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APPROXIMATING COUPLED HYPERBOLIC-PARABOLIC
SYSTEMS ARISING IN ENHANCED DRUG DELIVERY

J.A. FERREIRA, D. JORDÃO AND L. PINTO

Abstract: In this paper we study a system of partial differential equations de-
fined by a hyperbolic equation and a parabolic equation. The convective term of
the parabolic equation depends on the solution and eventually on the gradient of
the solution of the hyperbolic equation. This system arises in the mathematical
modeling of several physical processes as for instance ultrasound enhanced drug
delivery. In this case the propagation of the acoustic wave, which is described by a
hyperbolic equation, induces an active drug transport that depends on the acoustic
pressure. Consequently the drug diffusion process is governed by a hyperbolic and
a convection-diffusion equation.

Here, we propose a numerical method that allows us to compute second-order ac-
curate approximations to the solution of the hyperbolic and the parabolic equation.
The method can be seen as a fully discrete piecewise linear finite element method
or as a finite difference method. The convergence rates for both approximations
are unexpected. In fact we prove that the error for the approximation of the pres-
sure and concentration is of second-order with respect to discrete versions of the
H1-norm and L2-norm, respectively.

Keywords: Wave equation, convection-diffusion equation,finite difference method,
piecewise linear FEM, ultrasound, dug delivery.

1. Introduction

In this paper we consider the coupled system defined by the wave equation

a
∂2p

∂t2
+ b

∂p

∂t
= ∇ · (E∇p) + f1, in Ω× (0, T ], (1)

and the parabolic equation

∂c

∂t
+∇ · (v(p,∇p)c)−∇ · (D(p)∇c) = f2, in Ω× (0, T ]. (2)

This system is complemented with the initial conditions










∂p

∂t
(0) = pv,0

p(0) = p0 in Ω,

(3)
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c(0) = c0 in Ω, (4)

and homogeneous Dirichlet boundary conditions

p(t) = 0 on ∂Ω× (0, T ], (5)

c(t) = 0 on ∂Ω× (0, T ]. (6)

To simplify we assume that Ω = (0, 1)2 and ∂Ω represents its boundary.
In (1), a and b denote positive functions with non negative lower bounds
in Ω, a0 and b0, respectively, E is a diagonal matrix with entries e1 and e2
both with positive lower bound e0 in Ω. In (2), v(p) denotes the convective

velocity that can be p or ∇p dependent, v(p,∇p) = (v1(p,
∂p

∂x
), v2(p,

∂p

∂y
)),

D(p) is a diagonal matrix with entries d1 and d2 that can be dependent on
p, d1 = d1(p), d2 = d2(p), and both with positive lower bound d0 in Ω. If
w : Ω × [0, T ] → IR, then for t ∈ (0, T ], w(t) : Ω × [0, T ] → IR is given by
w(t)(x, y) = w(x, y, t), (x, y) ∈ Ω.
System (1)-(6) can be used to model drug delivery to a target tissue when

certain physical enhancers are used. The drug molecules absorption by the
target tissue is in general very low due to the physio-chemical properties of
the drug molecules or due to the low permeability of the target region. To
increase the drug absorption, penetration enhancers have been used; they
can be divided into two main classes: physical and chemical enhancers. In
both classes the main objective is to break the natural physical barriers
to drug transport and consequent drug absorption. In transdermal drug
delivery such enhancers have been used with great success. While the first
group, the chemical enhancers, act by changing the properties of the stratum
corneum increasing drug transport by diffusion, the second one, the physical
enhancers, act by creating a convective flow that facilitates drug transport.
In this group we include ultrasound, iontophoresis, and electroporation ([1]).
In the following we focus on ultrasound enhanced drug delivery.
Application of ultrasound to enhance drug transport through biological

tissues is a well-established and efficient technology. It has a huge number
of medical applications and it is particularly useful for drug delivery across
impermeable biological barriers (e.g., cell membrane) and on the delivery of
large or low diffusivity molecules (see [2], [3], [4], [5],[6], [7], [8], [9], [10],
[11]). For instance in cancer treatment, ultrasound is combined with a drug
polymeric carrier like polymeric micelles or liposomes or microbubbles that
transport the drug to the vicinity of the cancer tissue. Under the action of
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ultrasound it was observed an increase in the amount of drug released and
absorbed ([12], [3]).
Ultrasound consists of pressure waves propagating through a medium. As

the ultrasound wave propagates, it induce a vibration in the molecules of the
medium. This vibration is originated by successive events of compression and
expansion, induced by the wave, and which cause the pressure in the medium
to increase and decrease, respectively. The application of ultrasound to the
human body has different biological effects. For example, it may lead to
an increase in temperature particularly when localized and high intensity
pulses are used. It has been shown that temperature rise can increase drug
accumulation in tumors [13]. The exposition to ultrasound can also originate
what is sometimes designated by acoustic radiation forces [14]. These forces
can produce the so-called acoustic-streaming which is a convective flow in
the fluid phase of the medium. This convective field can also be explored to
increase the delivery rate of drug molecules to specific sites [15].
Ultrasound can also lead to the formation of vapor zones within a fluid.

This phenomenon is usually called cavitation and arise because the local
pressure decreases until it reaches the pressure of the liquid itself leading to
the formation of microbubbles containing vapor. These microbubbles oscil-
late and induce a fluid flow with velocity proportional to the amplitude of
the oscillations. If drug particles are imbedded in this fluid, they will be
easily spread by diffusion and convection. It should be remarked that ul-
trasound induced cavitation can be of two types: stable or inertial. Unlike
stable cavitation, in inertial cavitation the microbubble oscillation results in
an explosion. We note that cavitation, inertial or stable, can originate micro
ruptures in cell membranes, increasing its permeability and facilitating the
intracellular delivery of drug molecules [14].
Ultrasound propagation in soft biological tissue is governed by the equation

[2]
1

c2
∂2p

∂t2
+

2a

c

∂p

∂t
= ρ∇ ·

(

1

ρ
∇p

)

,

where c is the speed of sound of the material, ρ is the material density, p is
the acoustic pressure, and a is the attenuation parameter. For soft biological
tissue this parameter a is typically described by a power law given by a = af b,

with a a parameter that depends on the type of tissue, f the wave frequency,
and b a constant that is usually assumed to be close to one [4]. Assuming
for simplicity that ∇ρ = 0 and ignoring attenuation effects, we obtained the
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linear acoustic wave equation

∂2p

∂t2
= c2∆p, (7)

which is a particularization of (1).
Let us consider that soft tissue can be seen as a porous medium filled with

a fluid containing a solute (e.g., drug molecules). When ultrasound is applied
to enhance the solute transport the fluid velocity and the solute diffusion are
mainly due to cavitation phenomena, thermal effects, and convection [7, 6].
Although each one of these mechanisms have distinct implications on drug
transport they all contribute to an enhanced drug diffusion. Therefore, the
evolution of drug concentration in the soft tissue can be described by classical
convection-diffusion equation (2) where v(p) depends on p. For instance in
[16], for the one-dimensional case, the diffusion equation (2) was used with
v(p) = v + v∗ and D(p) = αv(p) + Dd, where v is the steady state fluid
velocity, v∗ is the enhanced velocity due to the acoustic pressure, Dd is the
molecular diffusion coefficient, and α is the dispersivity. Similar relations
were used in [17]. In that work the acoustic pressure was defined by (7) and

the concentration evolution was described by (2) with v(p) = φ

√

p

ρ
+ v∗ and

D(p) = αv(p)+Dd. According to the authors, v∗ is mainly due to cavitation
phenomena.
The main problem on the computation of numerical approximations for the

solution of the hyperbolic-parabolic IBVP (1)-(6) is the dependence of the
convective term v in (2) on the solution of the hyperbolic equation and its
gradient. To compute a second-order approximation for the concentration
we need to compute a second-order approximation for the gradient of the
hyperbolic solution. In this work we propose a fully discrete piecewise linear
finite element method for the introduced IBVP that allows us to compute
second-order approximations for the solutions of the hyperbolic equation (1)
and diffusion equation (2), with respect to a discrete H1-norm and L2-norm
respectively. The paper is organized as follows: in Section 2 we present some
remarks on the existence and uniqueness of solution of the IBVP (1)-(6) in
a convenient weak sense. Section 3 is devoted to the design of the fully
discrete in space piecewise linear finite element method. The convergence
analysis of the proposed method is given in Section 4. Numerical experiments
illustrating the main results are introduced in Section 5. In this section
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we also use the proposed method to illustrate drug transport enhanced by
ultrasound.
We remark that the results that we present here are not expected. Our

numerical scheme is based on piecewise linear finite elements which, as it is
well known, leads to first-order approximations for the hyperbolic equation
with respect to the H1-norm. Therefore, only first-order approximations
for the solution of the parabolic equation (2) are expected. Fully discrete
piecewise linear methods with similar convergence properties were discussed
in [18, 19, 20, 21, 22].

2. Remarks on the existence and uniqueness of solution

In what follows we establish a set of conditions on the data of the IBVP
(1)-(6) that allow us to conclude the existence and uniqueness of its solution
(p, c) in a certain sense. In this case the existence and uniqueness of such
solution can be studied establishing the existence and uniqueness of the wave
equation IBVP (1), (3), (5) and the existence and uniqueness of the diffusion
IBVP (2), (4), (6).
We start by introducing a convenient functional context. Let L2(Ω) and

[L2(Ω)]2 be the usual Sobolv spaces where we consider the usual inner prod-
ucts (., .), ((., .)) and corresponding norms that we denote by ‖.‖. In the
Sobolev space H1

0(Ω) we consider the usual norm ‖.‖1 and by H−1(Ω) we
denote the dual of H1

0(Ω) being < ., . > the notation for the dual product
defined in H−1(Ω) × H1

0(Ω). By L2(0, T,X), where X represents a vector
space of functions defined in Ω with the norm ‖.‖X , we denote the space of
functions w(t) : Ω → IR such that

‖w‖L2(0,T,X) =
(

∫ T

0

‖w(t)‖2Xdt
)1/2

< ∞.

The space of continuous functions w : [0, T ] → X is denoted by C([0, T ], X).
For the first problem it is well known that if the coefficients a, b ∈ L∞(Ω), E ∈

[L∞(Ω)]2, e1, e2 ≥ e0 > 0 in Ω, f1 ∈ L2(0, T, L2(Ω)), pv,0 ∈ L2(Ω) and
p0 ∈ H1

0(Ω), then there exists a unique solution p ∈ C([0, T ], H1
0(Ω)), with
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p′ ∈ C([0, T ], L2(Ω)) and p′′ ∈ L2(0, T,H−1(Ω)), such that






























< ap′′(t), w > +(bp′(t), w) = ((E∇p(t),∇w)) + (f1(t), w) a.e in [0, T ],
∀w ∈ H1

0(Ω)

p′(0) = pv,0

p(0) = p0.

(8)
Moreover such solution satisfies

‖p‖L∞(0,T,H1
0 (Ω))

+ ‖p′‖L∞(0,T,L2(Ω)) + ‖p′′‖L2(0,T,H−1(Ω))

≤ C
(

‖f1‖L2(0,T,L2(Ω)) + ‖p0‖1 + ‖pv,0‖
)

.
(9)

In (9), ‖.‖L∞(0,T,X) denotes the following norm

‖w‖L∞(0,T,X) = ess sup
[0,T ]

‖w(t)‖X.

As we will see, to study the weak solution of the concentration equation
we need to impose that p ∈ L∞(0, T, L∞(Ω)) and ∇p ∈ L∞(0, T, [L∞(Ω)]2).
To obtain a solution of (8) with such smoothness we need to increase the
smoothness of the data. For instance, if f1 ∈ L2(0, T,H2(Ω)), p0 ∈ H1

0(Ω) ∩
H3(Ω), pv,0 ∈ H1

0(Ω) ∩H2(Ω), then p ∈ C([0, T ], H1
0(Ω) ∩H3(Ω)) and

‖p‖L∞(0,T,W 1,∞(Ω)) ≤ C
(

‖f1‖L2(0,T,H2(Ω)) + ‖pv,0‖H2(Ω) + ‖p0‖H3(Ω)

)

. (10)

In (10), W 1,∞(Ω) denotes the Sobolev space of functions defined in Ω such
that

‖w‖W 1,∞(Ω) = max
|α|≤1

ess sup
Ω

|Dαw|,

with α = (α1, α2) ∈ IN0 × IN0 and Dαw =
∂ |α|w

∂xα1∂yα2

.

For the concentration IBVP (2), (4), (6) we are asking for a weak solution
in the following sense: c ∈ L2(0, T,H1

0(Ω)), c
′ ∈ L2(0, T,H−1(Ω)) such that







< c′(t), w > +ap(c(t), w) = (f2(t), w) a.e in [0, T ], ∀w ∈ H1
0(Ω)

c(0) = p0,
(11)
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where

ap(w, u) = ((D(p)∇w,∇u))− ((wv(p(t),∇p(t)),∇u)), w, u ∈ H1
0(Ω).

We suppose that the diagonal matrix D has diagonal entries with lower posi-
tive bounds. We also impose that p ∈ L∞(0, T, L∞(Ω)),∇p ∈ L∞(0, T, [L∞(Ω)]2)
and v : IR× IR2 → IR2, v = (v1, v2), satisfies

|vi(z1, z2)| ≤ C
(

|z1|+ |z2|
)

, ∀z1 ∈ IR, ∀z2 ∈ IR, i = 1, 2. (12)

These assumptions allow us to prove that the bilinear form ap(., .) : H
1
0(Ω)×

H1
0(Ω) → IR is coersive.
Then, for f2 ∈ L2(0, T, L2(Ω)), c0 ∈ H1

0(Ω), f1 ∈ L2(0, T,H2(Ω)), p0 ∈
H1

0(Ω) ∩ H3(Ω), and pv,0 ∈ H1
0(Ω) ∩ H2(Ω), it can be shown that there

exists a unique function c ∈ C([0, T ], L2(Ω)) ∩ L2(0, T,H1
0(Ω)) such that

c′ ∈ L2(0, T,H−1(Ω)), (11) holds and

‖c‖L∞(0,T,L2(Ω)) + ‖c‖L2(0,T,H1
0 (Ω))

+ ‖c′‖L2(0,T,H−1(Ω))

≤ C
(

‖f2‖L2(0,T,L2(Ω)) + ‖c0‖1

)

.
(13)

We remark that the constant in (13) depends on the upper bound for
‖p‖L∞(0,T,W 1,∞(Ω)) defined in (10). We also note that we can increase the
smoothness of c by increasing the smoothness of f1, p0, and pv,0, in the
acoustic pressure equation, and of f2 and c0 in the concentration equation.

3. Fully discrete piecewise linear FEM - superconver-

gence results

3.1. Spatial discretization. The main goal of this section is to define a
second-order accurate semi-discrete approximation to the solution (p, c) of
the IBVP (1)-(6). Such approximation will be derived using a piecewise
linear method for the differential problems: wave IBVP (1), (3), (5) and con-
centration IBVP (2), (4), (6). Note however that c depends on p through the
advective term. Thus, the proposed method needs to be carefully designed.
In Ω we introduce a non-uniform rectangular grid defined by H = (h, k)

with h = (h1, . . . , hN), hi > 0, i = 1, . . . , N ,

N
∑

i=1

hi = 1, and k = (k1, . . . , kM),
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kj > 0, j = 1, . . . ,M,

M
∑

j=1

kj = 1. Let {xi} and {yj} be the non-uniform grids

induced by h and k in [0, 1] with xi − xi−1 = hi, yj − yj−1 = kj. By ΩH we
represent the rectangular grid introduced in Ω that depends on H and let
ΩH and ∂ΩH be defined by ΩH = Ω ∩ ΩH , ∂ΩH = ∂Ω ∩ ΩH .

Let Hmax = max{hi, kj; i = 1, · · ·N ; j = 1, · · · ,M}. By Λ we denote a
sequence of vectors H = (h, k) such that Hmax → 0. Let WH be the space
of grid functions defined in ΩH and by WH,0 we denote the subspace of WH

of grid functions null on ∂ΩH. Let TH be a triangulation of Ω using the set
ΩH as vertices. We denote by diam∆ the diameter of the triangle ∆ ∈ TH .
By PHvH we denote the continuous piecewise linear interpolant of vH with
respect to TH .
To define a fully discrete approximation in space we introduce now fully

discrete inner products and corresponding norms. In WH,0 we define the
inner product

(uH , wH)H =
∑

(xi,yj)∈ΩH

|✷i,j|uH(xi, yj)wH(xi, yj), uH , wH ∈ WH,0,

where ✷i,j = (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2) ∩ Ω, |✷i,j| denotes the area of

✷i,j, and xi+1/2 = xi +
hi+1

2
, xi−1/2 = xi −

hi

2
, hi+1/2 = xi+1/2 − xi−1/2 being

yj±1/2 and kj+1/2 defined analogously. Let ‖.‖H be the corresponding norm.
For uH = (u1,H , u2,H), wH = (w1,H, w2,H), and uℓ,H , wℓ,H ∈ WH , for ℓ = 1, 2,

we use the notation

((uH , wH))H = (u1,H , w1,H)H,x + (u2,H , w2,H)H,y,

where

(u1,H, w1,H)H,x =
N
∑

i=1

M−1
∑

j=1

hikj+1/2u1,H(xi, yj)w1,H(xi, yj),

being (u2,H , w2,H)H,y defined analogously.
Let D−x and D−y be the first-order backward finite difference operators

with respect to the variables x and y, respectively, and let ∇H be the discrete
version of the gradient operator ∇ defined by ∇HuH = (D−xuH , D−yuH). We
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use the following notation

‖∇HuH‖H =
(

(D−xuH , D−xuH)H,x + (D−yuH , D−yuH)H,y

)1/2

=
(

‖D−xuH‖
2
H + ‖D−yuH‖

2
H

)1/2

, uH ∈ WH .

We recall that holds the following Poincaré-Friedrichs inequality: there
exists a positive constant C, independent of H, such that

‖uH‖H ≤ C‖∇HuH‖H , ∀uH ∈ WH,0. (14)

3.2.Wave equation. We consider now the following piecewise linear finite
element problem to approximate the solution of the wave IBVP: find pH(t) ∈
WH,0 such that

(aPHp
′′
H(t), PHwH) + (bPHp

′
H(t), PHwH) = −((E∇PHpH(t),∇PHwH))

+(f1(t), PHwH),
(15)

for t ∈ (0, T ], wH ∈ WH,0, and
{

PHp
′
H(0) = PHRHpv,0

PHpH(0) = PHRHp0.
(16)

In (16), RH : C(Ω) → WH denotes the restriction operator, where C(Ω) rep-
resents the space of continuous functions in Ω. By EH we denote the diagonal
matrix with e1,H(xi, yj) = e1(xi−1/2, yj) and e2,H(xi, yj) = e2(xi, yj−1/2), for
(xi, yj) ∈ ΩH .

The initial value problem (15), (16) is replaced by the following fully dis-
crete in space finite element problem: find pH(t) ∈ WH,0 such that

(aHp
′′
H(t), wH)H+(bHp

′
H(t), wH)H = −((EH∇HpH(t),∇HwH))H+(f1,H(t), wH)H ,

(17)
for t ∈ (0, T ], wH ∈ WH,0, and

{

p′H(0) = RHpv,0
pH(0) = RHp0.

(18)

In (17), aH = RHa, bH = RHb, and

f1,H(t)(xi, yj) =
1

|✷i,j|

∫

✷i,j

f1(x, y, t)dxdy. (19)
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We observe that the fully discrete in space finite element problem can be
rewritten as a finite difference problem. In order to define such finite dif-
ference problem, we introduce the finite difference operator ∇∗

H = (D−
x , D

−
y )

where

D−
x vH(xi, yj) =

vH(xi+1, yj)− vH(xi, yj)

hi+1/2
,

and D−
y is defined analogously. Then, from (17) we obtain

aHp
′′
H(t) + bHp

′
H(t) = ∇∗

H · (EH∇HpH(t)) + f1,H(t) in ΩH , t ∈ (0, T ], (20)

which is coupled with the boundary condition

pH(t) = 0 on ∂ΩH × (0, T ], (21)

and the initial conditions (18).

3.3. Concentration equation. Now we introduce the piecewise linear finite
element approximation for the concentration. It is given by : find cH(t) ∈
WH,0 such that

(PHc
′
H(t), PHwH)− ((PHcH(t)vH(t),∇PHwH)) (22)

= −((D(PHpH(t))∇PHcH(t),∇PHwH)) + (f2(t), PHwH),

for t ∈ (0, T ], wH ∈ WH,0, and

PHcH(0) = PHRHc0. (23)

In (22) the convective velocity is defined by vH(t) = v(PHpH(t),∇PHpH(t))
and f2,H is defined by (19) replacing f1 by f2.
To define a fully discrete in space piecewise linear finite element approxi-

mation for the concentration IBVP we set the following notations: let D∗
H

be the finite difference operator D∗
HwH = (D∗

xwH , D
∗
ywH) with

D∗
xwH(xi, yj) =

hiD−xwH(xi+1, yj) + hi+1D−xwH(xi, yj)

hi + hi+1
, i = 1, . . . , N − 1,

D∗
xwH(xN , yj) = D−xwH(xN , yj), D

∗
xwH(x0, yj) = D−xwH(x1, yj),

for j = 1, . . . ,M − 1, being D∗
ywH defined analogously; MH represents the

average operator

MH(w1, w2) = (Mhw1,Mkw2), Mh(w1(xi, yj)) =
1

2
(w1(xi−1, yj)+w1(xi, yj)),

being Mk defined analogously and (w1, w2) ∈ [WH,0]
2.
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Let DH(t) be the diagonal matrix with d1,H = d1(MhpH) and d2,H =
d2(MkpH) in ΩH . By vH(t) we represent the vector

(v1(pH(t), D
∗
hpH(t)), v2(pH(t), D

∗
kpH(t)).

We remark that if wH ∈ WH,0 then wHvH(pH(t), D
∗
HpH(t)) = (0, 0) at ∂ΩH.

The initial value problem (22), (23) is now replaced by the following fully
discrete in space finite element problem: find cH(t) ∈ WH,0 such that

(c′H(t), wH)H − ((MH(cH(t)vH(t)),∇HwH))H = −((DH(t)∇HcH(t),∇HwH))H

+ (f2,H(t), wH)H ,
(24)

for t ∈ (0, T ], wH ∈ WH,0, and

cH(0) = RHc0. (25)

Finally, from (24) we obtain

c′H(t) +∇c,H · (cH(t)vH(t)) = ∇∗
H · (DH∇HcH(t)) + f2,H(t) in ΩH , t ∈ (0, T ],

(26)
which is coupled with the boundary condition

cH(t) = 0 on ∂ΩH , (27)

and the initial condition (25). The finite difference operator ∇c,H is defined
by

∇c,H ·(w1, w2) = Dc,xw1+Dc,yw2, Dc,xw1(xi, yj) =
w1(xi+1, yj)− w1(xi−1, yj)

hi + hi+1
,

where (w1, w2) ∈ [WH,0]
2, being Dc,y defined analogously.

Let us note that (24) can be written in the matrix form

c′H(t) +A(t)cH(t) = f2,H(t)

where the entries of the matrix A(t) depend on vH(t) and DH(t). For this
linear differential system, the existence of a solution is guaranteed assuming
the continuity of A(t) and f2,H(t).
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4. Convergence analysis

It is well know that the piecewise linear approximationsPHph(t) and PHcH(t)
satisfy

‖p(t)− PHpH(t)‖1 ≤ CHmax,

‖p(t)− PHpH(t)‖ ≤ CH2
max,

‖c(t)− PHcH(t)‖ ≤ CH2
max,

when the concentration equation is acoustic pressure independent and p(t)
and c(t) are in H1

0(Ω) ∩ H2(Ω) and the family of triangulations TH , not
necessarily induced by a non-uniform rectangular partition, is quasi-uniform
([23]). As vH(t) in (22) depends on ∇PHpH(t), considering the previous
estimates, we believe that in this case

‖c(t)− PHcH(t)‖ ≤ CHmax.

It is expected that the same result holds for the fully discrete approximations

‖RHp(t)− pH(t)‖1 ≤ CHmax,

‖RHp(t)− pH(t)‖ ≤ CH2
max,

‖RHc(t)− cH(t)‖ ≤ CHmax.

If we look for the truncation errors associated with the spatial discretiza-
tions that lead to (20) and (26), then these estimates are expected because
such truncation errors are of first-order in Hmax when nonuniform grids are
considered.
In [22] a general telegraph IBVP was considered and the discretization

(17), (18) introduced before was studied. In what follows we present the
main result obtained in the last paper. Later we consider such result to
establish a convergence result for the approximation for the concentration
defined by (24), (25).

4.1. Wave equation. We denote by eH,p(t) the spatial discretization er-
ror induced by the spatial discretization that leads to (17), (18), eH,p(t) =
RHp(t)− pH(t). In the Sobolev space Hn(Ω) we consider the following norm

‖w‖Hn(Ω) =
(

∑

|α|≤n

‖Dαw‖2
)1/2

, w ∈ Hn(Ω).
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By Cm([0, T ], Hn(Ω)) we represent the space of functions v : [0, T ] →
Hn(Ω) such that v(j) : [0, T ] → Hn(Ω), j = 0, . . . , m, are continuous and
such that

‖v‖Cm([0,T ],Hn(Ω)) = max
j=0,...,m

‖v(j)(t)‖Hn(Ω) < ∞.

We will use the notation ‖.‖Cm(Hn) to represent the previous norm.
Let Hm(0, T,Hn(Ω)), m, n ∈ IN, be the space of functions v : (0, T ) →

Hn(Ω) with weak derivatives v(j) : (0, T ) → Hn(Ω), j = 0, . . . , m, such that

‖w‖Hm(0,T,Hn(Ω)) =
(

m
∑

j=0

∫ T

0

‖v(j)‖2Hn(Ω) dt
)1/2

< ∞.

The previous norm will be denoted by ‖.‖Hm(Hn).

Theorem 1. [Theorem 2, [22] ] If the solution p of the IBVP (1), (3), (5)
belongs to H3(0, T,H2(Ω)) ∩ H1(0, T,H3(Ω)), then there exist positive con-
stants Ci, i = 1, 2, independent of p, H, and T such that for H ∈ Λ with
Hmax small enough

‖e′H,p(t)‖
2
H +

∫ t

0

‖e′H,p(s)‖
2
Hds+ ‖∇HeH,p(t)‖

2
H

≤ C1e
C2t

∑

∆∈TH

(diam∆)4
(

‖p‖2H1(H3) + ‖p‖2H3(H2)

)

, t ∈ [0, T ].

To have the smoothness assumptions required in this result it is suffi-
cient to increase the smoothness requirements for f1, pv,0 and p0 : f1 ∈
H1(0, T,H3(Ω)), pv,0 ∈ H4(Ω) ∩ H1

0(Ω), p0 ∈ H5(Ω) ∩ H1
0(Ω). We remark

that we need to assume also that a, b and E are smooth.
From ‖∇HeH,p(t)‖H ≤ CH2

max and (14) we conclude

‖eH,p(t)‖H ≤ CH2
max.

Using the last two estimates we prove in what follows that the two sequences

‖pH(t)‖∞ = max
(x,y)∈ΩH

|pH(x, y, t)|,

‖∇HpH(t)‖∞ = max
i=1,...,N,j=1,...,M−1

|D−xpH(xi, yj, t)|

+ max
i=1,...,N−1,j=1,...,M

|D−ypH(xi, yj, t)|, H ∈ Λ, Hmax small enough,
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are bounded. We will assume that the spatial grids ΩH , H ∈ Λ, satisfy

H4
max

Hmin
≤ C, H ∈ Λ. (28)

(1) ‖pH(t)‖∞, H ∈ Λ, Hmax small enough, is bounded:
As pH(t) = RHp(t)−eH,p(t) and p(t) ∈ H3(Ω) which is imbedded in

C(Ω), to conclude that ‖pH(t)‖∞ is bounded we need to establish that
‖eH,p(t)‖∞ is bounded. We start by remarking that for wH ∈ WH,0 we
have

N−1
∑

i=1

hi+1/2wH(xi, yj)
2 ≤ ‖∇HwH‖

2
H , j = 1, . . . ,M − 1,

and
M−1
∑

j=1

kj+1/2wH(xi, yj)
2 ≤ ‖∇HwH‖

2
H , i = 1, . . . , N − 1.

These estimates imply the following

‖wH‖
2
∞ ≤

1

Hmin
‖∇HwH‖

2
H . (29)

where Hmin = min{h1, . . . , hN , k1, . . . , kM}.
As ‖∇HeH,p(t)‖

2
H ≤ CH4

max, using (29) we get

‖eH,p(t)‖
2
∞ ≤ C

H4
max

Hmin
.

Considering now (28) we conclude that ‖eH,p(t)‖
2
H , H ∈ Λ, with Hmax

small enough, is bounded.
(2) ‖∇HpH(t)‖∞, H ∈ Λ, is bounded

We observe that

‖∇HpH(t)‖∞ ≤ ‖∇HeH,p(t)‖∞ + ‖RH∇p(t)‖∞.

Considering that p(t) ∈ H3(Ω) which is imbedded in C1(Ω) we con-
clude that ‖RH∇p(t)‖∞, H ∈ Λ, is bounded. Moreover, as p(., ȳ, t) ∈
H2(0, 1), for ȳ ∈ (0, 1), using Bramble-Hilbert Lemma ([24]) we have

|
∂p

∂x
(xi, yj, t)−D−xp(xi, yj, t)| ≤ C

∫ xi

xi−1

|
∂2p

∂x2
(x, yj, t)|dx, j = 1, . . . ,M − 1.
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This estimate allows us to conclude

|D−xpH(xi, yj, t)− RH
∂p

∂x
(xi, yj, t)| ≤ C

√

Hmax‖p(yj, t)‖H2(0,1),

where p(yj, t) : (0, 1) → IR, p(yj, t)(x) = p(x, yj, t), x ∈ (0, 1). As we
also have

|D−ypH(xi, yj, t)− RH
∂p

∂y
(xi, yj, t)| ≤ C

√

Hmax‖p(xi, t)‖H2(0,1),

where p(xi, t) : (0, 1) → IR, p(xi, t)(y) = p(xi, y, t), y ∈ (0, 1), we
finally conclude

‖∇HpH(t)− RH∇p(t)‖∞ ≤ C
√

Hmax,

provided that

max
y∈(0,1)

∫ 1

0

(∂2p

∂x2
(x, y, t)

)2

dx ≤ C, t ∈ (0, T ],

max
x∈(0,1)

∫ 1

0

(∂2p

∂y2
(x, y, t)

)2

dy ≤ C, t ∈ (0, T ].

(30)

We remark that conditions (30) hold if we increase the smoothness of
the acoustic pressure, for instance if we require that

p ∈ C([0, T ], H4(Ω) ∩H1
0(Ω)).

Of course that this smoothness is achieved if we increase the smooth-
ness of the data f2, pv,0 and p0.

4.2.Concentration equation. An estimate for the error eH,c(t) = RHc(t)−
cH(t) induced by the spatial discretization introduced for the concentration
is obtained in what follows. To establish the error equation for eH,c(t) we
starting by remarking that we have

(e′H,c(t), wH)H = τv(wH) + τD(wH) + τc(wH), (31)

where

τv(wH) = −((MH(vH(t)cH(t)),∇HwH))H − ((∇ · (c(t)v(t)))H, wH)H , (32)

τD(wH) = ((DH(t)∇HcH(t),∇HwH))H + ((∇ · (D(t)∇c(t)))H, wH)H , (33)

τc(wH) = (c′(t), wH)H − ((c′(t))H, wH)H , (34)

with (∇ · (c(t)v(t)))H, (∇ · (D(t)∇c(t)))H and (c′(t))H defined by (19) with
f1 replaced by ∇ · (c(t)v(t)), ∇ · (D(t)∇c(t)) and c′(t), respectively.
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To get an estimate for ‖eH,c(t)‖H we study the functionals τv(wH), τD(wH)
and τc(wH) when wH ∈ WH,0.

Proposition 1. Let us suppose that the sequence of grids ΩH , H ∈ Λ, satisfy

Hmax

Hmin
≤ C, (35)

the convective term v is a Lipschtiz function with Lipschitz constant L and

p(t) ∈ H3(Ω), c(t) ∈ H2(Ω) such that v(t)c(t) ∈ [H2(Ω)]2 and
∂2p

∂x∂y
(t) =

∂2p

∂y∂x
(t) in Ω. Then for the functional τv(wH), wH ∈ WH,0, defined by (32),

holds the representation

τv(wH) = ((MH(vH(t)eH,c(t)),∇HwH))H + τv,e(wH), (36)

where

|τv,e(wH)| ≤ C
((

∑

∆∈TH

(diam∆)4‖v(t)c(t)‖2[H2(∆)]2

)1/2

+ ‖c(t)‖∞

(

∑

∆∈TH

(diam∆)4‖p(t)‖2H3(∆)

)1/2

+ ‖c(t)‖∞

(

‖eH,p(t)‖H + ‖∇HeH,p(t)‖H

)

‖∇HwH‖H .

Proof: We start by observing that τv(wH) can be rewritten as (36) with

τv,e(wH) =
3

∑

i=1

τ (i)v (wH)

where

τ (1)v (wH) = −((∇ · (c(t)v(t)))H, wH))H − ((MH(RH(v(t)c(t)),∇HwH))H ,

τ (2)v (wH) = ((MH(RH(v(t)c(t)),∇HwH))H − ((MH(ṽH(t)RHc(t)),∇HwH))H ,

with ṽH(t) = (v1(p(t), D
∗
hp(t)), v2(p(t), D

∗
kp(t))),

τ (3)v (wH) = ((MH(ṽH(t)RHc(t)),∇HwH))H − ((MH(vH(t)RHc(t)),∇HwH))H .
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Using Lemma 5.5 of [25], we can state that there exists a positive constant
C, H and p and c independent, such that

|τ (1)v (wH)| ≤ C
(

∑

∆∈TH

(diam∆)4‖v(t)c(t)‖2[H2(∆)]2

)1/2

‖∇HwH‖H .

To get an estimate for τ
(2)
v (wH) we introduce g1(xi, yj, t) =

∂p
∂x(xi, yj, t) −

D∗
hp(xi, yj, t). We have

|kj+1/2g1(xi, yj, t)| ≤

∫ yj+1/2

yj−1/2

(

kj+1/2|
∂g1

∂y
(xi, y, t)|+ |g1(xi, y, t)|

)

dy. (37)

Under the smoothness assumption for p, Bramble-Hilbert Lemma allow us
to conclude the upper bounds

∫ yj+1/2

yj−1/2

|
∂g1

∂y
(xi, y, t)|dy ≤ C

∫ yj+1/2

yj−1/2

∫ xi+1

xi−1

|
∂3p

∂x2∂y
|dxdy,

and

∫ yj+1/2

yj−1/2

|g1(xi, y, t)|dy ≤ C(hi + hi+1)

∫ yj+1/2

yj−1/2

∫ xi+1

xi−1

|
∂3p

∂x3
(x, y, t)|dxdy

that leads to

|kj+1/2g1(xi, yj, t)| ≤ C
(

kj+1/2

∫ yj+1/2

yj−1/2

∫ xi+1

xi−1

|
∂3p

∂y∂x2
|dxdy

+ (hi + hi+1)

∫ yj+1/2

yj−1/2

∫ xi+1

xi−1

|
∂3p

∂x3
(x, y, t)|dxdy

)

.

As for g2(xi, yj, t) =
∂p
∂y
(xi, yj, t)−D∗

kp(xi, yj, t) we have an analogous estimate

we can show using the Lipschitz assumption for v that for τ
(2)
v (wH) we have

|τ (2)v (wH)| ≤ CL‖c(t)‖∞

(

∑

∆∈TH

(diam∆)4‖p‖2H3(∆)

)1/2

‖∇HwH‖H . (38)

Using again the Lipschitz assumption for v, the smoothness condition on

the nonuniformity of the spatial grids we get for τ
(3)
v (wH) the upper bound

|τ (3)v (wH)| ≤ LC‖c(t)‖∞

(

‖eH,p(t)‖H + ‖∇HeH,p(t)‖H

)

‖∇HwH‖H . (39)

that concludes the proof of the representation (36).
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Proposition 2. Let di, i = 1, 2, be Lipschitz functions. If c(t) ∈ H3(Ω),
p(t) ∈ H2(Ω) then for the functional τD(wH), wH ∈ WH,0, defined by (33)
holds the following representation

τD(wH) = −((DH(t)∇HeH,c(t),∇HwH))H + τD,e(wH), (40)

where

|τD,e(wH)| ≤ C
((

∑

∆∈TH

(diam∆)4‖D(t)∇c(t)‖2[H2(∆)]2

)1/2

+ ‖c(t)‖C1

((

∑

∆∈TH

(diam∆)4‖p(t)‖2H2(∆)

)1/2

+ ‖eH,p(t)‖H

)

‖∇HwH‖H .

Proof: We observe that τD(wH) admits the representation (40) with τD,e(wH)
given by

τD,e(wH) =
3

∑

i=1

τ
(i)
D (wH)

where

τ
(1)
D (wH) = ((∇ · (D(t)∇c(t)))H, wH)H + ((D̃H(t)∇HRHc(t),∇HwH))H ,

for each grid point (xi, jyj) ∈ ΩH , D̃H(t) is a diagonal matrix with entries
d1(p(xi−1/2, yj, t)), d2(p(xi, yj−1/2, t),

τ
(2)
D (wH) = (((D∗

H(t)− D̃H(t))∇HRHc(t),∇HwH))H

for each grid point (xi, jj) ∈ ΩH , D
∗
H(t) is a diagonal matrix with entries

d1(Mhp(xi, yj, t)), d2(Mkp(xi, yj, t)),

τ
(3)
D (wH) = (((DH(t)−D∗

H(t))∇HRHc(t),∇HwH))H .

Using Lemma 5.1 of [25] it can be shown that

|τ
(1)
D (wH)| ≤ C

(

∑

∆∈TH

(diam∆)4‖D(t)∇c(t)‖2[H2(∆)]2

)1/2

‖∇HwH‖H . (41)
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To estimate τ
(2)
D (wH) we introduce g1(xi, yj, t) = Mhp(xi, yj, t)−p(xi−1/2, yj, t)

and for this function g1 we also have we have (37). Bramble-Hilbert Lemma
leads to

|kj+1/2g1(xi, yj, t)| ≤ C
(

kj+1/2

∫ yj+1/2

yj−1/2

∫ xi

xi−1

|
∂2p

∂x∂y
|dxdy

+ hi

∫ yj+1/2

yj−1/2

∫ xi+1

xi−1

|
∂2p

∂x2
(x, y, t)|dxdy

)

.

We remak that for g2(xi, yj, t) = Mkp(xi, yj, t) − p(xi, yj−1/2, t) we have an
analogous relation, we conclude, considering that di, i = 1, 2, are Lipschitz
functions

|τ
(2)
D (wH)| ≤ C‖c(t)‖C1

(

∑

∆∈TH

(diam∆)4‖p(t)‖2H2(∆)

)1/2

‖∇HwH‖H . (42)

As di, i = 1, 2, are Lipschitz functions, we easily conclude that

|τ
(3)
D (wH)| ≤ C‖c(t)‖C1‖eH,p(t)‖H‖∇HwH‖H . (43)

Finally from (41)-(43) we conclude the proof of (40).

To obtain an upper bound for the functional τc(wH), wH ∈ WH,0, defined
by (34) we apply Lemma 5.7 of [25].

Proposition 3. If c(t) ∈ H2(Ω), for the function τc(wH), wH ∈ WH,0, defined
by (34) we have

|τc(wH)| ≤ C
(

∑

∆∈TH

(diam∆)4‖c′(t)‖2H2(∆)

)1/2

‖∇HwH‖H .

To simplify the presentation of one of the main results of this work, Theo-
rem 2, we do not include in its presentation the assumptions on the coefficient
functions of the wave and concentration IBVPs. We assume that they sat-
isfy the assumptions mentioned before. We also assume that the spatial grids
ΩH , H ∈ Λ, satisfy (35).
If the convective velocity v(t) is a bounded function then in the next re-

sult we do not need to use the boundness of the pressure approximation
sequences ‖pH(t)‖∞, ‖∇HpH(t)‖∞, for H ∈ Λ, with Hmax small enough and
consequently the next result holds without the smoothness condition (30).
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However, as we consider a more general function v(t), we need to impose
such condition.

Theorem 2. Let us suppose that the solution p of the IBVP (1), (3), (5) sat-

isfies (30) and
∂2p

∂x∂y
=

∂2p

∂y∂x
in Ω× (0, T ], and it belongs to H3(0, T,H2(Ω))

∩ H1(0, T,H3(Ω)). Let us assume also that the solution c of the concentration
IBVP (2), (4), (6) belongs to L2(0, T,H3(Ω)∩H1

0(Ω)), c
′ ∈ L2(0, T,H2(Ω)).

If the convective velocity v(t) satisfies (12), v(t)c(t) ∈ [H2(Ω)]2, the dif-
fusivity tensor D(t) is such that D(t)∇c(t) ∈ [H2(Ω)]2, then, there exist
positive constants C3, C4, where C4 depends on the upper bound of the se-
quences ‖pH(t)‖∞ and ‖∇HpH(t)‖∞, such that for the semi-discretization
error eH,c(t) = RHc(t)− cH(t) of the solution of the fully discrete variational
problem (24) holds the following

‖eH,c(t)‖
2
H +

∫ t

0

‖∇HeH,c(s)‖
2
Hds ≤ eC3t

∫ t

0

τc(s)ds, (44)

where

|τc(t)| ≤ C4

(

∑

∆∈TH

(diam∆)4
(

‖v(t)c(t)‖2[H2(∆)]2 + ‖D(t)∇c(t)‖2[H2(∆)]2

+ ‖c′(t)‖2H2(∆)

)

+ ‖c(t)‖2C1

(

∑

∆∈TH

(diam∆)4‖p(t)‖2H3(∆)

+ C1e
C2t

∑

∆∈TH

(diam∆)4
(

‖p‖2H1(H3) + ‖p‖2H3(H2)

))

and C1, C2 represent positive constants introduced in Theorem 1.

Proof: Taking in (31), wH = eH,c(t) and considering Propositions 1,2 and
3, and taking into account the error estimate established in Theorem 1, we
get

1

2

d

dt
‖eH,c(t)‖

2
H + ((DH(t)∇HeH,c(t),∇HeH,c(t)))H (45)

= ((MH(vH(t)eH,c(t)),∇HeH,c(t)))H + ǫ21‖∇HeH,c(t)‖
2
H + τ̃c(t), (46)
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where ǫ1 6= 0 is an arbitrary constant

|τ̃c(t)| ≤
C

ǫ21

(

∑

∆∈TH

(diam∆)4
(

‖v(t)c(t)‖2[H2(∆)]2 + ‖D(t)∇c(t)‖2[H2(∆)]2

)

+ ‖c(t)‖2C1

∑

∆∈TH

(diam∆)4‖p(t)‖2H3(∆)

+ ‖c(t)‖2C1C1e
C2t

∑

∆∈TH

(diam∆)4
(

‖p‖2H1(H3) + ‖p‖2H3(H2)

)

+
∑

∆∈TH

(diam∆)4‖c′(t)‖2H2(∆)

)

,

and C denotes a generic positive constant H, c, p, t, x, y independent, C1 and
C2 were introduced in Theorem 1.
As di, i = 1, 2, have a lower bound d0 and v satisfies (12), from (46), we

obtain

1

2

d

dt
‖eH,c(t)‖

2
H + (d0 − ǫ21)‖∇HeH,c(t))‖

2
H

≤ C(‖pH(t)‖∞ + ‖∇HpH(t)‖∞)‖eH,c(t)‖H‖∇HeH,c(t)‖H + τ̃c(t).
(47)

Considering that ‖pH(t)‖∞ + ‖∇HpH(t)‖∞ are bounded for H ∈ Λ, Hmax

small enough, we conclude that exists a positive constant CP such that

d

dt
‖eH,c(t)‖

2
H + 2(d0 − ǫ21 − ǫ22)‖∇HeH,c(t))‖

2
H ≤

C2
P

2ǫ22
‖eH,c(t)‖

2
H + 2τ̃c(t).

Choosing now ǫ1, ǫ2 such that d0 − ǫ21 − ǫ22 > 0 we conclude from the last
differential inequality the next estimate

‖eH,c(t)‖
2
H +

∫ t

0

‖∇HeH,c(s))‖
2
Hds

≤
C2

P

2ǫ22min{1, 2(d0 − ǫ21 − ǫ22)}

∫ t

0

‖eH,c(s)‖
2
Hds

+
2

min{1, 2(d0 − ǫ21 − ǫ22)}

∫ t

0

τ̃c(s)ds.

(48)

Applying Gronwall’s Lemma to (48) we conclude the existence of positive
constants C3, C4 such that (44) holds.



22 J.A. FERREIRA, D. JORDÃO AND L. PINTO

5. Numerical examples

In this section we show some numerical experiments. Before that, we
present a time discretization method for the coupled wave concentration
problem (18), (20), (21), (25), (26), (27). We employ a first-order implicit-
explicit method. In particular, the wave equation is solved by an implicit
first-order method. The concentration equation is solved by a first-order
semi-implicit method, i.e., a combination of an implicit method for the con-
centration and an explicit method for the pressure wave dependent terms. For
the temporal domain [0, T ], we define the uniform time grid {tm = m∆t, m =
0, . . . ,Mt}, with tMt

= T , and where ∆t is the time step. Let us denote by
pmH and cmH the numerical approximations for pH(tm) and cH(tm). The fully
discrete (in time and space) numerical scheme is then defined by: find pmH
and cmH such that

aH
pm+1
H − 2pmH + pm−1

H

∆t2
+ bH

pm+1
H − pmH

∆t
= ∇∗

H · (EH∇Hp
m+1
H ) + fm+1

1,H in ΩH ,

(49)

for m = 1, . . . ,Mt − 1,

cm+1
H − cmH

∆t
+∇c,H · (cm+1

H vmH) = ∇∗
H · (Dm

H∇Hc
m+1
H ) + fm+1

2,H in ΩH , (50)

for m = 0, . . . ,Mt − 1, and with the initial conditions

p1H − p0H
∆t

= RHpv,0, p
0
H = RHp0, c

0
H = RHc0 in ΩH , (51)

and boundary conditions

cmH = 0, pmH = 0 on ∂ΩH , m = 0, . . . ,Mt. (52)

Note that the pH dependent terms in (50), namely, vH and DH , are evalu-
ated at time level m. This strategy allows us to solve the coupled problem
in a sequential way. From time level m to time level m + 1 we first solve
equation (50) to obtain cm+1

H and then we solve equation (49) (or we use (51)
if m = 0, 1) to obtain pm+1

H . Let us now define the errors

emH,p = RHp(tm)− pmH and emH,c = RHc(tm)− cmH .

We remark that the convergence analysis of the time discretization (49)-
(52) can be obtained following the arguments given in [26] for a coupled
elliptic-parabolic problem, and using also the results given in [22] for an
hyperbolic equation.
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5.1. Convergence rate test in space. The first example of this sec-
tion illustrates the theoretical convergence rates of the proposed numerical
method. In particular, for the wave equation (1) we set the coefficient func-
tions a(x, y) = y2, b(x, y) = x + y, e1(x, y) = xy, and e2(x, y) = x, while for
the parabolic equation (2) we set v(p,∇p) = (1+p+ ∂p

∂x
, 2p+ ∂p

∂y
), d1(p) = 5+p,

and d2(p) = 10 + p. In addition, the initial conditions (3), (4) and the func-
tions f1 and f2 are defined such that the exact solution of the coupled system
(1), (2) is given by

p(x, y, t) = et sin(2πy)(1− cos(2πx))

c(x, y, t) = et sin(π(2x− 1)) sin(π(2y − 1)).

We also consider Ω = [0, 1]2, T = 0.1 and the time step ∆t =1e-05. This time
step is small enough so that the influence of the time discretization on the
numerical error is negligible. To measure the numerical rate of convergence
we define the error

Ep = max
m=1,...,Mt

‖D−te
m
H,p‖

2
H + ‖∇He

m
H,p‖

2
H ,

which is associated with the discretization of the wave equation (1), and the
error

Ec = max
m=1,...,Mt

‖emH,c‖
2
H + ‖∇He

m
H,c‖

2
H ,

which is associated with the discretization of the parabolic equation (2).
For the simulation the domain Ω is first divided into Nx × Ny non-uniform
intervals. Then, we subdivide each interval by considering the midpoint of
each interval to obtain two intervals. In Table 1 we show the errors Ep and
Ec for several mesh sizes, from Nx ×Ny = 12× 14 to Nx ×Ny = 192× 224.

Hmax Ep Ec Nx Ny

9.9208e-02 2.0123e-01 1.2545e-01 12 14
4.9604e-02 5.0609e-02 3.1817e-02 24 28
2.4802e-02 1.2660e-02 7.9833e-03 48 56
1.2401e-02 3.1664e-03 1.9977e-03 96 112
6.2005e-03 7.9269e-04 4.9956e-04 192 224

Table 1. The errors Ep and Ec on successively refined meshes.

Using the data from Table 1, we plot in Figure 1 the log(Ep) and log(Ec)
versus log(Hmax). Assuming that the errors Ep and Ec are proportional to
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Figure 1. From left to right: Log-log plots of Ep and Ec versus
Hmax. The best fitting least square line is shown as a solid line.

Hα
max, for some α ∈ IR, the convergence rate can be estimated by the slope

of the best fitting least square line. The estimated values are 1.9974 for Ep

and 1.9938 for Ec. These values confirm the theoretical O(H2
max) convergence

rates. Images illustrating the numerical solutions and the numerical errors
are given in Figure 2.

5.2.Application to ultrasound enhanced drug delivery. With the next
example we validate the applicability of the proposed numerical method to
real problems. For that, we carry out simulations with a practical application
of the studied system (1)-(6), namely, ultrasound enhanced drug delivery. To
model the ultrasound propagation we use the simplified wave equation

∂2p

∂t2
= c2∆p. (53)

For the evolution of drug concentration in the tissue we use the classical
convection-diffusion equation

∂c

∂t
+∇ · (vc) = ∇ · (Dm∇c). (54)

Here, c is the drug concentration, Dm is the diffusion coefficient, and v is
the convective velocity field generated by the ultrasound wave. We consider
that this velocity field is radial around the wave source origin (x0, y0) and
has magnitude proportional to the wave intensity, i.e,

v = C1p
2(

(x− x0)
√

(x− x0)2 + (y − y0)2
,

(y − y0)
√

(x− x0)2 + (y − y0)2
), with C1 ≥ 0.
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Figure 2. From left to right: Numerical approximation and
square error of pnH (first row) and cnH (second row) at the final
simulation time T = 0.1 and at the finer mesh.

Moreover, to model the effects of ultrasound waves on cell membrane per-
meabilization, we consider that the drug molecular diffusion in the tumor
tissue, denoted by Dm,T , is a scalar that depends on the pressure wave in-
tensity trough the following relation

Dm,T =

{

Dm,c if max(p2) ≤ C2

Dm,p if max(p2) > C2

with C2 a positive constant. The diffusion and acoustic parameters used in
the simulation were: c = 2, Dm = 1e-03, Dm,p = 1e-04, Dm,c = 1e-06, C1 =
2e-04, and C2 = 20. We remark that for simplicity units are omitted. We
also note that system (53), (54) can be seen as a particular case of system (1),
(2).
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Let us consider the configuration shown in Figure 3 (on the left), where
the tumor tissue, the initial drug distribution, and the localization of the
ultrasound source are depicted. Also in Figure 3 (on the right) we present
the time profile of the ultrasound wave. In Figure 4, we present the results
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Figure 3. On the left: Initial drug concentration and simulation
scenario. The tumor tissue is represented by the black circle on
the right and the ultrasound source is represented by the black
circle on the left. On the right: time profile of the ultrasound
wave.

of our computational experiments. On the left we consider two simulation
conditions: transport of drug under the influence of the ultrasound wave,
and transport of drug only by passive diffusion, i.e., without the application
of the ultrasound wave. As can be observed when ultrasound is applied the
average concentration of drug inside the tumor tissue at the final time is
considerably higher than that obtained only with passive diffusion. Note
also that the higher flux of drug to the tumor tissue, between time equal 2
and time equal 3.5, approximately, can be easily related with the ultrasound
profile. The sensitivity analysis of the model to the ultrasound wave is shown
in the right plot of Figure 4. In particular, we consider the same parameters
as before but where the maximum wave amplitude is reduced from 100 to
50. As expected the final average concentration of drug in the tumor tissue
is lower. The lower ultrasound amplitude also explains why the high flux of
drug occurs during a shorter period of time.
In Figure 5, we show snapshots of drug concentration and ultrasound in-

tensity at different values of time. Both cases, passive diffusion and passive
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Figure 4. Time evolution of the average concentration of drug
in the tumor tissue. On the left: Passive diffusion (dash line)
and ultrasound enhanced (solid line). On the right: Ultrasound
enhanced with maximum wave amplitude equal 200 (solid line)
and equal 100 (dash line).

diffusion plus ultrasound, are presented. The effect of the convective trans-
port on the concentration plume is clearly visible on the images in the left
column. For better visualization the concentration in the tumor tissue repre-
sents average concentration. In Figure 6, the pressure wave and the velocity
filed are shown. We refer that a time step equal 1e-02 and a uniform mesh
with Hmax = 3.125e-03 were used. To minimize boundary effects the do-
main was enlarged. It is also important to remark that in this paper we
are mostly interested in the analysis of the proposed numerical method. A
more detailed simulation of ultrasound enhanced drug delivery requires an
independent study. This is left for future work.

6. Conclusion

In this paper we proposed a numerical method for a hyperbolic-parabolic
IBVP that can be used, e.g., to describe drug delivery enhanced by ultra-
sound. The devised numerical scheme is based on piecewise linear finite
element spaces, and it can be seen as a finite difference method defined on
non-uniform rectangular partitions of the spatial domain.
The main result of this work is Theorem 2 where we proved that the numer-

ical approximation for the solution of the parabolic problem is second-order
accurate with respect to a discrete L2-norm. The proof of this theorem
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Figure 5. From top to bottom: Drug concentration at time
equal 1, 3, and final time 5. From left to right: Transport by
diffusion and ultrasound, and transport by diffusion only.

relies heavily on Theorem 1 where we established that the numerical approx-
imation for the solution of the hyperbolic problem is second-order accurate
with respect to a discrete H1-norm. It should be mentioned that our results
were obtained imposing smoothness conditions on the solution of the coupled
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Figure 6. Ultrasound intensity p2 (first row) and velocity com-
ponents x and y (second row) at time level equal 3.

IBVP problem that are weaker than those usually used in the convergence
analysis of finite difference schemes.
Numerical experiments illustrating the theoretical results were also given.

The proposed method was also used to simulate ultrasound enhanced drug
transport.
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