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Universidade de Coimbra
Preprint Number 17–58

OPTIMAL REGULARITY FOR RUPTURE SOLUTIONS
OF THE INFINITY LAPLACE EQUATION

WITH SINGULAR ABSORPTIONS

DAMIÃO J. ARAÚJO AND JOSÉ MIGUEL URBANO

Abstract: We consider the nonvariational singular equation, governed by the in-
finity Laplacian,

−∆∞u = u−γχ{u>0}, γ > 1

and obtain optimal C0,αγ local regularity estimates for nonnegative viscosity solu-
tions, where

αγ =
4

3 + γ
.

Through a singular penalized approach, we further obtain the existence of minimal
solutions, show they are nondegenerate and derive important geometric properties
for the free boundary R(u) = ∂{u > 0}, the so-called rupture set.

Keywords: Infinity Laplacian, singular absorption, viscosity solutions, sharp reg-
ularity, free boundary.
AMS Subject Classification (2010): Primary 35B65. Secondary 35J60, 35J75,
35D40.

1. Introduction
In this paper, we investigate fine analytic and geometric properties for a

nonvariational elliptic equation with singular absorption terms, governed by
the infinity Laplace operator

∆∞u :=
∑
ij

DijuDiuDju.

In the last decades, this type of highly degenerate operator has received
a great deal of attention. Infinity harmonic functions, i.e., solutions of the
homogeneous equation ∆∞u = 0, are related to the best Lipschitz extension
of a given boundary datum [4, 5, 6] but also with models that describe random
tug-of-war games [16], among other applications. Existence and uniqueness
results for viscosity solutions of the homogeneous Dirichlet problem are well
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established but the regularity of infinity harmonic functions remains one of
the most challenging issues in the modern theory of nonlinear pdes. It is
known that solutions are locally Lipschitz, and C1 and C1,α regularity holds
in the plane [19, 10]. Differentiability everywhere has been proven in any
dimension [11] but even the C1 regularity is open. The two dimensional
infinity harmonic function

x4/3 − y4/3, (x, y) ∈ R2

provided by Aronson in the nineteen sixties suggests the optimal regularity
may be that infinity harmonic functions have Hölder continuous first order
derivatives with exponent 1/3.
For the inhomogeneous infinity Laplace equation

∆∞u = f(x) ∈ L∞,

existence and uniqueness of viscosity solutions of the Dirichlet problem have
been established in [15] under the sign condition inf f > 0 (or sup f < 0).
For a bounded source term f , solutions are still Lipschitz continuous and
everywhere differentiable [14] but no further regularity is hitherto known.
For the infinity-obstacle problem, it is shown in [18] that solutions grow at
the sharp rate 4/3 near the contact set. Recently, it was shown in [1] that
nonnegative viscosity solutions of the nonsingular dead-core equation

∆∞u ∼ uθ+, for 0 ≤ θ < 3

are surprisingly smooth along the boundary of the noncoincidence set ∂{u >
0}. The critical case θ → 3 was also considered and a strong maximum
principle was shown to hold. For an optimization problem with free boundary
involving the infinity Laplacian, see [20].
The main purpose of this article is to investigate qualitative properties of

nonnegative viscosity solutions of the nonvariational singular elliptic equation

−∆∞u = u−γχ{u>0} in Ω, (1.1)

for a bounded domain Ω ⊂ Rn and a given parameter of singularity γ >
1. This type of singular equations appears in the context of a simplified
stationary model for the thickness u ≥ 0 of a certain thin film. The a priori
unknown set

R(u) := ∂{u > 0}
is usually called the set of ruptures.
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The singular variational setting, corresponding to the Laplacian, has been

studied in [8, 12] and in [9], where the local C0, 2
1+γ optimal regularity has been

established. In this case, the diffusion process for u is modelled by rating the
average value of u around a certain point. On the contrary, equation (1.1)
models such diffusion process by evaluating the average in the direction of
maximum/minimum growth of the solution itself.
Our first main result, obtained in section 2, asserts that viscosity solutions

of (1.1) are locally C0,αγ for the precise optimal Hölder exponent

αγ :=
4

3 + γ
. (1.2)

The optimality of the exponent αγ is confirmed by the radial example Cγ |x|αγ ,
where Cγ is a positive constant depending only on γ. In the proof, we have
to deal with the fact that the second order operator ∆∞ diffuses only in
the direction of the gradient, which changes at each point. Simultaneously,
the source term blows up along the rupture set, which further conspires to
turning the study of universal geometric and analytic properties near R(u) a
quite delicate issue. To the best of our knowledge, this is the first attempt at
both studying the infinity Laplace equation with an unbounded right-hand
side and of using Ishii-Lions theory to obtain optimal regularity results for
this particularly degenerate nonlinear pde, an innovative approach bound to
have a wide applicability. We have to emphasise here the right flavour of
our optimal exponent (1.2) in the context of the infinity Laplacian regularity
theory.
In section 3, we start with a brief setup for the penalised singular approach,

showing, using Perron’s method, the existence of approximating minimal so-
lutions for the related Dirichlet problem. We then pass to the limit, obtaining
a solution of the singular equation (1.1) with a fixed boundary datum. Fur-
thermore, for such solutions, we we obtain the porosity of the rupture set
R(u) and provide a precise upper/lower control away from it, i.e., we show
that, for x ∈ {u > 0},

C−1 dist(x,R(u))
4

3+γ ≤ u(x) ≤ C dist(x,R(u))
4

3+γ .

Notation. Throughout the paper, Ω will be a bounded domain in Rn,
Br(x) ⊂ Rn denotes the open n-dimensional ball with radius r > 0 centred
at x ∈ Rn, and Br := Br(0). For a compact set K ⊂ Ω, we define dist(K, ∂Ω)
to be the distance, in the usual sense, between K and the boundary of Ω,



4 ARAÚJO AND URBANO

denoted by ∂Ω. For a setO ⊂ Rn, Ln(O) denotes the n-dimensional Lebesgue
measure. For a function v : Ω → R and a real number ι, we set {v > ι} :=
{x ∈ Ω : v(x) > ι}.

2. Sharp regularity estimates
The first main result we derive is the local optimal regularity for nonnega-

tive viscosity solutions of (1.1), for each parameter γ > 1. The proof makes
use of pointwise estimates for interior maxima of viscosity solutions, an ar-
gument also known as Ishii-Lions method (see [13]). We start by defining an
appropriate notion of viscosity solution for equation (1.1) but first we recall
the notion of jets from [7].
Let u : Ω → R and x̂ ∈ Ω. The second-order superjet of u at x̂, J2,+

Ω u(x̂),
is the set of all ordered pairs (p,X) ∈ Rn × S(n) such that

u(x) ≤ u(x̂) + ⟨p, x− x̂⟩+ 1

2
⟨X(x− x̂), x− x̂⟩+ o

(
|x− x̂|2

)
,

as Ω ∋ x → x̂. The subjet is defined by J2,−
Ω u(x̂) = −J2,+

Ω (−u)(x̂).

Definition 2.1. An upper semicontinuous function u : Ω → R is a viscosity
subsolution of (1.1) if, for each x ∈ Ω and all (M, ξ) ∈ J2,+

Ω v(x), we have{
−⟨Mξ, ξ⟩ − u(x)−γ ≤ 0 if u(x) > 0

−⟨Mξ, ξ⟩ ≤ 0 if u(x) ≤ 0.

A lower semicontinuous function u : Ω → R is a viscosity supersolution of
(1.1) if, for each y ∈ Ω and all (M, ξ) ∈ J2,−

Ω v(y) , we have{
−⟨Mξ, ξ⟩ − u(y)−γ ≥ 0 if u(y) > 0

−⟨Mξ, ξ⟩ ≥ 0 if u(y) ≤ 0.

We say u : Ω → R is a viscosity solution of (1.1) if it is both a viscosity
solution and a viscosity supersolution.

We can now state the main theorem of this section.

Theorem 2.2 (Optimal regularity). A nonnegative viscosity solutions u of
(1.1) is locally of class C0,αγ(Ω), for

αγ :=
4

3 + γ
.
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Moreover, there exists a universal constant C > 0, depending only on n, γ
and dist(x0, ∂Ω), such that

sup
Br(x0)

|u(x)− u(y)|
rαγ

≤ C,

for 0 < r ≪ dist(x0, ∂Ω).

Pointwise estimates for interior maxima. We start preparing the proof
of the theorem by deriving pointwise estimates involving the intrinsic struc-
ture of the infinity Laplacian operator at interior maximum points of a certain
continuous function.

Lemma 2.3 (Ishii-Lions type estimate). Let v ∈ C(B1), 0 ≤ ω ∈ C2(R+)
and put

w(x, y) := v(x)− v(y) and φ(x, y) := Lω(|x− y|) + κ
(
|x|2 + |y|2

)
,

with L, κ positive constants. If the function w − φ attains a maximum at
(x0, y0) ∈ B 1

2
× B1

2
, then, for each ε > 0, there exist Mx,My ∈ S(n), such

that

(Dxφ(x0, y0),Mx) ∈ J
2,+
B1/2

v(x0) and (−Dyφ(x0, y0),My) ∈ J
2,−
B1/2

v(y0),

(2.1)
and the estimate

⟨MxDxφ(x0, y0), Dxφ(x0, y0)⟩ − ⟨MyDyφ(x0, y0), Dyφ(x0, y0)⟩

≤ 4Lω′′(ρ) (Lω′(ρ) + κρ)
2
+ 16κ

(
L2ω′(ρ)2 + κ2

)
(2.2)

holds, where ρ = |x0 − y0|.

Proof : Under the hypothesis of the lemma, let us consider (x0, y0) ∈ B 1
2
×B 1

2

a local maximum of w−φ. By [13, Theorem 3.2], for each ε > 0, there exist
matrices Mx,My ∈ S(n) such that (2.1) holds and(

Mx 0
0 −My

)
≤ A+ ϵA2

for

A :=

(
Mω −Mω

−Mω Mω

)
+ 2κ I2n×2n,
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where

Mω := Lω′′(|x0 − y0|) (x0−y0)⊗(x0−y0)
|x0−y0|2 + Lω′(|x0−y0|)

|x0−y0|

(
I − (x0−y0)⊗(x0−y0)

|x0−y0|2

)
.

(2.3)
In particular, we have

⟨MxDxφ(x0, y0), Dxφ(x0, y0)⟩ − ⟨MyDyφ(x0, y0), Dyφ(x0, y0)⟩
≤ ⟨Mω(Dxφ(x0, y0)−Dyφ(x0, y0)), Dxφ(x0, y0)−Dyφ(x0, y0)⟩

+ 2κ
(
|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2

)
+ ϵλ (2.4)

where

λ := ⟨A2 (Dxφ(x0, y0), Dyφ(x0, y0)) , (Dxφ(x0, y0), Dyφ(x0, y0))⟩.
Now, for ν := x0−y0

|x0−y0| , we have

Dxφ(x0, y0) = Lω′(ρ)ν + 2κx0 and −Dyφ(x0, y0) = Lω′(ρ)ν − 2κy0

and thus Dxφ(x0, y0)−Dyφ(x0, y0) = ι(x0 − y0), with

ι = 2(Lω′(ρ)ρ−1 + κ).

It then follows from (2.3) that

⟨Mω(Dxφ(x0, y0)−Dyφ(x0, y0)), Dxφ(x0, y0)−Dyφ(x0, y0)⟩
= ι2⟨Mω(x0 − y0), (x0 − y0)⟩ = ι2Lω′′(ρ)ρ2

= 4Lω′′(ρ) (Lω′(ρ) + κρ)
2
. (2.5)

Moreover, observe that

|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2 = 2L2ω′(ρ)2 + 4Lκω′(ρ)ρ+ 4κ2(|x0|2 + |y0|2).
Using Cauchy’s inequality, we estimate

4Lκω′(ρ)ρ ≤ (2Lω′(ρ))2

2
+

(2κρ)2

2
= 2L2ω′(ρ)2 + 2κ2ρ2

to get

|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2 ≤ 4L2ω′(ρ)2 + 2κ2ρ2 + 4κ2(|x0|2 + |y0|2).
Since max{|x0|, |y0|, ρ} ≤ 1/2, we obtain

|Dxφ(x0, y0)|2 + |Dyφ(x0, y0)|2 ≤ 4(L 2ω′(ρ)2 + κ2). (2.6)

Finally, if λ > 0, choose

ϵ =
8κ

(
L2ω′(ρ)2 + κ2

)
λ

,



THE ∞-LAPLACE EQUATION WITH SINGULAR ABSORPTIONS 7

otherwise choose ϵ freely. Using (2.5) and (2.6) in (2.4), together with this
choice of ϵ, we obtain (2.2) and the proof is complete.

Building Barriers. Here, we shall derive a certain ordinary differential
estimate which allows us to import geometric properties of the solutions of
the ODE

ω′′(t)(ω′(t))2ω(t)γ ≈ 1

to solutions of the singular equation (1.1). First, we consider the family of
functions {ωγ}γ>1, given by

ωγ(t) = tαγ , 0 < t ≪ 1, (2.7)

where αγ =
4

3+γ < 1. Then, for each L > 0, we define the differential operator

LL[θ] := aL3θ′′θ′ 2 + bL2θ′ 2 + d,

for positive parameters a, b and d, all to be chosen universally in the course
of the proof of Theorem 2.2.

Proposition 2.4. Given a constant K > 0, there exists LK ≫ 1, depending
only on K, a, b, d and γ, such that

Lγωγ(t)
γLL[ωγ](t) < −K, (2.8)

for all L ≥ LK.

Proof : Initially, by a simple computation, we obtain

ωγ(t)
γLL[ωγ](t) = a(αγ − 1)α3

γL
3t2(αγ−1)+(αγ−2)+γαγ

+ b α2
γL

2t2(αγ−1)+γαγ + d tγαγ .
(2.9)

Hence, by taking into account that

2(αγ − 1) + (αγ − 2) + γαγ = 0

and

2(αγ − 1) + αγγ > 0,

we get

Lγωγ(t)
γLL[ωγ](t) ≤ −ãL3+γ + b̃L2+γ + dLγ

for positive constants ã, b̃, d. Therefore, for a fixed K > 0, we may select
LK ≫ 1 such that estimate (2.8) holds for every L ≥ LK .
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Proof of Theorem 2.2. For the sake of clarity, we restrict to the simplest
case Ω = B1. It suffices to show that there exist positive universal parameters
L, κ such that

sup
B1/2×B1/2

{
u(x)− u(y)− Lωγ(|x− y|)− κ(|x|2 + |y|2)

}
≤ 0 (2.10)

for ωγ defined in (2.7). Indeed, take y = 0 in (2.10) to get, for all x ∈ B1/2,

u(x)− u(0) ≤ Lωγ(|x|) + κ|x|2 ≤ L|x|αγ + κ|x|2 ≤ C|x|αγ ,

since αγ < 2. On the other hand, taking x = 0 in (2.10) we also get, for all
y ∈ B1/2,

u(0)− u(y) ≤ C|y|αγ

and so

sup
B1/2

|u(x)− u(0)|
|x− 0|αγ

≤ C.

Let us then suppose, for the sake of contradiction, that there exists a point
(x0, y0) ∈ B1/2 ×B1/2 such that

u(x0)− u(y0)− Lωγ(η)− κ(|x0|2 + |y0|2) > 0, (2.11)

for η := |x0 − y0|. We can assume it is a point of maximum. It immediately
follows from (2.11) that x0 ̸= y0 and

κ(|x0|2 + |y0|2) ≤ 2∥u∥L∞(B1). (2.12)

In order to guarantee that x0, y0 are interior points in B1/2, take κ sufficiently
large in (2.12), such that

κ ≥ 8∥u∥L∞(B1).

Now, since ωγ is twice continuously differentiable in a neighborhood of η =

|x0 − y0| > 0, Lemma 2.3 guarantees the existence of (ξx,Mx) ∈ J
2,+
B1/2

u(x0)

and (ξy,My) ∈ J
2,−
B1/2

u(y0) satisfying

⟨Mxξx, ξx⟩ − ⟨Myξy, ξy⟩ ≤ aL3ω′′
γ(η)ω

′
γ(η)

2 + b L2ω′
γ(η)

2 + d
= LL[ωγ](η),

(2.13)

for universal positive parameters a, b and d. The estimate follows from the
fact that ω′′

γ(η) < 0, see (2.7). Also, by (2.13) and Proposition 2.4, given
K = 1, there exists L∗ ≫ 1, such that

Lγωγ(η)
γ (⟨Mxξx, ξx⟩ − ⟨Myξy, ξy⟩) < −1 (2.14)

for all L ≫ L∗.
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On the other hand, using (2.11), we conclude that

u(x0) ≥ u(x0)− u(y0) > Lωγ(η) > 0. (2.15)

We now split the analysis into two cases. If u(y0) > 0, according to (2.1),
(2.14) and Definition 2.1, we obtain

Lγωγ(η)
γ
(
−u(x0)

−γ + u(y0)
−γ
)
< −1.

Therefore, u(y0)
−γ < u(x0)

−γ, which contradicts (2.15).

b

ρ∼∥u∥L∞

x0 b

b
y0

ρ

max. points

u>0 u>0u=0

rupture setnonsingular point

b

R(u)

Figure 1. Influence of maximum points in the behavior of the
solution u close to the rupture set R(u).

If u(y0) = 0, by Definition 2.1, we have

− Lγωγ(η)
γu(x0)

−γ < −1. (2.16)

Since, by (2.15), u(x0) > Lωγ(η), we again get a contradiction. The proof is
complete. □

3. A penalized singular approach
In this section, we consider, for each parameter ε > 0, the perturbed free

boundary problem {
−∆∞ u = βγ

ε (u) in Ω
u = f on ∂Ω,

(Pε)

for a fixed nonnegative continuous boundary datum f in ∂Ω. Here, βγ
ε :

[0,∞) → [0,∞) is the continuous function

βγ
ε (t) :=

 t−γBγ
ε (t) if t > 0

0 if t = 0,
(3.1)



10 ARAÚJO AND URBANO

where

Bγ
ε (t) :=

∫ tε−αγ−κ0

0

ζ(s) ds,

for a normalized function 0 ≤ ζ ∈ C∞
0 ([0, 1]), satisfying

∫ 1

0 ζ(s) ds = 1, a
positive constant κ0 ≪ 1 and αγ given in (1.2). Such choices are justified in
order to preserve the intrinsic scaling features of the equation.

βγ
ε

κ0ε
αγ εαγ

t−γ

Bγ
ε

1

κ0ε
αγ εαγ

Figure 2. The penalization scheme given by βγ
ε (t) = t−γBγ

ε (t).

According to [2, 17], the existence of minimal Perron solutions holds for a
more general class of degenerate pdes with prescribed boundary datum.

Theorem 3.1 ([2, Thm. 2.1]). Let g : [0,∞) → R be a bounded and uni-
formly Lipschitz function. Assume the operator H : Rn ×S(n) → R satisfies
the monotonicity assumption

H(ξ,N) ≤ H(ξ,M), for any ξ ∈ Rn and M ≤ N.

Assume also a priori C0,α estimates for viscosity solutions of H(∇v,D2v) =
h(x) ∈ L∞(Ω) and that the equation

H(∇v,D2v) = g(v) in Ω (3.2)

admits a continuous viscosity subsolution u⋆ and a continuous viscosity su-
persolution u⋆, with u⋆ = u⋆ = f ∈ W 2,∞(∂Ω). Then the function

u(x) := inf
v∈P

v(x) (3.3)

is a continuous viscosity solution of (3.2) and satisfies u = f in ∂Ω, where

P := {v ∈ C(Ω) | v is a supersolution of (3.2) and u⋆ ≤ v ≤ u⋆}.
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As a consequence of Theorem 3.1, we guarantee, for each fixed ε > 0,
the existence of a Perron solution for (Pε) by selecting a subsolution and a
supersolution of (Pε), denoted by u⋆ and u⋆ respectively, satisfying

−∆∞ u⋆ = sup
R+

βγ
ε and −∆∞ u⋆ = 0 in Ω, (3.4)

with boundary data u⋆ = u⋆ = f ∈ ∂Ω. Hereafter, we denote with uε the
nonnegative Perron solution of problem (Pε) given by (3.3), which satisfies

0 ≤ u⋆ ≤ uε ≤ u⋆ ≤ ∥f∥L∞(∂Ω).

Uniform in ε estimates for the solutions uε will be discussed in subsection 3.1,
allowing us to obtain the existence of solutions to the genuine free bound-
ary problem (1.1), as well as some geometric properties, to be addressed in
subsection 3.2.

3.1. Optimal growth estimates. We start with a, uniform in ε, sharp in-
terior upper bound for viscosity solutions of (Pε). This leads to the equiconti-
nuity of the family {uε}ε>0, allowing the passage to the limit in (Pε) to obtain
a solution of the singular free boundary problem (1.1), to be addressed in
Section 3.2.

Theorem 3.2. Given Ω′ ⋐ Ω, there exists a positive constant C, depending
on dist(Ω′, ∂Ω), ∥f∥∞, γ and dimension, but independent of ε, such that, for
each solution uε of problem (Pε), there holds

sup
Br(x0)

|uε(x)− uε(y)|
rαγ

≤ C,

for each x0 ∈ Ω′ and 0 < r ≪ dist(Ω′, ∂Ω).

Proof : Without loss of generality, we consider the simplest case x0 = 0, Ω =
B1 and Ω′ = B1/2. According to the argument used in the proof of Theorem
2.2, we assume, for the sake of contradiction, the existence of (xε, yε) ∈
B1/2 ×B1/2 such that

uε(xε)− uε(yε)− Lωγ(ηε)− κ(|xε|2 + |yε|2) > 0, (3.5)

where ηε := |xε − yε|, κ ≫ ∥f∥∞ ≥ ∥uε∥∞ and L > 0 is a constant to be
chosen.
By Lemma 2.3 and Proposition 2.4, there exists L∗ ≫ 1, independent of ε,

such that

−(Lωγ(ηε))
γβγ

ε (uε(xε)) ≤ (Lωγ(ηε))
γ(−βγ

ε (uε(xε))+βγ
ε (uε(yε))) ≤ −1 (3.6)
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for all L ≫ L∗. On the other hand, from (3.5), we have

uε(xε) ≥ uε(xε)− uε(yε) > Lωγ(ηε) > 0 (3.7)

and so, by (3.6),

− (Lωγ(ηε))
γuε(xε)

−γ = −∥Bγ
ε ∥∞(Lωγ(ηε))

γuε(xε)
−γ ≤ −1, (3.8)

and, again using (3.7),

− 1 < −(Lωγ(ηε))
γuε(xε)

−γ ≤ −1,

a contradiction; the proof is complete.

The next result establishes a lower bound for minimal solutions of the
penalized problem (Pε). Such nondegeneracy feature requires the existence
of a specific supersolution whose geometric properties will be confronted with
the minimality of the solution uε.
For a small positive parameter δ, consider the real continuous function

Φ := Φδ : [0,∞) → [0,∞), defined by

Φδ(t) =

 κ0 if 0 ≤ t ≤ δ

κ0 + Aγ (t− δ)αγ if t > δ,
(3.9)

where

Aγ :=

(
(3 + γ)4

43(γ − 1)

) 1
3+γ

. (3.10)

From now on, for each x ∈ B1, we consider Φδ(x) = Φδ(|x|). In particular,
for the sake of clarity in the arguments, we point out that

−∆∞Φδ(x) = −Φ′′
δ(|x|)(Φ′

δ(|x|))2.
We claim that Φδ satisfies, in the viscosity sense,

−∆∞Φδ ≥ β(Φδ) in B1, (3.11)

where β = βε for ε = 1. Indeed, in the region 0 ≤ |x| ≤ δ, we easily have

−∆∞Φδ(x) = 0 = β(Φ(x))

and (3.11) holds. For |x| > δ, we obtain

−∆∞Φδ(x) = (1− αγ)(Aγαγ)
3(|x| − δ)−γαγ

and
β(Φδ(x)) ≤ (κ0 + Aγ (|x| − δ)αγ)

−γ ≤ A−γ
γ (|x| − δ)−γαγ .
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Therefore, since
(1− αγ)(Aγαγ)

3 = A−γ
γ

due to the choice (3.10), we conclude that Φδ satisfies (3.11).

Theorem 3.3 (Strong nondegeneracy). For each point x ∈ {uε ≥ εαγ}, there
holds

sup
Br(x)

uε ≥
Aγ

2αγ
rαγ ,

for all 0 < r ≪ dist(x0, ∂Ω).

Proof : Without loss of generality, let us consider x = 0 ∈ {uε ≥ εαγ}. For
each ε > 0, we define the rescaled function

Φε
δ(x) := εαγΦδ(ε

−1x),

By (3.11), we observe that Φε
δ is a viscosity supersolution of

−∆∞v = βε(v) in B1

such that
Φε

δ ≥ Aγ(δε)
αγ on ∂B2δε and Φε

δ(0) = κ0ε
αγ . (3.12)

To prove the theorem, it suffices to show that, for each 0 < r ≪ 1 fixed,
we have uε(ξr) ≥ Φε

r/2ε(ξr), for some ξr ∈ ∂Br. Indeed,

sup
Br

uε ≥ sup
∂Br

uε ≥ uε(ξr) ≥ Φε
r/2ε(ξr) ≥ Aγ

(r
2

)αγ

=
Aγ

2αγ
rαγ .

Suppose, for the sake of contradiction, that

uε < Φε
r/2ε in ∂Br

and define

ϖε :=

{
min{uε,Φε

r/2ε} in Br

uε in Ω \Br.

Note that ϖε is a supersolution to (Pε) such that ϖε = uε in ∂Ω and it
is continuous since ϖε = uε on ∂Br due to the contradiction hypothesis.
However, by (3.12), we obtain

uε(0) ≥ εαγ > κ0ε
αγ = Φε

r/2ε(0) = ϖε(0),

which violates the minimality of uε.

Remark 3.4. We stress that the nondegeneracy constant 2−αγAγ only depends
on γ and is thus independent of ε.
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Corollary 3.5. Given Ω′ ⋐ Ω, there exists a constant C, depending on
dist(Ω′, ∂Ω) and universal parameters, but independent of ε, such that for
x ∈ {uε ≥ εαγ} ∩ Ω′ and 0 < r ≪ dist(Ω′, ∂Ω), there holds

C−1rαγ ≤ sup
Br(x)

uε ≤ Crαγ + uε(x).

For x ∈ Ω, let

dε(x) := dist (x, ∂{uε > εαγ}) .
We now show that for points close to the perturbed free boundary ∂{uε >
εαγ} the minimal solution uε grows at the optimal rate d

αγ
ε .

Theorem 3.6. There exist positive small constants C, d, depending on uni-
versal parameters, but independent of ε, such that

C−1 dε(x0)
αγ ≤ uε(x0) ≤ Cdε(x0)

αγ + εαε,

for each x0 ∈ ∂{uε > εαγ}, with dε(x0) ≤ d.

Proof : The upper estimate follows directly from Theorem 3.2.
We first prove the lower estimate for the case ε = 1. Put v := u1 and

suppose, for the sake of contradiction, that there exists a sequence xn ∈
∂{v > 1}, with dn := d(xn, ∂{v > 1}) −→ 0 as n → ∞, and

v(xn) ≤
1

n
dαγ
n . (3.13)

Set vn(y) :=
v(xn + dny)

d
αγ
n

and note that vn is a minimal solution of

−∆∞vn = v−γ
n B1/dn(vn), (3.14)

where B1/dn(s) = 0, for 0 ≤ s ≤ κ0 d
−αγ
n . By Theorem 3.2, for some universal

constant C > 0, there holds

vn(y) ≤ C|y|αγ + vn(0).

From (3.13), by taking n ≫ 1, we have vn(0) ≤ κ0

2 and so, for

|y| ≤ ρ :=
( κ0

2C

)1/αγ

,

we have vn(y) ≤ κ0 ≤ κ0 d
−αγ
n . Therefore, by (3.14), vn satisfies

−∆∞vn = 0 in Bρ.
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By Harnack’s inequality, for some universal C > 0, we have

sup
Bρ/2

vn ≤ C vn(0) −→ 0 as n → ∞,

which contradicts the nondegeneracy estimate of Theorem 3.3.
For the general case, we set

vε(y) :=
uε(x0 + εy)

εαγ
,

which is a minimal solution of −∆∞vε = v−γ
ε B1(vε). From the previous case,

for some universal constant c > 0, we obtain

vε(0) ≥ c dist(0, ∂{vε > 1})αγ = c (ε−1dε(x0))
αγ

and so uε(x0) ≥ c dε(x0)
αγ .

3.2. The limiting free boundary problem. Here, we address the genuine
free boundary problem (1.1), by letting ε → 0 in the penalized problem (Pε).
Such analysis provides an existence result as well as geometric and analytic
properties for the limit problem.
Due to Theorem 3.2, the family {uε}ε>0 is C

αγ -equicontinuous. Therefore,
up to a subsequence,

lim
ε→0

uε =: u0 ∈ C
4

3+γ

loc (Ω),

uniformly in ε. This implies that u0 solves the singular free boundary problem −∆∞u0 = u−γ
0 χ{u0>0} in Ω

u = f on ∂Ω.
(P0)

Indeed, for each x0 ∈ {u0 > 0} fixed, we set u0(x0) =: ι. By continuity, there
exists a small ρ > 0 such that

u0 ≥ ι/4 in Bρ(x0)

and so, since uε converges to u0 uniformly on compact sets, for ε ≪ 1, we
have

uε ≥ ι/8 ≥ (1 + κ0)ε
αγ in Bρ/2(x0).

Therefore, uε solves explicitly the equation −∆∞uε = u−γ
ε in Bρ/2(x0). By

the stability of viscosity solutions under uniform limits, we finally conclude
that u0 solves (P0).
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Due to Corollary 3.5 and the fact that uε converges locally uniformly to
u0 in Cαγ , we are able to obtain strong upper and lower bounds for limiting
solutions.

Theorem 3.7. There exists a a universal constant C such that, for each

x ∈ {u0 > 0} ∩ B1/2,

and 0 < r ≪ 1, there holds

C−1rαγ ≤ sup
Br(x)

u0 ≤ Crαγ + u0(x).

As a classical consequence of Theorem 3.7 (see [3] for more details) we
obtain that the free boundary R(u0) is locally a porous subset in B1.

Corollary 3.8. There exists a universal small number δ > 0 such that R(u0)
is a δ-porous set. More precisely, for all x ∈ R(u0) and 0 < r ≪ 1, there
exists y ∈ Br(x), such that

Bδr(y) ⊂ Br(x) \ R(u0).

Moreover, there exists a universal small constant c such that

Ln(Br(x) ∩ {u0 > 0})
Ln(Br(x))

≥ c > 0.

Finally, Theorem 3.6 provides one of the most important consequences of
the uniform convergence: the optimal growth rate for the limiting solution
u0, for points close to the singular set R(u0) := ∂{u0 > 0}. Here, we set
d0(x) := dist(x,R(u0)).

Theorem 3.9. There exist positive universally small constants C, d such that

C−1 d0(x0)
αγ ≤ u0(x0) ≤ Cd0(x0)

αγ ,

for each x0 ∈ {u0 > 0} with d0(x0) ≤ d.
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