
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 17–53

A NEW APPROACH FOR THE MULTIOBJECTIVE
MINIMUM SPANNING TREE

JOSÉ LUIS SANTOS, LUIGI DI PUGLIA PUGLIESE AND FRANCESCA GUERRIERO

Abstract: In this paper, a new algorithm for the multiobjective minimum span-
ning tree problem is presented that can be used with any number of criteria. It
is based on a labelling algorithm for the multiobjective shortest path problem in a
transformed network. Some restrictions are added to the paths (minimal paths) in
order to obtain a one-to-one correspondence between trees in the original network
and minimal paths in the transformed one. The correctness of the algorithm is
proved as well as a short example is presented. Finally, some computational experi-
ments were reported showing the proposed method outperforms the others existing
in the literature. A deep study is also done about the number of nondominated
solutions and a statistical model is presented to predict its variation in the number
of nodes and criteria. All the test instances used are available through the web page
http://www.mat.uc.pt/∼zeluis/INVESTIG/MOMST/momst.htm

Keywords: Multicriteria optimization, Minimum spanning tree.

1. Introduction
The minimum spanning tree (MST) problem is a classical combinatorial

optimization problem studied since the beginning of last century. It was
proposed by Boru̇vka in 1926 [4] and he describes an algorithm which runs in
O(m lnn) time to solve a problem with n nodes and m edges. Other methods
were proposed like the Prim’s algorithm, which was first developed by Jarńık
[33] in 1930 and later rediscovered by Prim [46], in 1957, and Dijkstra [16],
in 1959. It has time complexity of O(m lnn), but it can be improved to
O(m + n lnn) if Fibonacci heap is used as data-structure [23]. Kruskal [37]
proposed, in 1956, two methods: the well known Kruskal’s algorithm which
runs in O(m lnn) time and the reverse-delete algorithm with time complexity
of O(m lnn(ln lnn)3), using Thorup algorithm [55], working with the edges
in the reverse cost order. A more detailed development of the beginnings of

Received December 19, 2017.
This work was partially supported by the Centre for Mathematics of the University of Coimbra

– UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-
funded by the European Regional Development Fund through the Partnership Agreement PT2020.

1

2 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

the MST problem, its subsequent evolution and other methods can be found
at [28, 30, 34, 42, 45].

The MST was motivated by a practical application in order to minimize
the cost of the construction of a power line network in Southern Moravia
after World War I [28]. Despite the practical motivation in the origin of the
MST problem, some interesting theoretical properties can be derived from
this problem [13] as well as other kind of applications in different fields of sci-
ence, such as finances [5], ecotoxicology [14], clustering analysis [18], weather
forecasting [26], image registration and segmentation [40]. The MST is also
related with other combinatorial optimization problems like the Euclidian
traveling salesman problem [9], the multi-terminal minimum cut problem
[12], matroids [19], the minimum-cost weighted perfect matching [54] and
the Steiner tree problem [57]. To obtain more details about MST properties,
applications or related problems, the reader is referred to [3, 28, 58, 59, 61].

There are several variants of the MST problem in the literature like the
Euclidean MST [1], the degree constrained MST [56], the k-smallest span-
ning trees [24], the arborescence [25], the hop-constrained and the diameter-
constrained minimum spanning tree [27], the minimum labelling spanning
tree [36], the maximum spanning tree [39], the capacitated MST [43], k-th
MST [48], the delay MST [50] and the dynamic MST [52]. Other variants of
the MST problem are presented in [58, 59].

In this work, we are focused on the multi-objective MST (MOMST) prob-
lem, which is a straightforward generalization of the classical MST problem
where several weights are associated with each edge. In this problem, we
aim to find the Pareto front, that is, a set of solutions for which it is not
possible to improve one of the criteria without worsening any of the others.
In what concerns to the complexity analysis, it is NP-complete [6] and in-
tractable [31]. The first algorithm proposed to the MOMST problem is due
to Corley in 1985 [11] which is based on Prim’s algorithm, but it can lead
us to a solution set with non-efficient spanning trees [31]. Hamacher [31]
proved that the efficient set is not connected when two spanning tree are
considered adjacent if they have n − 2 edges in common. He also provides
an exact algorithm to compute the supported efficient spanning trees in the
bi-objective MST problem. The great part of the papers in the literature
about this issue covers only the bi-objective case [10, 20]. Additionally, they
deal mainly with approximate techniques, such as evolutionary algorithms
[35, 41], genetic algorithm [32, 51, 60], local search [2] and ant colony [7, 38].

THE BN ALGORITHM FOR THE MOMST 3

As far as we know, only 3 exact algorithms are proposed to find the full
Pareto front: the exhaustive search, dynamic programming [15] and two-
phase methods [47, 53]. The exhaustive search can only be used in a very
small graphs because the number of spanning trees increases quickly with the
number of the nodes; for instance, in a complete graph with n nodes, there
are nn−2 spanning trees [8]. In the two-phase method, firstly it is computed
the set of supported efficient spanning trees. Then, in the second phase,
the unsupported efficient spanning trees are searched inside ”viable regions”
formed by two adjacent supported efficient solutions. Steiner and Radzik
[53] showed that their approach using a ranking procedure to search the un-
supported solutions outperforms the branch-and-bound technique applied in
[47]. However, the two-phase method is designed for the bi-objective prob-
lems and the generalization for more than two criteria is hard to accomplish,
[21]. An extended review of the existing methods and properties for the
MOMST problem can be obtained in [7, 21, 22, 49].

In what concerns to the computational experiments, only one [15] of the
papers analysed about the full computation of the Pareto front, reports re-
sults for more than two objectives. The remainder ones focus exclusively
the bicriteria case. Furthermore, the lack of information about the tested
problems prevents the replication of the computational experiments by other
authors and the comparison of the results among different papers. In fact, in
the papers analysed, the size of the networks varies from a dozen to hundreds
of nodes, but there is no reference to the number of Pareto solutions. How-
ever, it is known the problem will be harder to solve the larger the number of
solutions in the Pareto front. Depending on the type of network considered,
it is possible to build a small network with a large number of nondominated
solutions and a large network with the opposite situation.

The paper is organized as follows. In this section, an introduction to the
MST and the MOMST is presented, while section 2 gives us the formal
definition and notation used throughout the paper. Section 3 describes the
algorithms which are used in section 4 to report our computational results.
Finally, section 5 summarizes the paper and conclusions.

2. Definitions and notation
A graph (or an undirected graph) is an ordered pair G = (N,E) where:

• N = {1, . . . , n} is the set of nodes;

4 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

• E = {e1, . . . , em} is the set of edges, where each edge ek (k = 1, . . . ,m)
is a 2-element subset of N . Thus, ek will be represented by an un-
ordered pair [i, j] with i, j ∈ N and consequently [i, j] = [j, i]. Let
Ei be the subset of E containing the edges linked to node i, that is,
Ei = {e` ∈ E : e` = [i, j], for some j ∈ N}. Multi-edges occur when
there are different edges defined between the same pair of nodes.

A subgraph of G is a graph whose set of nodes is a subset of N and whose
set of edges is a subset of E.

A path p = 〈v0, e1, v1, . . . , e`, v`〉 between s and t is a sequence of nodes and
edges such that

• vi ∈ N , ∀i ∈ {0, . . . , `};
• s = v0 and t = v`;
• ei = [vi−1, vi] ∈ E, ∀i ∈ {1, . . . , `}.

if p = 〈v0, e1, v1, . . . , e`, v`〉 and q = 〈w0, f1, w1, . . . , fk, wk〉 represent two
paths inG where v` = w0, then p♦q = 〈v0, e1, v1, . . . , e`, v` = w0, f1, w1, . . . , fk, wk〉
represents a path in G between v0 and wk.

A path can be represented only by the sequence of edges. If there are not
multiple edges, it can also be represented only by the sequence of nodes. We
denote by Ps,t the set of paths from node s to node t.

A graph G is connected if there is a path between each pair of nodes in N .
A tree T is a connected subgraph of G with n = |N | nodes and n− 1 edges.
We denote by TX the set of trees which set of nodes is X ⊆ N .

A graph is directed if each edge has an orientation. In this case, ek will
be represented by an ordered pair (i, j) and it will be called as arc. Note
that in this case (i, j) 6= (j, i). In a directed graph, multiple-arcs are defined
as arcs between the same pair of nodes with the same direction. A path in
a directed graph has to preserve the arc orientation. An undirected graph
can be transformed into a directed graph Gd = (N,A), where each edge
e = [i, j] ∈ E defines two arcs in A, (i, j) and (j, i), between i and j with
opposite directions.

A network is a triplet (N,E, c) where:

• (N,E) is a graph;
• c is a vectorial cost function that assigns the vector cost c([i, j]) ∈ Rk

to the edge [i, j],

where k is the number of objectives or criteria. We will assume that all the
components of the vector cost are nonnegatives.

THE BN ALGORITHM FOR THE MOMST 5

(2, 4)

(1, 4)

(3, 2)

(2, 1)

(3, 4)

1

2

3

4

Figure 1. An undirected network G = (N,E, c).

Figure 1 shows a network example that will be used throughout the paper.
The cost of a path p, c(p), is the sum of the cost for all edges in p. Then,
c(p) =

∑
[i,j]∈p c([i, j]). Similarly, the cost of a tree T , c(T), is defined by

c(T) =
∑

[i,j]∈T c([i, j]). Similar concepts are defined for directed networks.
The multiobjective optimization is based on the concept of dominance

which will be introduced next.

Definition 2.1. Let a and b be two vectors in Rk. Then
aE b ⇐⇒ ai ≤ bi, ∀i ∈ {1, . . . , k} and a 6= b.

In this case, we say a dominates b or b is dominated by a.

Definition 2.2. Let Y ⊂ Rk and a ∈ Y . a is a nondominated vector in Y
if and only if 6 ∃b ∈ Y : b E a. We denote by Y ∗ the set of nondominated
vectors in Y , that is, Y ∗ = {a ∈ Y :6 ∃b ∈ Y : bE a}.
Definition 2.3. Let s and t be two nodes of N . A path p ∈ Ps,t is said to be
efficient if and only if c(p) ∈ c(Ps,t)

∗, that is, c(p) is a nondominated vector
in c(Ps,t).

Definition 2.4. Let X be a subset of N . A tree T ∈ TX is said to be efficient
if and only if c(T) ∈ c(TX)∗, that is, c(T) is a nondominated vector in c(TX).

The Pareto optimal solution of the MOMST is a subset T ∗ ∈ TN for which
c(T ∗) = c(TN)∗. The set c(TN)∗ is also called the Pareto front.

3. The new algorithm
3.1. Built network. Given an undirected network G = (N,E, c), the built
networkGT = (NT , AT , cT) is a directed network (with multiple-arcs) defined
in the following way:

6 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

{1}

c1,2
= (2,

4)

c1,3 = (1, 4)

{1, 2}

c2,4
= (2,

1)

c1,3 =
(1, 4)c2,3 =

(3, 2)

{1, 3}
c3,4 = (3, 4)

c2,3
=

(3,
2)c1,2

=
(2,

4)

{1, 2, 4}

c
2,3

=
(3, 2)

c
3,4

=
(3, 4)

c
1,3

=
(1, 4)

{1, 2, 3}
c2,4 = (2, 1)

c3,4 = (3, 4)

{1, 3, 4}
c 2
,3

=
(3
, 2

)

c 1
,2

=
(2
, 4

)

c 2
,4

=
(2
, 1

)

N = {1, 2, 3, 4}

Figure 2. The BN network GT obtained from G in Figure 1.

• NT = {{1} ∪X : X ⊆ N\{1}} is the set of nodes (|NT | = 2n−1);
• AT = {(X,X ∪ {j})[i,j] : X ∈ NT , i ∈ X, j 6∈ X, [i, j] ∈ E} is the set

of arcs;
• cT is the vectorial cost function, where cT ((X,X ∪{j})[i,j]) = c([i, j]).

Note that GT is a layered network, where layer i contains the nodes of
NT with i + 1 elements (that is, with i + 1 nodes of N) and the arcs link
nodes between two consecutive layers. Furthermore, the first and the last
layers are formed by a single node of NT which are {1} and N , respectively.
Figure 2 shows the network GT obtained from G in Figure 1. We would like
to emphasize that GT is not explicitly built in the algorithm, as it will be
discussed later. This network is described in the paper to understand how
paths in GT are built.

In order to recover the information of the initial network G from GT , it is
defined the function edge : AT → E such that edge((X,X∪{j})[i,j]) = [i, j].

The following properties are the basis of this model and establish the rela-
tion between trees in G and paths in GT .

3.2. Relations between GT and G.

THE BN ALGORITHM FOR THE MOMST 7

Proposition 3.1. Let p = 〈X0, a1, X1, . . . , an−1, Xn−1〉 be a path in GT .
Then, T p = {edge(a1), . . . , edge(an−1)} is a tree in G. Additionally, T p is
the unique tree of G represented by p.

Proof: We use induction to prove that T pk = (Xk,∪k`=1{edge(a`)}),1 ≤ k <
n, is a connected sub-graph with k + 1 nodes and k edges; that is, T pk is a
sub-tree in G.
Let p1 = 〈X0, a1, X1〉 be a path in GT . Then, X0 = {1}, X1 = X0 ∪ {j1},
a1 = (X0, X1)[i1,j1] with i1 = 1, j1 6= 1 and [i1, j1] ∈ E. Additionally,
X1 = {1, j1} has two different nodes and consequently T p1 is a sub-tree
in G.
Suppose now that pk+1 = 〈X0, a1, X1, . . . , Xk, ak+1, Xk+1〉, 1 ≤ k < n−1, is a
sub-path in GT and the corresponding sub-graph T pk is a sub-tree in G. We
will prove that T pk+1 is also a sub-tree in G. In fact, by definition of pk+1,
Xk+1 = Xk ∪ {jk+1}, ak+1 = (Xk, Xk+1)[ik+1,jk+1] with ik+1 ∈ Xk, jk+1 6∈ Xk

and [ik+1, jk+1] ∈ E. Then, the sub-graph T pk+1 is a connected sub-graph of
G with k + 1 nodes of N , and k edges of E; that is, T pk+1 is a sub-tree in
G. Finally, the set ∪k+1

`=1{edge(a`)}, with k+1 arcs, defines a unique tree in G.

Proposition 3.2. Let p = 〈X0, a1, X1, . . . , an−1, Xn−1〉 be a path in GT and
T p the corresponding tree in G. Then, cT (p) = c(T p).

Proof: It follows directly by the definition of the path p and the tree T p.

In order to construct a path pT in GT that corresponds to a tree T in G
the Algorithm 1 is defined.

Proposition 3.3. Given a tree T in G, Algorithm 1 defines a path in GT

from {1} to N .

Proof: The algorithm iterates n − 1 times because Z starts with n − 1
edges in line 1 and, at each iteration of cycle in lines 3-9, it decreases one
unit. Then, the stop condition in line 3 is achieved and the cycle finishes.
Moreover, the edge in line 4 exists because T is a tree. Line 6 allows to
extend p with a new arc and a new node following the rules established in
section 3.1, so p is updated with a new path in GT . Next, the edge [i, j] is
removed from Z while X is updated with node j, containing all the nodes
already visited by the algorithm. Consequently, X = N at the end of the

8 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

Input: a tree T in G
Output: a path pT in GT such that T pT = T

// Main variables:

// Z: set of unscanned edges in T
// X: set of nodes already visited

1 Z ← set of edges in T ;
2 X ← {1}; p ← 〈{1}〉;
3 while Z 6= ∅ do
4 [i, j] ← an edge of {[i, j] ∈ Z : i ∈ X, j 6∈ X};
5 X ′ ← X ∪ {j};
6 p ← p♦〈X, (X,X ′)[i,j], X

′〉 ;
7 Z ← Z\{[i, j]};
8 X ← X ′;
9 end

10 pT ← p;

Algorithm 1: Construction of a path pT in GT such that T pT = T .

algorithm and p is a path from {1} to N .

Proposition 3.4. Given a tree T in G, a path pT produced by Algorithm 1
verifies T pT = T and c(pT) = c(T).

Proof: It follows by the way as pT was constructed.

3.3. Minimal path. The previous proposition establishes that searching
all the paths in GT corresponds to search all trees in G. However, there are
several paths p in GT that satisfies T pT = T and, consequently, we must avoid
searching several times the same tree in G. To this purpose, the following
definition is introduced.

Definition 3.5. Let p = 〈X0, a1, X1, . . . , ak, Xk〉 be a path inGT and suppose
that edge(a`) = [i`, j`], 1 ≤ ` ≤ k. p is said to be a ”minimal path” if it
satisfies one of the following conditions:

• k = 1

THE BN ALGORITHM FOR THE MOMST 9

• k ≥ 2, 〈X0, a1, X1, . . . , ak−1, Xk−1〉 is a minimal path and one of the
following additional conditions is held

– ik−1 = ik and jk−1 < jk,
– ∃`, `′ ∈ {1, . . . , k} : ` < `′, ik−1 = j` and ik = j`′.

This definition states that every path in GT with a single arc is a minimal
path. Furthermore, suppose that a minimal path p in GT was lastly extended
using an edge ek = [i, j] of node i. Then, there are two ways to obtain minimal
paths from p. The first one is using edges [i, j′] of the same node i but with
j′ > j. Alternatively, p can be extended with edges from a node included
in p after node i (the index ` in j` represents the order in which nodes are
entering into the path).

Algorithm 2 allows us to construct a minimal path pT in GT that corre-
sponds to a tree T in G. The main difference between algorithms 1 and 2
is the way how they select the next edge to be included in the path. Con-
sequently, proposition 3.3 and 3.4 are also valid for the path produced by
Algorithm 2. In lines 7 and 9 it is defined (in a unique way) the next edge to
expand p. Consequently, given a tree T in G, only one path can be produced
by Algorithm 2 and the following proposition states that it is minimal.

Proposition 3.6. Given a tree T in G, Algorithm 2 defines a (unique) min-
imal path in GT from {1} to N .

Proof: Likewise Algorithm 1, Algorithm 2 ends after n−1 iterations with a
path in GT from {1} to N . To prove it is minimal, induction will be used. In
fact, at the first iteration (k = 1), the path p obtained in line 11 is minimal
because it has only one arc. Suppose now that, at iteration k < n − 1, p is
still a minimal path. Note that, the last arc added to p was obtained from
an edge of ”pivot”, that is, ik = pivot. If the condition in line 6 is false,
then there are more unscanned edges of T from ”pivot” and ”pivot” will be
not updated, that is ik+1 = pivot. Thus, the edge [pivot, j] chosen in line 9
is the next (minimum) unscanned edges of T from ”pivot” and, as a result,
[ik+1, jk+1] = [pivot, j] with j > jk (otherwise, jk will be not the minimum
at line 9 in the previous iteration). Finally, if Z ∩ Epivot = ∅ then line 7
updates ”pivot” with the following node included in p with available edges
in Z. This node exists because T is a tree and nodes are searched following
ord value. Therefore, the new ”pivot” (i.e., ik+1) holds ord(ik+1) > ord(ik).
In both cases, p is updated with a minimal path on line 11.

10 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

Input: a tree T in G
Output: a minimal path pT in GT such that T pT = T

// Main variables:

// Z: set of unscanned edges in T
// X: set of nodes already visited

// ord(k): the k-th node included in the path

1 Z ← set of edges in T ;
2 X ← {1}; p ← 〈{1}〉;
3 k ← 1; ord(1) ← 1;
4 pivot ← 1;
5 while Z 6= ∅ do
6 if Z ∩ Epivot = ∅ then
7 pivot ←

argminv∈X{ord(v) : ord(v) > ord(pivot) ∧ Z ∩ Ev 6= ∅} ;
8 end
9 j ← min{j ∈ N : [pivot, j] ∈ Z} ;

10 X ′ ← X ∪ {j};
11 p ← p♦〈X, (X,X ′)[i,j], X

′〉 ;
12 Z ← Z\{[i, j]}; X ← X ′;
13 k ← k + 1;
14 ord(j) ← k;
15 end

16 pT ← p;

Algorithm 2: Construction of the minimal path pT , associated to the
tree T , such that T pT = T .

Proposition 3.7. There is a one to one correspondence between trees in G
and minimal paths in GT .

Proof: It follows directly from propositions 3.1 and 3.6.

Finally, Algorithm 3 allows us to search all the minimal paths in GT from
{1} to N and, consequently, the entire set of spanning trees in G. It uses
two functions ”sequenceNodes” and ”searchNewMinimalPaths” which are

THE BN ALGORITHM FOR THE MOMST 11

Input: a graph G = (N,E)
Output: set with all minimal paths in GT from {1} to N

// Main variables:

// U: set of unscanned (minimal) subpaths in GT

// S(X): set of minimal paths associated X ⊆ N
// p: current path under analysis

// f(p): path from which p was obtained

// e(p): last edge of G added to path p

1 p ← 〈{1}〉; X ← {1};
2 f(p) ← NULL; e(p) ← [1, 1];
3 U ← {p}; S(X) ← {p};
4 while U 6= ∅ do
5 p ← a path from U ;
6 〈u1, . . . , uk〉 ← sequenceNodes(p);
7 X ← {u1, . . . , uk};
8 [i, j] ← e(p);
9 ` ← index of i in 〈u1, . . . , uk〉;

10 searchNewMinimalPaths(p, i, j,X);
11 for x← `+ 1 to k do
12 searchNewMinimalPaths(p, ux, 0, X);
13 end
14 end
15 U ← U\{p};
16 return S(N);

Algorithm 3: Searching all minimal paths in GT .

defined in Algorithm 4. The validation of the algorithm is a consequence of
proposition 3.7.

The algorithm is applied to the network example (Figure 1) to better un-
derstand the way it works and Figure 3 shows all the minimal paths in
GT . In this figure, each branch corresponds to a minimal subpath and
the arcs are labelled with the corresponding edge of the original network.
Additionally, the nodes belonging to each set X appear in the order they
were introduced into the minimal path and each branch is labelled with
the cost of the corresponding minimal subpath. The algorithm starts with

12 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

function sequenceNodes(p);
begin

[i, j] ← e(p);
if f(p) == NULL then

return 〈j〉;
else

return sequenceNodes(f(p)) ♦ 〈j〉;
end

function searchNewMinimalPaths(p, i, j,X);
begin

for w ← j + 1 to |N | do
if [i, w] ∈ E and w 6∈ X then

X ′ ← X ∪ {w};
p′ ← p♦〈X, (X,X ′)[i,w], X

′〉;
f(p′) ← p; e(p′) ← [i, w];
U ← U ∪ {p′}; S(X ′) ← S(X ′) ∪ {p′};

end
end

end

Algorithm 4: Functions used in algorithm 3.

p1 = 〈{1}〉 which corresponds to the root of the search tree. From p1,
two minimal subpaths are created: p2 = 〈{1}, ({1}, {1, 2})[1,2], {1, 2}〉 and
p3 = 〈{1}, ({1}, {1, 3})[1,3], {1, 3}〉 using, respectively, edges [1, 2] and [1, 3].
Node 1 appears underlined because it corresponds to the pivot node in Algo-
rithm 2 and means the last edge added to these paths belong to E1. In this ex-
ample, the FIFO (First In First Out) rule is used to choose the next path p to
be expanded (line 5 of Algorithm 3). Following this rule, p2 is chosen and [1, 2]
is the last edge used to obtain p2. From p2 three new minimal subpaths are
obtained towards the edges [1, 3], [2, 3] and [2, 4], respectively. The next path
chosen in line 5 following the FIFO rule is p3 which can be expanded through
the edges [3, 2] and [3, 4]. Note that edge [1, 2] is unconsidered because the
subpath q = 〈{1}, ({1}, {1, 3})[1,3], {1, 3}, ({1, 3}, {1, 3, 2})[1,2], {1, 3, 2}〉 is not
minimal. This procedure is repeated until there are no more minimal sub-
paths to expand.

THE BN ALGORITHM FOR THE MOMST 13

{1}(0,0)

[1, 2] [1, 3]

{1, 2}(2,4)

[1, 3]
[2, 3]

[2, 4]
{1, 3}(1,4)

[3, 2] [3, 4]

{1, 2, 3}(3,8)

[2, 4] [3, 4]

{1, 2, 3}(5,6)

[2, 4] [3, 4]

{1, 2, 4}(4,5)

[4, 3]

{1, 3, 2}(4,6)

[3, 4] [2, 4]

{1, 3, 4}(4,8)

[4, 2]

{1, 2, 3, 4}(5,9){1, 2, 3, 4}(6,12){1, 2, 3, 4}(7,7){1, 2, 3, 4}(8,10){1, 2, 4, 3}(7,9){1, 3, 2, 4}(7,10){1, 3, 2, 4}(6,7){1, 3, 4, 2}(6,9)

Figure 3. The search tree for all minimal paths in GT for the
example of Figure 1.

4. The BN algorithm
In the previous example, several minimal subpaths with the same terminal

node were obtained. Consequently, the dominance test can be applied on
them. As an example, when subpath

p1 = 〈{1}, ({1}, {1, 3})[1,3], {1, 3}, ({1, 3}, {1, 3, 2})[3,2], {1, 3, 2}〉
is generated from 〈{1}, ({1}, {1, 3})[1,3], {1, 3}〉, it should be compared with
the others subpaths from {1} to {1, 2, 3} already computed, that is, with
subpaths

p2 = 〈{1}, ({1}, {1, 2})[1,2], {1, 2}, ({1, 2}, {1, 2, 3})[1,3], {1, 2, 3}〉
and

p3 = 〈{1}, ({1}, {1, 2})[1,2], {1, 2}, ({1, 2}, {1, 2, 3})[2,3], {1, 2, 3}〉.
As p3 dominates p1, p1 will be discarded. Following this idea, the proposed
algorithm is based on Algorithm 3 by adding the dominance test in the search
of new minimal paths. In this way, ”searchNewMinimalPaths” routine is
changed by ”searchNewNDminimalPaths” which is sketched in Algorithm 5.
Consequently, the BN algorithm can be viewed as a labelling algorithm for
the multiobjective shortest minimal path problem in network GT . In the
previous section, the FIFO rule was used to select the next minimal path to
be expanded and then the BN algorithm can be viewed as a label correcting
version. However, others rules can be used at this step obtaining different
versions of the labelling algorithm. In this paper, the FIFO rule was selected

14 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

1 function searchNewNDminimalPaths(p, i, j, Y);
2 begin
3 for w ← j + 1 to |N | do
4 if [i, w] ∈ E and w 6∈ Y then
5 Y ′ ← Y ∪ {w};
6 p′ ← p♦〈Y, (Y, Y ′)[i,w], Y

′〉;
7 if p′ is not dominated by paths in S(Y ′) then
8 f(p′) ← p; e(p′) ← [i, w];
9 U ← U ∪ {p′};

10 S(Y ′) ←
(S(Y ′) ∪ {p′})\{paths of S(Y ′) dominated by p′};

11 end
12 end
13 end
14 end

Algorithm 5: Function ”searchNewNDminimalPaths” used in the
BN algorithm.

because it leads to one of the most efficient labelling approaches for the
multiobjective shortest path problem [29, 44].

The validation of the algorithm is based on the following facts:

• Algorithm 3 searches all minimal paths in GT ,
• there is a one to one correspondence between minimal paths in GT

from {1} to N and spanning trees in G,
• the optimality principle is held for multiobjective shortest path prob-

lem.

Figure 4 shows the final search tree produced by the BN algorithm in the
network example pictured in Figure 1. In this figure, gray color is used to
represent dominated minimal subpaths. Moreover, dashed lines correspond
to dominated branches that are promptly eliminated in line 7. Therefore,
these subpaths will never be stored by algorithm 5. On the other hand, solid
lines correspond to branches that were not dominated when the dominance
test is performed in line 7. Note that some of these branch can turn into
dominated ones when more subpaths are generated and the dominance test is
performed in line 10. This is the case of subpath 〈{1}, {1, 2}, {1, 2, 3}〉, which

THE BN ALGORITHM FOR THE MOMST 15

{1}(0,0)

[1, 2] [1, 3]

{1, 2}(2,4)

[1, 3]
[2, 3]

[2, 4]
{1, 3}(1,4)

[3, 2] [3, 4]

{1, 2, 3}(3,8)

[2, 4] [3, 4]

{1, 2, 3}(5,6) {1, 2, 4}(4,5)

[4, 3]

{1, 3, 2}(4,6)

[3, 4] [2, 4]

{1, 3, 4}(4,8)

[4, 2]

{1, 2, 3, 4}(5,9){1, 2, 3, 4}(6,12) {1, 2, 4, 3}(7,9){1, 3, 2, 4}(7,10){1, 3, 2, 4}(6,7){1, 3, 4, 2}(6,9)

Figure 4. Final search tree produced by the BN algorithm in
the network example pictured in Figure 1.

was not dominated by 〈{1}, {1, 2}, {1, 2, 3}〉 but it becomes a dominated
subpath when it is compared with 〈{1}, {1, 3}, {1, 3, 2}〉. Note that the BN
algorithm works directly with the edges of the initial network G and the built
network GT was never explicitly used.

5. Computational results
In this section we compare the performance of the new algorithm (BN) with

the dynamic programming (DP) approach and the TP Steiner Radzik (SR)
approach. All the codes were written in JAVA and they were run on a Intel(R)
core(TM) i7-4720HQ CPU 2.60GHz 8GB RAM machine. We used the spacyc
generator [35] to obtain a set of test instances which includes instances with
2, 3 and 4 criteria (k). For each number of criteria, we consider instances with
5 up to 14 nodes (n) with m = n × d edges, where d ∈ {5, 10, 15, 20}. The
costs associated with each arc are randomly generated by using the generator
of [35]. They have been chosen in the interval [0,100] and the criteria are not
correlated.

The computational experiments were conducted in two stages. At the first
stage, the three algorithms were compared only on bicriteria instances. In
order to be more accurate, 80 instances of the same type were considered,
that is 80 instances with different ”seeds” but with the same value of k,
n and d. The reported values correspond to the average results regardless
the value of d and ”seed”. In the second stage, only BN and DP were

16 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

k\n 5 6 7 8 9 10 11 12 13 14

2 7.05 10.90 16.44 22.63 24.02 34.23 46.56 48.74 57.67 67.91
3 16.65 42.90 92.10 135.15 256.80 458.20 549.10 910.05 1206.20 1909.60
4 29.30 118.60 269.65 661.60 1370.95 3629.15 5426.50 10985.80 14881.60 24679.75

Table 1. Average number of nondominated solution in terms of
n and k

compared on instances with 3 and 4 criteria. The SR approach was not
considered at this stage because we only implemented the bicriterion version
of this algorithm. As these instances are much harder to solve, only 20
instances of each type were considered. Table 1 reports the average number
of nondominated spanning trees in terms of n and k. All the instances are
available in

http://www.mat.uc.pt/∼zeluis/INVESTIG/MOMST/momst.htm
to make these results reproducible in other works.

The algorithms were compared in terms of CPU time (in milliseconds) to
evaluate its performance. This section also includes a detailed analysis of the
number of Pareto optimal solutions.

5.1. Detailed analysis on the number of Pareto optimal solutions.
In this subsection we propose the following model

PO = aebnk, a, b ∈ R+ (5.1)

to predict the variation of the number of Pareto Optimal solutions (PO)
with the network parameters n and k. Equation (5.1) was log transformed
in order to obtain the following linear model with the additional white noise
term:

Y = a′ + b′x+ ε, a′, b′ ∈ R (5.2)

where Y = lnPO, x = nk, a = ea
′
, b = b′ and ε ∼ N(0, σ) with σ > 0 the

standard deviation of ε.
Parameters a′, b′ and ε were obtained by linear regression [17] over the set of

1200 instances solved. Table 2 reports a summary of the statistic analysis for
the model presented in equation (5.2) and Figure 5 shows the 95% confidence
bands for the individual value of Y . The Pearson correlation coefficient
obtained in the experiments was R = 0.952527 revealing a strong correlation
between ln(PO) and the product nk. From this value, the coefficient of
determination R2 = 0.907307 is computed and it indicates that more than
90% of the results are explained by the linear model.

THE BN ALGORITHM FOR THE MOMST 17

Parameter Estimative Confidence interval
a′ -0.074555]-0.160149, 0.011038[
b′ 0.182097]0.178798, 0.185396[R2 = 0.907307
σ 0.608226]0.584819, 0.633599[

Y (x) a′ + b′x]a′ + b′x− g(x), a′ + b′x+ g(x)[R = 0.952527

g(x) = 0.003299
√

130934.020833 + (x− 23.75)2

Table 2. Summary of the statistic analysis for the model pre-
sented in equation (5.2) with confidence level = 0.95.

10 20 30 40 50 60

0

2

4

6

8

10

12

nk

ln
(P
O

)

Y data
CI band for Y

Figure 5. Linear regression model and confidence intervals for ln(PO).

To validate this model, it was also tested if the error ε = Y − (a′ + b′x)
is normally distributed. Figure 6 shows the histogram obtained with experi-
mental data and the corresponding fitted normal distribution (left) as well as
the Q-Q plot (right). From this figures, normal distribution can be assumed
for ε. Table 3 reports the descriptives and tests for normality of ε which also
attest the assumption made.

Taking into account these results, it is possible to obtain the following
model for the number of Pareto optimal solutions in terms of n and k:

PO = 0.928156e0.182097nk. (5.3)

18 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

−2 −1 0 1 2

0

50

100

150

Histogram and normal curve fit

−3 −2 −1 0 1 2 3

−2

0

2

Q-Q plot

Figure 6. Histogram for data error and respective Q-Q plot graph.

Descriptives
Min: -2.11 Median: 0.0012 Standard deviation: Skewness: -0.025
Max: 2.28 Mean: 0.0000 0.60797 Kurtosis: 0.142

p-value for normality tests
Kolmogorov-Smirnov Shapiro-Wilk

(with a Lilliefors significance correction)
0.093 0.592

Table 3. Descriptives and tests for normality of ε.

With this model, it is possible to estimate the number of PO solutions
in terms of n and k. Figure 7 shows the estimative for the number of PO
solutions with formula (5.3) which are in agreement with the average values
obtained in our computational tests.

5.2. Computational results - first stage (k = 2). In this subsection
we analyze the performance, in terms of CPU time (in milliseconds), of the
BN, DP and SR algorithms on bicriteria instances. Table 4 reports the
average, standard deviation and the maximum CPU time needed to solve the
instances for each number of nodes considered in our experiments and Figure
8 depicted (in log scale) the average CPU time for clear visualization. From
these results, it is concluded that CPU time seems to increase exponentially
with the number of nodes in all the algorithms. Similar behaviour is observed
for the standard deviation and the maximum CPU time. Additionally, in
our tests, BN is the algorithm with better performance in terms of average,

THE BN ALGORITHM FOR THE MOMST 19

6 8 10 12 14

101

102

103

104

n

P
O

k = 2
k = 3
k = 4

Figure 7. Predicted value for the number of PO solutions and
the average value in the computational tests (solid lines: average
value in the computational tests; dashed lines: estimative based
in (5.3)).

Average Standard deviation Maximum
n DP SR BN DP SR BN DP SR BN
5 0.51 0.60 0.18 2.49 2.93 1.46 16 16 13
6 2.15 1.03 0.20 6.29 3.32 1.68 47 16 15
7 9.27 3.01 0.61 9.71 6.49 3.06 41 31 16
8 81.42 12.88 1.58 77.99 16.43 4.75 649 99 16
9 608.92 14.94 3.26 647.34 34.41 6.15 4160 285 18

10 6591.51 77.39 17.54 5285.62 122.50 14.61 25592 623 110
11 37816.66 292.09 41.08 26954.18 543.62 20.69 130453 2907 87
12 230931.33 314.07 110.91 207009.07 657.57 53.91 969201 4076 219
13 1248728.65 538.99 344.52 1091665.37 947.11 195.14 5670391 6118 1063
14 7994751.35 768.98 1122.22 5380345.28 798.52 588.21 21427829 5294 3349

Table 4. Average, standard deviation and the maximum CPU
time in bicriteria instances

standard deviation and maximum value while DP is the worst. The unique
exception occurs for n = 14, where SR performs slightly better than BN in
terms of average CPU time. Consequently, we can conclude that, in general,
BN is the fastest algorithm in our instances and has the smallest variability
in the CPU time for instances with the same characteristics (see Standard
deviation).

20 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

6 8 10 12 14
10−1

101

103

105

107

n

ti
m

e
(m

il
is

ec
on

d
s)

Comparison of the average CPU time (k = 2)

DP
SR
BN

Figure 8. Average CPU time with the number of nodes on bi-
criteria instances.

In order to support our conclusion, Table 5 presents the one-tailed p-value,
using pairwise data, for testing if the average values of CPU time applying
algorithm A is significantly smaller than the ones obtained with algorithm
B, where the pair A−B is reported in the first column. From this table, for
n > 6, it is observed that p-value is, in general, less than 1% which allows
supporting our conclusion about the performance of the algorithms.

n 5 6 7 8 9 10 11 12 13 14
BN-DP 0.2348 0.0128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BN-SR 0.2127 0.0575 0.0060 0.0000 0.0054 0.0001 0.0001 0.0078 0.0555 0.9999
SR-DP 0.6108 0.0964 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5. One-tailed p-value of the t-test for the difference of
mean in pairwise data (the value 0.0000 means that p-value <
0.00005).

5.3. Computational results - second stage (k ∈ {3, 4}). As already
mentioned, in this subsection only BN and DP were tested because our im-
plementation of SR only runs on bicriteria instances. Table 6 reports the
average, standard deviation and maximum CPU time in both algorithms.
As in the previous case, Figure 9 shows the average CPU time (in log scale),
where it is noticed a similar performance than in bicriteria instances. The

THE BN ALGORITHM FOR THE MOMST 21

k = 3
Average Standard deviation Maximum

n DP BN DP BN DP BN
5 1.66 0.16 4.75 0.36 16 1
6 6.70 0.21 8.01 0.41 24 1
7 67.80 2.36 70.61 5.74 336 16
8 707.45 7.60 428.94 8.28 1696 22
9 10029.20 33.45 5030.96 12.00 20992 56

10 132211.95 253.70 134545.36 235.29 586341 966
11 1127480.35 1000.45 1304066.85 1016.87 4863076 3940
12 14235842.85 5424.70 12731813.06 4693.19 49204034 19076
13 46857124.67 22113.85 31928411.42 21130.07 83669553 91662
14 d.n.r. 86331.35 d.n.r. 59193.35 d.n.r. 208307

k = 4
Average Standard deviation Maximum

n DP BN DP BN DP BN
5 2.80 0.21 5.58 0.41 16 1
6 16.65 0.36 19.28 0.58 88 2
7 231.30 6.80 160.10 8.62 631 30
8 6402.85 58.70 4312.35 52.25 16732 207
9 77419.40 452.45 75381.79 513.38 323085 2177

10 2492525.10 5584.60 2938240.59 8499.67 13036565 39159
11 25706044.40 28404.45 21495708.56 26262.08 64897090 72563
12 d.n.r. 188144.15 d.n.r. 172464.39 d.n.r. 565968
13 d.n.r. 712957.60 d.n.r. 701483.45 d.n.r. 3195679
14 d.n.r. 3656910.70 d.n.r. 4035560.88 d.n.r. 15600000

Table 6. Average, standard deviation and the maximum CPU
time on instances with 3 and 4 criteria (d.n.r.: did not run).

same results were observed for the standard deviation and maximum CPU
time in both algorithms. From these results, it is concluded BN algorithm
obtains the best performance in terms of the average CPU time. It is note-
worthy that BN algorithm has less variability in terms of CPU time for
instances with the same characteristics (number of nodes and criteria). Ad-
ditionally, as it was expected, problems with more criteria demand higher
computational effort.

6. Conclusion
In this paper, a new algorithm for the MOMST problem is presented that

works with any number of criteria. The key idea is to transform the original

22 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

6 8 10 12 14

100

102

104

106

108

n

ti
m

e
(m

il
is

ec
on

d
s)

Comparison of the average CPU time (k ∈ {3, 4})

DP(k=4)
DP(k=3)
BN(k=4)
BN(k=3)

Figure 9. Average CPU time with the number of nodes on in-
stances with 3 and 4 criteria.

network in a directed network where trees in the first one correspond to paths
in the second one. Some restrictions are made on the paths (minimal paths)
in order to obtain a one-to-one correspondence between both sets of solutions.
The restrictions can be easily implemented in a labelling algorithm. In the
example and the reported computational results, the FIFO rule was used to
choose the next minimal path to be expanded. In this way, the proposed
algorithm is based on the label correcting algorithm for the multiobjective
shortest path problem. However, other rules can be used allowing to use, for
instance, the label setting algorithm. A small example is given in order to
show how the algorithm works.

Some properties of the transformed network were discussed which allows us
to prove the correctness of the algorithm. The new algorithm was compared
with the dynamic programming and two-phase approaches over the set of
1200 instances with up to 4 criteria. The computational results show the
superiority of the new method. A web page

http://www.mat.uc.pt/∼zeluis/INVESTIG/MOMST/momst.htm
was developed containing all the test instances used in this paper to be
available in future works.

The computational effort needed to solve the MOMST is strictly dependent
on the number of non-dominated solutions. Thus, a statistical model was
presented to predict it in terms of the number of nodes and criteria in the

THE BN ALGORITHM FOR THE MOMST 23

tested instances. From this model, the number of non-dominated minimum
spanning tree grows exponentially with the product of the number of nodes
and criteria.

References
[1] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning

trees and bichromatic closest pairs. Discrete & Computational Geometry, 6(3):407–422, 1991.
[2] K. A. Andersen, K. Jörnsten, and M. Lind. On bicriterion minimal spanning trees: An ap-

proximation. Computers & Operations Research, 23(12):1171–1182, 1996.
[3] C. F. Bazlamaçc and K. S. Hindi. Minimum-weight spanning tree algorithms a survey and

empirical study. Computers & Operations Research, 28(8):767–785, 2001.
[4] O. Boru̇vka. O jistém problem minimálńım. Práce moravské př́ırodovědecké společnosti,

III(3):37–58, 1926.
[5] D. Brookfield, H. Boussabaine, and C. Su. Identifying reference companies using the book-

to-market ratio: a minimum spanning tree approach. The European Journal of Finance,
19(6):466–490, 2013.

[6] P. Camerini, G. Galbiati, and F. Maffioli. On the complexity of finding multi-constrained
spanning trees. Discrete Applied Mathematics, 5(1):39–50, 1983.

[7] P. J. S. Cardoso. Ant colony algorithms for multiple objective combinatorial optimization:
applications to the minimum spanning trees problems. PhD thesis, University of Seville, May
2006.

[8] A. Cayley. A theorem on trees. Quarterly Journal of Mathematics, 23:376378, 1889.
[9] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.

Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon Uni-
versity, 1976.

[10] J. C. N. Cĺımaco and M. M. B. Pascoal. Multicriteria path and tree problems: discussion
on exact algorithms and applications. International Transactions in Operational Research,
19(1-2):63–98, 2012.

[11] H. W. Corley. Efficient spanning trees. Journal of Optimization Theory and Applications,
45(3):481–485, March 1985.

[12] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, Aug. 1994.

[13] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms, chapter 5, pages 139–167.
McGraw-Hill Education, July 2006.

[14] J. Devillers and J. Dore. Heuristic potency of the minimum spanning tree (mst) method in
toxicology. Ecotoxicology and Environmental Safety, 17(2):227–235, 1989.

[15] L. Di Puglia Pugliese, F. Guerriero, and J. L. Santos. Dynamic programming for spanning tree
problems: application to the multi-objective case. Optimization Letters, 9(3):437–450, 2015.

[16] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[17] N. Draper and H. Smith. Applied regression analysis. John Wiley & Son, Inc., 3 edition, April
1998.

[18] B. Duran and P. Odell. Cluster Analysis: A Survey. Lecture Notes in Economics and Mathe-
matical Systems. Springer Berlin Heidelberg, 2013.

[19] J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1(1):127–136,
1971.

24 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

[20] M. Ehrgott. Multicriteria optimization. Springer-Verlag, Berlin Heidelberg, 2005. Originally
published as volume 491 in the series: Lecture Notes in Economics and Mathematical Systems.

[21] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective com-
binatorial optimization. OR-Spektrum, 22(4):425–460, 2000.

[22] M. Ehrgott and X. Gandibleux. Multiobjective combinatorial optimization — theory, method-
ology, and applications. In M. Ehrgott and X. Gandibleux, editors, Multiple Criteria Optimiza-
tion: State of the Art Annotated Bibliographic Surveys, pages 369–444. Springer US, Boston,
MA, 2002.

[23] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network op-
timization algorithms. Journal of the Association for Computing Machinery, 34(3):596–615,
July 1987.

[24] H. N. Gabow. Two algorithms for generating weighted spanning trees in order. SIAM Journal
on Computing, 6(1):139–150, 1977.

[25] L. Georgiadis. Arborescence optimization problems solvable by edmonds algorithm. Theoretical
Computer Science, 301(1):427–437, 2003.

[26] D. Gombos, J. A. Hansen, J. Du, and J. McQueen. Theory and applications of the minimum
spanning tree rank histogram. Monthly Weather Review, 135:1490–1505, April 2007.

[27] L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-constrained
minimum spanning tree problems as steiner tree problems over layered graphs. Mathematical
Programming, 128(1):123–148, 2011.

[28] R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. IEEE
Annals of the History of Computing, 7(1):43–57, January 1985.

[29] F. Guerriero and R. Musmanno. Label correcting methods to solve multicriteria shortest path
problems. Journal of Optimization Theory and Applications, 111(3):589–613, 2001.

[30] A. Gupta. Lecture 1: Deterministic MSTs.
http://www.cs.cmu.edu/~anupamg/advanced/lectures/lecture01.pdf, January 2015.
Accessed: 2015-12-09.

[31] H. W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals
of Operations Research, 52(4):209–230, 1994.

[32] L. Han and Y. Wang. A novel genetic algorithm for multi-criteria minimum spanning tree
problem. In Y. Hao, J. Liu, Y. Wang, Y.-m. Cheung, H. Yin, L. Jiao, J. Ma, and Y.-C. Jiao,
editors, Computational Intelligence and Security: International Conference, CIS 2005, Xi’an,
China, December 15-19, 2005, Proceedings Part I, pages 297–302. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[33] V. Jarńık. O jistém problem minimálńım. Práce moravské př́ırodovědecké společnosti,
VI(4):57–63, 1930.

[34] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find
minimum spanning trees. Journal of the Association for Computing Machinery, 42(2):321–
328, March 1995.

[35] J. D. Knowles and D. W. Corne. A comparison of encodings and algorithms for multiobjec-
tive minimum spanning tree problems. In Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No.01TH8546), volume 1, pages 544–551, 2001.

[36] S. O. Krumke and H.-C. Wirth. On the minimum label spanning tree problem. Information
Processing Letters, 66(2):81–85, 1998.

[37] J. B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman problem.
Proceedings of the American Mathematical Society, 7(1):48–50, February 1956.

THE BN ALGORITHM FOR THE MOMST 25

[38] Y. Li, C. Y. Zou, S. Zhang, and M. I. Vai. Research on multi-objective minimum spanning
tree algorithm based on ant algorithm. Research Journal of Applied Sciences, Engineering and
Technology, 5(21):5051–5056, 2013.

[39] R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the Conference on Human Language Technology
and Empirical Methods in Natural Language Processing, HLT ’05, pages 523–530, Stroudsburg,
PA, USA, 2005. Association for Computational Linguistics.

[40] F. Meyer and L. Najman. Segmentation, Minimum Spanning Tree and Hierarchies, chapter 9,
pages 229–261. John Wiley & Sons, Inc., 2013.

[41] M. D. Moradkhan and W. N. Browne. A knowledge-based evolution strategy for the multi-
objective minimum spanning tree problem. In 2006 IEEE International Conference on Evo-
lutionary Computation, pages 1391–1398, 2006.

[42] J. Nešetřil and H. Nešetřilová. The origins of minimal spanning tree algorithms -
Boru̇vka and Jarńık. Documenta Mathematica, Extra Volume ISMP:127–141, 2012.

[43] T. Öncan. Design of capacitated minimum spanning tree with uncertain cost and demand
parameters. Information Sciences, 177(20):4354–4367, 2007.

[44] J. M. Paixão and J. L. Santos. Labeling methods for the general case of the multi-objective
shortest path problem – a computational study. In A. Madureira, C. Reis, and V. Marques,
editors, Computational Intelligence and Decision Making: Trends and Applications, pages
489–502. Springer Netherlands, Dordrecht, 2013.

[45] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. Journal of
the Association for Computing Machinery, 49(1):16–34, January 2002.

[46] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36(6):1389–1401, November 1957.

[47] R. Ramos, S. Alonso, J. Sicilia, and C. Gonzlez. The problem of the optimal biobjective
spanning tree. European Journal of Operational Research, 111(3):617–628, 1998.

[48] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning treesshort
or small. SIAM Journal on Discrete Mathematics, 9(2):178–200, 1996.

[49] S. Ruzika and H. W. Hamacher. A survey on multiple objective minimum spanning tree
problems. In J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of Large and
Complex Networks, pages 104–116. Springer-Verlag, Berlin, Heidelberg, 2009.

[50] H. F. Salama, D. S. Reeves, and Y. Viniotis. The delay-constrained minimum spanning tree
problem. In Proceedings Second IEEE Symposium on Computer and Communications, pages
699–703, Jul 1997.

[51] A. K. S. Sanger and A. K. Agrawal. Comparison of tree encoding schemes for biobjective
minimum spanning tree problem. In 2010 2nd IEEE International Conference on Information
and Financial Engineering, pages 233–236, Sept 2010.

[52] P. M. Spira and A. Pan. On finding and updating spanning trees and shortest paths. SIAM
Journal on Computing, 4(3):375–380, 1975.

[53] S. Steiner and T. Radzik. Computing all efficient solutions of the biobjective minimum span-
ning tree problem. Computers & Operations Research, 35(1):198–211, 2008. Part Special Issue:
Applications of {OR} in Finance.

[54] K. J. Supowit, D. A. Plaisted, and E. M. Reingold. Heuristics for weighted perfect matching.
In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80,
pages 398–419, New York, NY, USA, 1980. ACM.

[55] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 343–350, New
York, NY, USA, 2000. ACM.

26 J.L. SANTOS, L. PUGLIESE AND F. GUERRIERO

[56] J. A. Torkestani. Degree constrained minimum spanning tree problem: a learning automata
approach. The Journal of Supercomputing, 64(1):226–249, 2013.

[57] C.-C. Wei, S.-Y. Hsieh, C.-W. Lee, and S.-L. Peng. An improved approximation algorithm
for the partial-terminal steiner tree problem with edge cost 1 or 2. J. of Discrete Algorithms,
35(C):62–71, Nov. 2015.

[58] Wikipedia. Minimum spanning tree.
https://en.wikipedia.org/wiki/Minimum_spanning_tree.
Accessed: 2015-12-09.

[59] B. Y. Wu and K.-M. Chao. Spanning Trees and Optimization Problems. Discrete Mathematics
and Its Applications. Chapman and Hall/CRC, Abingdon, January 2004.

[60] G. Zhou and M. Gen. Genetic algorithm approach on multi-criteria minimum spanning tree
problem. European Journal of Operational Research, 114(1):141–152, 1999.

[61] L. Zsak. Variations for spanning trees. Annales Mathematicae et Informaticae, 33:151165,
2006.

José Luis Santos
CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, 3001–501
Coimbra, Portugal

E-mail address: zeluis@mat.uc.pt

Luigi Di Puglia Pugliese
Department of Mechanical, Energy and Management Engineering, University of Cal-
abria, Italy

E-mail address: luigi.dipugliapugliese@unical.it

Francesca Guerriero
Department of Mechanical, Energy and Management Engineering, University of Cal-
abria, Italy

E-mail address: francesca.guerriero@unical.it

