

<((γ − 1)h(η)) < 0 ∧ <((γ − 1)h(η)) < 0 .

Since

|g2(η)|e<(γh(η)) = o(|g1(η)|e<(h(η))) ∧ |g3(η)|e<(γh(η)) = o(|g1(η)|e<(h(η)))

it implies

|g2(η)|e<(γh(η)) + |g3(η)|e<(γh(η)) = o(|g1(η)|e<(h(η))) ,

by consequence

|m(η)| ∼ |g1(η)|e<(h(η))

as η tends to infinity.
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Theorem 4.3. If <(p(η)) 6= 0, A3 6= 0 and s > 1 then there exist a constant
c > 0 and a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3
√
|A3|η1/s (4.8)

as η tends to infinity.

Proof : We have <(p(η)) = −A2η
2 +A0 6= 0 and =(p(η)) = −A3η

3 +A1η with

A3 6= 0 by assumption. Let Aη = 3 3
√
p(η) be one of the three complex roots

of the equation (3.2) whose principal argument is

θ1 ∈ (]− π

3
, 0[∪]0,

π

3
[) ∨ θ2 = θ1 −

2π

3
∨ θ3 = θ1 +

2π

3
.

Then by Lemma 3.1 the solution of the problem (3.1), mη(r), is given by

(3.4), where aη =
α

Aη
and bη =

β

A2
η

. If we first suppose that

| 1 + γaη + γbη |= O(| 1 + aη + bη |) ∧ | 1 + γaη + γbη |= O(| 1 + aη + bη |)

we choose a compact Kη, neighborhood of origin for s > 1, in which

h(η) = sup
r∈Kη

Aηr = (1 + i tan θ1)
3
√
| A3 |η1/s ,

for some θ1 ∈ (]− π
3 , 0[∪]0, π3 [). Since |=(h(η))| <

√
3<(h(η)) by Lemma 4.1

we obtain

sup
r∈Kη

| mη(r) |∼
1

3
| 1 + aη + bη | e

3
√
|A3|η1/s (4.9)

with | 1 + aη + bη |≥ c > 0, as η tends to infinity. Then if we suppose that

| 1 + aη + bη |= O(| 1 + γaη + γbη |) ∧ | 1 + γaη + γbη |= O(| 1 + γaη + γbη |)

we choose now a compact Kη, neighborhood of origin for s > 1, in which

h(η) = sup
r∈Kη

Aηr =

(
1 + i

tan θ2 −
√

3

1 +
√

3 tan θ2

)
3
√
| A3 |η1/s ,

for some θ2 ∈ (]−π,−π
2 [∪]− π

2 ,−
π
3 [). Since |=(h(η))| <

√
3<(h(η)) by Lemma

4.1 we obtain

sup
r∈Kη

| mη(r) |∼
1

3
| 1 + γaη + γbη | e

3
√
|A3|η1/s (4.10)
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with | 1 + γaη + γbη |≥ c > 0, as η tends to infinity. Finally if we suppose
that

| 1 + aη + bη |= O(| 1 + γaη + γbη |) ∧ | 1 + γaη + γbη |= O(| 1 + γaη + γbη |)
we take a compact Kη, neighborhood of origin for s > 1, in which

h(η) = sup
r∈Kη

Aηr =

(
1 + i

tan θ3 +
√

3

1−
√

3 tan θ3

)
3
√
| A3 |η1/s ,

for some θ3 ∈ (]π3 ,
π
2 [∪]π2 , π[). Since |=(h(η))| <

√
3<(h(η)) by Lemma 4.1 we

obtain

sup
r∈Kη

| mη(r) |∼
1

3
| 1 + γaη + γbη | e

3
√
|A3|η1/s (4.11)

with | 1 + γaη + γbη |≥ c > 0, as η tends to infinity.

Theorem 4.2. If the problem (2.1)-(1.2) is Γs well-posed on Ω then

(i):
s > 1 ⇒ A3 = 0 ; (4.12)

(ii):

s >
3

2
⇒ A2 = 0 ; (4.13)

(iii):
s > 3 ⇒ A1 = 0 . (4.14)

Proof : We suppose that the problem (2.1)-(1.2) is Γs well-posed on Ω with
s > 1. Then for every η > 0 the corresponding problem (2.7) has a unique
solution vη on Ωµ.
On the one hand, we determine a prior an estimation for the Gevrey norm
of vη, an upper bound, from the initial data, ‖eiηz‖sL,K , for every compact

K ⊂ Ω and every constant L > 0. The partial derivatives of eiηz with
respect to multi-index (l, k, j, α), such that l 6= 0 or k 6= 0 or j 6= 0, are zero.
Otherwise, it is clear that

∂αz (eiηz) = (iη)|α|eiηz ,

it follows that
sup

(t,x,y,z)∈K
| ∂α(eiηz) |= η|α|

so that
‖eiηz‖sL,K = sup

α

(
| α |−s|α| L−|α|η|α|

)
.
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Since the supremum is given by ese
−1L−1/sη1/s there exist constants c1 =

se−1L−1/s and C > 0 such that

‖vη‖sL,K ≤ C‖eiηz‖sL,K ≤ Cec1η
1/s

(4.15)

for every η > 0. This is a condition for stability of solution.
On the other hand, let’s prove that if each coefficient of the equation is
different from zero, Ai 6= 0, then there is some critical index s0 such that if
s > s0 then (4.15) will be violated.
In (i) we suppose that A3 6= 0 and assume A2 = 0, in (ii) we suppose that
A2 6= 0 and assume A1 = 0 and in (iii) we suppose that A1 6= 0 and assume
A0 = 0. We assume that some coefficient is null because we can do suitable
dependent variable changes.
By using previous propositions we construct an asymptotic representation
of a solution as η tends to infinity. For every neighborhood of the origin O
there exist a compact Kη, Kη ⊂ O, and constants C > 0 and c2 > 0 such
that

sup
r∈Kη

| vη(r, r, r, z) |∼ Cec2η
1/s

.

Notice that Kη ⊂ O only if s0 = 1 in (i), s0 = 3/2 in (ii) and s0 = 3 in (iii).
We have

sup
r∈Kη

| mη(r) |= sup
r∈Kη

| wη(r, z) |= sup
r∈Kη

| vη(r, r, r, z) |

and as we know that

‖vη‖sL′,Kη
> sup

r∈Kη

| vη(r, r, r, z) |

we can choose a constant L′ > 0 such that

‖vη‖sL′,Kη
> ‖vη‖sL,K

as η tends to infinity. The condition (4.15) fails to hold since ‖vη‖sL′,Kη
has

exponential growth of higher order to η1/s as η tends to infinity.
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