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Abstract: We consider the Hamilton-Jacobi-Bellman system

∂tu−∆u = H(u,∇u) + f

for u ∈ RN , where the Hamiltonian H(u,∇u) satisfies a super-quadratic growth
condition with respect to |∇u|. Such a nonlinear parabolic system corresponds to
a stochastic differential game with N players. We obtain the existence of bounded
weak solutions and prove regularity results in Sobolev spaces for the Dirichlet prob-
lem.
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1. Introduction
The purpose of this paper is the study of the Hamilton-Jacobi-Bellman

system

∂tu−∆u = H(u,∇u) + f in Ω× (0, T ], (1.1)

u = 0 on ∂Ω× (0, T ], (1.2)

u(·, 0) = u0 in Ω, (1.3)

where u : Ω × [0, T ] → RN (N ≥ 1) is a vector valued function, Ω ⊂ Rd

(d ≥ 2) is a bounded domain with a C1,1-boundary, T <∞, and ∂t = ∂
∂t . We

assume the Hamiltonian has the form

H(u,∇u) = (g(∇u)− u) |∇u|q ,
where g ∈ RN is a bounded function and q > 2 may be arbitrarily large, and
thus satisfies a super-quadratic growth condition with respect to |∇u|.

This type of nonlinear parabolic system, for Hamiltonians with sub-qua-
dratic, quadratic or super-quadratic growth with respect to |∇u|, occur in
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the theory of stochastic differential games, portfolio theory, economic finance,
and geometry. An example of a simplified N -person game with a super-
quadratic Hamiltonian is given in Section 2.

Our goal is to prove the existence of bounded weak solutions u of the
system (1.1)–(1.3) in the super-quadratic case (q > 2), having the additional
regularity

u ∈ L2
(
0, T ;W 2,2(Ω;RN)

)
∩ L∞

(
0, T ;W 1,∞(Ω;RN)

)
and

∂tu ∈ L2
(
0, T ;L2(Ω;RN)

)
.

The existence theory in the sub-quadratic growth case (q < 2) is simple
(cf. [21]) but the case of quadratic growth (q = 2) is already challenging.
In game theory, the existence of weak solutions for N -person games, with
N = 1, is treated in [12, 14], and N -person games, for N > 1 arbitrarily
large, are studied, e.g., in [7, 8, 11, 16].

The uniqueness of weak solutions in the quadratic case (q = 2) is only
known for bounded weak solutions. In fact, there may be several weak so-
lutions, but at most one that is bounded; a counter-example is given in [4].
Uniqueness results can be found in [4] for elliptic equations, and in [19] for
parabolic systems with N players.

Essential for our analysis is the fact that H has a negative definite Jacobian
Hu in the case that |∇u| 6= 0. More precisely, it is well known that weak
solutions may show finite time blow up behaviour if Hu is positive definite;
see, e.g., [13] for the quadratic case. In the case that Hu = 0 and q > 2 a loss
of boundary conditions may occur; cf. [3]. Moreover, in [2] it is shown that
classical solutions may blow up in finite time. Another non-existence result
can be found in [1], where the initial data are measures. Existence results
for viscous solutions of the Dirichlet problem in the case that Hu = 0 and
q > 2 are given in [6, 22], the Neumann boundary value problem is treated
in [5], and the existence of bounded solutions under periodic boundary value
conditions is shown in [10]. Our method of proof uses test functions of power-
law type, similar to those in [19, 20], and a difference quotient technique. We
obtain an energy estimate by taking a discrete p-Laplacian as test function,
where p has to be sufficiently large.

The paper is organised as follows. In Section 2, we discuss stochastic
games as the main motivation for our system and provide an example of a
simplified N -person game with a super-quadratic Hamiltonian. Section 3
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contains the assumptions on the data, the main result and a motivation to
the use of power-law test functions. In Section 4, a regularised Hamilton-
Jacobi-Bellman system is studied and the basic energy estimate is obtained,
leading to the proof of the main result for smooth domains. Section 5 gives a
generalisation of our result to a class of Lipschitzian domains, such as convex
polyhedrons. Finally, the case of inhomogeneous Dirichlet boundary value
conditions is discussed in the last section.

2. Nash equilibria in differential games with discount
control

Consider stochastic games with N players, where each player can influence
the drift m of the dynamical system

dx(t) = m(x,v) dt+ σ dwt, x(0) = y (2.1)

for x(t) ∈ Rd, t ∈ [0, T ] and T > 0. Here, m ∈ Rd is a given function, the
diffusion term σ is a constant N × N matrix, dwt a Wiener process, and
y ∈ Rd is the initial state of x. The intention of the k-th player (1 ≤ k ≤ N)
is to maximize the cost functional

Jk
(
v
)

= Ek
[ ∫ T

0

lk
(
x(t),v(t)

)
exp

(
−
∫ t

0

ck
(
x(r),v(r)

)
dr
)
dt+

+ φk
(
x(T )

)
exp

(
−
∫ T

0

ck
(
x(t),v(t)) dt

)]
,

(2.2)

where v = (v1, . . . , vN)> and Ek is the expectation of the k-th player. More-
over, lk, ck, and φk are prescribed functions. The stochastic process x(t)
(0 ≤ t ≤ T ) describes the state of the underlying dynamical system.

For stochastic control problems the method of dynamic programming leads
to an analytical problem, called the Hamilton-Jacobi-Bellman system, whose
solution allows to derive an optimal stochastic control. The concept of a
Nash point is the following: find functions v̂1, . . . , v̂N such that

Jk
(
v̂1, . . . , v̂k, . . . , v̂N

)
≥ Jk

(
v̂1, . . . , v̄, . . . , v̂N

)
,

for all v̄ that are admissible for the k-th player. For one player, that is,
N = 1, the problem reduces to the classical stochastic control problem. The
factor

exp
(
−
∫ T

0

ck
(
x(r),v(r)) dr

)
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is the discount factor influenced by the k-th player. To the k-th player there
is an associated Lagrange functional

Lk(x, λk, ξk,v) = lk(x,v) + ξk ·m(x,v)− λk ck(x,v) , (2.3)

where lk, λk, ck ∈ R, ξk ∈ Rd, and λkck is the discount control.
Fixing x, λk and ξk, we look for a Nash point v̂(x, λ, ξ) for the functionals

Lk. Here, λ stands for (λ1, . . . , λN), ξ for (ξ1, . . . , ξN), and v̂ for (v̂1, . . . , v̂N).
We define the Hamiltonian functions

Hk(λ, ξ) := Lk
(
x, λk, ξk, v̂(x, λ, ξ)

)
and consider the following nonlinear system, for 1 ≤ k ≤ N ,

∂tu
k − Auk = Hk(x, t,u,∇u) in Ω× (0, T ] , (2.4)

in a bounded smooth domain Ω ⊂ Rd, where

A =
d∑

i,j=1

aij
∂2

∂xi∂xj
,

and the coefficients aij are the components of the matrix 1
2σσ

T .
We will limit our presentation to stochastic processes which are killed at

the exit of the domain, which leads to an homogeneous Dirichlet boundary
value problem. Let there be a sufficiently smooth solution u, say

u ∈ L∞(0, T ;W 2,r(Ω;RN))

and r > d. Now we obtain an optimal feedback for the k-th player, in the
sense that v̂k(t) = v̂k(x(t)) is a solution to (2.1). Therefore the problem
of finding a smooth solution to the system (2.4) is the tool to obtain Nash
equilibrium points for the stochastic differential game. For more details we
refer to [9, 15].

We now give an example of a simplified N -person game with a super-
quadratic Hamiltonian. Let the drift m in equation (2.1) be a linear function
with respect to v, that is,

m(x,v) =
∑
ν

aν(x) vν + a0(x),

where aν (0 ≤ ν ≤ N) are Rd-functions. Let us introduce the Lagrange
functionals (1 ≤ k ≤ N)

Lk(x, λk, ξk,v) = lk(x,v) + ξk ·m(x,v)− λk c(x,v). (2.5)
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We define

lk(x,v) =
1

α
|vk|α + b(x),

where b is a scalar function and α ∈ (1, 2). Moreover, the discount is given
by

c(x,v) = 1 +
1

α

∑
ν

|vν|α.

In order to find a Nash point v̂, we solve the equations

∂

∂vk
Lk = 0 (1 ≤ k ≤ N).

This implies that

|vk|α−2vk − λk|vk|α−2vk + ξk · ak = 0

and we find the solutions

|v̂k|α−2v̂k = (λk − 1)−1ξk · ak. (2.6)

Due to (2.5), we obtain the Hamiltonian

Hk(u,∇u) = Lk(x, uk,∇uk, v̂)

=

[
1

α
|v̂k|α + b(x) +∇uk ·

(∑
ν

aν(x) v̂ν + a0(x)

)]

−uk
[

1 +
1

α

∑
ν

|v̂ν|α
]
.

In view of (2.6) we get

|v̂k|α = (|uk − 1|−1|∇uk · ak|)
α
α−1 ,

that is, |v̂|α ∼ |∇u| α
α−1 and |∇u| |v̂| ∼ |∇u| α

α−1 . Thus, the Hamiltonian has
the form

H(u,∇u) = H0(u,∇u)− u H1(u,∇u),

where H0(u,∇u) ∼ |∇u| α
α−1 and H1(u,∇u) ∼ |∇u| α

α−1 , if |∇u| is large.
Moreover, we have H1(u,∇u) ≥ 1. Altogether, we obtain an Hamilton-
Jacobi-Bellman system of the form

∂tu−∆u + u H1(u,∇u) = H0(u,∇u),

where the Hamiltonians H0(u,∇u) and H1(u,∇u) satisfy a super-quadratic
growth condition with respect to |∇u|, since α

α−1 > 2.
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3. The main result
We assume the following set of assumptions on the data.

(H1) Ω ⊂ Rd, d ≥ 2, is a bounded domain with a C1,1–boundary;

(H2) T <∞, q > 2, and N ≥ 1;

(H3) f ,g ∈ L∞(0, T ;L∞(Ω;RN)) and u0 ∈ W 1,∞(Ω;RN).

We next make precise the notion of solution we are dealing with.

Definition 1. We say u(x, t) is a bounded weak solution of the system

(1.1)–(1.3) if u ∈ L2
(

0, T ;W 1,q
0 (Ω;RN)

)
∩ L∞

(
0, T ;L∞(Ω;RN)

)
, ∂tu ∈

L2
(
0, T ;H−1(Ω;RN)

)
, u fulfills the initial condition (1.3) in the sense of

L2(Ω;RN), and∫ T

0

∫
Ω

〈∂tu,ϕ〉+

∫ T

0

∫
Ω

∇u · ∇ϕ =

∫ T

0

∫
Ω

H(u,∇u) ·ϕ+

∫ T

0

∫
Ω

f ·ϕ,

for all ϕ ∈ L2(0, T ;H1
0(Ω;RN)) ∩ L∞(0, T ;L∞(Ω;RN)). Here, 〈·, ·〉 denotes

the duality pairing between H−1(Ω;RN) and H1
0(Ω;RN).

The existence of a bounded weak solution u such that ∇u is bounded and
∇2u and ∂tu are L2-functions is the main result of this paper.

Theorem 1. There exists a bounded weak solution u of the system (1.1)–
(1.3) satisfying

u ∈ L2
(
0, T ;W 2,2(Ω;RN)

)
∩ L∞

(
0, T ;W 1,∞(Ω;RN)

)
and

∂tu ∈ L2
(
0, T ;L2(Ω;RN)

)
.

Energy estimates for Hamilton-Jacobi-Bellman systems can not be ob-
tained via standard approaches. Therefore, we make use of test functions
of power-law type. In order to explain our approach we sketch the basic idea
introduced in [19, 20] for the case of Hamiltonians with quadratic growth.
In the following example we treat the case of just one player, that is N = 1,
and give the proof of the basic energy estimate.

Let us consider the equation

∂tu−∆u+ u|∇u|2 = |∇u|2 + f.
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In order to obtain an energy estimate, cf. (3.1), we multiply the equation by

ϕ = (1 + |u|p−1)u,

where p > 2 is sufficiently large. Let us note that∫ T

0

∫
Ω

∂tu |u|p−1u =
1

p+ 1

∫ T

0

∫
Ω

∂t|u|p+1

=
1

p+ 1
‖u(·, T )‖p+1

Lp+1(Ω) −
1

p+ 1
‖u0‖p+1

Lp+1(Ω)

and ∫ T

0

∫
Ω

∇u · ∇((1 + |u|p−1)u) = p

∫ T

0

∫
Ω

|u|p−1|∇u|2 +

∫ T

0

∫
Ω

|∇u|2.

Moreover, on the left-hand side of the equation we have the integral∫ T

0

∫
Ω

u|∇u|2ϕ =

∫ T

0

∫
Ω

|u|p+1|∇u|2.

Now let us estimate the integrals on the right-hand side of the equation.
Applying Young’s inequality, we find∫ T

0

∫
Ω

|u|
p+1
2 |u|

p−1
2 |∇u|2 ≤ δ

∫ T

0

∫
Ω

|u|p+1|∇u|2 + cδ

∫ T

0

∫
Ω

|u|p−1|∇u|2,

for some sufficiently small δ > 0. Thus, we can absorb the first integral on
the right-hand side into the left-hand side. Furthermore, we may absorb the
second integral as well, if p is suitably large.

Next, we introduce the set

Ωδ(t) :=

{
x ∈ Ω : |u(x, t)| ≥ 1

δ

}
.

Let us assume that f is bounded. It follows that∫ T

0

∫
Ωδ(t)

|f | |u|p ≤ c δ

∫ T

0

∫
Ωδ(t)

|u|p+1 ≤ c δ ‖u‖p+1
Lp+1(0,T ;Lp+1(Ω)) .

Choosing δ sufficiently small, we may absorb this integral into the left-hand
side. Further, the integral∫ T

0

∫
Ω\Ωδ(t)

|f | |u|p ≤ c δ−p
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is bounded. Collecting results, we arrive at

‖u‖p+1
L∞(0,T ;Lp+1(Ω)) + ‖∇u‖2

L2(0,T ;L2(Ω)) ≤ cp .

Extracting the p-th rooth and sending p→∞, we obtain the energy estimate

‖u‖L∞(0,T ;L∞(Ω)) + ‖∇u‖L2(0,T ;L2(Ω)) ≤ c . (3.1)

To treat the super-quadratic case, the basic idea is to use a power-law test
function like −∆pu = −div

(
(1 + |∇u|p−1)∇u

)
; cf. (4.6). Noting that∫ T

0

∫
Ω

∂t∇u · |∇u|p−1∇u =
1

p+ 1

∫ T

0

∫
Ω

∂t|∇u|p+1,

extracting the p-th root and sending p→∞, we are able to obtain the energy
estimate

‖∇u‖L∞(0,T ;L∞(Ω)) +
∥∥∇2u

∥∥
L2(0,T ;L2(Ω))

≤ c,

cf. Theorem 1.
Let us remark that our method of proof can be applied to a more gen-

eral class of Lipschitzian domains such as convex polyhedrons. This will be
discussed in Section 5.

4. The auxiliary problem
In this section, we study the regularised system

∂tuε −∆uε = Hε(uε,∇uε) + f in Ω× (0, T ], (4.1)

uε = 0 on ∂Ω× (0, T ], (4.2)

uε(·, 0) = u0 in Ω, (4.3)

where

Hε(uε,∇uε) = (g(∇uε)− uε)µε(|∇uε|q)
and µε(s) = (1 + εs)−1s, for s ∈ R. Note that µε(|s|q) is bounded.

Due to the standard theory of parabolic systems, cf. [21], the system(4.1)–
(4.3) has a weak solution fulfilling

uε ∈ L2
(
0, T ;W 2,2(Ω;RN)

)
∩W 1,2

(
0, T ;L2(Ω;RN)

)
.

Moreover, it holds that

∇uε ∈ L∞
(
0, T ;L∞(Ω;RdN)

)
. (4.4)
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In fact, arguing as in the previous section, it follows that uε is bounded.
Thus, the right-hand side of equation (4.1) is bounded. It follows that

∆uε ∈ L∞
(
0, T ;Ls(Ω;RN)

)
,

for s > d. Applying Sobolev’s imbedding theorem, we obtain (4.4).
Our goal is to prove the basic energy estimate for the regularised solution

uε and we apply a difference quotient technique. Let us introduce some
notations. Let R > 0, h ∈ Rd be a vector, |h| ∈ (0, R2 ), T±hv(x) = v(x± h),

Dhv(x) =
Thv(x)− v(x)

|h|
, and D−hv(x) =

v(x)− T−hv(x)

|h|
.

That is, Dhv is the forward difference quotient of v in the direction h and
D−hv is the backward difference quotient.

Further, let BR(P ) = {x ∈ Rd : |P − x| < R}. To shorten our writing,
we use the abbreviations BR = BR(P ) and ΩR = Ω ∩ BR(P ). The function
η ∈ W 2,∞(Rd) is a radial-symmetric cut–off function satisfying η ≡ 1 in BR,
supp η = B2R, and 0 ≤ η ≤ 1 in Rd. Moreover, let η±h(x) = η(x± 1

2h).
Our proof consists of several steps. We will give an interior energy estimate

(Lemma 1) and will then show the local regularity up to a flat boundary
portion (Lemma 2). Global regularity in a smooth domain is proved in
Proposition 1. The case of a domain with a non-smooth boundary with
corner points is discussed in Section 5.

Lemma 1. Let B3R ⊂ Ω. Then there are constants Cp, CR, C0 and p > 2
such that

sup
0<t≤T

∫
ΩR

|∇uε|p +

∫ T

0

∫
ΩR

|∇2uε|2 + CR

≤ Cp

(∫
Ω3R

|∇u0|p +

∫ T

0

∫
Ω3R

|f |2 + C0

)
+ κC3R, (4.5)

where CR =
∫ T

0

∫
ΩR
µε(|∇uε|q) (|∇uε|2 + |∇uε|p) and κ > 0 is sufficiently

small.
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Proof : Multiplying the system (4.1) by a test function ϕ ∈ L2(0, T ;W 1,2(Ω)),
we get

J1 + J2 + J3

:=

∫ T

0

∫
Ω3R

∂tuε ·ϕ+

∫ T

0

∫
Ω3R

∇uε · ∇ϕ+

∫ T

0

∫
Ω3R

uε µε(|∇uε|q) ·ϕ

= −
∫ T

0

∫
Ω3R

g µε(|∇uε|q) ·ϕ+

∫ T

0

∫
Ω3R

f ·ϕ =: J4 + J5.

We set

ϕ = −Dh(η
2
−h(1 + |D−huε|p−2)D−huε)−D−h(η2

h(1 + |Dhuε|p−2)Dhuε), (4.6)

for some p > 2. This test function can be seen as a discretisation of the
non-degenerate p-Laplacian. Since B3R ⊂ Ω and supp η = B2R it holds that
ϕ = 0 on ∂Ω.

To begin with, let us estimate the integral J1. Due to Leibniz rules

Dh(vw) = (Dhv)(Thw) + vDhw and D−h(vw) = (D−hv)(T−hw) + vD−hw,

there holds the identity

J1 =

∫ T

0

∫
Ω3R

Dh∂tuε · η2
h(1 + |Dhuε|p−2)Dhuε

+

∫ T

0

∫
Ω3R

D−h∂tuε · η2
−h(1 + |D−huε|p−2)D−huε

−
∫ T

0

∫
Ω3R

Dh(∂tuε · η2
−h(1 + |D−huε|p−2)D−huε)

−
∫ T

0

∫
Ω3R

D−h(∂tuε · η2
h(1 + |Dhuε|p−2)Dhuε)

=: J11 + · · ·+ J14.

In view of the fact that supp η = B2R, we have η = 0 in the sets {Ω3R±h\Ω3R}
and {Ω3R \ Ω3R ± h}. Hence, it follows that

J13 = − 1

|h|

∫ T

0

∫
Ω3R+h\Ω3R

∂tuε · η2
−h(1 + |D−huε|p−2)D−huε

+
1

|h|

∫ T

0

∫
Ω3R\Ω3R+h

∂tuε · η2
−h(1 + |D−huε|p−2)D−huε = 0
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and

J14 = − 1

|h|

∫ T

0

∫
Ω3R\Ω3R−h

∂tuε · η2
h(1 + |Dhuε|p−2)Dhuε

+
1

|h|

∫ T

0

∫
Ω3R−h\Ω3R

∂tuε · η2
h(1 + |Dhuε|p−2)Dhuε = 0.

Further, noting that ∂t|v|2 = 2vvt and ∂t|v|p = p|v|p−2vvt, we have

J11 =
1

2

∫ T

0

∫
Ω3R

η2
h ∂t|Dhuε|2 +

1

p

∫ T

0

∫
Ω3R

η2
h ∂t|Dhuε|p.

Altogether, we find

J1 =
1

2

∫
Ω3R

(
η2
h|Dhuε(·, T )|2 + η2

−h|D−huε(·, T )|2
)

+
1

p

∫
Ω3R

(
η2
h|Dhuε(·, T )|p + η2

−h|D−huε(·, T )|p
)

−1

2

∫
Ω3R

(
η2
h|Dhu0|2 + η2

−h|D−hu0|2
)

−1

p

∫
Ω3R

(
η2
h|Dhu0|p + η2

−h|D−hu0|p
)
.

To simplify our writing, we suppose that there is a constant c > 0 such that

∫
Ω3R

η2
±h|D±huε(·, T )|2 + η2

±h|D±huε(·, T )|p

≥ c sup
0<t≤T

∫
Ω3R

η2
±h|D±huε|2 + η2

±h|D±huε|p.
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Next, we have

J2 =

∫ T

0

∫
Ω3R

Dh∇uε · ∇(η2
h(1 + |Dhuε|p−2)Dhuε)

+

∫ T

0

∫
Ω3R

D−h∇uε · ∇(η2
−h(1 + |D−huε|p−2)D−huε)

−
∫ T

0

∫
Ω3R

Dh(∇uε · ∇(η2
−h(1 + |D−huε|p−2)D−huε))

−
∫ T

0

∫
Ω3R

D−h(∇uε · ∇(η2
h(1 + |Dhuε|p−2)Dhuε))

=: J21 + · · ·+ J24.

Let us note that J23 = J24 = 0. Moreover, it holds that

J21 =

∫ T

0

∫
Ω3R

Dh∇uε · ∇η2
h (1 + |Dhuε|p−2)Dhuε

+

∫ T

0

∫
Ω3R

η2
h |Dh∇uε|2 + (p− 1)

∫ T

0

∫
Ω3R

η2
h |Dh∇uε|2|Dhuε|p−2.

Noting that ∇η2
h = 2ηh∇ηh and using Young’s inequality, we get∫ T

0

∫
Ω3R

|Dh∇uε · ∇η2
hDhuε| ≤ δ

∫ T

0

∫
Ω3R

η2
h |∇Dhuε|2

+cδ

∫ T

0

∫
Ω3R

|2∇ηh|2 |Dhuε|2.

The first integral on the right-hand side may by absorbed into J21. Let us
estimate the second integral. For κ > 0, we define the set

Ωκ(t) =
{
x ∈ Ω3R : |∇η(x)|2 ≤ κµε(|∇uε(x, t)|q)

}
.

Notice that |∇uε(x, t)| is bounded in Ω3R \ Ωκ(t). Hence, it follows that∫ T

0

∫
Ω3R

|∇ηh|2 |Dhuε|2 ≤ κ

∫ T

0

∫
Ωκ(t)

µε(|∇uε|q) |Dhuε|2 + cκ,

for some constant cκ. Choosing κ sufficiently small, we may absorb the
integral on the right-hand side into the left-hand side. This will be discussed
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later. In the same manner, we estimate∫ T

0

∫
Ω3R

|Dh∇uε| |∇η2
h| |Dhuε|

p−2
2 |Dhuε|

p
2

≤ δ

∫ T

0

∫
Ω3R

η2
h |∇Dhuε|2 |Dhuε|p−2 + cδ

∫ T

0

∫
Ω3R

|2∇ηh|2 |Dhuε|p

and ∫ T

0

∫
Ω3R

|∇ηh|2 |Dhuε|p ≤ κ

∫ T

0

∫
Ωκ(t)

µε(|∇uε|q) |Dhuε|p + cκ.

Thus, for some sufficiently small numbers δ, κ > 0, we conclude that

J2 ≥
1

2

∫ T

0

∫
Ω3R

(η2
h |∇Dhuε|2 + η2

−h |∇D−huε|2)

+
p− 1

2

∫ T

0

∫
Ω3R

(
η2
h |∇Dhuε|2 |Dhuε|p−2

+η2
−h |∇D−huε|2 |Dh

uε|p−2
)

−κ
∫ T

0

∫
Ω3R

µε(|∇uε|q) (|Dhuε|2 + |Dhuε|p)− cκ.

Now let us estimate the integral J3 from below. It holds that

J3 =

∫ T

0

∫
Ω3R

Dh(uε µε(|∇uε|q)) · η2
h(1 + |Dhuε|p−2)Dhuε

+

∫ T

0

∫
Ω3R

D−h(uε µε(|∇uε|q)) · η2
−h(1 + |D−huε|p−2)D−huε

−
∫ T

0

∫
Ω3R

Dh(uε µε(|∇uε|q) · η2
−h(1 + |D−huε|p−2)D−huε)

−
∫ T

0

∫
Ω3R

D−h(uε µε(|∇uε|q) · η2
h(1 + |Dhuε|p−2)Dhuε)

=: J31 + · · ·+ J34,
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where J33 = J34 = 0. The Leibniz rule Dh(vw) = (Dhv)w+ (Thv)Dhw yields

J31 =

∫ T

0

∫
Ω3R

η2
h µε(|∇uε|q)(|Dhuε|2 + |Dhuε|p)

+

∫ T

0

∫
Ω3R

η2
h ThuεDhµε(|∇uε|q) · (1 + |Dhuε|p−2)Dhuε

=: J35 + J36.

Noting that |µ′ε| ≤ 1 and applying Tailor’s expansion, we deduce

|Dhµε(|∇uε|q)| ≤ q |Dh∇uε| (|∇Thuε|q−1 + |∇uε|q−1)

and thus

|J36| ≤ δ(p− 1)

∫ T

0

∫
Ω3R

η2
h |∇Dhuε|2 (1 + |Dhuε|p−2)

+
cδ

p− 1

∫ T

0

∫
Ω3R

η2
h (|Dhuε|2 + |Dhuε|p) |Thuε|2 ×

×
(
|∇Thuε|2q−2 + |∇uε|2q−2

)
=: J37 + J38.

For simplicity, we suppose that |Dhuε| ≥ 1 in Ω3R and absorb J37 into J2.
Using again Young’s inequality, we estimate

(λ−1xq)
1
2 (λx3q−4)

1
2 ≤ δλ−1xq + cδλx

3q−4

and obtain

J38 ≤ δ

∫ T

0

∫
Ω3R

η2
h λ
−1 (|∇Thuε|q + |∇uε|q)(|Dhuε|2 + |Dhuε|p)

+
cδ

(p− 1)2

∫ T

0

∫
Ω3R

η2
h (|Dhuε|2 + |Dhuε|p) ×

×λ
(
|∇Thuε|3q−4 + |∇uε|3q−4

)
|Thuε|4.

Let λ := 1 + ε|∇Thuε|q + ε|∇uε|q. Due to (4.4), it holds that ‖∇uε‖∞ and
‖uε‖∞ are bounded. Hence, we may absorb the second integral on the right-
hand side into J1, if p is sufficiently large, and the first one into J3. In the
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same manner, we estimate the integral

J32 =

∫ T

0

∫
Ω3R

η2
−h µε(|∇uε|q)(|D−huε|2 + |D−huε|p)

+

∫ T

0

∫
Ω3R

η2
−h T−huεD−hµε(|∇uε|q) · (1 + |D−huε|p−2)D−huε.

Let us now consider J4. We have

J4 =

∫ T

0

∫
Ω3R

g µε(|∇uε|q) ·Dh(η
2
−h (1 + |D−huε|p−2)D−huε)

+

∫ T

0

∫
Ω3R

g µε(|∇uε|q) ·D−h(η2
h (1 + |Dhuε|p−2)Dhuε)

=: J41 + J42.

The Leibniz rule Dh(vw) = (Dhv)w + (Thv)Dhw yields

J41 =

∫ T

0

∫
Ω3R

g µε(|∇uε|q) ·Dhη
2
−h (1 + |D−huε|p−2)D−huε

+

∫ T

0

∫
Ω3R

g µε(|∇uε|q) · η2
hDh((1 + |D−huε|p−2)D−huε)

=: J43 + J44.

Let κ ∈ (0, 1) be sufficiently small and

Ω±κ (t) = {x ∈ Ω3R : |D±huε(x, t)| ≥ κ−1}.

Notice that |g| and |Dhη
2
−h| are bounded and it thus follows that |J43| is

bounded in Ω3R \Ω−κ (t) by a constant cκ, if |h| is sufficiently small. Further,
let us note that

(1 + |D−huε|p−2)|D−huε| ≤ κ(|D−huε|2 + |D−huε|p) in Ω−κ (t).

Altogether, we deduce

|J43| ≤ cκ

∫ T

0

∫
Ωκ(t)

µε(|∇uε|q) (|D−huε|2 + |D−huε|p) + cκ.

Next, let us estimate |J44|. We define the function

y(s) := (1 + |s|p−2)s, s ∈ RN
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and use Taylor’s expansion to get

yν(s)− yν(s̄) = (sm − s̄m)

∫ 1

0

yνsm(zs + (1− z)s̄) dz.

Here we have used the notation yνsm(s) = ∂
∂sm

yν(s), where y and s have the

components yν (1 ≤ ν ≤ N) and sm (1 ≤ m ≤ d). We deduce

|J44| ≤ c

∫ T

0

∫
Ω3R

η2
h µε(|∇uε|q) |DhD−huε|

(
1+(p−1)(|Dhuε|p−2+|D−huε|p−2)

)
.

We estimate

ηh(ηhµε(|∇uε|q)|DhD−huε|) ≤ δη2
h|∇uε|2q|DhD−huε|2 + cδη

2
h

and notice that
|∇uε|2q ≤ cκ in Ω3R \ Ω±κ (t),

if |h| is small, and

|∇uε|2q ≤ δ|Dhuε|p−2 in Ω±κ (t),

where δ > 0 is small, if p is large. Thus, we get∫ T

0

∫
Ω3R

η2
h µε(|∇uε|q) |DhD−huε| ≤ δ

∫ T

0

∫
Ω3R

η2
h |DhD−huε|2|Dhuε|p−2 + C

and absorb the integral on the right-hand side into J2. Furthermore, Hölder’s
inequality entails

(p− 1)

∫ T

0

∫
Ω3R

η2
h µε(|∇uε|q) |DhD−huε| |Dhuε|

p−2
2 |Dhuε|

p−2
2

≤ δ(p− 1)

2

∫ T

0

∫
Ω3R

η2
h µε(|∇uε|q) |DhD−huε|2 |Dhuε|p−2

+
p− 1

2δ

∫ T

0

∫
Ω3R

η2
h µε(|∇uε|q) |Dhuε|p−2.

Let us note that µε(|∇uε|q) is bounded. Hence, we choose δ sufficiently small
in order to absorb the first integral on the right-hand side into J2. Next, we
use the estimates

µε(|∇uε|q)|Dhuε|p−2 ≤ |∇uε|q|Dhuε|p−2 ≤ cκ in Ω3R \ Ω+
κ (t)

and
µε(|∇uε|q)|Dhuε|p−2 ≤ κ2µε(|∇uε|q)|Dhuε|p in Ω+

κ (t)
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and absorb the second integral into J3.
In the same manner we deal with J42. Now, let us consider

J5 = −
∫ T

0

∫
Ω3R

f ·Dh(η
2
−h (1 + |D−huε|p−2)D−huε)

−
∫ T

0

∫
Ω3R

f ·D−h(η2
h (1 + |Dhuε|p−2)Dhuε) =: J51 + J52.

Due to Leibniz’s rule Dh(vw) = (Dhv)w + (Thv)Dhw, we obtain

J51 = −
∫ T

0

∫
Ω3R

f ·Dhη
2
−h (1 + |D−huε|p−2)D−huε

−
∫ T

0

∫
Ω3R

f · η2
hDh((1 + |D−huε|p−2)D−huε) =: J53 + J54.

Since |Dhη
2
−h| and |f | are bounded we conclude that |J53| ≤ cκ in Ω3R \Ω−κ (t),

if |h| is sufficiently small. Moreover, in Ω−κ (t) it holds that

(1 + |D−huε|p−2)|D−huε| ≤ κ(|D−huε|2 + |D−huε|p),

and also µε(|∇uε|q) ≥ 1, if ε is small. Thus, it follows that

|J53| ≤ cκ

∫ T

0

∫
Ω3R

µε(|∇uε|q) (|D−huε|2 + |D−huε|p) + cκ.

Further, using the Taylor expansion of the function y(s) := (1 + |s|p−2)s, we
deduce

|J54| ≤ c

∫ T

0

∫
Ω3R

η2
h |f | |DhD−huε|

(
1 + (p− 1)(|Dhuε|p−2 + |D−huε|p−2)

)
.

We estimate∫ T

0

∫
Ω3R

η2
h |f | |DhD−huε| ≤ δ

∫ T

0

∫
Ω3R

η2
h |DhD−huε|2 + cδ

∫ T

0

∫
Ω3R

η2
h |f |2
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and absorb the first integral on the right-hand side into J2. Moreover,
Hölder’s inequality yields

(p− 1)

∫ T

0

∫
Ω3R

η2
h |f | |DhD−huε| |Dhuε|

p−2
2 |Dhuε|

p−2
2

≤ δ(p− 1)

2

∫ T

0

∫
Ω3R

η2
h |f | |DhD−huε|2 |Dhuε|p−2

+
p− 1

2δ

∫ T

0

∫
Ω3R

η2
h |f | |Dhuε|p−2.

Since |f | is bounded, we may absorb the first integral on the right-hand side
into J2. Further, it holds that

|Dhuε| ≤ cκ in Ω3R \ Ω+
κ (t)

and

|Dhuε|p−2 ≤ κ2µε(|∇uε|q)|Dhuε|p in Ω+
κ (t).

Here we have used the fact that µε(|∇uε|q) ≥ 1 in Ω+
κ (t) if ε and |h| are

sufficiently small. Now we absorb the second integral into J3. In the same
manner, we estimate J52.

Let h be parallel to the k-th unit vector in Rd. Taking |h| → 0, noting that
|x|2 ≤ 1 + |x|p, and collecting results we arrive at

sup
0<t≤T

∫
ΩR

|∂kuε|p +

∫ T

0

∫
ΩR

|∇∂kuε|2 +

∫ T

0

∫
ΩR

µε(|∇uε|q) (|∂kuε|2 + |∂kuε|p)

≤ cp

(∫
Ω3R

|∂ku0|p +

∫ T

0

∫
Ω3R

|f |2 + C
)

+κ

∫ T

0

∫
Ω3R

µε(|∇uε|q) (|∂kuε|2 + |∂kuε|p) (4.7)

for all k ∈ {1, . . . , d} and κ > 0 sufficiently small. This yields the assertion.

In our next lemma we investigate the local regularity of uε up to a flat
boundary portion. More precisely, we suppose that P ∈ ∂Ω and

∂Ω ∩B3R(P ) = Ed−1 ∩B3R(P ),

where Ed−1 is a (d− 1)-dimensional hyperplane.
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Let e be the inner unit normal of ∂Ω ∩ B3R, z ∈ ∂Ω ∩ B3R, and λ > 0.
Thus, it holds that z+λe ∈ Ω3R and z−λe ∈ B3R \Ω. We define extensions
of the functions uε and f by setting

uε(z + λe) := −uε(z − λe) and f(z + λe) := f(z − λe) . (4.8)

Moreover, let η(z + λe) := η(z − λe). Thus, uε is odd with respect to the
boundary, and the functions f and η are even.

Lemma 2. Let P ∈ ∂Ω and ∂Ω ∩ B3R(P ) = Ed−1 ∩ B3R(P ), where Ed−1 is
a (d− 1)-dimensional hyperplane. Then there are constants Cp, CR, C0 and
p > 2 such that

sup
0<t≤T

∫
ΩR

|∇uε|p +

∫ T

0

∫
ΩR

|∇2uε|2 + CR

≤ Cp

(∫
Ω3R

|∇u0|p +

∫ T

0

∫
Ω3R

|f |2 + C0

)
+ κC3R, (4.9)

where CR =
∫ T

0

∫
ΩR
µε(|∇uε|q) (|∇uε|2 + |∇uε|p) and κ > 0 is sufficiently

small.

Proof : We proceed as in the proof of Lemma 1. Without loss of generality,
we suppose that Ω3R = {x ∈ B3R : x1 > 0}. Thus, the unit vector e1 is the
inner unit normal of ∂Ω ∩B3R.

In the case that the vector h is parallel to ∂Ω ∩B3R, the test function

ϕ = −Dh(η
2
−h(1 + |D−huε|p−2)D−huε)−D−h(η2

h(1 + |Dhuε|p−2)Dhuε)

is admissible, for it holds that ϕ = 0 on ∂Ω ∩ B3R. Arguing as in the proof
of Lemma 1 we obtain the estimate (4.7) for all k ∈ {2, . . . , d}.

Next, let us discuss the case k = 1. We choose h as an outer normal of
∂Ω∩B3R. Notice that ϕ is an admissible test function. In fact, it holds that

Dh(η
2
−h(1 + |D−huε|p−2)D−huε) = D−h(η

2
h(1 + |Dhuε|p−2)Dhuε) = 0

on ∂Ω ∩B3R. For instance, on ∂Ω we have

η2(x+
1

2
h) (1 + |Thuε − uε|p−2)(Thuε − uε)

−η2(x− 1

2
h) (1 + |uε − T−huε|p−2)(uε − T−huε)

= η2(x+
1

2
h) (1 + |Thuε|p−2)Thuε − η2(x− 1

2
h) (1 + |T−huε|p−2)T−huε = 0,
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since uε is odd and η is even with respect to the boundary.
We now multiply the system (4.1) by ϕ. Then the calculations run as in

the proof of Lemma 1; we only have to show that the boundary integrals
vanish.

To begin with, let us show that J13 + J14 = 0. We have

J13 = − 1

|h|

∫ T

0

∫
Ω3R+h\Ω3R

∂tuε · η2
−h(1 + |D−huε|p−2)D−huε

+
1

|h|

∫ T

0

∫
Ω3R\Ω3R+h

∂tuε · η2
−h(1 + |D−huε|p−2)D−huε.

Due to the fact that supp η = B2R, the second integral on the right-hand
side vanishes. Further, we find

J14 = − 1

|h|

∫ T

0

∫
Ω3R\Ω3R−h

∂tuε · η2
h(1 + |Dhuε|p−2)Dhuε,

since ∫ T

0

∫
Ω3R−h\Ω3R

∂tuε · η2
h(1 + |Dhuε|p−2)Dhuε = 0.

Notice that Ω3R \ Ω3R − h is the reflection of Ω3R + h \ Ω3R with respect to
the hyperplane {x ∈ Rd : x1 = 0}. The functions η2

±h, (1 + |D±huε|p−2),
and D±huε are even with respect to the hyperplane, in the sence that, e.g.,
η2
−h(x) = η2

h(x
∗) for all x ∈ Ω3R + h \ Ω3R, where x∗ ∈ Ω3R \ Ω3R − h is

the reflection of the point x with respect to the hyperplane. Moreover, the
function ∂tuε is odd. Hence, the integrand is an odd function and it follows
that J13 + J14 = 0.

Next, we consider J23 and J24. We find

J23 = − 1

|h|

∫ T

0

∫
Ω3R+h\Ω3R

∇uε · ∇(η2
−h(1 + |D−huε|p−2)D−huε)

and

J24 = − 1

|h|

∫ T

0

∫
Ω3R\Ω3R−h

∇uε · ∇(η2
h(1 + |Dhuε|p−2)Dhuε).

The function uε is odd with respect to the hyperplane {x ∈ Rd : x1 = 0}.
Thus, the derivative ∂1uε is an even function, and ∂kuε (2 ≤ k ≤ d) are odd
functions. Moreover, since η2

±h(1 + |D±huε|p−2)D±huε is even, its derivative
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with respect to xk is odd for k = 1 and even for k 6= 1. Hence, the integrand
is an odd function and it holds that J23 + J24 = 0.

Moreover, we find

J33 + J34 = − 1

|h|

∫ T

0

∫
Ω3R+h\Ω3R

uε µε(|∇uε|q) · η2
−h(1 + |D−huε|p−2)D−huε

− 1

|h|

∫ T

0

∫
Ω3R\Ω3R−h

uε µε(|∇uε|q) · η2
h(1 + |Dhuε|p−2)Dhuε.

Noting that uε is odd and all the other functions are even with respect to
the hyperplane, we deduce J33 + J34 = 0.

Altogether, we conclude that the estimate (4.7) holds for all k ∈ {1, . . . , d}
and the assertion (4.9) follows.

Now we discuss the global regularity of uε in a smooth domain Ω.

Proposition 1. There are constants Cp, C0, and p > 2 such that

sup
0<t≤T

∫ T

0

∫
Ω

|∇uε|p +

∫ T

0

∫
Ω

|∇2uε|2 ≤ Cp

(∫ T

0

∫
Ω

|∇u0|p +

∫ T

0

∫
Ω

|f |2 + C0

)
.

(4.10)

Proof : Let us cover Ω by a finite number of balls BRi(Pi), i = 1, 2, . . ., such
that either B3Ri(Pi) ⊂ Ω or Pi ∈ ∂Ω. In the case that B3Ri(Pi) ⊂ Ω, the
proof of Lemma 1 yields

sup
0<t≤T

∫ T

0

∫
ΩRi

|∇uε|p +

∫ T

0

∫
ΩRi

|∇2uε|2 + CR

≤ Cp

(∫ T

0

∫
Ω3Ri

|∇u0|p +

∫ T

0

∫
Ω3Ri

|f |2 + C0

)
+ κC3Ri, (4.11)

where

CRi =

∫ T

0

∫
ΩRi

µε(|∇uε|q) (|∇uε|2 + |∇uε|p).

In the case that Pi ∈ ∂Ω and ∂Ω∩B3Ri(P ) = Ed−1 ∩B3Ri(P ), where Ed−1 is
a (d− 1)-dimensional hyperplane, the estimate (4.11) follows from Lemma 2

Now let us discuss the case that Pi ∈ ∂Ω and ∂Ω ∩ B3Ri(P ) is not a
hyperplane. Since ∂Ω is smooth, there is a W 2,∞–mapping φi and a ball
B3Ri(φi(Pi)) such that B3Ri(φi(Pi))∩φi(∂Ω) is the intersection of B3Ri(φi(Pi))
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and a (d− 1)-dimensional hyperplane. Let x̂ = φi(x). The function ûε(x̂) :=
uε(φ

−1
i (x̂)) is the weak solution of

∂tûε − ∆̂ûε = Hε(ûε, ∇̂ûε) + f̂ in Ω̂× (0, T ],

ûε = 0 on ∂Ω̂× (0, T ],

ûε(·, 0) = û0 in Ω̂,

where ∇̂ = M∇, ∆̂ = ∂̂l∂̂l, and M has the components mjk = ∂jφ
k
i , where φki

is the k-th component of φi. Arguing as above, applying the substitution rule
for integrals, and noting that M is positive definite, we obtain an analogous
of estimate (4.11).

We now cover Ω by a finite number of appropriate sets φ−1
i (B3Ri(φi(Pi))),

i = 1, 2, . . ., and proceed as above. Choosing κ > 0 sufficiently small yields
the assertion.

We conclude this section with the proof of the main result for domains
with a smooth boundary.

Proof of Theorem 1: Estimate (4.10) holds for a number p sufficiently
large. Let us extract the p-th root and send p→∞. It follows that there is
a constant C, independent of ε, such that

‖∇uε‖L∞(0,T ;L∞(Ω)) ≤ C.

Now we take limε→0. We extract a subsequence, again denoted by uε, such
that uε → u uniformly and

∇uε → ∇u weakly-* in L∞(0, T ;L∞(Ω;RN)).

Due to standard arguments, we deduce that the weak limit u satisfies the
primal system (1.1)–(1.3) in the weak sense.

Since ∇u is a L∞(0, T ;L∞(Ω;RN))-function we may proceed as above and
obtain an analogous of estimate (4.10) for u. Thus, there is a constant Cp,
depending only on p, such that∥∥∇2u

∥∥
L2(0,T ;L2(Ω))

≤ Cp,

for p sufficiently large. Hence, ∆u is a L2(0, T ;L2(Ω;RN))-function. Noting
that the Hamiltonian and f are bounded, it follows that

∂tu ∈ L2(0, T ;L2(Ω;RN))

as well. 2
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5. Generalisation to Lipschitzian domains
Our difference quotient technique can be applied to a more general class

of Lipschitzian domains, such as convex polyhedrons; cf. [17, 18]. More
precisely, let us assume that Ω can be mapped in a smooth way onto a
convex polyhedron. We make the following assumptions.

(Ω1) Ω ⊂ Rd (d ≥ 2) is a bounded open set;

(Ω2) for each P ∈ ∂Ω, there exists a mapping φ and a ball BR(φ(P )) such
that

i) φ(Ω) ∩ BR(φ(P )) is the intersection of BR(φ(P )) and a convex
polyhedron,

ii) φ, φ−1 ∈ W 2,∞
loc (Rd) and the Jacobian of φ is positive definite;

(Ω3) ∂Ω =
⋃

1≤k≤M Γk, where Γk are open (d−1)–dimensional Lipschitzian
domains for k = 1, . . . ,M , and Γi ∩ Γk = ∅ for i 6= k;

(Ω4) ∂Γk1 ∩ . . . ∩ ∂Γkj = ∅, if j > d and k1 < . . . < kj (that is, there are at
most d adjacent faces Γk).

We now state the following corollary of Theorem 1.

Corollary 1. Let Ω satisfy assumptions (Ω1)–(Ω4). Then there exists a
weak solution u of the system (1.1)-(1.3), satisfying

u ∈ L2(0, T ;W 2,2(Ω;RN)) ∩ L∞(0, T ;W 1,∞(Ω;RN))

and
ut ∈ L2(0, T ;L2(Ω;RN)).

Proof : We proceed as in the proof of Theorem 1. First, let us discuss the case
when Ω is a convex polyhedron. We can cover Ω by a finite number of balls
BRi(Pi), i = 1, 2, . . ., such that either B3Ri(Pi) ⊂ Ω or Pi ∈ ∂Ω. For each
Pi ∈ ∂Ω, there is an index set Λi such that Γk ∩ B3Ri(Pi) 6= ∅, for all k ∈ Λi

and ∂Ω ∩B3Ri(Pi) =
⋃
k∈Λi

Γk ∩B3Ri(Pi). We suppose that Pi ∈
⋂
k∈Λi

Γk.
In the case that B3Ri(Pi) ⊂ Ω, the proof of Lemma 1 yields constants Cp,

CR, C0 and p > 2 such that

sup
0<t≤T

∫ T

0

∫
ΩRi

|∇uε|p +

∫ T

0

∫
ΩRi

|∇2uε|2 + CR

≤ Cp

(∫ T

0

∫
Ω3Ri

|∇u0|p +

∫ T

0

∫
Ω3Ri

|f |2 + C0

)
+ κC3Ri, (5.1)
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where

CRi =

∫ T

0

∫
ΩRi

µε(|∇uε|q) (|∇uε|2 + |∇uε|p).

In the case that Pi ∈ ∂Ω and ∂Ω∩B3Ri is contained in an (d−1)-dimensional
hyperplane, we can find d − 1 linearly independent vectors h parallel to
∂Ω ∩ B3Ri and one that is normal to ∂Ω ∩ B3Ri. Then the proof of estimate
(5.1) runs as in the proof of Lemma 2.

Now let us discuss the case when ∂Ω ∩ B3Ri(Pi) is not contained in a
hyperplane. Let k0 ∈ Λ and e ∈ Rd be a unit vector parallel to (∂Ω∩B3Ri)\Γk0
satisfying z+λe ∈ Ω, for all z ∈ ∂Ω∩B3Ri and 0 < λ < R. Furthermore, let
e∗ be the reflection of e with respect to the hyperplane containing ∂Ω∩B3R,
and Ω∗3R be the reflection of Ω3R\Ω3R+h with respect to the hyperplane. We
now define the extensions of the functions uε, f , and η onto Ω∗3R by setting

uε(z + λe∗) := −uε(z + λe),

f(z + λe∗) := f(z + λe), and η(z + λe∗) := η(z + λe).
We make use of the shift operator T ∗±hv(x) := v(ψ(λ0 ± h)) and define

D∗hv(x) =
T ∗hv(x)− v(x)

|h|
and D∗−hv(x) =

v(x)− T ∗−hv(x)

|h|
,

where

ψ(λ) :=

{
z + λ e for λ ≥ 0,
z − λ e∗ for λ < 0,

and x = ψ(λ0) = z + λ0e ∈ Ω3Ri.
Taking the test function

ϕ := −D∗h(η2
−h(1 + |D∗−huε|p−2)D∗−huε)−D∗−h(η2

h(1 + |D∗huε|p−2)D∗huε),

where η±h(x) = T ∗± 1
2h
η(x), and proceeding as in the proof of Lemma 2, esti-

mate (5.1) follows.
Finally, let us consider the case that Ω is not a convex polyhedron. Then

there is a W 2,∞–mapping φi and a ball B3Ri(φi(Pi)) such that B3Ri(φi(Pi))∩
φi(∂Ω) is the intersection of B3Ri(φi(Pi)) and a (d − 1)-dimensional hyper-
plane. Now the proof of estimate (5.1) runs as in the proof of Proposition 1.

Collecting results and arguing as in the proof of Theorem 1, we obtain the
assertion.
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6. Inhomogeneous Dirichlet boundary conditions
In this section we discuss the case of inhomogeneous Dirichlet boundary

value conditions. The dynamical system

dy = m(y,v) dt+ σ(y) dwt, y(0) = x, (6.1)

is modified by the N players through the controls vk(t) (1 ≤ k ≤ N). The
k-th player chooses its own control to maximize its cost functional

Jkx,t(v) = Ekx,t

[∫ T

t

lk(y(τ),v(τ)) e−
∫ τ
t
ck(y(s),v(s)) ds dτ

+φk(y(T ))e−
∫ T
t
ck(y(s),v(s)) ds

]
.

Let us assume that T is the exit time of y(t) from the domain Ω. Defining
the payoff functions

uk(x, t) := Jkx,t(v) (6.2)

and setting t = T , we obtain the boundary value conditions uk(x, T ) =
φk(y(T )).

Let us discount the payoff function uk(x, t) back to the time point t + δ.
Thus, the payoff is given by uk(y(t + δ), t + δ). Let v be the optimal choice
maximising the cost functional. This leads to the payoff functions

uk(x, t) = Ekx,t
[∫ t+δ

t

lk(y(τ),v(τ)) e−
∫ τ
t
ck(y(s),v(s)) ds dτ

+ uk(y(t+ δ), t+ δ)e−
∫ t+δ
t

ck(y(s),v(s)) ds
]
.

Subtracting uk(x, t) and dividing by δ we arrive at

0 = Ekx,t
[

1

δ

∫ t+δ

t

lk(y(τ),v(τ)) e−
∫ τ
t
ck(y(s),v(s)) ds dτ

+
1

δ

(
uk(y(t+ δ), t+ δ)e−

∫ t+δ
t

ck(y(s),v(s)) ds − uk(x, t)
)]

.

The mean value theorem yields, for sufficiently smooth functions,

lim
δ→0

1

δ

∫ t+δ

t

lk(y(τ),v(τ)) e−
∫ τ
t
ck(y(s),v(s)) ds dτ = lk(y(t),v(t)) .
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Moreover, due to the rules of stochastic differential calculus it holds that

lim
δ→0

1

δ

(
uk(y(t+ δ), t+ δ)e−

∫ t+δ
t

ck(y(s),v(s)) ds − uk(x, t)
)

= −uk(x, t) ck(y(t),v(t)) +∇uk(x, t) ·m(y(t),v(t))

+Auk(x, t) + ∂tu
k(x, t) ,

where Auk =
∑

i,j aij∂i∂ju
k and aij = 1

2

∑
k σikσkj. Thus, u = (u1, . . . , uN) is

a solution of the Hamilton-Jacobi-Bellmann equation (2.4).
Assuming that there is an exit time from the domain, the solution u satisfies

an inhomogeneous Dirichlet boundary value condition.

Remark 1. Our difference quotient method can be applied to the case of
inhomogeneous Dirichlet boundary value conditions as well. Let φ∗ be a
sufficiently smooth function satisfying φ∗(x, T ) = φ(x, T ) on ∂Ω in the sense
of traces. Using the test function

ϕ = −Dh(η
2
−h(1 + |D−h(uε − φ∗)|p−2)D−h(uε − φ∗)

−D−h(η2
h(1 + |Dh(uε − φ∗)|p−2)Dh(uε − φ∗)

the proof runs as above.
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José Miguel Urbano
CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address: jmurb@mat.uc.pt

Jens Vogelgesang
Hochstrass 58, 8044 Zurich, Switzerland

E-mail address: jens@vogelgesang.ch


