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ABSTRACT: The aim of this paper is to obtain sharp regularity estimates for locally bounded
solutions of the degenerate doubly nonlinear equation

ut −div(mum−1|∇u|p−2
∇u) = f ,

where m > 1, p > 2 and f ∈ Lq,r. More precisely, we show that solutions are locally of
class C0,β , where β depends explicitly only on the optimal Hölder exponent for solutions
of the homogeneous case, the integrability of f , the constants p, m and the space dimension
n.
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1.Introduction
We study sharp regularity issues for bounded weak solutions of the inhomoge-

neous degenerate doubly nonlinear equation (DNLE)

ut−div(mum−1|∇u|p−2
∇u) = f ∈ Lq,r(UT ) (1.1)

for m > 1 and p > 2. The family of equations (1.1) generalizes two well-known
cases: the porous media equation (PME), case p = 2, and the p-Laplacian equa-
tion (PLE), case m = 1. For the very particular case m = 1 and p = 2 we recover
the standard heat equation ut = ∆u.

The main motivation for the study of this class of nonlinear evolution equations
is their physical relevance, for example, in the study of non-Newtonian fluids, see
[16], plasma physics, ground water problems, image-analysis, motion of viscous
fluids and in the modeling of an ideal gas flowing isoentropically in a inhomoge-
neous porous medium [15].

The equation (1.1) exhibits a double nonlinear dependence, on both the solution
u and its gradient ∇u that makes diffusion properties degenerate at points where
the solution and its gradient vanish. Existence of weak solutions has been proven
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in [22, 23]. Local boundedness of the gradient for locally bounded, strictly pos-
itive weak solutions has been investigated in [20] and Harnack type inequalites
for bounded weak solutions are proved in [13, 27]. Besides, in [10, 11, 18, 28],
the Hölder regularity for bounded weak solutions is established. Here, we denote
0 < α∗ ≤ 1 the optimal Hölder exponent for solutions of the homogeneous case.

Hereafter in this paper we shall denote UT ≡U×(0,T ), for a open and bounded
set U ⊂ Rn and T > 0. In (1.1), we shall consider functions f : UT → R such that
f ∈ Lq,r(UT ) := Lr(0,T,Lq(U)) satisfying conditions

1
r
+

n
pq

< 1 and
3
r
+

n
q
> 2. (1.2)

The first assumption is due to the standard minimal integrability condition that
guarantees the existence of bounded weak solutions. The second one defines the
borderline setting for the optimal Hölder regularity regime.

The greatest difficulty in the study of this equation is its doubly degeneracy. To
work around this problem we adapt the techniques found in [2],[3], [4], [5] to our
situation, and show the following result.

Theorem 1.1. Let u be a locally bounded weak solution of (1.1) in G1, with f ∈
Lq,r(UT ), satisfying (1.2). Then u is locally of class C0,β in space with

β =
α(p−1)
m+ p−2

, for α = min

{
α
−
? ,

(m+ p−2)[(pq−n)r− pq]
q(p−1)[(r−1)(m+ p−2)+1]

}
.

(1.3)
Moreover, u is locally C0,β

θ in time for θ given by

θ := p−α(p−1)
(

1− 1
m+ p−2

)
. (1.4)

Theorem 1.1 generalizes the cases studied in [2, 25] where the authors deter-
mined the optimal Hölder exponents for weak solutions for the p-laplacian equa-
tion and the porous media equation. Such exponents coincide with (1.3) for the
cases p = 2 and m = 1 respectively.

The number β in (1.3) is obtained as follows: in the case

(m+ p−2)[(pq−n)r− pq]
q(p−1)(r−1)[(m+ p−2)+1]

< α∗, (1.5)
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we have the exponent

β =
(pq−n)r− pq

q(r−1)[(m+ p−2)+1]
.

In the case (1.5) is not satisfied, the exponent β is any number less than

α∗(p−1)
m+ p−2

≤ α?.

Some special borderline scenarios. By making a precise analysis on the expo-
nent in (1.3) it is possible to observe how Hölder regularity for solutions of (1.1)
behaves by approaching some integrability borderline cases.

Case q = r = ∞. By letting q,r→ ∞ we observe that

(m+ p−2)[(pq−n)r− pq]
q(p−1)[(r−1)(m+ p−2)+1]

−→ p
p−1

> 1.

Therefore after a certain integrability threshold, the optimal regularity exponent
of the homogeneous case prevails in (1.3). It implies that solutions of (1.1) are
locally C0,β for any

β <
α∗(p−1)
m+ p−2

< α?.

Case r = ∞ and q↘ n/p. Here we shall observe for the next two cases, how the
Hölder regularity for solutions of (1.1) deteriorates explicitly by approaching the
borderline integrability conditions in (1.2). Indeed, by assuming f ∈ L∞, n

p+ε(UT ),
Theorem 1.1 provides that for each ε > 0 universally small, solutions for the prob-
lem (1.1) are locally C0,β (ε) in space where

β (ε) =
ε

n
p + ε

· p
m+ p−2

.

Case r↘ 1 and q = ∞. By considering f ∈ L1+ε,∞(UT ), Theorem 1.1 guarantees
that for each number ε > 0 universally small, solutions are locally C0,δ (ε) in space
with exponent

δ (ε) =
ε(m+ p−2)

ε(m+ p−2)+1
· p
m+ p−2

.

Note that in both cases, β (ε) and δ (ε) go to 0 as ε → 0. In time, solutions are
C0,γ(ε) for γ(ε) = β (ε)/θ(ε) where θ(ε)→ p as ε→ 0 so the exponent γ(ε) also
deteriorates as ε → 0.
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Remark 1.1. According to the second condition in (1.2), we observe that for the
last two cases such regularity is optimal.

Organization of the paper. The paper is organised as follows. In section 2 we
will define weak solutions of equation (1.1) and we develop some preliminary
estimates, which are important tools for the proof of the main results of this pa-
per. In section 3 a geometric iteration is established, using the intrinsic scale of
the DNLE. In section 4 we proved the main result of the paper. In section 5 we
develop optimal regularity estimates for p-Laplacian type equations that are com-
mented in [25], section 4.

2. Definitions and preliminary results
We start with the definition of weak solution to (1.1).

Definition 2.1. A non-negative locally bounded function

u ∈Cloc(0,T ;L2
loc(U)), u

(m+p−1)
p ∈ Lp

loc(0,T ;W 1,p
loc (U))

is a local, weak solution to (1.1), if for every compact set K ⊂U and every subin-
terval [t1, t2]⊂ (0,T ], we have
ˆ

K
uϕdx | t2t1 +

ˆ t2

t1

ˆ
K
{−uϕt +mum−1|∇u|p−2

∇u.∇ϕ}dxdt =
ˆ t2

t1

ˆ
K

f ϕdxdt

for all nonnegative test functions

ϕ ∈W 1,2
loc (0,T ;L2(K))∩Lp

loc(0,T ;W 1,p
0 (K)).

It is clear that all integrals in the above definition are convergent, interpreting the
gradient term as

um−1|∇u|p−2
∇u :=

(
p

m+ p−1

)p−1

u
m−1

p |∇u
m+p−1

p |p−2
∇u

m+p−1
p .

A alternative definition makes use of the Steklov average of a function v ∈
L1(UT ), defined for 0 < h < T by

vh :=
{

1
h

´ t+h
t v(·,τ)dτ, i f t ∈ (0,T −h],

0 i f t ∈ (T −h,T ].
(2.1)
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Definition 2.2. A non-negative locally bounded function

u ∈Cloc(0,T ;L2
loc(U)), u

(m+p−1)
p ∈ Lp

loc(0,T ;W 1,p
loc (U))

is a local, weak solution to (1.1), if for every compact set K ⊂U and every 0 <
t < T −h, we haveˆ

K×{t}
{(uh)tϕ +(mum−1|∇u|p−2

∇u)h.∇ϕ}dx =
ˆ

K×{t}
fhϕdx, (2.2)

from all nonnegative ϕ ∈W 1,p
0 (K).

One of the main tools we will use is the following Cacciopoli estimate.

Proposition 2.1. Let u be a weak solution to (1.1) and K× [t1, t2] ⊂U × [0,T ].
There exists a constant C, depending only on n,m, p,K× [t1, t2], such that

sup
t1<t<t2

ˆ
K

u2
ξ

pdx+
ˆ t2

t1

ˆ
K

um−1|∇u|pξ
pdxdt ≤ C

ˆ t2

t1

ˆ
K

u2
ξ

p−1
ξtdxdt

+

ˆ t2

t1

ˆ
K

um+p−1|∇ξ |pdxdt +C‖ f‖2
Lq,r,

for all ξ ∈C∞
0 (K× (t1, t2)) such that ξ ∈ [0,1].

Proof : Taking ϕ = uhξ p as a test function in (2.2) and t ∈ (t1, t2] arbitrary, we
have ˆ t

t1

ˆ
K
(uh)tuhξ

pdxdτ +

ˆ t

t1

ˆ
K
(mum−1|∇u|p−2

∇u)h.∇uhξ
pdxdτ

+ p
ˆ t

t1

ˆ
K
(mum−1|∇u|p−2

∇u)h.∇ξ ξ
p−1dxdτ

=

ˆ t

t1

ˆ
K

fhuhξ
pdxdτ.

Integrating by parts and passing to the limit in h→ 0, we getˆ t

t1

ˆ
K
(uh)tuhξ

pdxdτ =
1
2

ˆ t

t1

ˆ
K
(u2

h)tξ
pdxdτ

−→ 1
2

ˆ
K

u2
ξ

p(x, t)dx− 1
2

ˆ
K

u2
ξ

p(x, t1)dx

−
ˆ t

t1

ˆ
K

u2
ξ

p−1
ξtdxdτ.
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For h→ 0, we have
ˆ t

t1

ˆ
K
(mum−1|∇u|p−2

∇u)h∇uhξ
pdxdτ −→ m

ˆ t

t1

ˆ
K

um−1|∇u|pξ
pdxdτ.

Using Young’s inequality and h→ 0,

p
ˆ t

t1

ˆ
K
(mum−1|∇u|p−2

∇u)huh∇ξ ξ
p−1dxdτ

−→ mp
ˆ t

t1

ˆ
K

um−1|∇u|p−2
∇uu∇ξ ξ

p−1dxdτ

≤ mp
ˆ t

t1

ˆ
K

um−1|ξ ∇u|p−1|u∇ξ |dxdτ

≤ γ(m, p)
ˆ t

t1

ˆ
K

um−1
ξ

p|∇u|pdxdτ

+ γ(m, p)
ˆ t

t1

ˆ
K

um+p−1|∇ξ |pdxdτ.

Finally by Hölder inequality, we haveˆ
K

fhuhξ
pdx ≤ ||uhξ

p|| q
q−1 ,K
|| fh||q,K

≤ C(K,q)||uhξ
p||2,K|| fh||q,K

≤ C(K,q)
(ˆ

K
u2

hξ
pdx
)1

2

|| fh||q,K,

where in the last inequality we use the fact that ξ p ≥ ξ 2p. Therefore, passing to
the limit in h→ 0 and using Young’s inequality,

ˆ t

t1

ˆ
K

f uξ
pdxdτ ≤ C(K,q)|t− t1|

r−1
r

(ˆ
K

u2
ξ

pdx
)1

2

|| f ||Lq,r

≤ 1
2

ˆ
K

u2
ξ

pdx+C(t1, t,K,q,r)|| f ||2Lq,r.

Taking the supremum over t ∈ (t1, t2] the result follows.
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We start our fine regularity analysis by fixing the intrinsic geometric setting for
our problem. Given 0 < α < 1, let

θ := p−α

(
(p−1)− (p−1)

m+ p−2

)
, (2.3)

which clearly satisfies the bounds

1+
(p−1)

m+ p−2
< θ < p.

For such θ , define the intrinsic θ -parabolic cylinder as

Gρ := (−ρ
θ ,0)×Bρ(0), ρ > 0.

In the sequel we show that for a certain smallness regime require to the parameters
of the equation (1.1) that u can be approximated by homogeneous functions.

Lemma 2.1. Given δ > 0, there exists 0 < ε � 1 such that if ‖ f‖Lq,r(G1) ≤ ε and
u a weak solution of (1.1) in G1, with ‖u‖∞,G1 ≤ 1, then there exists a φ such that

φt−div(mφ
m−1|∇φ |p−2

∇φ) = 0, in G1/2 (2.4)

and

‖u−φ‖∞,G1/2 ≤ δ .

Proof : Suppose, for the sake of contradiction, that, for some δ0 > 0, there exists
a sequence

(u j) j ∈Cloc(0,T ;L2
loc(B1)), (u j)

m+p−1
p ∈ Lp

loc(0,T ;W 1,p
loc (B1))

and a sequence ( f j) j ∈ Lq,r(G1) such that

u j
t −div(m(u j)m−1|∇u j|p−2

∇u j) = f j in G1 (2.5)

‖u j‖∞,G1 ≤ 1, (2.6)

‖ f j‖Lq,r(G1) ≤ 1/ j, (2.7)

but still, for any j and any solution φ of the homogeneous equation (2.4) in G1/2,

‖u j−φ‖∞,G1/2 > δ0. (2.8)
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Consider a cutoff function ξ ∈C∞
0 (G1), such that ξ ∈ [0,1],ξ ≡ 1 in G1/2 and

ξ ≡ 0 near ∂pG1. Thus, since u j is a solution of (1.1), we can apply the Cacciop-
poli estimate of Proposition 2.1 to get

sup
t1<t<t2

ˆ
K

u2
ξ

pdx+
ˆ 0

−1

ˆ
B1

(u j)m−1|∇u j|pξ
pdxdt ≤ C

ˆ 0

−1

ˆ
B1

(u j)2
ξ

p−1|ξt |dxdt

+

ˆ 0

−1

ˆ
B1

(u j)m+p−1|∇ξ |pdxdt

+ C‖ f‖2
Lq,r

≤ c̃, (2.9)

where we use (2.6) and (2.7).
Define v j = (u j)

m+p−1
p ; thus

|∇v j|p =

(
m+ p−1

p

)p

(u j)m−1|∇u j|p

and we get, by (2.9),

‖∇v j‖p
p,G1/2

≤
ˆ 0

−1

ˆ
B1

|∇v j|pξ
pdxdt ≤

(
m+ p−1

p

)p

c̃. (2.10)

Then, for a subsequence,
∇v j ⇀ ψ

weakly in Lp(G1/2). Note that the equibounded sequence (u j) j is also equicon-
tinuous, by [18] and, by Arzel-Ascoli theorem, along a subsequence

u j −→ φ ,

uniformly in G1/2. We can identify ψ = ∇v once we have the pointwise conver-
gence

v j = (u j)
m+p−1

p −→ φ
m+p−1

p =: v.

Passing to the limit in (2.5), we find that φ solves (2.4) which contradicts (2.8)
for j� 1.
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3.Geometric iteration
In this session we developed a geometric iteration in a certain intrinsic scaling.

Here we consider

β =
α(p−1)
m+ p−2

where α is defined as in (1.3). The following result provides the first step in the
iteration process to be implemented.

Lemma 3.1. Let u a weak solution of (1.1) in G1. There exists ε > 0, and 0< λ �
1/2, depending only on m,n, p and α such that if ‖ f‖Lq,r(G1)≤ ε , ‖u‖∞,G1 ≤ 1 and

|u(0,0)| ≤ 1
4

λ
β ,

then

‖u‖∞,Gλ
≤ λ

β .

Proof : Let 0< δ < 1, to be chosen later using the last lemma, we obtain 0< ε� 1
and a solution φ of (2.4) in G1/2 such that

‖u−φ‖∞,G1/2 ≤ δ .

From the available regularity theory (see [14, 18]), φ is locally Cα∗
x ∩Cα∗/2

t , for
some 0 < α∗ < 1. Thus we obtain

sup
(x,t)∈Gλ

|φ(x, t)−φ(0,0)| ≤Cλ
α∗(p−1)
m+p−2 ,

for λ � 1, to be chosen soon, and C > 1 universal. In fact, for (x, t) ∈ Gλ

|φ(x, t)−φ(0,0)| ≤ |φ(x, t)−φ(0, t)|+ |φ(0, t)−φ(0,0)|
≤ c1|x−0|α∗+ c2|t−0|

α∗
2

≤ c1λ
α∗+ c2λ

θ

2 α∗

≤ c1λ
α∗(p−1)
m+p−2 + c2λ

α∗(p−1)
m+p−2

≤ Cλ
α∗(p−1)
m+p−2
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since θ > 1+
(p−1)

m+ p−2
>

2(p−1)
m+ p−2

. We will choose λ � 1/2 can therefore

estimate

sup
Gλ

|u| ≤ sup
G1/2

|u−φ |+ sup
Gλ

|φ −φ(0,0)| (3.1)

+ |φ(0,0)−u(0,0)|+ |u(0,0)|

≤ 2δ +Cλ
α∗(p−1)
m+p−2 +

1
4

λ
β .

Now finally fix the constants, choosing λ and δ as

λ :=
(

1
4C

) m+p−2
(α∗−α)(p−1)

and δ :=
1
4

λ
β

and fixing also ε > 0, through Lemma 2.1. The result follows from estimate
(3.1).

Theorem 3.1. Let u a local weak solution of (1.1) in G1. There exists ε > 0,
and 0 < λ � 1/2, depending only on m,n, p and α , such that if ‖ f‖Lq,r(G1) ≤ ε,
‖u‖∞,G1 ≤ 1 and

|u(0,0)| ≤ 1
4
(λ k)β ,

then

‖u‖∞,Gλ
≤ (λ k)β . (3.2)

Proof : The proof is by induction on k ∈ N. If k = 1, (3.2) holds due to Lemma
3.1. Now suppose that the conclusion holds for k and let’s show it also holds for
k+1.
Consider the following function v : G1→ R defined by

v(x, t) =
u(λ kx,λ kθ t)

λ βk
. (3.3)

We have that

vt(x, t) = λ
kθ−βkut(λ

kx,λ kθ t)

and

∇v(x, t) = λ
k−βk

∇u(λ kx,λ kθ t).

Thus,
div(m(v(x, t))m−1|∇v(x, t)|p−2

∇v(x, t))
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= λ
(p−α(p−1))kdiv(m(u(λ kx,λ kθ t))m−1|∇u(λ kx,λ kθ t)|p−2

∇u(λ kx,λ kθ t)).

Recalling (2.3), we conclude, since u is a local weak solution of (1.1) in G1, that

vt−div(m(v(x, t))m−1|v(x, t)|p−2v(x, t)) = λ
(p−α(p−1))k f (λ kx,λ kθ t)

= f̃ (x, t).

Now

‖ f̃‖r
Lq,r(G1)

=

ˆ 0

−1

(ˆ
B1

λ
(p−α(p−1))kq| f (λ kx,λ kθ t)|qdx

) r
q

dt

=

ˆ 0

−1

(ˆ
B

λk

λ
(p−α(p−1))kq−kn| f (x,λ kθ t)|qdx

) r
q

dt

= λ
[(p−α(p−1))kq−kn] r

q

ˆ 0

−1

(ˆ
B

λk

| f (x,λ kθ t)|qdx
) r

q

dt

= λ
[(p−α(p−1))kq−kn] r

q−kθ

ˆ 0

−λ kθ

(ˆ
B

λk

| f (x, t)|qdx
) r

q

dt.

To apply the Lemma 3.1 we need to have

[(p−α(p−1))kq− kn]
r
q
− kθ ≥ 0,

that is,

k

[
[(p−α(p−1))q−n]

r
q
−

(
p−α

(
(p−1)− (p−1)

m+ p−2

))]
≥ 0.

Since k > 0, we have

α ≤ (m+ p−2)[(pq−n)r− pq]
q(p−1)[r(m+ p−2)− (m+ p−3)]

.

Choosing the optimal

α =
(m+ p−2)[(pq−n)r− pq]

q(p−1)[r(m+ p−2)− (m+ p−3)]

we have

‖ f̃‖Lq,r(G1) = ‖ f‖Lq,r((−λ θk,0)×B
λk) ≤ ‖ f‖Lq,r(G1) ≤ ε
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which entitles v to Lemma 3.1. Note that ||v||∞,G1 ≤ 1, due to the induction hy-
pothesis, and

|v(0,0)|=

∣∣∣∣∣ u(0,0)
(λ k)β

∣∣∣∣∣≤
∣∣∣∣∣ 1

4(λ
k+1)β

(λ k)β

∣∣∣∣∣≤ 1
4

λ
β .

It then follows that
||v||∞,Gλ

≤ λ
β ,

which is the same as
||u||∞,G

λk+1 ≤ λ
β (k+1).

The induction is complete.

We next show the smallness regime required in the previous theorem is not
restrictive and generalize it to cover the case of any small radius.

Theorem 3.2. Let u be a local weak solution of (1.1) in G1/2 then, for every
0 < r < λ , if

|u(0,0)| ≤ 1
4

rβ

we have

||u||∞,Gr ≤Crβ .

Proof : Take

v(x, t) = ρu(ρax,ρ(m−1)+(p−2)+pat)

with ρ,a to be fixed, which is a solution of (1.1) with

f̃ (x, t) = ρ
(m−1)+(p−1)+pa f (ρax,ρ(m−1)+(p−2)+pat).

In fact, let

v(x, t) = ρu(ρax,ρbt).

We have

vt(x, t) = ρ
1+but(ρ

ax,ρbt)

and

∇v(x, t) = ρ
1+a

∇u(ρax,ρbt).

So we obtain
div(m(v(x, t))m−1|∇v(x, t)|p−2

∇v(x, t))
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= ρ
(m−1)+(p−1)+padiv(m[u(ρax,ρbt)]m−1|∇u(ρax,ρbt)|p−2

∇u(ρax,ρbt)).

Now we choose b such that

1+b = (m−1)+(p−1)+ pa.

Therefore, we have

vt−div(m(v(x, t))m−1|∇v(x, t)|p−2
∇v(x, t))

= ρ
(m−1)+(p−1)+pa f (ρax,ρ(m−1)+(p−2)+pat) := f̃ (x, t).

We have still
||v||∞,G1 ≤ ρ||u||∞,G1

and

‖ f̃‖r
Lq,r(G1)

=

ˆ 0

−1

(ˆ
B1

ρ
((m−1)+(p−1)+pa)q| f (ρax,ρ(m−1)+(p−2)+pat)|qdx

) r
q

dt

= ρ
[((m−1)+(p−1)+pa)q−an] r

q−[(m−1)+(p−2)+pa]
ˆ 0

−ρ(m−1)+(p−2)+pa

(ˆ
Bρa

| f (x, t)|qdx
) r

q

dt

≤ ρ
[(m−1)+(p−1)+pa]r−a(n r

q+p)−[(m−1)+(p−2)]‖ f‖r
Lq,r(G1)

.

Now choosing a > 0 such that

[(m−1)+(p−1)+ pa]r−a(n
r
q
+ p)− [(m−1)+(p−2)]> 0,

which is always possible, and 0< ρ << 1, we enter the smallness regime required
by Theorem 3.1 , i.e.,

‖v‖∞,G1 ≤ 1

and

‖ f̃‖Lq,r(G1) ≤ ε.

Given 0 < r < λ , there exists k ∈ N such that

λ
k+1 < r ≤ λ

k.

Since
|u(0,0)| ≤ 1

4
rβ ≤ 1

4
(λ k)β ,

it follows from Theorem 3.1 that

||u||∞,G
λk ≤ (λ k)β .



14 JANIELLY G. ARAÚJO

Then,

||u||∞,Gr ≤ ||u||∞,G
λk ≤ (λ k)β ≤

( r
λ

)β

=Crβ

where C = λ−β .

4. Proof of the Theorem 1.1
In this section we will prove the main result of our work, studying the Hölder

continuity at the origin, proving there is a uniform constant B such that

||u−u(0,0)||∞,Gr ≤ Brβ . (4.1)

Proof : Since u is continuous we can define

κ := (4|u(0,0)|)−β ≥ 0.

Now take any radius 0 < r < λ . We will analyze the possible cases.
(1) If κ ≤ r < λ then, by Theorem 3.1,

sup
Gr

|u(x, t)−u(0,0)| ≤Crλ + |u(0,0)| ≤
(

C+
1
4

)
rβ . (4.2)

(2) If 0 < r < κ we consider the function

w(x, t) :=
u(κx,κθ t)

κβ
.

Note that |w(0,0)|= 1
4 and w solves in G1

wt−div(mwm−1|∇w|p−2
∇w) = κ

(p−α(p−1)) f (κx,κθ t).

Since |u(0,0)|= 1
4κβ , using Theorem 3.2, we have

||w||∞,G1 ≤ κ
−γ ||u||∞,Gκ

≤C.

With this uniform estimate in hand, and using local C0,α regularity esti-
mates, we find that there exists a radius ρ∗ depending only on the data,
such that

|w(x, t)| ≥ 1
8
, ∀(x, t) ∈ Gρ∗.

This implies that, in Gρ∗, w solves a uniformly parabolic equation of the
form

wt−div(a(x, t)|∇w|p−2
∇w) = f ∈ Lq,r
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with continuous coefficients satisfying the bounds 0 < c≤ a(x, t)< d. By
Theorem 5.1, we have

w ∈C0,γ(Gρ∗), with γ =
(pq−n)r− pq

q[(p−1)r− (p−2)]
> β .

Therefore,

sup
(x,t)∈Gr

|w(x, t)−w(0,0)| ≤Crγ ∀ 0 < r <
ρ∗
2
,

this is

sup
(x,t)∈Gr

∣∣∣∣u(κx,κθ t)
κβ

− u(0,0)
κβ

∣∣∣∣≤Crγ ∀ 0 < r <
ρ∗
2
.

Since β < γ , we conclude

sup
(x,t)∈Gκr

|u(x, t)−u(0,0)| ≤C(κr)β ∀ 0 < κr < κ
ρ∗
2
,

and, relabelling, we obtain

sup
(x,t)∈Gr

|u(x, t)−u(0,0)| ≤Crβ ∀ 0 < r < κ
ρ∗
2
. (4.3)

(3) If κ
ρ∗
2 ≤ r < κ , we have

sup
(x,t)∈Gr

|u(x, t)−u(0,0)| ≤ sup
(x,t)∈Gκ

|u(x, t)−u(0,0)| (4.4)

≤ Cκ
β ≤

(
2r
ρ∗

)β

=C′rβ .

Taking B = max{C+ 1
4,C
′}, the result follows for every 0 < r < λ .

5. Optimal regularity of solutions for p-Laplace type equations
In this section we establish optimal regularity estimates for solutions of equa-

tions
ut−div(γ(x, t)|∇u|p−2

∇u) = f in UT , (5.1)

with continuous coefficients, i.e

|γ(z)− γ(z0)| ≤ Lω(dp(z,z0)
2) (5.2)
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where z= (x, t),z0 = (x0, t0)∈ΩT . The ω(.) denotes a modulus of continuity; that
is, ω(.) is concave and non-decreasing such that lims↓0 ω(s) = 0. The parabolic
metric is defined as usual by

dp(z,z0) := max{|x− x0|,
√
|t− t0|} ≈

√
|x− x0|+ |t− t0|,

and also satisfying the bounds

0 < ν ≤ γ(x, t)≤ L (5.3)

for some structure constants 0 < ν ≤ 1≤ L. The function f ∈ Lq,r(ΩT ) where

1
r
+

n
pq

< 1 and
2
r
+

n
q
> 1. (5.4)

We show that weak solutions of (5.1) are C0,α for

α :=
(pq−n)r− pq

q[(p−1)r− (p−2)]
, (5.5)

which, by (5.4) we have 0 < α < 1. Let

θ := α + p− (p−1)α = 2α +(1−α)p. (5.6)

Note that 2 < θ < p, since 0 < α < 1. For such θ , we define the intrinsic θ -
parabolic cylinder

Gτ := (−τ
θ ,0)×Bτ(0), τ > 0.

Lemma 5.1. Let u be a local weak solution of (5.1) in G1 where γ satisfies the
conditions (5.2) and (5.3). Then, for every δ > 0, there exist 0 < ε� 1, such that
if

|| f ||Lq,r(G1) ≤ ε, ||u||p,avg,G1 ≤ 1 and |γ(x, t)− γ(0,0)| ≤ ε (5.7)

then there exist a function φ in G1/2 solution of

φt−div(γ0(0,0)|∇φ |p−2
∇φ) = 0 in G1/2, (5.8)

such that

||u−φ ||p,avg,G1/2 ≤ δ . (5.9)

Proof : Suppose, for the sake of contradiction, that the thesis of the lemma fails.
That is, exist sequences {u j}, {γ j} and { f j} for all j ∈ N satisfying

u j
t −div(γ j(x, t)|∇u j|p−2

∇u j) = f j in G1 (5.10)
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where

|| f j||Lq,r(G1) = o( j), ||u j||p,avg,G1 ≤ 1 and

|γ j(x, t)− γ
j(0,0)|= o( j), (5.11)

but, for some δ0 > 0, there holds

||u−φ ||p,avg,G1/2 ≥ δ0 (5.12)

for any solution φ of (5.8) in G1/2. Fix a cutoff function ξ ∈C∞
0 (G1), such that

ξ ∈ [0,1], ξ ≡ 1 in G1/2 and ξ ≡ 0 near ∂pG1. From the Cacciopoli estimate (see
in [9])

sup
−1<t<0

ˆ
B1

u2
ξ

pdx+C
ˆ 0

−1

ˆ
B1

|∇u j|pξ
pdxdt ≤ C

ˆ 0

−1

ˆ
B1

(u j)2
ξ

p−1|ξt |dxdt

+

ˆ 0

−1

ˆ
B1

|u j|p(ξ p + |∇ξ |p)dxdt

+ C‖ f‖2
Lq,r(G1)

≤ c̃. (5.13)

So, we have

||∇u j||pp,G1/2
≤
ˆ 0

−1

ˆ
B1

|∇u j|pξ
pdxdt ≤ c̃.

On the other hand, a control of times derivative ( see [1], section 7), gives

||u j
t ||Ls,1(G1/2)

≤ c,

with s = min
{

q, p
p−1

}
< p. By the classical compactness result (cf. [21], Corol-

lary 4), with
W 1,p ↪→ Lp ⊂ Ls,

to conclude that
u j −→ ψ in Lp(G1/2)

∇u j(x, t)−→ ∇ψ(x, t) for a.e. (x, t) ∈ G1/2.

Note also that the sequence {γ j(0,0)} is bounded and equicontinuous, there-
fore by Ascoli-Arzel, γ j(0,0)→ γ0(0,0) uniformly in G1/2. Hence, by (5.11) we
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obtain

|γ j(x, t)|ξ |p−2
ξ − γ

0(0,0)|ξ |p−2
ξ | ≤ |γ j(x, t)− γ

j(0,0)||ξ |p−1

+ |γ j(0,0)− γ
0(0,0)||ξ |p−1 = o( j)

for any (x, t) ∈ G1/2 and ξ ∈ BM. That is, for we have verified

γ
j(x, t)|ξ |p−2

ξ → γ
0(0,0)|ξ |p−2

ξ

uniformly in G1/2×Rn. Using standard arguments we have that u0 solves the
constant coefficients equation

u0
t −div(γ0(0,0)|∇u0|p−2

∇u0) = 0 in G1/2,

which contradicts (5.12) for φ = u0.

Lemma 5.2. Let u a local weak solution of (5.1) in G1 where γ satisfies the condi-
tions (5.2) and (5.3) and 0 < α < 1 be fixed. There exist ε > 0 and 0 < λ � 1/2
depeding only on p,n and α , such that if

|| f ||Lq,r(G1) ≤ ε, ||u||p,avg,G1 ≤ 1 and sup
G1

|γ(x, t)− γ(0,0)| ≤ ε

then there exist a universally bounded constant c0 such that

||u− c0||p,avg,Gλ
≤ λ

α . (5.14)

Proof : Take 0 < δ < 1, to be chosen later, and apply Lemma 5.1 to obtain 0 <
ε � 1 and a solution φ of some constant coefficient equation in G1/2, such that

||u−φ ||p,avg,G1/2 ≤ δ .

By the local regularity estimates to solution of constant coefficients equations (see
[6]), we get

sup
(x,t)∈Gλ

|φ(x, t)−φ(0,0)| ≤Cλ

for C > 1 universal. In fact, for (x, t) ∈ Gλ ,

|φ(x, t)−φ(0,0)| ≤ |φ(x, t)−φ(0, t)|+ |φ(0, t)−φ(0,0)|
≤ C

′
|x−0|+C

′′
|t−0|

1
2

≤ C
′
λ +C

′′
λ

θ

2 ≤Cλ
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since θ < 2. Therefore,

||u(x, t)−u(0,0)||p,avg,Gλ
≤ ||u(x, t)−φ(x, t)||p,avg,G1/2 (5.15)

+ ||φ(x, t)−φ(0,0)||p,avg,Gλ

≤ δ +Cλ

where choose λ � 1/2. We put c0 := φ(0,0), observing that

||φ ||p,avg,G1/2 ≤ ||u−φ ||p,avg,G1/2 + ||u||p,avg,G1/2 ≤ 1+δ ≤ 2, (5.16)

and φ is solution of constant coefficient equation, c0 is universally bounded. We
choose λ � 1/2 so small that

Cλ ≤ 1
2

λ
α

and then we define
δ =

1
2

λ
α

thus fixing, via Lemma 5.1, also ε > 0. The lemma follows from estimate (5.15).

Lemma 5.3. Under the conditions of the previous lemma, there exists a convergent
sequence of real numbers {ck}k≥1 such that

||u− ck||p,avg,G
λk ≤ (λ k)α , (5.17)

with
|ck− ck+1| ≤C(λ α)k (5.18)

for some universal constant C > 0.

Proof : The proof is by induction on k ∈N. For k = 1, (5.18) holds due to Lemma
5.1, with c1 = c0. Suppose the conclusion holds for k and let’s show it also holds
for k+1. For this consider the function v : G1→ R such that

v(x, t) =
u(λ kx,λ θkt)− ck

λ αk . (5.19)

We have
vt(x, t) = λ

kθ−αkut(λ
kx,λ θkt)

and
∇v(x, t) = λ

k−αk
∇u(λ kx,λ θkt).

Therefore
div(γ(λ kx,λ θkt)|∇v(x, t)|p−2

∇v(x, t))

= λ
pk−(p−1)αkdiv(γ(λ kx,λ θkt)|∇u(λ kx,λ θkt)|p−2

∇u(λ kx,λ θkt))
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to concluded, recalling (5.6), that

vt(x, t)−div(γ(λ kx,λ θkt)|∇v(x, t)|p−2
∇v(x, t))

= λ
pk−(p−1)αk f (λ kx,λ θkt) := f̃ (x, t).

Note that

‖ f̃‖r
Lq,r(G1)

=

ˆ 0

−1

(ˆ
B1

λ
[pk−(p−1)αk]q| f (λ kx,λ kθ t)|qdx

) r
q

dt

= ρ
[(pk−(p−1)αk)q−kn] r

q−kθ

ˆ 0

−λ kθ

(ˆ
B

λk

| f (x, t)|qdx
) r

q

dt.

Due to the crucial and sharp choice (2.3) of α , we have, recalling again (5.5),

[(pk− (p−1)αk)q− kn]
r
q
− kθ = 0.

So, we have
|| f̃ ||Lq,r(G1) ≤ || f ||Lq,r(G

λk) ≤ || f ||Lq,r(G1) ≤ ε,

and ||v||p,avg,G1 ≤ 1, due to the induction hypothesis. By the Lemma 5.2 there
exist a universally bounded constant c̃0, such that

||v− c̃0||p,avg,Gλ
≤ λ

α ,

wich is the same as

1
|Gλ |

ˆ
Gλ

∣∣∣∣u(λ kx,λ kθ t)− ck

λ αk − c̃0

∣∣∣∣p dxdt ≤ λ
α p

where it follows that
1

|Gλ |λ αkp

ˆ
Gλ

|u(λ kx,λ kθ t)− ck+1|pdxdt ≤ λ
α p

for ck+1 := ck + c̃0λ αk. Making the following variable change y = λ kx and s =
λ θkt we have

1
|Gλ |λ knλ kθ

ˆ
G

λk+1

|u(y,s)− ck+1|pdxdt ≤ λ
αkp

λ
α p.

Therefore
||u− ck+1||p,avg,G

λk+1 ≤ λ
α(k+1),

where ck+1 := ck+ c̃0λ αk and the induction is complete. To finish we observe that

|ck+1− ck| ≤ c(λ α)k
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where c is a universal constant.

Note that

|ck− ck+ j| ≤ |ck− ck+1|+ |ck+1− ck+2|+ ...+ |ck+ j−1− ck+ j|

=
j−1

∑
i=0
|ck+i− ck+i+1|

≤
j−1

∑
i=0

C(λ k+i)α

≤ Cλ
αk

∞

∑
i=0

(λ α)i

=
C

1−λ α
λ

αk.

Due to (5.18), the sequence {ck}k≥1 is convergent, let’s say ck→ c̃. Therefore

|c̃− ck| ≤
C

1−λ α
λ

αk. (5.20)

Theorem 5.1. A locally bounded weak solution of (5.1), where γ satisfies the
conditions (5.2) and (5.3) and f ∈ Lq,r, satisfying (5.4) is Hölder continuous in
the space variables, with exponent

α =
(pq−n)r− pq

q[(p−1)r− (p−2)]

and locally Hölder continuous in time with exponent α

θ
.

Proof : Let
v(x, t) = ρu(ρax,ρ(p−2)+apt)

with ρ,a to be fixed which solves

vt(x, t)−div(γ(ρax,ρ(p−2)+apt)|∇v(x, t)|p−2
∇v(x, t))

= ρ
(p−1)+ap f (ρax,ρ(p−2)+apt) := f̃ (x, t).

We have,
||v||pp,avg,G1

≤ ρ
2−a(n+p)||u||pp,avg,G1

and
|| f̃ ||rLq,r(G1)

≤ ρ
[(p−1)+ap]r−a(n+p)−(p−2)|| f ||rLq,r(G1)

.
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We choose a > 0 such that

2−a(n+ p)> 0 and [(p−1)+ap]r−a(n+ p)− (p−2)> 0,

which is always possible (observe that the second condition holds for a = 0 and
use its continuity with respect to a), and then 0 < ρ � 1 we get

||v||p,avg,G1 ≤ 1 and || f̃ ||Lq,r(G1) ≤ ε.

Now, given 0 < r < λ , there exists k ∈ N such that

λ
k+1 ≤ r < λ

k,

it follows from Theorem 5.3 that

||u− ck||p,avg,G
λk ≤ (λ k)α . (5.21)

Then by (5.20) we get
 

Gr

|u(x, t)− c̃|pdxdt ≤
|Gλk
|

|Gr|

( 
G

λk

|u(x, t)− ck|pdxdt +
 

G
λk

|c̃− ck|pdxdt

)

≤ 1
λ n+θ

(
1+

C
1−λ α

)
(λ k)α

≤
[(

1+
C

1−λ α

)
1

λ αλ n+θ

]
rα

= C̃rα

where C̃ =
(

1+ C
1−λ α

)
1

λ αλ n+θ . By standard covering arguments (see [24], Lemma
3.2) and the characterisation of Hölder continuity of Campanato-Da Prato, we
have local C0;α,α/θ (G1/2)- continuity and thus the proof is complete.

The proofs adapt to more general degenerate parabolic equations

ut−divA(x, t,∇u) = f ∈ Lr,q

satisfying  |A(x, t,ξ )| ≤C1|ξ |p−1 +ϕ1(x, t)
A(x, t,ξ ) ·ξ ≥C0|ξ |p−ϕ0(x, t)

|A(z,ξ )−A(z0,ξ )| ≤C1ω(dp(z,z0)
2)|ξ |p−1

(5.22)

for ξ ∈ Rn, z = (x, t),z0 = (x0, t0) ∈ ΩT and C0,C1 are given positive constants,
ϕ0,ϕ1 are given non-negative functions, in an appropriate function space (more
details see [9]) for p≥ 2.
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The proof is the same, just note that in Theorem 3.1 the rescaled function v
defined in (3.3) now solves the equation

vt−divAk(x, t,∇v) = λ
pk−(p−1)αk f (λ kx,λ kθ t),

where

Ak(x, t,ξ ) :=
(

λ
−αk
)1−p

A(λ kx,λ kθ t,λ−αk
ξ )

belongs to the same structural class of A.
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