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NONORIENTABLE HYPERMAPS OF A GIVEN TYPE AND
GENUS

DANIEL PINTO

Abstract: We prove that given positive integers m,n with 2m−1 + n−1 < 1 and
an integer g ≥ 1, there are infinitely many nonisomorphic compact nonorientable
hypermaps of type (m,m, n) and genus g. The technique we apply here is based
on the constructions used to demonstrate the same result for orientable hypermaps,
making the suitable adjustaments.
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1. Introduction
Topologically, a map is a cellular embedding of a connected graph into

a closed connected surface. If that underlying surface is orientable, we say
that the map is orientable. Otherwise, the map is called nonorientable. A
hypermap is a generalization of this concept. Instead of a graph, we embed
a hypergraph on a surface, allowing each (hyper)edge to be adjacent to more
than two (hyper)vertices. Hypermaps are usually represented by cellular
embeddings of connected trivalent graphs (James representation [1]) or by
cellular embeddings of bipartite maps (following the Walsh correspondence
between bipartite maps and hypermaps [2]). A Walsh map W = W (H)
of a hypermap H is a bipartite map on the same surface as H, with each
hypervertex or hyperedge of H represented as a black or white vertex, each
incidence between them represented as an edge between the corresponding
vertices, so that each vertex has the same valency as the hypervertex or
hyperedge it represents, and each hyperface of H is represented as a face
of twice the valency (since it is bordered by alternating black and white
vertices) [2]. We say that a hypermap has type (l,m, n) if l, m and n are the
least common multiple of the valencies of the hypervertices, hyperedges and
hyperfaces, respectively.
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Algebraically, a hypermap is completely determined by a subgroup (a hy-
permap subgroup) of the free product ∆ = C2 ∗ C2 ∗ C2.

The extended triangle group

∆[l,m, n] = 〈R0, R1, R2 | R2
i = (R1R2)

l = (R2R0)
m = (R0R1)

n = 1〉
generated by reflections R0, R1 and R2 in the sides of a triangle T with angles
π/l, π/m and π/n in a simply connected Riemann surface U , where U is the
Riemann sphere, the complex plane or the hyperbolic plane as l−1 + m−1 +
n−1 > 1,= 1 or < 1. The orientation-preserving subgroup of index 2 in
∆[l,m, n] is the triangle group

∆ = ∆(l,m, n) = 〈X, Y,X | X l = Y m = Zn = XY Z = 1〉,
generated by rotations X = R1R2, Y = R2R0 and Z = R0R1 through an-
gles 2π/l, 2π/m and 2π/n around the vertices of T . These two groups are,
respectively, the full automorphism group and the orientation-preserving au-
tomorphism group of the universal hypermap H̃ of type τ = (l,m, n) drawn
on U . Any hypermap H of this type is isomorphic to the quotient of H̃ by
some subgroup H ≤ ∆[l,m, n], which is unique up to conjugacy. Conversely,
any conjugacy class of subgroups H determines a hypermap H/H of type
τ ′ = (l′,m′, n′) where l′,m′ and n′ (dividing l,m and n) are the orders of
the permutations of the cosets of H induced by X, Y and Z. Two hyper-
maps are isomorphic if and only if the corresponding subgroups are conjugate
in ∆[l,m, n] (or in ∆(l,m, n) if we require an orientation-preserving isomor-
phism). Compact hypermaps H correspond to subgroups H of finite index in
∆[l,m, n], and those on orientable surfaces without boundary correspond to
subgroups H ≤ ∆(l,m, n). A permutation of the triple (l,m, n) corresponds
to a renaming of the generators of ∆[l,m, n] and of ∆(l,m, n), or equiva-
lently to one of Mach̀ı’s operations on hypermaps, permuting hypervertices,
hyperedges and hyperfaces [3].

2. Conjectures
Conjecture 2.1. Given positive integers l,m, n with l−1+m−1+n−1 < 1, and
an integer g ≥ 0, there are infinitely many nonisomorphic compact orientable
hypermaps of type (l,m, n) and of genus g.

This conjecture first appeared in [4] and is a slightly stronger (and topo-
logical) version of another conjecture that arose in discussions between the
authors and Jürgen Wolfart [5, 4]:
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Conjecture 2.2. Given positive integers l,m, n with l−1 + m−1 + n−1 < 1,
and an integer g ≥ 0, the triangle group

∆ = ∆(l,m, n) = 〈X, Y, Z | X l = Y m = Zn = ZY Z = 1〉

contains infinitely many subgroups of finite index and of genus g.

Both of these conjectures are independent of the ordering of l,m and n. If
at least two of those parameters are equal, the conjecture was proved true
[4]:

Theorem 2.1. Conjectures 2.1 and 2.2 are true in all cases where at least
two of l,m and n are equal.

If we rewrite Conjecture 2.1 for nonorientable hypermaps, the connection
between the topological approach and Conjecture 2.2 is lost. It still remains,
however, an interesting conjecture about hypermaps. In this paper, we will
prove that Conjecture 2.1 is also true for nonorientable hypermaps (in all
cases where at least two of the parameters are equal), if we discard genus
0. In the orientable case, in order to prove the conjecture for a specific
triple (m,m, n), suitable copies of three different building blocks are joined
together. Since those constructions play a very important role in the nonori-
entable case, we will now summarize the method followed in [4] (which is
based on the method used in [6]).

3. Orientable surfaces
3.1. General method. Because we can permute the paremeters and we are
just looking at triples in which two of the parameters are equal, it is enough
to deal with hypermaps of type τ = (m,m, n) corresponding to Walsh maps
of type {2n,m} on the same surface. Hence, proving the conjecture for
hypermaps of type (m,m, n) is equivalent to proving it for bipartite maps of
type {2n,m} since W (H) ∼= W (H′) if and only if H ∼= H′.

In order to obtain a bipartite map W of type µ = {2n,m} correspond-
ing to a hypermap of type (m,m, n), some building blocks are constructed.
Those building blocks are three different bipartite maps on three surfaces
with boundary: a 2-trisc T (a torus minus two discs, with X (T ) = −2), a
closed annulus A (with X (A) = 0) and a disc D. Bipartite maps of type
µ = {2n,m} on each of these surfaces will be denoted, respectively, by Tµ,
Aµ and Dµ or, sometimes, Ti, Ai and Di (with i = n or m) if we want to
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emphasise the valency of the faces or vertices involved in the map (assuming
the other parameter is fixed and known).

When a bipartite map exists on A, D or T , it is required that each bound-
ary component of the surface must be a cycle in the map. If C0 and C1

are two cycles of the same length from two different components, an allowed
joining between the two maps is a homeomorphism C0 → C1 which sends
vertices to vertices of the same colour so that C0 and C1 become a single
cycle in the resulting bipartite map and adjacency is preserved. If vertices
of valencies v0 and v1 in C0 and C1 are identified with each other, they give
rise to a vertex of valency v = v0 + v1 − 2, so we also require that v divides
m; in fact, we will generally arrange that v = m.

To prove Theorem 2.1 for a specific triple, we have to join suitable many
copies of the building blocks (in order to achieve the required genus) and
carefully identify boundary components (so that our final hypermap has the
right type). As in [4], this will be done by constructing the Walsh Map
W(H) of type µ = {2n,m} that corresponds to the hypermap H of type
τ = (m,m, n).

If two surfaces X0 and X1 are joined by identifying their boundary compo-
nents C0 and C1, then the resulting surface has Euler characteristic χ(X0 ∪
X1) = χ(X0) + χ(X1). Since χ(A) = 0, χ(T ) = −2 and χ(D) = 1, if g ≥ 2
then g − 1 copies of T and an arbitrary number h ≥ 0 of copies of A can
be joined pairwise in some cyclic order to give an orientable bipartite map
W of characteristic 2 − 2g and hence of genus g; by fixing g and letting h
vary we obtain the required infinite set of nonisomorphic hypermaps H. This
method of proof is based on that used in [6]. By ignoring the vertex-colours,
we can regard each W = Wµ as an orientable map of type µ, so the same
constructions prove Conjecture 2.1 for maps of this type.

In both cases (orientable and nonorientable), some methods and structures
are mentioned several times:

Multiplication of an edge: the multiplication of an edge e of the map,
by an integer k, consists of replacing e with k edges between the same pair
of vertices, enclosing k− 1 new faces of valency 2. Multiplication by 1 leaves
the graph as before. If e is a boundary edge then one of these new edges
will also be a boundary edge (but not the other ones). The valencies of the
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vertices of the boundary components are relevant to describe the building
blocks and to confirm that a map of a specific type is obtained when they
are glued together. We say that a boundary component (denoted by ∂iA,
∂iT or ∂D for i = 0, 1) has type k(t) if it has t vertices of valency k. If not
all the vertices have the same valency, those different valencies are expliciltly
given to the reader.

Stalks: paths of odd length (n−1) with consecutive vertices v0, v1, ..., vn−1

alternately black and white and with alternate edges vivi+1 (i odd) multiplied
by m − 1 so that v0 and vn−1 have valency 1 while the others have valency
m. By attaching a stalk S to a vertex v within a face F we mean identifying
v0 or vn−1 with v, as v is black or white, and embedding the rest of the stalk
in F without crossings. This raises the valency of the face F by 2(n − 1)
and that of v by 1. It also introduces (m− 2)(n− 2)/2 new faces of valency
2, together with n − 2 vertices of valency m and one of valency 1. Because
these new faces have valency 2 they correspond to hyperfaces of valency 1 so
they do not affect the type of the final hypermap. On the other hand, the
vertex where the stalk is attached increases its valency by 1.

...

m-1m-1 m-1m-1 m-1m-1

v0 v1 v2 v3 v4 vn-3 vn-2 vn-1

Figure 1. A stalk

3.2. Proof. For orientable surfaces, the proof is divided in ten cases for
different families of hypermaps, covering all possibilities for the type [4].

• (m,m, n) with m ≥ 4, even n ≥ 4;
• (m,m, 2) with m ≥ 6;
• (5, 5, 2);
• (3, 3, 4);
• (3, 3, n) with even n ≥ 6;
• (m,m, n+ 1) with m ≥ 5, odd n+ 1 ≥ 5;
• (m,m, 3) with m ≥ 5;
• (4, 4, 3);
• (4, 4, n) with, odd n ≥ 5;
• (3, 3, n) with odd n ≥ 5.
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For each one of these cases, suitable building blocks have been constructed
and glued.

4. Nonorientable Surfaces
4.1.Main theorem.

Theorem 4.1. Given positive integers m, n with

2m−1 + n−1 < 1

and an integer g ≥ 1, there are infinitely many nonisomorphic compact
nonorientable hypermaps of type (m,m, n) and genus g.

As we have mentioned before, this theorem is independent of the ordering
of the parameters but here we will only deal with hypermaps such that the
least common multiple of the valencies of the hypervertices (black vertices in
the Walsh map) and the least common multiple of valencies of the hyperedges
(white vertices in the Walsh map) are equal.

4.2. The proof. In all those cases where a boundary component of the
2-trisc or the annulus has a symmetry which reverses the cyclic order of
valencies and colors of its vertices, we can generalize the constructions used
on orientable surfaces and make them work on nonorientable surfaces. For
each orientable hypermap of type τ and genus g ≥ 1, we can reverse the
orientation of a boundary component in one of the allowed joins, giving
a nonorientable hypermap of type τ and of the same Euler characteristic
2 − 2g, that is of nonorientable genus p = 2g. This means that we can use
this method for p even. However it does not work if the joins are in linear
order, since reversing a boundary component would give rise to an orientable
surface. We need to take (g − 1) 2-triscs, an arbitrary number of annuli and
no discs, joined in cyclic order, to construct an orientable surface of genus
g ≥ 1 (see Figure 2); then reversing one of the joins gives an nonorientable
surface of the same Euler characteristic 2− 2g ≤ 0.

However, if we want to do it also for p odd, we need to construct a suitable
crosscap, for instance an annulus with antipodal points of one boundary
identified. The gluing process is identical to the one used in the orientable
case but we need to replace one of the discs with a crosscap.

For each nonorientable case, we will use the same annulus that was con-
structed for the corresponding orientable case [4] and, after small changes (if
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Figure 2. Pieces joined in cyclic order.

Figure 3. How to construct a crosscap from an annulus.

required), we will identify antipodal points of one of the boundary compo-
nents, making sure we are also identifying opposite pairs of vertices in such
a way that the type of the map is preserved after this procedure. In some
cases, the introduction of new vertices in one of the boundary components is
needed and, as a consequence, if that modification affects both boundaries,
that also implies some changes on the other building blocks. When these
changes are straightforward, we do not give details.

The proof for nonorientable hypermaps will be divided in several cases,
according to the type of the boundary components of the annuli built for
orientable hypermaps [4].

4.2.1. Annnuli with boundary components of type m
(4)
0 and m

(4)
1 . This corre-

sponds to the following types for the hypermap [4]:

• (m,m, n) with m ≥ 4, even n ≥ 4 ;
• (m,m, 2) with m ≥ 6;
• (5, 5, 2);.
• (3, 3, 4).

We can assume, without loss of generality, that m0 ≤ m1. Hence, to build
a crosscap, we only need to multiply by k = m1 −m0 + 1 one of the edges
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between two adjacent vertices of the boundary component of typem
(4)
0 . These

two vertices will have then valency m1 and after identification of opposites
pairs we will get two vertices of type m = m1 +m0− 2. The other boundary

component of the annulus, and of type m
(4)
1 , remains as before and without

any changes can be glued to any of the other blocks.

k

Figure 4. Adjustment of one the boundary components of the
annulus and identification of opposite vertices.

This method also works for annuli with more than 4 vertices, if the number
of black (and white) vertices is even. Instead of multiplying by k = m1 −
m0 + 1 just one of the edges between consecutive vertices, we multiply by
k a suitable number of edges between consecutive disjoint pairs of vertices,
in order to change the valency of half of the boundary vertices (leaving the
other half unchanged). Hence, any annulus with vertices of the same valency
in one boundary component can be easily adapted to become a crosscap by
identifying opposite points on that boundary, if the number of white vertices
and the number of black vertices are even (see Figure 4). This procedure will
be called the standard method.

4.2.2. Annnuli with boundary components of type
(m0− 1,m0,m0,m0) and (m1 + 1,m1,m1,m1). This corresponds to the case:

• (m,m, n+ 1) with m ≥ 5, odd n+ 1 ≥ 5;

The previous method does not work here because not all the vertices on the
boundary components have the same valency. Hence, we need to change the
annulus used in the orientable case by taking a less standard approach.

To construct a new map A on the annulus, we use a tessellation of R =
[0, 4] × [0, n − 3] with vertices of the form (i, j) with j ∈ {0, n − 3}, i ∈
{0, 1, 2, 3, 4} and of the form (i, j), with j ∈ {1, 2, ..., n − 4}, i ∈ {2, 3}. If
i+j is odd, the vertex is white, otherwise it is black. The consecutive vertices
for j = n − 3 and j = 0 are linked by an horizontal edge, except (0, 0) and
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(0, 1) that are linked by two edges. For i ∈ {2, 3}, the vertices (i, j) are
attached to vertices (i, j + 1), for j ∈ {0, ..., n− 5}, by a vertical edge. And
for j ∈ {1, ..., n − 5} there is a horizontal egde between vertices (2, j) and
(3, j). Between (2, n − 4) and (3, n − 4) the horizontal edge is multiplied
by two. We then insert a white vertex in the face of valency 2n + 2 joined
by an edge to the black vertex at (1, n − 3). At each white vertex of the
form (2, 1), (2, 3), ..., (2, n − 5) we attach a stalk of length n − 3, with all
interior vertices of valency m, within the incident square face i < x < i+ 1,
j < y < j+1; at each black vertex of the form (3, 1), (3, 3), ..., (3, n−5) we also
attach a stalk of length n− 3, with all interior vertices of valency m, within
the incident square face i− 1 < x < i, j − 1 < y < j. It follows that each of
the initial square faces has now valency 2(n+1). This annulus is represented
in Figure 5, with stars instead of stalks of length n − 3. Before identifying
the vertical sides of the rectangle, we conveniently multiply the horizontal
edges to have all interior vertices of valency m and boundary components of
type (m1 + 1,m1,m1,m1), as in the orientable case (so that we can glue the

other building blocks to the annulus), and of type m
(4)
0 (so that we can apply

the standard method). This new map is used just once (to build a crosscap).
The other annuli of our constructions remain as before (as on the orientable
case).

*

n-3

n-4

0

1

0 1 2 3 4

*

2n+2

**

Figure 5. Annulus map for the odd nonorientable case (before
multiplication of horizontal edges), with vertical sides of the rec-
tangle identified.

4.2.3. Annnuli with boundary components of type 3(6) and (m − 1)(6). This
corresponds to the cases:
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• (m,m, 3) with m ≥ 5;
• (4, 4, 3).

Case (m,m, 3) with m ≥ 5: Because, in the orientable case [4], we have
six vertices in each boundary component of the building blocks, we cannot
use the same method as before since we can only identify vertices of the
same colour and here we have an odd number of black vertices (three black
vertices) and an odd number of white vertices (three white vertices). We will
have to build new blocks with eight vertices in the boundary components.

To build A we take the rectangle [0, 1] × [0, 8] ⊂ R2, tesselated by eight
squares. The vertices, as in the previous example, are the integer points (i, j),
coloured black or white as i+j is even or odd, joined by edges along the sides
and from (0, j) to (1, j) for j = 1, ..., 8. We then identify the horizontal sides
y = 0 and y = 8 and we multiply four of the vertical edges: x = 1, 1 ≤ y ≤ 2,
3 ≤ y ≤ 4, 5 ≤ y ≤ 6 and 7 ≤ y ≤ 8 by m− 4. This means that in one of the
sides we are multiplying alternate edges leaving the other ones unaltered. To
increase the valency of the faces and make them of valency 6 (corresponding
to hyperfaces of valency 3) we also need to add a stalk of length 1 (in fact,
just an edge and a vertex) at each of the six vertices with x = 1, those on
the right side of the rectangle, in the 4-gonal face below and to the left of the
vertex. Thus we get eight faces of valency 6 and the rest of valency 2, as can
be easily checked with the help of Figure 6. All the six internal vertices are
of valency 1 and because of that they do not interfere with the type of our
final hypermap. Hence, all we had to do with the annulus (for the orientable
case) was to add two more squares, with stalks, at the bottom (or at the
top).

Since the number of vertices at the boundary components of the annulus
has changed on both sides, we also need to change the other building blocks
so that we can glue them and achieve the required hypermap type. For
instance, to construct a new map on the 2-trisc, we take another rectangle
[0, 2] × [0, 8] ⊂ R2, with opposite sides identified. The vertices are again
at the integer points (i, j), coloured black or white as i + j is even or odd
but, this time, we add four more vertices: two black vertices at (1/3, 2) and
(1/3, 4), and two white vertices at (2/3, 2) and (2/3, 4). There are vertical
edges between (i, j) and (i, j + 1) for i = 0, 1 and j = 0, ..., 7 with those
between (i, 1) and (i, 2) multiplied by m − 3. The horizontal edges are the
ones between (i, j) and (i + 1, j) for i = 0 and j = 0, 3, 6, and for i = 1 and
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m-4

m-4m-4

m-4

m-4

Figure 6. Annulus for the nonorientable case.

j odd. We also have edges between (0, 2) and (1/3, 2), (1/3, 2) and (2/3, 2),
(2/3, 2) and (1, 2). Some of these, the ones between (1, 7) and (2, 7), and the
ones between (1/3, 2) and (2/3, 2), are multiplied by m − 2. At the same
time, we have edges between (0, 0) and (1, 0), (0, 1) and (0, 2), (1, 1) and
(1, 2), (1, 3) and (2, 3), multiplied by m − 3. We then remove two 6-gonal
faces, the ones given by 0 < x < 1 for 0 < y < 2 and 4 < y < 6, keeping
seven faces of valency 6 (see Figure 7). With these changes, the annulus and
the 2-trisc will have both boundary components of types 3(8) and m− 1(8).

Case (4, 4, 3): We use the same 2-trisc as before (for nonorientable hyper-
maps of type (m,m, 3) with m ≥ 5) but with a different annulus since the
other one does not work for low m = 4 (this new annulus, represented in
Figure 8, is the same as in the orientable case but with two more steps than
the original ladder): we take a rectangle [0, 2]× [0, 8] ⊂ R2, with vertices at
the integer points (i, j), coloured black or white as i+ j is even or odd. The
edges are along the sides, and also from (i, j) to (i + 1, j), for i = 0, 1 and
j = 0, ..., 8, so that the rectangle is tessellated by six faces, all of valency 6.

4.2.4. Annnuli with both boundary components of type (2, 2, 3, 3, 2, 2, 3, 3).
This corresponds to the following case:

• (3, 3, n) for even n ≥ 6;
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m-2

m-3

m-3 m-3

m-3

m-2

3 (8) m-1(8)

Figure 7. 2-trisc for hypermaps of type (m,m, 3) in the nonori-
entable case.

Figure 8. Annulus for hypermaps of type (4, 4, 3) in the nonori-
entable case.
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Although we have already built an annulus with an even number of vertices
on a boundary component, it is not possible to adapt it for the nonorientable
case (and construct a crosscap) using the standard method because we cannot
identify opposite vertices of the same colour and, at the same time, join all
vertices of order 2 with vertices of order 3. The reason is that we need to have
four vertices in each half of the boundary circle (to identify opposite sides of
the boundary), and because the valency sequence must be respected, vertices
of valency 2 would be identified with vertices of valency 2, while vertices of
valency 3 would be identified with others of valency 3. This problem can
be solved by introducing four more vertices in each boundary component of
the annulus. Hence, instead of two copies of the rectangle described in the
orientable case, we will take three copies of it, one for 0 ≤ x ≤ 4, another
for 4 ≤ x ≤ 8 and finally one for 8 ≤ x ≤ 12 (see Figure 9). This new
annulus has boundary components for y = 0 and y = 2n − 6 with type
(2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3). It follows that we can identify opposite sides
of one of the boundary components, if the vertices are regularly distributed
along the border, to get six vertices of valency 4 in a crosscap.

We also need to build a new 2-trisc. For each even n, let Rn be a bipartite
map on the rectangle [0, 4]× [0, 2n−6] ⊂ R2. This bipartite map (see Figure
10) has vertices at the points: (0, j), (1, j), (4, j) for j ∈ {n− 4, ..., 2n− 6} ∪
{0}, and at (2, j), (3, j) for j ∈ {0, ..., n− 1} ∪ {2n− 6}. The vertices (i, j)
are black or white if i+ j is even or odd, respectively. Because we want some
of them to be adjacent we introduce some horizontal and vertical edges in
the rectangle.

Horizontal:

(i, j)× (i+ 1, j) for j ∈ {0, 2n− 6} and i ∈ {0, ..., 3}
(0, j)× (1, j) for j ∈ {n+ 1, ..., 2n− 7} ∪ {n− 4}

(2, j)× (3, j) for j ∈ {1, ..., n− 6} ∪ {n− 1}
(i, j)× (i+ 1, j) for j ∈ {n− 3, n− 2} and i ∈ {1, 3}

Vertical:

(i, j)× (i, j + 1) for j ∈ {n− 4, ..., 2n− 7} and i ∈ {0, 1, 4}
(i, j)× (i, j + 1) for j ∈ {0, ..., n− 1} and i ∈ {2, 3}

These edges enclose 2n− 7 faces: 2n− 11 square faces, two faces of valency
2n and two faces of valency 12.
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2n

2n

2n

2n

2n

2n

2

2

2

2 3

2

23

3 3

3

3

Figure 9. Annulus map and the identification of opposite ver-
tices in one of its boundary components.

To obtain a bipartite map on the torus, we identify opposite sides in the
usual way: (4, y) = (0, y) for 0 ≤ y ≤ 2n − 6 and (x, 2n − 6) = (x, 0) for
0 ≤ x ≤ 4. All the vertices have valency 3, at this stage. To build a 2-trisc
T we need to remove two discs. We can do this by removing two of those
(non-adjacent) faces, in this case, the two faces of valency 8. The map on
the 2-trisc, Tn, has now 2n− 7 square faces and two 2n-gonal faces. The two
boundary components of Tn both have type (2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3).

Here, we have also to make important changes in the disc Dn: for each
even n ≥ 6, we construct a tessellation Dn of a closed disc D, with boundary
type (2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3). We achieve this by starting with a dodeca-
hedron, regarded as a bipartite map on D with one face and with 12 vertices
and 12 edges on ∂D. Then, we give consecutive numbers to consecutive ver-
tices, starting with 1 in a black vertex and following a clockwise direction.
Edges are added between vertices 1 and 4, and between vertices 5 and 12.
This creates two faces of order 4 and one face of order 8. Inside of this
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n-2

n-3

n-4

n-1

0

2n-6

Figure 10. 2-trisc map with boundary components of type
(2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3).

face of order 8 we place a new white vertex adjacent to black vertex number
9 and we built a stalk of length n − 5, attached to vertex 8, and with all
interior vertices of order 3 or 1. Hence that face has changed its order to
8 + 2 + 2(n− 5) = 2n (see Figure 11 for n = 8).

2

2

2

2 3

2

23

3 3

3

3

Figure 11. Disc map with boundary component of type
(2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3) for n = 8.

4.2.5. Annuli with both boundary components of types 6(3) and (2m− 4)(3). .
This corresponds to the following case:

• (3, 3,m) for odd m ≥ 5.
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In order to build the required orientable hypermap of type (3, 3,m), for
odd m ≥ 5, the following method was addopted [4]: we have constructed
a 2-face colourable map of type {3, 2m}, and then we have taken the dual
of that map. By doing that, the vertices have become faces and the faces
have become vertices. Because the original map was 2-face colourable, we
could conclude that the dual was bipartite. For the nonorientable case we
will follow the same idea.

Since the number of vertices in each boundary component of the annulus
(in the orientable case [4]) is odd, we need to add new vertices, so that we can
build a crosscap. On the boundary with valency sequence (2m−4)(3), we add
three new vertices, each one of them between different pairs of consecutive
vertices, subdividing the edge that joins them, and we add an extra edge to
connect the vertices in each of those pairs, creating new faces of order 3. We
will show how we can do that for the case m = 5. The other cases are just
easy adaptations of this one. In the new annulus we will have boundaries of
types (2m, 2, 2m, 2, 2m, 2, 2m, 2) and (4, 6, 6), while still preserving a 2-face
colourable map (see Figure 12, with vertical sides identified). Identifying
opposite vertices of the boundary of type (2m, 2, 2m, 2, 2m, 2, 2m, 2), we will
get a crosscap with interior vertices of valency 2m+ 2− 2 = 2m. Hence the
faces of the final bipartite Walsh map will have valency 2m, corresponding
to hyperfaces of valency m. However, adding new vertices in one of the
boundaries of the old annulus also requires small adjustments in the map that
affect the type of the other boundary. To be able to glue annuli and 2-triscs,
and still have the required type in the final hypermap, we need to build new
building blocks. In Figures 13, 14 and 15 we represent them for m = 5. The
annuli in Figures 13 and 14 have boundaries of types (8, 6, 6) and (4, 6, 6),
and of types (4, 6, 6) and (8, 6, 6), respectively. The 2-trisc in Figure 15
(where the two light grey faces are removed and opposite edges are identified)
has boundaries of types (8, 6, 6) and (8, 6, 6). All the interior vertices have
order 10. With those building blocks we can get the required constructions
because conveniently gluing a boundary of type (8, 6, 6) with a boundary of
type (4, 6, 6) will give rise to vertices of valency 8 + 4− 2 = 6 + 6− 2 = 10.

4.2.6. Annnuli with boundary components of type (4,m − 1, 2, 3). This cor-
responds to the case:

• (4, 4, n) with odd n ≥ 5.



NONORIENTABLE HYPERMAPS OF A GIVEN TYPE AND GENUS 17

1 2 3 4 5 60
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Figure 12. Map to build a crosscap for m = 5.

1 2 3 4 5 60
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Figure 13. Annulus 1 for m = 5.
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Figure 14. Annulus 2 for m = 5.
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Figure 15. Map to build a 2-trisc for m = 5.
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No adaptations are needed. We can identify opposite sides (identifying
opposite vertices of the same colour) of one of the boundary components of
the annulus without making any changes, since we get two vertices, one black
of order m and one white of order 4. Because the hyperfaces have all valency
4, the map will have type (n, 4, n) and, by a Machi operation [3], we can get
a hypermap of type (4, 4,m) from that one.

This completes the proof of Theorem 4.1. �
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