
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 17–51

GRAY CODES FOR SIGNED INVOLUTIONS

GONÇALO GUTIERRES, RICARDO MAMEDE AND JOSÉ LUIS SANTOS

Abstract: In this paper we present two cyclic Gray codes for signed involutions.
The first one has a natural construction, implemented by a CAT algorithm, based
in the recursive formula for the number of sign involutions. The second code,
although with a higher computational cost, has the smallest possible Hamming
distance for this family of objects.

1. Introduction
The exhaustive generation and listing of a combinatorial class of ob-

jects according to a fixed parameter is one of the most important aims
in combinatorics, with applications in a vast range of areas ranging from
computer science and hardware or software testing, thermodynamic, biol-
ogy and biochemistry [8]. A common approach is to list the objects such
that successive objects differ by a well-defined closeness condition. These
lists are usually called Gray codes, a term taken from Frank Gray [5], who
patented the Binary Reflected Gray Code, BRGCn, a list of all 2n binary
strings of length n in which successive strings differ by a single bit. We
adopt the point of view of Walsh [12], defining a Gray code for a class of
objects as an infinite set of word-lists with unbounded word-length such
that the Hamming distance between any two adjacent words in any list,
i.e. the number of positions in which these two words differ, is bounded
independently of the word-length. When this distance is preserved between
the last and the first words, the code is said to be cyclic.

A great interest was been shown in the generation of Gray codes for
permutations [3, 9] and their restrictions or generalizations, such as per-
mutations with a fixed number of cycles [1], derangement [2], involutions
and fixed-point free involutions [11], multiset permutations [13], and sign
permutations [6]. We present here two cyclic Gray codes for the set of
n-length signed involutions.

The first code is constructed inductively using a natural construction
derived from a formula for the number of signed involutions. In particular,

Received November 28, 2017.
This work was partially supported by the Centre for Mathematics of the University of Coimbra

– UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and
co-funded by the European Regional Development Fund through the Partnership Agreement
PT2020.

1

2 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

our implementation of this code is able to generate all Gray codes for k-
length signed involutions, for k ≤ n. The second code is constructed by
levels, each corresponding to involutions having a fixed number of disjoint
transpositions, applying a variation of the Binary Reflected Gray Code to
generate the elements of each level.

In the first code, each involution is transformed into its successor by a
transposition, a rotation of three elements and/or one sign change, while
in the second one this difference is reduced to a transposition or at most a
pair of sign changes. This implies that the Hamming distance for this sec-
ond code is 2, which is proven to be minimal (see Corollary 4.9). Although
optimal in terms of distance between consecutive words, this second code
has the disadvantage of being more elaborated and with a higher computa-
tional cost in comparison with the previous one, which has a more natural
construction and is generated by a constant amortized time (CAT) algo-
rithm. This computational comparison was numerically confirmed for n
up to 15.

2. Notation and definitions
A signed permutation σ of length n is a permutation on the set [±n] =
{±1, . . . ,±n} satisfying

σ(−i) = −σ(i). (2.1)

Under the ordinary composition of mappings, the signed permutations of
[±n] form a group, called the hyperoctahedral group of rank n, denoted by
SB
n . The group of ordinary permutations is denoted by Sn. Equation (2.1)

indicates that the signed permutation σ is entirely defined by its values on
[n] = {1, . . . , n}. Therefore, we shall represent the elements σ ∈ SB

n is one
line notation σ = σ1 · · ·σn, where σi = σ(i) for i ∈ [n]. It also follows that
SB
n has order 2nn!.
Given i ∈ [±n], we define the signal function sgn(i) = 0 if i > 0, and

sgn(i) = 1 otherwise. A signed permutation σ may also be represented
by a pair (p, g), where p ∈ Sn is the list of the numbers in σ without
signs, and g ∈ Bn, the set of binary words of length n, is the list of the
signs in σ, that is pi = |σi| and gi = sgn(σi) for every i ∈ [n]. For example,
σ = 4 3 2 1 5 ∈ SB

5 corresponds to the pair (43215, 10011) ∈ S5×B5, where
for ease of notation, we denote by i the negative element −i. Depending
on the context, it will be clear which representation of signed permutations
we are using.

A sign permutation σ ∈ SB
n is an involution if σ2 = id, the identity

element of SB
n , and we denote by In the set of all involutions in SB

n . Note
that if σ ≡ (p, g) is an involution in SB

n , then p is also an involution in

GRAY CODES FOR SIGNED INVOLUTIONS 3

Sn. The cycle decomposition of σ ≡ (p, g) ∈ In is obtained by writing p as
the disjoint union of transpositions and position fixed points, i.e. integers
i for which pi = i, and then associating the respective signs. For instance,
for σ = 4 3 2 1 5 ≡ (43215, 10011), we have 43215 = (14)(23)(5) ∈ S5, and
thus σ = (1 4)(23)(5) ∈ SB

5 . When writing a transposition (a b) we adopt
the convention that a < b. The integers a and b are called, respectively,
the opener and closure of (a b) and, as part of an involution, must have the
same sign. The common sign of both elements in a transposition is called
a paired sign. Define the map

m : In → [n] ∪ {0},
where m(σ) is the largest opener amongst all transpositions in the cycle
decomposition of σ. When σ = id we assume m(id) = 0. Using our running
example, we find that m(4 3 2 1 5) = 2.

3. A CAT Gray code
We start by showing how the set In can be recursively constructed from

the sets In−1 and In−2, and then use this construction to derive a Gray
code for the involutions in In.

Definition 3.1. An involution σ ∈ In is said to be position fixed on the
letter j ∈ [n] if |σj| = j. Let Fn be the set of all involutions having at
least one position fixed letter, and let F i

n be the set of all position fixed
involutions on the letter i, that is,

F i
n = {σ ∈ In : |σi| = i} and Fn =

n⋃
i=1

F i
n.

The functions φn and ψn, defined below, establish bijections between
{±n} × In−1 and F n

n on one hand, and between [±(n − 1)] × In−2 and
I′n := In \ F n

n , the set of the involutions which are not position fixed on
the letter n, on the other.

Definition 3.2. (a) For n ≥ 2, an integer s ∈ {±n}, and an involution
σ ∈ In−1, define the involution

φn(s, σ) = π,

where πk = σk for k ∈ [n− 1] and πn = s.

(b) For n ≥ 3, an integer j ∈ [±(n− 1)], and an involution σ ≡ (p, g) ∈
In−2, define the involution

ψn(j, σ) = π,

4 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

where π ≡ (p′, g′) is given by p′|j| = n, p′n = |j|, and

p′k =

{
pk + 1A(pk), if 1 ≤ k < |j|
pk−1 + 1A(pk), if |j| < k ≤ n− 1

,

with A = {i ∈ [n] : i ≥ |j|} and 1A the characteristic function of A; and the
binary word g′ = g′1 · · · g′n is given by g′|j| = g′n = sgn(j), and g′k = gk−1A(k)

for k ∈ [n− 1] \ {|j|}. Informally, the letters of ψn(j, σ) are obtained from
σ inserting (−1)sgn(j) × n between the letters σ|j|−1 and σ|j|, and j at the
rightmost position, and then incrementing (resp. decreasing) all letters σk
for which |σk| ≥ |j| by one unit if σk > 0 (resp σk < 0).

For instance, φ5(5̄, 4̄321̄) = 4̄321̄5̄ and ψ5(2, 3̄21̄) = 4̄531̄2.

Lemma 3.3. For any integer n ≥ 2, the maps φn and ψn are bijections.

Proof : It is easy to see that the map φ−1
n : F n

n → {±n} × In−1 given by
φ−1
n (π) = (πn, σ), with σi = πi for i ∈ [n− 1], is the inverse function of φn.
To prove the bijectivity of ψn, we also construct its inverse function. Let

ψ−1
n : I′n → [±(n− 1)]× In−2

such that if π ≡ (p, g) ∈ I′n then ψ−1
n (π) = (πn, σ), with σ ≡ (p′, g′), where

g′ is obtained from g by removing the letters gpn and gn, and

p′k =

{
pk − 1A(pk), if 1 ≤ k < pn

pk+1 − 1A(pk), if pn ≤ k ≤ n− 2
,

with A = {i ∈ [n] : i ≥ pn}. Now, it is not difficult to see that the function
we just construct is the inverse function of ψn.

Since In is the disjoint union of F n
n and I′n, we may use bijections φn and

ψn to derive the following recursive formula for the cardinality of In (see
[4]).

Corollary 3.4. Let tn be the cardinal of In. Then t0 = 1, t1 = 2 and for
n ≥ 2,

tn = 2tn−1 + 2(n− 1)tn−2.

Next result shows that the cardinal of I′n can also be obtained using only
the involutions in In−1.

Lemma 3.5. The cardinal of I′n, n ≥ 2, is equal to the number of position
fixed letters counted over all involutions of In−1, i.e |I′n| = Σn−1

i=1 |F i
n−1|.

GRAY CODES FOR SIGNED INVOLUTIONS 5

Proof : Let F =
n−1⋃
i=1

F i
n−1×{i} be the disjoint union of all the sets F i

n−1, so

that |F | counts the number of fixed letters in all involutions of Fn−1.
Consider the map θn : I′n → F defined by

θn (π) = (σ, j),

where σk = πk, for k ∈ [n− 1] \ {j}, j = |πn| and σj = πn.
The function θn is a bijection and its inverse function is θ−1

n : F → I′n
defined by

θ−1
n (σ, j) = π,

where πk = σk, for k ∈ [n − 1] \ {j}, σj = (−1)sgn(πj) × n and σn =
(−1)sgn(πj) × j.

To construct our first Gray code for In, we compose the function θn,
defined in the lemma above, with the projection over the first component
of F , p : F → In−1, with p(σ, j) = σ, to obtain

ϕn = p ◦ θn : I′n → In−1.

Notice that the image of ϕn is Fn−1, the set of all involutions in In−1 having
at least one position fixed letter. Since ϕn is not injective, as usual, ϕ−1

n (σ)
is the inverse image set. Whenever σ 6∈ Fn−1, ϕ

−1
n (σ) is the empty set.

We can now construct a Gray code for the involutions in In, where the
difference between any two consecutive involutions is a transposition, a
rotation of 3 elements and/or a sign. For n = 1 the list (1, 1) is such
a code. Consider now n ≥ 2 and let w1, . . . , wk be a Gray code for In−1

satisfying the above conditions. The following algorithm constructs a Gray
code for In.

1 for i← 1 to k do
// Construct the string Bi as follows:

2 Write φn((−1)i−1n,wi);
3 Write all elements in ϕ−1

n (wi);
4 Write φn((−1)in,wi);
5 end

Algorithm 1: Algorithm for the first Gray code.

Figure 3.1 and Table 3.1 show the Gray codes for In, n ≤ 4, obtained
by this algorithm. We shall see that the ordered list B1B2 · · ·Bk obtained
from Algorithm 1 is a Gray code for the involutions in In in the stated

6 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

1 2 3 4 4 2 3 1 1 4 3 2 1 2 4 3 1 2 3 4̄ 3 2 1 4̄ 3 4 1 2
3 2 1 4 1 3 2 4 4 3 2 1 1 3 2 4̄ 1 2 3̄ 4̄ 4 2 3̄ 1 1 4 3̄ 2
1 2 4̄ 3̄ 1 2 3̄ 4 2 1 3̄ 4 2 1 4̄ 3̄ 2 1 3̄ 4̄ 2 1 3 4̄ 2 1 4 3
2 1 3 4 1 2̄ 3 4 4 2̄ 3 1 1 4̄ 3 2̄ 1 2̄ 4 3 1 2̄ 3 4̄ 3 2̄ 1 4̄
3 4̄ 1 2̄ 3 2̄ 1 4 1 3̄ 2̄ 4 4 3̄ 2̄ 1 1 3̄ 2̄ 4̄ 1 2̄ 3̄ 4̄ 4 2̄ 3̄ 1
1 4̄ 3̄ 2̄ 1 2̄ 4̄ 3̄ 1 2̄ 3̄ 4 1̄ 2̄ 3̄ 4 4̄ 2̄ 3̄ 1̄ 1̄ 4̄ 3̄ 2̄ 1̄ 2̄ 4̄ 3̄
1̄ 2̄ 3̄ 4̄ 3̄ 2̄ 1̄ 4̄ 3̄ 4̄ 1̄ 2̄ 3̄ 2̄ 1̄ 4 1̄ 3̄ 2̄ 4 4̄ 3̄ 2̄ 1̄ 1̄ 3̄ 2̄ 4̄
1̄ 2̄ 3 4̄ 4̄ 2̄ 3 1̄ 1̄ 4̄ 3 2̄ 1̄ 2̄ 4 3 1̄ 2̄ 3 4 2̄ 1̄ 3 4 2̄ 1̄ 4 3
2̄ 1̄ 3 4̄ 2̄ 1̄ 3̄ 4̄ 2̄ 1̄ 4̄ 3̄ 2̄ 1̄ 3̄ 4 1̄ 2 3̄ 4 4̄ 2 3̄ 1̄ 1̄ 4 3̄ 2
1̄ 2 4̄ 3̄ 1̄ 2 3̄ 4̄ 3̄ 2 1̄ 4̄ 3̄ 4 1̄ 2 3̄ 2 1̄ 4 1̄ 3 2 4 4̄ 3 2 1̄
1̄ 3 2 4̄ 1̄ 2 3 4̄ 4̄ 2 3 1̄ 1̄ 4 3 2 1̄ 2 4 3 1̄ 2 3 4

Table 3.1. Gray code for I4

ε

1 1̄

12 21 12̄ 1̄2̄ 2̄1̄ 1̄2

123 321 132 123̄ 213̄ 213 12̄3 32̄1 13̄2̄ 12̄3̄ 1̄2̄3̄ 3̄2̄1̄ 1̄3̄2̄ 1̄2̄3 2̄1̄3 2̄1̄3̄ 1̄23̄ 3̄21̄ 1̄32 1̄23

Figure 3.1. Gray code for I1, I2 and I3 generated by Algo-
rithm 2.

conditions. In the next result we analyze the difference between any two
consecutive elements of the list B1 · · ·Bk.

Lemma 3.6. Let w1, . . . , wk be a Gray code for In−1 as above. Then,

(1) The difference between φn((−1)in,wi) and φn((−1)in,wi+1) is equal
to the difference between wi and wi+1.

(2) The involutions φn((−1)i−1n,wi) and φn((−1)i, wi) differ only by a
sign.

(3) If ϕ−1(wi) 6= ∅, then φn((−1)in,wi) differ from π ∈ ϕ−1(wi) by one
transposition, or one transposition and one sign.

(4) If ϕ−1(wi) 6= ∅, then any two involutions π, ρ ∈ ϕ−1(wi) differ by a
rotation of three elements, or a rotation of three elements and one
sign.

GRAY CODES FOR SIGNED INVOLUTIONS 7

Proof : Properties (1) and (2) follow from the definition of map φn. Let
φn((−1)in,wi) = σ1 · · ·σn, with σn = n or σn = n. This means that
wi = σ1 · · ·σn−1 and if π is an involution in ϕ−1(wi), then there is a position
fixed point in wi, say j, such that

π = σ1 · · ·σj−1((−1)sgn(σj) × n)σj+1 · · ·σn−1σj.

Property (3) now follows. Also, if ρ is another involution in ϕ−1(wi), then

ρ = σ1 · · ·σk−1((−1)sgn(σk) × n)σk+1 · · · σn−1σk

for some position fixed point of wi, say k, from which we obtain (4).

Theorem 3.7. The list B1B2 · · ·Bk, obtained by Algorithm 1, is a cyclic
Gray code for the signed involutions in In where the difference between
any two consecutive involutions is a transposition, a rotation of 3 elements
and/or a sign.

Proof : By construction, the first and last elements in each string Bi are the
only two involutions of F n

n in that string and they are two by two distinct,
so they add up to 2tn−1. Moreover, by Lemma 3.5, the number of elements
in the sets ϕ−1(wi), i = 1, . . . , k, which are two by two disjoint, is equal
to 2(n− 1)tn−2, the number of fixed points in all sign involutions of In−1.
Thus, the list B1 · · ·Bk exhaust all involutions in In.

Consider now the difference between any two adjacent involutions π and
ρ in B1 · · ·Bk. If π and ρ are, respectively, the last and the first elements of
strings Bi and Bi+1, then by (1) of Lemma 3.6 we find that their difference
is given by the difference between two adjacent involutions in the Gray code
w1, . . . , wk for In−1, that is it is a transposition, a rotation of 3 elements
and/or a sign. If π and ρ are elements of the set ϕ−1(wi), then by (3) of the
previous lemma, we find that their difference is rotation of three elements
and possibly a sign. If π is the first, or last, element of Bi and ρ is in
the set ϕ−1(wi), then again by the previous lemma, their difference is one
transposition and possibly a sign. Finally, if π and ρ are, respectively, the
first and last element of Bi and ϕ−1(wi) is the empty word, then by the
previous lemma their difference is just a sign.

Since the number of elements of In is even, (1) of Lemma 3.6 is also true
for i = k, considering i+ 1 = 1, and therefore the code is cyclic.

Corollary 3.8. The Hamming distance of the Gray code generated by Al-
gorithm 1 is 3.

The previous algorithm needs to store the Gray code for In−1 in order
to compute the Gray code for In. However, it is possible to implement a

8 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

recursive algorithm that generates the Gray code for In without explicitly
store the Gray code for In−1. An implementation of such algorithm is
presented in Algorithm 2. This algorithm initially sets π as the empty
word ε, the signal si = 1 for all i ∈ [n], and the recursive calls are triggered
by the initial call expand(ε,1). For the current value of k ≤ n, the word
π is in Ik−1 and will be expanded to a set of words in Ik. The first word
generated in this process is φk(sk × k, π) in line 4, where sk is the last
signal used in the Gray code for Ik in previous calls, and then the algorithm
generates recursively all the words expanded from φk(sk×k, π) through the
call expand(π,k+ 1) in line 5. This set of words corresponds to the subtree
with root φk(sk × k, π) in Figure 3.1. Next, in lines 6–16 the algorithm
computes the set ϕ−1

k (π). For each position fixed letter j ∈ [±(k − 1)],
the algorithm assigns to π the word obtained by transposing the letters in
positions |j| and k of φk(sk× k, π), and generates recursively all the words
expanded from π through the call expand(π,k+ 1) in line 12. Lines 13 and
14 undo the transposition (|j|, k) in the word π, ending this cycle. Finally,
the word φk(−sk × k, π) is computed in line 17, all the words expanded
from π are generated in line 18, and the signal sk is updated.

An algorithm for the exhaustive generating of a class of combinatorial
objects is said to run in constant amortized time (CAT) if it generates each
object in O(1) time, in amortized sense. A recursive generating algorithm
is said to be a CAT algorithm [7] if the following properties are satisfied:

• Each recursive call either generates an object or produces at least
two recursive calls;
• The amount of computation in each recursive call is proportional to

the number of subsequent recursive calls produced by current call.

Algorithm 2 generates a Gray code for In and, by construction, satisfies
the previous CAT conditions, and so it is an efficient exhaustive generating
algorithm.

GRAY CODES FOR SIGNED INVOLUTIONS 9

1 procedure expand(π, k) begin
2 if k > n then write π ;
3 else
4 πk ← sk × k;
5 expand(π, k + 1);
6 for j ← 1 to k − 1 do
7 if |πj| = j then
8 aux ← πj;
9 if sgn(πk) == sgn(πj) then πj ← πk;

10 else πj ← −πk;
11 πk ← aux;
12 expand(π, k + 1);
13 πk ← sk × k;
14 πj ← aux;
15 end
16 end
17 πk ← −πk;
18 expand(π, k + 1);
19 sk ← −sk;
20 end
21 end

Algorithm 2: CAT implementation of Algorithm 1.

4. A Gray code with minimal Hamming distance
In this section we develop a second Gray code for the signed involutions.

Although more elaborated than the first code, the present code has the
smallest possible Hamming distance, since the difference between any two
consecutive elements will be a transposition or at most a paired sign. Our
approach is based on the Binary Reflected Gray Code [5], BRGCn, which
we briefly describe next.

The BRGC1 is the list (0, 1), and the BRGCn+1 is obtainable by first
listing BRGCn, with each word prefixed by 0, and then listing the BRGCn
in reverse order with each word prefixed by 1. For instance, BRGC2 =
(00, 01, 11, 10) and BRGC3 = (000, 001, 011, 010, 110, 111, 101, 100).

Each one of the 2n elements of the sequence BRGCn differs from the
previous one by only one bit, and the same is true for the last and the first
elements of the sequence. Moreover, it is possible to identify the element

10 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

in the `-th position of the BRGCn code by the map αn : [2n]→ [0, 2n − 1]
defined below.

Letting (xk)2 and (yk)2 be the binary expansions of the integers x =∑n
k=1 xk2

n−k and y =
∑n

k=1 yk2
n−k, define

x⊕ y := (xk ⊕ yk)2 ≡
n∑
k=1

(xk ⊕ yk)2n−k,

where xk ⊕ yk is the binary exclusive or –XOR– operation. It is easy to
check (see [7]) that the element in the `-th position of the BRGCn code is
given by

αn(`) = (`− 1)⊕
⌊
`− 1

2

⌋
.

In the following, we introduce some auxiliar functions and notations
needed for the construction of our second Gray code.

Definition 4.1. Given a positive integer n ≥ 3, let Tn be the set of all
transpositions of Sn. For each n ≥ 3, we define two functions λn0 : Tn →
[2n] and λn1 : Tn−1 → [2n] with

λn0(ij) =

2n−i + 2n−j + 1, if i+ 1 < j

2n−i + 1, if i+ 1 = j < n

2n, if i+ 1 = j = n

;

and λn1(k`) = 2n−k+1 − 2n−` + 1.

Proposition 4.2. (1) The functions λn0 and λn1 are injective.
(2) For all (ij) ∈ Tn and (k`) ∈ Tn−1, λn0(ij) 6= λn1(k`).

Proof : (1) We start by showing that λn0 is injective, for any n ≥ 3. By the
uniqueness of the binary expansion of a natural number, it follows that any
two numbers of the form 2n−i+2n−j +1, with i 6= j, are distinct. The same
is true for any two numbers of the form 2n−i+ 1. We must show that these
two classes of numbers and the number 2n do not overlap. The elements in
the range of λn0 are written in one of the following forms: 2n, or 2a + 2b + 1
with 1 ≤ b + 1 < a < n, or 2c + 1 with 2 ≤ c ≤ n− 1. Since n, c > 0, the
number 2c+1 is an odd number while 2n is even, so that these two numbers
cannot be equal. Again, by the uniqueness of the binary expansion we have
that 2a+2b+1 = 2c+1 if and only if a = b = c−1, but this contradicts the
inequality b+1 < a. Using the same argument, we see that 2a+2b+1 = 2n

if and only if a = 1, b = 0 and n = 2, which is not possible since we are
assuming n ≥ 3.

GRAY CODES FOR SIGNED INVOLUTIONS 11

We will now prove that λn1 is an injection. The range of λn1 is the set of
the numbers 2p − 2q + 1 with 1 < q + 1 < p ≤ n. It is not difficult to see
that for 1 < q + 1 < p,

2p−1 < 2p − 2q + 1 < 2p.

It follows that it not possible for an integer to be written in the form
2p − 2q + 1 in two distinct ways.

(2) First we notice that 2p − 2q + 1 = 2c + 1 if and only if c = q = p− 1.
Since we are assuming that q < p − 1, this equality cannot occur. For
b+ 1 < a, we have

2a < 2a + 2b + 1 < 2a+1,

which implies that if 2a + 2b + 1 = 2p − 2q + 1, then a + 1 = p and thus
2a + 2b + 1 = 2a+1− 2q + 1⇔ 2a = 2b + 2q ⇒ q = b = a− 1. Since b < a− 1
we deduce that 2a+2b+1 6= 2p−2q+1 for any b+1 < a and any q+1 < p.

Finally 2p − 2q + 1 = 2n if and only if p = n and q = 0, which is not
possible since q ≥ 1.

Lemma 4.3. For a fixed n ≥ 3 and i < j, we have the following conditions:

(1) If λn0(ij) 6= 2n, αn (λn0(ij)) ≡ (xk)2 and αn (λn0(ij) + 1) ≡ (yk)2, then
xi = yi = xj = yj;

(2) If λn0(ij) = 2n, αn (2n) ≡ (xk)2 and αn (1) ≡ (yk)2, then xi = yi =
xj = yj;

(3) If αn (λn1(ij)) ≡ (xk)2 and αn (λn1(ij) + 1) ≡ (yk)2, then xi = yi 6=
xj = yj.

Proof : (1) Let i, j be two integers in [n] such that i + 1 < j < n. As
the number λn0(ij) = 2n−i + 2n−j + 1 is odd, its successor in the BRGCn
code only differs from it in the last position, which implies that xi = yi
and xj = yj. It remains to show that xi = xj. By the definitions of the
functions αn and λn0 ,

αn (λn0(ij)) =

⌊
2n−i + 2n−j + 1− 1

2

⌋
⊕
(
2n−i + 2n−j + 1− 1

)
=
(
2n−i−1 + 2n−j−1

)
⊕
(
2n−i + 2n−j

)
= 2n−i + 2n−(i+1) + 2n−j + 2n−(j+1),

since i+ 1 < j < n, and thus xi = xj = 1.
Assume now that i, j are positive integers such that i+ 1 < j = n. The

number λn0(in) = 2n−i+2n−n+1 = 2n−i+2 is equivalent to 2 (mod 4), since
n − i ≥ 2. Thus, in the BRGCn code, the successor of λn0(in) is obtained
by changing the digit in the penultimate position. Since both i and n are

12 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

different from n− 1, we have that xi = yi and xn = yn. As in the previous
case, we compute

αn (λn0(ij)) =

⌊
2n−i + 2− 1

2

⌋
⊕
(
2n−i + 2− 1

)
= 2n−i−1 ⊕

(
2n−i + 1

)
= 2n−i + 2n−(i+1) + 2n−n,

since i+ 1 < n, and thus xi = xn = 1.
Let now j = i + 1 < n. The number λn0(ij) = 2n−i + 1 is odd which

implies that its successor in the BRGCn code only differs from it in the
last position. It follows that xi = yi and xj = yj. Again, we compute

αn (λn0(ij)) =

⌊
2n−i + 1− 1

2

⌋
⊕
(
2n−i + 1− 1

)
= 2n−i−1 ⊕

(
2n−i

)
= 2n−i + 2n−(i+1),

and thus xi = xi+1 = 1.
(2) λn0(ij) = 2n if i = n−1 and j = n. In the last element of the BRGCn

code we have that x1 = 1 and xk = 0, for k 6= 1, and in the first one, yk = 0
for all values of k. Since n ≥ 3, it follows that xn−1 = xn = 0.

(3) The domain of λn1 is Tn−1 and then i < j < n. As before, we notice
that λn1(ij) = 2n−i+1 − 2n−j + 1 is odd. Therefore the successor of λn1(ij)
in the BRGCn code only differs from it in the last position, which implies
that xi = yi and xj = yj.

Once again we compute

αn (λn0(ij)) =

⌊
2n−i+1 − 2n−j + 1− 1

2

⌋
⊕
(
2n−i+1 − 2n−j + 1− 1

)
=
(
2n−i − 2n−j−1

)
⊕
(
2n−i+1 − 2n−j

)
=

i+1∑
k=j+1

xk2
n−k ⊕

i∑
k=j

xk2
n−k

= 2n−i + 2n−(j+1)),

and thus xi = 1 6= 0 = xj.

GRAY CODES FOR SIGNED INVOLUTIONS 13

Definition 4.4. Given n ∈ N, and 0 ≤ k ≤ bn/2c, let Lk denote the set
of all involutions in Sn having exactly k transpositions, and let

L≤k =
k⋃
i=0

Lk

be the set of all involutions having at most k transpositions. For a sign
involution σ ≡ (p, g), we say that σ is in LBk whenever p ∈ Lk.

Given an involution q ∈ Lk−1, k ≥ 1, we define

Lk(q) := {q · (ij) : m(q) < i < j, qi = i, qj = j} ⊆ Lk.

We recall that m(q) is the maximum of the openers in q, and m(q) = 0
when q is the identity.

Lemma 4.5. (a) Lk =
⋃

q∈Lk−1

Lk(q);

(b) if q 6= q′, then Lk(q) ∩ Lk(q′) = ∅.

Proof : Follows from the uniqueness representation of an involution p ∈ Lk
as a product of disjoint transpositions p = (a1b1) · (a2b2) · · · (akbk) with
a1 < a2 < · · · < ak.

Definition 4.6. Given an involution p ∈ Lk, k ≥ 1, let s = m(p) and
δ ∈ [n] an integer distinct from s and from any closure of p.

(a) Define the word
χp,δ := p̂

obtained from p by removing the closures of all transpositions of p,
as well as the letters δ and s, and then inserting δ in the leftmost
position, and s in the rightmost position, i.e. setting p̂1 = δ, p̂n−k =
s.

(b) Let Bp
n = {g ∈ Bn : (p, g) ∈ In}, and define the map

Ωp,δ : Bp
n −→ Bn−k,

where Ωp,δ(g) := ĝ is the binary word corresponding to p̂, i.e. ĝi =
gp̂i.

For each pair (p, δ) in the conditions above, the map Ωp,δ is a one-to-one
correspondence between the sets Bp

n and Bn−k, since it replaces each paired
signal by a single sign, and rearranges the remaining word.

We will use the map Ωp,δ to construct a variation of the Binary Reflexive
Gray Code, where each paired signal is treated as a single sign, the first

14 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

element of this new code is a given g ∈ Bp
n, and the last element differs

from the first only in a given position δ. This variation is achieved by the
following procedure, which have as input an involution σ ≡ (p, g), where
p ∈ Lk with k ≥ 1, and an integer δ ∈ [n], distinct from m(p) and from
any closure of p, and outputs the binary code BRGC(σ, δ).

1 procedure BRGC(σ, δ):
2 begin
3 Let ĝ := Ωp,δ(g).

4 Construct the sequence ĝ1, . . . , ĝ2n−k of binary words, where
each ĝi := ĝ ⊕ xi = ĝi1 · · · ĝin−k, with(
x1, . . . , x2n−k

)
= BRGCn−k.

5 Let BRGC(σ, δ) :=
(

(p, g1), . . . , (p, g2n−k)
)

, where each

gi = Ω−1
p,δ(ĝ

i).

6 end

Notice that
(
g1, . . . , g2n−k

)
= Ω−1

p,δ (Ωp,δ(g)⊕BRGCn−k). Moreover, g1 =

g and g2n−k differs from g only in position δ, if δ is a position fixed letter
of p, and also in position pδ if δ is an opener of p.

When σ = id, we set BRGC(id, δ) :=
(
(id, x1), . . . , (id, x2n)

)
, where(

x1, . . . , x2n
)

= BRGCn.

Example 4.1. For instance, if σ ≡ (2134, 1100) and δ = 4, the code
BRGC(σ, 4) is achieved as follows. First, note that p = 2134 with m(p) =
1. Therefore, p̂ = 431, ĝ = Ωp,δ(1100) = 001 and the procedure outputs
the code

BRGC(σ, 4) = ((p, 1100), (p, 0000), (p, 0010), (p, 1110), (p, 1111), (p, 0011), (p, 0001), (p, 1101)) .

Lemma 4.7. Given σ ≡ (p, g) ∈ Lk and δ ∈ [n], the difference between
each consecutive words of the binary code BRGC(σ, δ) is a single sign or
a paired sign of σ.

Proof : The sequence (x1, . . . , x2n−k) is the BRGCn−k, and each word ĝi, in
step 4 of procedure BRGC(σ, δ), is obtained from xi by changing all the

signs xij where ĝj = 1. Therefore, the sequence ĝ1, . . . , ĝ2n−k is a rearrange of
the BRGCn−k preserving the difference between consecutive words. In step
5, each word of this sequence is expanded repeating the signs, associated
to the openers in p, on the positions of the corresponding closures. Thus,

GRAY CODES FOR SIGNED INVOLUTIONS 15

the difference between two consecutive elements of this sequence is a single
sign or a paired sign.

Our second Gray code for In is constructed by layers: in the first stage we
construct the code for the involutions in LB0 as the sequence (id, g1), . . . , (id, g2n),
where (g1, . . . , g2n) = BRGCn. Having the code for LB≤k−1, we construct

the code for LB≤k by inserting sequences of involutions in LBk between two

consecutive elements of LBk−1 such that each element of the sequence for
LB≤k differs from the previous by a transposition or at most a paired sign.
For each p ∈ Lk, this insertion process is described below.

1 procedure insert(p)
2 begin
3 Let q be the unique involution in Lk−1 such that p ∈ Lk(q)

with p = q · (st).
4 Let (q, r) and (q, r̃) be two consecutive elements of LBk−1 such

that rs = r̃s and rt = r̃t.
5 Let δ be the smallest letter such that rδ 6= r̃δ.
6 Introduce the sequence BRGC((p, r), δ) between the elements

(q, r) and (q, r̃).
7 end

The elements (q, r) and (q, r̃) will be found using the maps introduced
in Definition 4.1. We are now in conditions to construct an algorithm
which outputs a cycle Gray code with Hamming distance 2 for the signed
involutions in SB

n , for n ≥ 3.

1 LB0 ← BRGC(id, 1).
2 for k ← 1 to bn/2c do
3 LB≤k ← LB≤k−1

4 for each p ∈ Lk do
5 insert(p)
6 end
7 end

Algorithm 3: Algorithm for the second Gray code.

Theorem 4.8. The sequence obtained by the successive application of Al-
gorithm 3 gives a cyclic Gray code for the signed involutions in In, n ≥ 3,
where each element differs from its successor either by a transposition, or
a single sign, or a paired sign.

16 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

Proof : We will prove by induction that Algorithm 3 produces a Gray code
for LB≤k, where each element differs from its successor by a transposition,
a single sign or a paired sign, and for each p ∈ Lk, there are δ ∈ [n] and
g ∈ Bn such that BRGC((p, g), δ) is a subsequence of the Gray code. The
desired cyclic Gray code for the sign involutions is, therefore, the code for
L≤bn/2c.

As the code for LB0 is the sequenceBRGC(id, 1) =
(
(id, g1), . . . , (id, g2n)

)
,

the difference between two consecutive elements of LB0 is just a sign.
For each transposition p = (st) in L1, insert the sequence

BRGC((p, g`), δ′) =
(

(p, h1), . . . , (p, h2n−1)
)

after position ` := λn0(st) in LB0 , where δ′ is the only letter in g` such that
g`δ′ 6= g`+1

δ′ . In the case ` = 2n we consider `+ 1 ≡ 1 since the code BRGCn
is cyclic. This construction produces a sequence with all signed involutions
in LB≤1 in the required conditions.

Assume the algorithm produces a Gray code for LB≤k−1, k ≥ 2, in the
stated conditions. Given p ∈ Lk, by Lemma 4.5, there is a unique in-
volution q ∈ Lk−1 such that p ∈ Lk(q), with p = q · (st). By induction

hypothesis, BRGC((q, g1), δ) =
(

(q, g1), . . . , (q, g2n−k+1

)
)

is a subsequence

of the Gray code for LB≤k−1. Let χq,δ = q̂1 · · · q̂n−k+1. By the definition of
χq,δ, there are two integers i, j, distinct from n− k + 1, such that

q̂i = s and q̂j = t.

By Lemma 4.3 and the construction of BRGC((q, g1), δ), there is a position
` < 2n−k+1 such that in the sequence BRGC((q, g1), δ) we have g`s = g`t =
g`+1
s = g`+1

t . This position is ` = λn−k+1
0 (ij) if g1

s = g1
t , or ` = λn−k+1

1 (ij)
otherwise. Note that for a fixed q ∈ Lk−1, Proposition 4.2 says that there
is a different position ` for each p ∈ Lk(q), using the maps λn−k+1

0 , or
λn−k+1

1 , if g1
s = g1

t , or g1
s 6= g1

t , respectively. Next, we insert the sequence

BRGC((p, g`), δ′) =
(

(p, h1), . . . , (p, h2n−k)
)

between (q, g`) and (q, g`+1),

where h1 = g`, h2n−k = g`+1 and δ′ is the smallest letter such that g`δ′ 6= g`+1
δ′ .

GRAY CODES FOR SIGNED INVOLUTIONS 17

Running over all involutions of Lk, this construction produces a sequence
with all signed involutions in LB≤k.

The sequence of LB≤k, k ≥ 1, obtained by the inductive step, is a concate-

nation of subsequences of LB≤k−1 and sequences of the formBRGC((p, g), δ).
In each subsequence BRGC((p, g), δ), Lemma 4.7 guarantees that the dif-
ference between consecutive elements of this sequence is a single sign or
a paired sign. By induction, each consecutive elements in LB≤k−1 is either
a transposition, or a single sign, or a paired sign. Finally, note that the
difference between the words connecting LB≤k−1 to BRGC((p, g), δ), i.e.

between (q, g`) and (p, h1), as well as between (p, h2n−k) and (q, g`+1), is a
single transposition.

Remarks.

(1) In the proof above, for the case k = 1, for each p ∈ L1 we have
always q = id and g1 = 0n. Consequently, the map λn1 is never used
to construct the sequence LB≤1.

(2) In the construction of BRGC((p, g), δ), only the first and last letters
of χp,δ are relevant for the proof of Theorem 4.8. The proof is still
valid if any reordering of the letters in χp,δ, keeping the first and
last ones invariant, is used. This fact will be used in the recursive
implementation of Algorithm 3 to reduced its computational cost.

(3) There is no cyclic Gray code for I2 in the conditions of Theorem 4.8,
as its clear from Figure 4.1, where an edge is displayed between two
words that differs by a transposition, a single sign or a paired sign.
Nevertheless, there are (non cyclic) Gray codes for I2 satisfying
these conditions. For example,(

1 2, 1 2, 1 2, 1 2, 2 1, 2 1
)

is such a code.

12 12̄ 1̄2 1̄2̄

21 2̄1̄

Figure 4.1

(4) It is easy to check that in any Gray code for In, two successive
signed involutions differ by at least a transposition or a single sign.
Nevertheless, with only these two operations it is not possible to

18 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

construct a Gray code for I3. It is an open question whether this
result is valid for n ≥ 4.

Corollary 4.9. The Hamming distance of the Gray code for signed invo-
lutions in In, n ≥ 3, given by Algorithm 3, is two. This is the minimal
Hamming distance of any Gray code for In.

Proof : The Hamming distance for the code given by Algorithm 3 follows
from Theorem 4.8. Note also that in a code with Hamming distance one,
only one sign can be changed between two consecutive words, making it
impossible to run over all In.

Example 4.2. We give below a brief description of the execution of Al-
gorithm 3 when n = 4. The algorithm starts with the construction of
LB0 = ((id, 0000), (id, 0001), . . . , (id, 1000)). In the next step, subsequences
of LB1 are introduced to obtain LB≤1, using the transpositions of L1(id) =
{(12), (13), (14), (23), (24), (34)}. Since λ4

0(12) = 9, then δ = 4 is the only
position that changes between the 9-th and 10-th elements of the BRGC4,
that is, between 1100 and 1101, respectively. Thus, the sequence (see Ex-
ample 4.1)

BRGC(2134, 4) = ((2134, 1100), (2134, 0000), . . . , (2134, 1101))

is introduced between the elements (id, 1100) and (id, 1101) of LB0 . Re-
peating this process for the remaining transpositions in L1(id), we obtain
a Gray code for LB≤1.

In the next step, LB≤1 is extended to a Gray code for LB≤2 = I4 by inserting
subsequences of LB2 between consecutive words of LB1 . First, we notice that
L2(12) = {(34)}, L2(13) = {(24)}, L2(14) = {(23)}, L2(23) = L2(24) =
L2(34) = ∅. Taking p = 2143 = q · (st), with q = 2134 and (st) = (34),
we have χq,4 = 431 and thus the positions corresponding to s and t are,
respectively, i = 2 and j = 1. Since the signs of s and t in the involution
(2134, 1100) are equal, we compute λ3

0(12) = 23−1 + 1 = 5. Then, δ′ = 1 is
the smallest position that changes between the 5-th and 6-th elements of
BRGC(2134, 4). Thus, the sequence

BRGC(2143, 1) = ((2143, 1111), (2143, 1100), (2143, 0000), (2143, 0011))

is introduced between the elements (2134, 1111) and (2134, 0011) ofBRGC(2134, 4).
Repeating this process for the remaining sets L2(ij), we obtain the Gray
code for I4 displayed in Figure 4.2, where we use the colors black, blue and
red to represent the words in LB0 , L

B
1 and LB2 , respectively.

GRAY CODES FOR SIGNED INVOLUTIONS 19

1̄234 1̄234̄ 1̄23̄4̄ 1̄23̄4 1̄2̄3̄4 1̄2̄3̄4̄ 1̄2̄34̄ 1̄2̄34

1234 1234̄ 123̄4̄ 123̄4 12̄3̄4 12̄3̄4̄ 12̄34̄ 12̄34

124̄3̄ 12̄4̄3̄ 12̄43 1̄2̄43

1243 1̄243 1̄24̄3̄ 1̄2̄4̄3̄

3̄21̄4 3̄21̄4̄ 3214̄ 32̄14̄

3214 32̄214 3̄2̄1̄4 3̄2̄1̄4̄

4̄2̄3̄1̄ 4̄2̄31̄ 42̄31 4231

42̄3̄1 423̄1 4̄23̄1̄ 4̄231̄

213̄4̄ 2̄1̄3̄4̄ 2̄1̄3̄4 213̄4

2134̄ 2̄1̄34̄ 2̄1̄34 2134

1̄324 1324 13̄2̄4 13̄2̄4̄

1̄3̄2̄4 1̄3̄2̄4̄ 1̄324̄ 1324̄

14̄3̄2̄ 14̄32̄ 1432 1̄432

143̄2 1̄43̄2 1̄4̄3̄2̄ 1̄4̄32̄

3412 3̄41̄2

34̄12̄ 3̄4̄1̄2̄

4̄3̄2̄1̄ 43̄2̄1

4̄321̄ 4321

214̄3̄ 2̄1̄4̄3̄

2̄1̄432143

Figure 4.2. Gray code scheme for I4 generated by algorithm 3.

A recursive implementation of Algorithm 3 is schematized below. It
initially sets σ ≡ (id, 0n) and π = id, and the recursive calls are triggered
by the initial call SIGC((id, 0n), id). For the current value of σ ≡ (p, g) and
π, in step 4 all available transpositions in the present call are generated.
After the involution σ is written, the function BRGC(p, g, δ, π) is called
in order to recursively generate all involutions in LBn−k, where k is the
number of closers in p. In this function, the integer δ in BRGC(p, g, δ, π)
represents the index of a letter in g whose sign changes in this call. This
algorithm gives the elements of the BRGCn [10] while the condition in step
5 is not satisfied. Otherwise, the next transposition (i∗j∗) to be inserted
is identified, the set of transpositions T is updated, and new σ′ and π′ are
obtained from σ and π, and SIGC(σ′, π′) is called to generate LBn−k−1(p ·
(i∗j∗)).

20 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

1 function SIGC(σ, π)
2 begin
3 (p, g)← σ;
4 T ← {(i, j) : pi = i ∧ pj = j ∧m(p) < i < j};
5 Write(p, g);

// Build LBk (p), where k = #openers

6 δ ← 1; cont← 1;
7 BRGC(p, g, δ, π);

// Insert transposition (n− 1 n) in L0

8 if cont == min{λ(ij) : (ij) ∈ T} then
9 (i∗j∗)← argmin{λ(ij) : (ij) ∈ T};

10 T ← T\{(i∗j∗)};
// Performs Ωp,δ

11 π′1 ← πδ; x← 1;
12 for each y ∈ {1, . . . , length(π)}\{δ, i∗, j∗} do
13 x← x+ 1; π′x ← πy ;
14 end
15 x← x+ 1; π′x ← πi∗;
16 σ′ ← (p · (i∗j∗), g);
17 SIGC(σ′, π′);
18 end
19 end

Algorithm 4: Recursive function SIGC for signed involutions.

5. Numerical Experiments
The algorithms where written in MatLab on a PC with Intel(R) Core(M)

i7-3770 CPU 3.4Ghz, RAM 16GB 64-bit Operating System, under Win-
dows 8.1 Pro.

The running CPU time of algorithms 2 and 3 where compared for values
of n up to 15. In order to obtain more accurate results, the CPU times
reported in Table 5.1 correspond to the average of 30 executions of the
algorithms. To better compare the running CPU time of both algorithms,
Figure 5.1 shows the total CPU time and the CPU time per signed involu-
tion for each algorithm, and Figure 5.2 displays how many times Algorithm
3 is slower than Algorithm 2.

These graphics show that the CPU time of both algorithms grows at
least exponentially with n, with Algorithm 3 beeing the slower one, with
a ratio, relative to Algorithm 2, that seams to stabilize around 1.5 folds.

GRAY CODES FOR SIGNED INVOLUTIONS 21

1 function BRGC(p, g, δ, π)
2 begin
3 if δ ≤ length(π) then
4 BRGC(p, g, δ + 1, π);
5 if cont == min{λ(ij) : (ij) ∈ T} then
6 (i∗j∗)← argmin{λ(ij) : (ij) ∈ T};
7 T ← T\{(i∗j∗)};

// Performs Ωp,δ

8 π′1 ← πδ; x← 1;
9 for each y ∈ {1, . . . , length(π)}\{δ, i∗, j∗} do

10 x← x+ 1; π′x ← πy ;
11 end
12 x← x+ 1; π′x ← πi∗;
13 σ′ ← (p · (i∗j∗), g);
14 SIGC(σ′, π′);
15 else
16 gπδ ← gπδ ⊕ 1;
17 Write(p, g);
18 end
19 BRGC(p, g, δ + 1, π);
20 end
21 end

Algorithm 5: Auxiliar function BRGC.

0 2 4 6 8 10 12 14 16

10−3

10−1

101

103

105

n

se
c

Total CPU time

Alg2
Alg3

0 2 4 6 8 10 12 14 16

0

2

4

6

8

·10−4

n

se
c

CPU time per signed involution

Alg2
Alg3

Figure 5.1. Comparison between Algorithm 2 and 3.

They also support the claim that Algorithm 2 is a CAT algorithm, since the
average CPU time per signed involution is almost constant. Although our
implementation of Algorithm 3 does not satisfy the stated conditions to be

22 G. GUTIERRES, R. MAMEDE AND J.L. SANTOS

n #In Alg.2 Alg.3
3 20 0.001563 0.004687
4 76 0.003125 0.013021
5 312 0.007813 0.022396
6 1384 0.022396 0.075521
7 6512 0.084375 0.351042
8 32400 0.376563 1.058854
9 168992 1.853646 4.542708

10 921184 9.975000 21.527083
11 5222208 58.415625 109.463021
12 30710464 329.468229 597.846354
13 186753920 2015.429167 3524.954688
14 1171979904 12760.761458 21857.397569
15 7573069568 81972.468750 135773.593800

Table 5.1. CPU time (in seconds) for Algorithms 2 and 3.

2 4 6 8 10 12 14 16

2

3

4

5

n

ra
ti
o

Figure 5.2. Ration between CPU times for Algorithms 3 and 2.

a CAT algorithm, Figure 5.1 suggest that a CAT algorithm implementation
is possible for Algorithm 3.

GRAY CODES FOR SIGNED INVOLUTIONS 23

References
[1] J.-L. Baril, Gray code for permutations with a fixed number of cycles, Disc. Math. 307:13

(2007) 1559–1571.
[2] J.-L. Baril and V. Vajnovszki, Gray code for derangements, Disc. App. Math. 140 (2004)

207–221.
[3] S.M. Johson, Generating of permutations by adjacent transposition, Math. Comput. 17

(1963) 282–285.
[4] Chow, Chak-On. Counting involutory, unimodal, and alternating signed permutations.

Discrete Math. 306 (2006), no. 18, 2222–2228.
[5] F. Gray. Pulse code communication, March 17, 1953 (filed Nov. 1947). U.S. Patent

2,632,058.
[6] J. Korsh, P. LaFollette and S. Lipschutz. A loopless implementation of a gray code for

signed permutations, Publications de l’Institut Mathématique, volume 89(103), Issue 109
(2011), 37–47.

[7] F. Ruskey. Combinatorial generation, Book in preparation.
[8] C. Savage. A survey of combinatorial Gray codes, SIAM Review 39:4 (1997), 605–629.
[9] H.F. Trotter, Algorithm 115, permutations, Comm. ACM 5 (1962), 434–435.

[10] T. Mansour. Combinatorics of Set Partitions. Discrete Mathematics and Its Applications,
Taylor & Francis, 2012.

[11] T. Walsh. Gray codes for involutions, J. Combin. Math. Combin. Comput., 36 (2001),
95–118.

[12] T. Walsh. Generating Gray Codes in O(1) Worst-Case Time per Word. In Discrete math-
ematics and theoretical computer science, volume 2731 of Lecture Notes in Comput. Sci.,
pp. 77–88. Springer, Berlin, 2003.

[13] V. Vajnovszki, A loopless algorithm for generating the permutations of a multiset, The-
oretical Computer Science Volume 307, Issue 2, 7 (2003), 415–431.

Gonçalo Gutierres
CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, 3001–454
Coimbra, Portugal

E-mail address: ggutc@mat.uc.pt

Ricardo Mamede
CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, 3001–454
Coimbra, Portugal

E-mail address: mamede@mat.uc.pt

José Luis Santos
CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, 3001–454
Coimbra, Portugal

E-mail address: zeluis@mat.uc.pt

