
Pré-Publicações do Departamento de Matemática
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1. Introduction
Presentations of monoids are known to be essential in the study of actions

on sets. In fact, given a monoid M with presentation 〈X, r〉, to describe an
action ofM on a set S it is enough to give a set of endomorphisms Ax : S → S,
x ∈ X, satisfying the relations in r.

In recent years the interest for actions of monoids on categories raised. In
this case presentations have to be replaced by the so called coherent pre-
sentations. Suppose we are given an action of M on C. Then we have a
collection of endofunctors Fm : C → C, m ∈ M , for which Fm ◦ Fn = Fmn
does not hold in general. Instead, we have a collection of natural isomor-
phisms λm,n : Fm ◦ Fn → Fmn such that the natural transformations

Fl ◦ Fm ◦ Fn
λl,m◦Fn−−−−→ Flm ◦ Fn

λlk,n−−→ Flmn

Fl ◦ Fm ◦ Fn
Fl◦λm,n−−−−→ Fl ◦ Fmn

λl,kn−−→ Flmn

(1)

are equal for all l, m, n ∈ M . Further, using
{
λm,n

∣∣m,n ∈M }
, we can

construct natural isomorphisms

λm1,...,mk
: Fm1

◦ · · · ◦ Fmk
→ Fm1...mk
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2 I. YUDIN

for all m1,. . . , mk ∈M . Now for every relation

r = (x1 . . . xs, y1 . . . yt)

in r we define the natural isomorphism τr = λ−1
y1,...,yt

λx1,...,xs. It can be shown
that one can reconstruct (up to an isomorphism) the action{

Fm, λm,n
∣∣m,n ∈M}

of M on C from the collection {Fx, τr |x ∈ x, τr}.
Not every collection {Fx, τr |x ∈ X, r ∈ r} of endofunctors of C and nat-

ural transformations between them can be obtained from an action of M
on C. The obstruction comes from the axiom (1). This obstruction can be
translated into a set E of equations of the form

τr1 . . . τrk = τs1 . . . τsl

with r1, . . . rk, s1,. . . , sl ∈ r. Such a set E is called a complete set of relations
between relations from r, and 〈X, r, E〉 is called a coherent presentation of
M .

To find coherent presentations of some monoids, Guiraud and Malbos [3]
used higher dimensional rewriting theory. Applying the same technique,
Gausent, Guiraud, and Malbos obtained a coherent presentation of Artin
braid groups associated with Coxeter systems [2].

In this article, we use a new approach to determine coherent presentations
of monoids. Namely, we use the notion of decreasing diagrams, that was
introduced by van Oostrom in [6] to obtain a sufficient condition for a locally
confluent abstract reduction system to be confluent. In [4] Klop, van Oost-
rom, and de Vrijer gave a geometrical proof of the result of van Oostrom.
In their proof they discovered that if an abstract reduction system admits
enough decreasing elementary diagrams, then every reduction diagram can be
patched by these elementary diagrams. Their result allows us to give a suffi-
cient condition for 〈X, r, E〉 to be a coherent presentation of a monoid 〈X, r〉
(see Theorem 6.3). Using this sufficient condition we establish a coherent
presentation of the 0-Hecke monoid. This presentation was used in the joint
work of the author with A. P. Santana [5] to exhibit an action of the 0-Hecke
monoid on the category of rational modules for the quantum Borel group.
Note that our coherent presentation contains the coherent presentation of
the braid group obtained by Guiraud et al. in [2].

The paper is organised as follows. In Section 2 we collect results on abstract
reduction systems used throughout the paper. In Section 3 we establish a
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relationship between abstract reduction systems and categories, and show
how decreasing diagrams can be used to deduce the commutativity of an
infinite set of diagrams, from the commutativity of a given, often finite, set
of diagrams (Theorem 3.4). Section 4 contains the definition of an action of a
monoid on a category (following [1]). In Section 5, we apply Theorem 3.4 to
an abstract reduction system associated to a presentation of a monoid. The
main result of Section 6 is Theorem 6.3, that gives a sufficient condition for
〈X, r, E〉 to be a coherent presentation. In Section 7 we describe a coherent
presentation of the 0-Hecke monoid H(Σn+1) of the symmetric group Σn+1.

2. Abstract reduction system
An abstract reduction system is a set A with a relation R ⊂ A × A on A

which is called a set of rewriting rules. The elements of R will be sometimes
depicted by a → b for (a, b) ∈ R. The sequence of elements a0, . . . , ak is
called a reduction path from a0 to ak if (ai−1, ai) ∈ R for all 1 ≤ i ≤ k. If
there is a reduction path from a ∈ A to b ∈ A, we write a� b.

A reduction diagram for 〈A,R〉 is an oriented planar graph Γ, such that:

(1) All the arrows of Γ go either from left to right or from top to bottom.
(2) Some arrows of Γ are solid and some arrows of Γ are dashed.
(3) The nodes of Γ are labeled by elements of A. The label of a node x will

be denoted by l (x) ∈ A.
(4) If the nodes with labels a and b are connected by a solid arrow then

(a, b) ∈ R.
(5) If two nodes are connected by a dashed arrow then they have equal labels.
(6) If from a node x ∈ Γ there is a horizontal arrow to y ∈ Γ and a vertical

arrow to z ∈ Γ then one of the two mutually exclusive possibilities holds
(a) There is no vertex which is simultaneously strictly bellow and strictly

to the right of x. In this case we say that x is an open corner.
(b) There is a node w ∈ Γ, a vertical path from y to w in Γ and a

horizontal path from z to w in Γ. These paths are called convergence
paths. If x and y are connected by a dashed arrow, then z and w
are connected by a dashed arrow as well, and the path from y to
w contains just one arrow. Similarly, if x and z are connected by a
dashed arrow then y and w are connected by a dashed arrow and the
path from z to w contains just one arrow.
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Bellow is an example of a reduction diagram

a11
//

��

a12
//

��

a13
//

��

a15

��
a22

//

��

a22
//

��

a24
// a25

a31
//

��

a32
//

��

a32

a31
// a32 .

In the above reduction diagram there are two open corners with labels a22

and a32, whose (matrix) coordinates are (2, 3) and (3, 2), respectively. The
following graph does not satisfy the axioms of a reduction diagram

a11
//

��

a12

��

a21

��
a32

// a33 .

In fact, the top left corner of the above graph is neither an open corner
nor there are convergence paths for the horizontal arrow a11 → a12 and the
vertical arrow a11 → a21.

Definition 2.1. A reduction diagram is called complete if it does not contain
any open corners.

An example of a complete diagram is given by

a11
//

��

a12
//

��

a13
//

��

a15

��
a22

//

��

a22
//

��

a24
//

��

a25

��
a31

//

��

a32
//

��

a32
//

��

a24
//

��

a25

��
a41

// a32
// a32

// a24
// a25

Definition 2.2. An elementary diagram (e.d.) for 〈A,R〉 is a reduction
diagram Γ such that the edges of Γ constitute the boundary of a rectangular.
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Suppose Γ is an e.d. Then the top side and the left side of Γ contain just
one arrow each, as otherwise the top-left corner of Γ would not satisfy the
axiom (6) for a reduction diagram. Therefore there are four different types
of e.d.s:

a //

��

b

����

c // // d

a //

��

a

��
c // c

a //

��

b

��

a // b

a //

��

a

��
a // a

where two headed arrows are used as an abbreviation of a path. The e.d.s of
first type are called proper and the rest of e.d.s are called improper.

Let Γ be a non-complete reduction diagram for 〈A,R〉 and x is an open
corner in Γ with the horizontal arrow to y and the vertical arrow to z. Sup-
pose that we have an e.d. Γ′ with the labels l (x), l (y), l (z) at the top left,
top right, and bottom left corners, respectively. Then we can glue (suitably
stretched) Γ′ into Γ identifying the top left corner of Γ′ with x, the top right
corner of Γ′ with y, and the bottom left corner of Γ′ with z. This process
is called adjoining of the e.d. Γ′ to Γ at x. It is obvious, that the resulting
diagram is again a reduction diagram.

Definition 2.3. We say that 〈A,R〉 is locally confluent if for any a → b,
a → c there is an e.d. with labels a, b, c at the top left, top right, and
bottom left corners, respectively.

Definition 2.4. A reduction diagram Γ for 〈A,R〉 is called initial if its edges
constitute the top and the left sides of a rectangular.

Suppose that 〈A,R〉 is a locally confluent ARS. Let E be a family of e.d.s
such that for every ordered pair a → b, a → c in R there is an e.d. E ∈ E
whose top arrow is a → b and left arrow is a → c. In this case we say that
E is a complete set of e.d.s. It is proved in Section 4 of [4] that the recursive
process of adjoining of e.d.s from a complete set of e.d.s to any initial finite
diagram Γ results in a complete diagram Γ′ in at most a countable number
of steps.

Recall that a preorder is a reflexive and transitive binary relation. Suppose
now that the set R is equipped with a preorder �. We write r1 � r2 if r1 � r2

but not r2 � r1. If r1 � r2 and r2 � r1 simultaneously, then we write r1 ∼ r2.
It is immediate that ∼ is an equivalence relation on R.
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Definition 2.5. We say that the e.d.

x
u //

l

��

y1

r1
��
y1

ym
rm
��

z1
d1 // z2 zn

dn // w

is decreasing if the following two condition hold

1) there is 0 ≤ j ≤ n such that
i) u ∼ dj in the case j 6= 0;
ii) l � dk for all k < j;
iii) l � dk or u � dk for all k > j;

2) there is 0 ≤ s ≤ m such that
i) l ∼ rs in the case s 6= 0;
ii) u � rt for all t < s;
iii) u � rt or l � rt for all t > s.

More informally we require that either the reduction path r1, . . . , rm con-
sists of the steps that are strictly less than l or u, or if it starts with the rules
that are strictly less than u, then there is a step rt which is equivalent to l
and all other steps are strictly less than u or l.

Similarly the reduction path d1, . . . , dn either consists of the steps that
are strictly less than l or u, or if it starts with the rules that are strictly less
than l, then there is a step dt which is equivalent to u and all other steps are
strictly less than u or l.

We say that the preorder � is well-founded if for every sequence

r1 � r2 � · · · � rm � . . .

of elements in R there is an integer n such that for all N ≥ n we have
rN ∼ rn; in other words, any decreasing sequence in (R,�) stabilizes.

The following theorem is a reformulation of [4, Proposition 15].

Theorem 2.6. Suppose 〈A,R〉 is a locally confluent ARS and there is a
well-founded preorder � on R and a complete set E of decreasing e.d.s. Then
every process of adjoining chosen e.d.s to any initial finite diagram Γ results
in a complete diagram Γ′ in a finite number of steps.
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We will say that the sequence of elements

a0, a1, . . . , ak

is a zigzag in 〈A,R〉 from a0 to ak, if for ever 1 ≤ j ≤ k, we have (aj−1, aj) ∈ R
or (aj, aj−1) ∈ R. We will denote zigzags by a0  ak. Let 〈A,R〉 be an ARS,
� a well-founded preorder on R, and E a complete set of decreasing e.d.s.
Suppose we are given a reduction diagram of the form

a1
// //

����

b0

b1

ak // //

����

bk−1

bk

(2)

Then applying Theorem 2.6 to the diagrams

aj // //

����

bj−1

bj,

we can get in a finite number of steps the diagram

a1
// //

����

b0

����
b1

// // c0

ak−2
// //

����

bk−2

����
ak // //

����

bk−1

����

// // ck−2

bk // // ck−1,

(3)
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where every square is in fact tiled into an elementary diagrams from E . Note
that the new diagram has k − 1 open corners, that is one open corner less
than (2). Now we can apply Theorem 2.6 to the diagrams

bj // //

����

cj−1

cj .

As a result we get a new reduction diagram with k − 2 open corners. Con-
tinuing, we get a reduction diagram

a1
// //

����

b0

����

b1

ak // //

����

bk−1

bk // // z,

(4)

whose interior is tiled by e.d.s from E . Thus we get

Corollary 2.7. Suppose 〈A,R〉 is an ARS, � a well-founded preorder on R,
and E a complete set of decreasing e.d.s. Then any reduction diagram of the
form (2) can be completed to a diagram of the form (4) in a finite number of
steps.

One of the applications of Proposition 2.6 is to prove confluency of an ARS.
Similarly, Corollary 2.7 can be used to prove the Church-Rosser property of
〈A,R〉. In this paper we will apply Proposition 2.6 and Corollary 2.7 to prove
commutativity of certain diagrams. It should be noted that Proposition 2.6
enlightens the long time observed connection between confluent ARSs and
coherence results in category theory.

3. ARSs and categories
We will start by introducing notion that generalises normal forms for ter-

minating ARS to the case when � is a well-founded but not necessarily
terminating relation on A.
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Definition 3.1. We say that a ∈ A is semi-normal if for every path a � b
in 〈A,R〉 there is a path b� a in 〈A,R〉. If c ∈ A and there is a path c� a
to a semi-normal element a, we say that a is a semi-normal form of c.

We will denote by �� the equivalence relation on A defined by

a�� b⇔ a� b & b� a.

Suppose the preorder � on A is well-founded. Then for every element of
A there is a semi-normal form.

Suppose 〈A,R〉 is a confluent system and b1, b2 are two semi-normal forms
of a ∈ A. Since 〈A,R〉 is confluent, there is c ∈ A and two paths b1 � c,
b2 � c. As b2 is semi-normal there is a path c � b2. Therefore we get the
path b1 � c � b2. Since also b1 is semi-normal, there is a path b2 � b1.
Hence b1 �� b2. Thus we get

Proposition 3.2. Suppose 〈A,R〉 is a confluent ARS, and � is a well-
founded preorder on A. Then for every element a ∈ A there is a semi-normal
form b which is unique up to equivalence with respect to ��.

Remark 3.3. Proposition 3.2 is a generalization of the well-known fact that
every element in a confluent terminating ARS has a unique normal form.

We will call the set Attr(a) of all semi-normal forms of a ∈ A an attractor
of a. We also will denote by Attr(A) the set of all semi-normal elements
in A. Since a ∈ Attr(A) and (a, b) ∈ R imply that b ∈ Attr(A), we see
that the relation R can be restricted to Attr(A). We will denote the re-
sulting relation on Attr(A) by Attr(R). We will sometimes denote the ARS〈
Attr(A),Attr(R)

〉
by Attr(〈A,R〉).

Now, let C be a category and 〈A,R〉 an ARS. Both 〈A,R〉 and C can be
considered as graphs. Suppose f : 〈A,R〉 → C is a map of graphs. Then using
the composition of morphisms in C, we can extend f to the paths a � b in
〈A,R〉. In particular, given an empty path a 99K a, we set f(a 99K a) = 1f(a).
Our aim is to find sufficient conditions on f that guarantee that for any two
paths p, q : a� b one gets f(p) = f(q).

Theorem 3.4. Let 〈A,R〉 be an ARS, � be a well-founded preorder on R
and E a complete set of decreasing e.d.s. Suppose that

i) for every E ∈ E the diagram f(E) is commutative;
ii) for every b ∈ Attr(A) and every path p : b � b the map f(p) is equal

to 1f(b).



10 I. YUDIN

Then for any two paths p, q : a� b with b ∈ Attr(a), we get f(p) = f(q).

Proof : By Theorem 2.6 we can construct a finite complete reduction diagram
Γ in 〈A,R〉 whose upper side is p, left side is q and which is tiled by e.d.s
in E . It follows that f (Γ) is a commutative diagram in C. Suppose that the
label of the bottom right corner of Γ is c. Then the right side of Γ gives a
path p′ : b � c and the bottom side of Γ gives a path q′ : b � c. From the
commutativity of Γ we get

f
(
p′
)
f (p) = f

(
q′
)
f (q) . (5)

Now, since b is semi-normal, there is a path t : c � b. By the theorem
assumptions we have f(tp′) = 1f(b) = f(tq′). Thus from (5), we get

f(p) = f(tp′)f(p) = f(t)f(p′)f(p) = f(t)f(q′)f(q) = f(tq′)f(q) = f(q).

We will get several corollaries of Theorem 3.4.

Corollary 3.5. Let 〈A,R〉 be an ARS, � be a well-founded preorder on R
and E a complete set of decreasing e.d.s. Suppose that

i) � is a well-founded preorder on A;
ii) for every E ∈ E the diagram f(E) is commutative;

iii) for every r ∈ R the map f(r) is a monomorphism;
iv) for every b ∈ Attr(A) and every path p : b � b the map f(p) is equal

to 1f(b).

Then for any two paths p, q : a� b in 〈A,R〉, we get f(p) = f(q).

Proof : Note that Attr(b) is non-empty since � is a well-founded preorder.
Let b′ ∈ Attr(b) = Attr(a). Then there is a path s : b� b′. We get two com-
posed paths sp, sq : a� b′. We have f(sp) = f(s)f(p) and f(sq) = f(s)f(q).
By Theorem 3.4 we obtain f(sp) = f(sq). Since f(s) is a monomorphism
f(s)f(p) = f(s)f(q) implies that f(p) = f(q).

If f : 〈A,R〉 → C is such that the map f(r) is invertible for every r ∈ R,
then we can define, in the obvious way, a morphism f(z) : f(a) → f(b) for
every zigzag z : a b.

Corollary 3.6. Let 〈A,R〉 be an ARS, � be a well-founded preorder on R
and E a complete set of decreasing e.d.s. Suppose that

i) � is a well-founded preorder on A;
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ii) for every E ∈ E the diagram f(E) is commutative;
iii) for every r ∈ R the map f(r) is an isomorphism;
iv) for every b ∈ Attr(A) and every path p : b � b the map f(p) is equal to

1f(b).

Then for any two zigzags z, z′ : a b, we get f(z) = f(z′).

Proof : The zigzags z and z′ fit in the following reduction diagram

b

a

z
@@

z′

��
b

of type (2). Now, by Corollary 2.7, there is a diagram of type

b

p

��

a

z
??

z′

��
b

q
// c,

which is tiled by diagrams in E . Note, that by Corollary 3.5, we have f(p) =
f(q). Since every diagram f(E), E ∈ E , is commutative and every map f(r),
r ∈ R, is an isomorphism, we get that

f(z)f(z′)−1 = f(p)−1f(q) = 1f(b).

Therefore f(z) = f(z′).

Example 3.7. Suppose 〈A,R〉 is a terminating locally confluent ARS. By [6,
Corollary 4.4] all elementary diagrams for a terminating ARS can be made
decreasing. Further, for every b ∈ Attr(A) the only path b� b is the empty
one. Thus we have f(b � b) = 1f(b) for any map of graphs f : 〈A,R〉 → C.
Hence if f is such that f(r) is an isomorphism for all r ∈ R and f(E) is
commutative for all E in a complete set E of e.d.s, then f(z) = f(z′) for any
two zigzags z, z′ : a b in 〈A,R〉.
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4. Actions of monoids on categories
Let C be a category and M a monoid with neutral element e. Following [1]

we define a (pseudo)action (F , λ) of M on C as a collection of

i) endofunctors Fa : C → C, a ∈ M , such that Fe ∼= Id via the natural
isomorphism η;

ii) natural isomorphisms λa,b : FaFb → Fab, such that for all a, b, c ∈M the
diagram

FaFbFc
λa,bFc

//

Faλb,c
��

FabFc

λab,c
��

FaFbc
λa,bc

// Fabc

commutes, and λe,a, λa,e are induced by η.

Given an action (F, λ) on C and a sequence of elements a1, . . . , ak, with k ≥ 3,
we will define recursively the natural isomorphism λa1,...,ak from Fa1 . . . Fak to
Fa1...ak by

λa1,...,ak = λa1,a2···ak ◦ Fa1(λa2,...,ak).
The actions of M on C form a category [M ; C], where a morphism from

(F, λ) to (F ′, λ′) is given by a collection of natural transformations ρa : Fa →
F ′a, a ∈M , such that the diagrams

FaFb
λa,b

//

ρaρb
��

Fab

ρab
��

F ′aF
′
b

λ′a,b
// F ′ab

Fe
η
//

ρe
��

Id

F ′e

η′

??

commute. From a more abstract point of view, the category of actions of
M on C is the category of pseudofunctors from the category (∗,M) to the
2-category Cat of categories.

Suppose 〈X, r〉 is a presentation of M . Given (F, λ) ∈ [M ; C], we get a
collection of functors Fx : C → C and natural isomorphisms

τr : Fa1 . . . Fak
λa1,...,ak−−−−→ Fa1...ak = Fb1...bl

λ−1b1,...,bl−−−−→ Fb1 . . . Fbl

for every relation r = (a1 . . . ak, b1 . . . bl) in r. Let us denote by [X, r; C] the
category whose objects are pairs ((Fx)x∈X , (τr)r∈r) where Fx are endofunctors
of C and, for every r = (a1 . . . ak, b1 . . . , bl), τr is a natural isomorphism from
Fa1 . . . Fak to Fb1 . . . Fbl. The morphisms from (F, τ) to (F ′, τ ′) in [X, r; C] are
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families of natural transformations ρx : Fx → F ′x, x ∈ X, such that for all
r = (a1 . . . ak, b1 . . . bl) ∈ r the diagrams

Fa1 . . . Fak
τr //

ρa1 ...ρak
��

Fb1 . . . Fbl
ρb1 ...ρbl
��

F ′a1 . . . F
′
ak

τ ′r // F ′b1 . . . F
′
bl

are commutative. Then we get from the construction described above the
restriction functor Res : [M ; C]→ [X, r; C].

Theorem 4.1. The functor Res: [M ; C]→ [X, r; C] is full and faithful.

Theorem 4.1 should be well-known. In Section 6, we reobtain it as a con-
sequence of Corollary 3.6.

It is clear that it is easier to specify objects in [X, r; C] than objects in
[M ; C]. Therefore it is important to have a description of the essential image
of the functor Res. This can be done using the coherent presentations of M
described in the next section.

5. Monoids and ARS
Let M be a monoid with neutral element e and 〈X, r〉 a presentation of

M . We will denote by X∗ the set of all finite words over the alphabet X.
The set X∗ will be considered as a free monoid with multiplication given
by concatenation of words and neutral element given by the empty word ∅.
Denote by φ the canonical epimorphism from X∗ to M . Let

X∗rX∗ :=
{

(w1ww2, w1w
′w2)

∣∣w1, w2 ∈ X∗, (w,w′) ∈ r
}
⊂ X∗ ×X∗.

We will sometimes write the elements of X∗rX∗ in the form w1rw2 with
r ∈ r. Let us consider the ARS 〈X∗, X∗rX∗〉. It is clear that if w1 � w2 in
〈X∗, X∗rX∗〉, then φ(w1) = φ(w2).

Proposition 5.1. Suppose 〈X∗, X∗rX∗〉 is confluent and� is a well-founded
preorder. Then φ(u) = φ(v) if and only if Attr(u) = Attr(v).

Proof : The “if” part is obvious. Suppose φ(u) = φ(v). Then there is a
sequence of words

u = w0, w1, . . . , wk = v

such that (wj, wj−1) ∈ X∗rX∗ or (wj−1, wj) ∈ X∗rX∗ for all 1 ≤ j ≤ k. In
other words we have a zigzag u  v in 〈X∗, X∗rX∗〉. Using the fact that
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〈X∗, X∗rX∗〉 is confluent and following the same reasoning as in the proof
of Corollary 2.7, we conclude that there are w ∈ X∗ and two paths u � w,
v � w in 〈X∗, X∗r〉. Thus

Attr(u) = Attr(w) = Attr(v).

We will denote by l(w) the length of w ∈ X∗. If r = (u, v) ∈ r, then we
define s(r) = u and t(r) = v.

Definition 5.2. A critical pair is a pair of elements in X∗rX∗ of one of the
forms

i) (ur, r′v) with us(r) = s(r′)v in X∗;
ii) (r, ur′v) with s(r) = us(r′)v.

We say that a critical pair of the first type is convergent if there is w ∈ X∗
and there are paths ut(r) � w, t(r′)v � w. A critical pair of the second
type is called convergent if there is w ∈ X∗ and there are paths t(r) � w,
ut(r′)v � w in 〈X∗, X∗rX∗〉.

Given convergent critical pairs (ur, r′v), (r, ur′v) and convergence paths
ut(r) � w, t(r′)v � w, t(r) � w′, ut(r′)v � w′, we define the following
e.d.s in 〈X∗, X∗rX∗〉

s(r′)v = us(r)
ur //

r′v
��

ut(r)

����
t(r′)v // // w

us(r′)v = s(r)

ur′v
��

r // t(r)

����

ut(r′)v // // w′.

(6)

We will call the e.d.s (6) a critical e.d.s. Let Y be a set of critical e.d.s.
We say that Y is complete if for every critical pair there is at least one
corresponding critical e.d. in Y .

Let r, r′ ∈ r and w ∈ W . We will denote by N (r, w, r′) the e.d.

s(r)ws(r′)
rws(r′)

//

s(r)wr′

��

t(r)ws(r′)

t(r)wr′

��

s(r)wt(r′)
rwt(r′)

// t(r)wt(r′).
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The e.d. N (r, w, r′) is called a natural e.d. We write N for the set of all
natural e.d.s. Given an e.d.

E :=

u //

��

v

����
w // // z

in 〈X∗, X∗rX∗〉 and words w1, w2 ∈ X∗, we define

w1Ew2 =

w1uw2
//

��

w1vw2

����
w1ww2

// // w1zw2

, Et =

u //

��

w

����
v // // z

.

Let Y be a complete set of critical e.d.s. Then the set

E = X∗NX∗ tX∗N tX∗ tX∗YX∗ tX∗Y tX∗ (7)

is a complete set of e.d.s for the ARS 〈X∗, X∗rX∗〉.
We say that a preorder � on X∗rX∗ is monomial if

1) for every ρ1, ρ2 ∈ X∗rX∗ such that ρ1 � ρ2 and for every w ∈ X∗, we
have

wρ1 � wρ2, ρ1w � ρ2w;

2) for every ρ1, ρ2 ∈ X∗rX∗ such that ρ1 ∼ ρ2 and for every w ∈ X∗, we
have

wρ1 ∼ wρ2, ρ1w ∼ ρ2w.

Let us state for the late use

Proposition 5.3. Let 〈X, r〉 be a presentation of a monoid M , Y a complete
set of critical e.d.s and N the set of all natural e.d.s. Define E as in (7).
Suppose � is a monomial preorder on X∗rX∗ such that all the e.d.s in Y
and N are decreasing. Then all e.d.s in E are decreasing as well.

6. Coherent presentation
Let 〈X, r〉 be a presentation of a monoid M . Suppose (F, τ) ∈ [X, r; C].

Denote by End(C) the category of endofunctors of C. Define the map of
graphs fF,τ : 〈X∗, X∗rX∗〉 → End(C) by

fF,τ(x1 . . . xk) = Fx1 . . . Fxk, xi ∈ X
fF,τ(x1 . . . xkry1 . . . yl) = Fx1 . . . FxkτrFy1 . . . Fyl, xi, yj ∈ X, r ∈ r.
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We will also use the following natural abbreviations

Fw := fF,τ(w), w ∈ X∗; τρ := fF,τ(ρ), ρ ∈ X∗rX∗

For every path p

w0
r1−→ w1 → . . .

rk−→ wk

in 〈X∗, X∗rX∗〉 we denote by τp the natural isomorphism τrk . . . τr1. If p : w �
w is of length zero then τp is the identity transformation of Fw. Now, given
a zigzag z

w0

p1
� w1

p2
� w2 � . . . wk−1

p2k
� w2k,

where some paths could be empty, we define τz to be the product

τp1τ
−1
p2
τp3 . . . τ

−1
p2k−1

.

We say that two zigzags z1 and z2 are parallel if they have the same source
and target. Given a set Z of pairs of parallel zigzags, we will define [X, r,Z; C]
to be the full subcategory of [X, r; C] with objects (F, τ) such that τp = τq
for all (p, q) ∈ Z.

In what follows, if E is an e.d. then E ∈ Z means that the two paths,
that one can obtain from E, constitute a pair in Z. Thus if E ∈ Z and
(F, τ) ∈ [X, r,Z; C], then fF,τ(E) is a commutative diagram.

Note that if E is a natural e.d. then fF,τ(E) is commutative since τr
are natural transformations. Similarly, if E is an e.d. such that fF,τ(E) is
commutative, then also fF,τ(uEv) and fF,τ(uE

tv) are commutative for all u,
v ∈ X∗. Thus if Y is a set of critical e.d.s and E is defined as in (7) then

[X, r,Y t Z; C] = [X, r, E t Z; C] (8)

for any collection Z of pairs of parallel zigzags.

Example 6.1. To avoid ambiguity we write elements in Mk as m1|m2| · · · |mk.
Then we have a presentation 〈M, r̃〉 of M , with

r̃ =
{(

m1|m2,m1m2

)
: m1,m2 ∈M

}
t {(e,∅)}.

Every path in the resulting ARS 〈M ∗,M∗r̃M ∗〉 ends either at m ∈ M 1,
m 6= e, or at ∅. Thus 〈M ∗,M∗r̃M ∗〉 is terminating. Every critical e.d. for
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〈M, r̃〉 has one of the following forms

m1|m2|m3
//

��

m1|m2m3

��
m1m2|m3

// m1m2m3

m|e
(m|e,m)

//

m|(e,∅)
��

m

��
m // m

e|m
(e|m,m)

//

(e,∅)|m
��

m

��
m // m.

Let us denote by Y the set of all critical e.d.s. Then, by comparing definitions,
we get [M, r̃,Y ; C] = [M ; C]. Let E be defined by (7). Then, using (8), we
get

[M, r̃, E ; C] = [M ; C].
Let (F, λ) ∈ [M, r̃, E ; C]. By Example 3.7, it follows that for any two zigzags
z,z′ : m1| · · · |mk → m′1| · · · |m′l in 〈M ∗,M∗r̃M ∗〉 one has fF,λ(z) = fF,λ(z

′).

Proposition 6.2. Let 〈X, r〉 be a presentation of a monoid M . For any
set Z of pairs of parallel zigzags in 〈X∗, X∗rX∗〉 the restriction functor Res
defined in Section 4 factors via the embedding [X, r,Z; C] → [X, r; C]. We
will denote the resulting functor [M ; C]→ [X, r,Z; C] by ResP .

Proof : Let (F, λ) ∈ [M ; C] and Res(F, λ) = (F, τ) ∈ [X, r, E ; C]. By the
definition of τ , every natural isomorphism τr, r ∈ r, is a value of fF,λ on a
suitable zigzag in the defined above ARS 〈M ∗,M∗r̃M ∗〉. Now let (p, q) ∈ Z,
with p, q : u  w. We have to prove that τp = τq. Since every τr can be
replaced by λz for a suitable zigzag z in 〈M ∗,M∗r̃M ∗〉, we see that there are
zigzags z′, z′′ : u w in 〈M ∗,M∗r̃M ∗〉 such that τp = λz′ and τq = λz′′. But
by Example 6.1, we have λz′ = λz′′. Thus also τp = τq.

Proof of Theorem 4.1: The functor Res is faithful because every morphism
ρ : (F, λ) → (G, µ) in [M ; C] can be uniquely reconstructed from its image
ν = Res(ρ) by use of the diagrams

Fx1 . . . Fxk
λx1,...,xk //

νx1 ...νxk

��

Fx1...xk

ρx1...xk

��

Gx1 . . . Gxk

µx1,...,xk // Gx1...xk.

(9)

Now we show that the functor Res is full. Denote the images of (F, λ) and
of (G, µ) under Res by (F, τ) and (G, σ), respectively. Take a morphism
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ν : (F, τ) → (G, σ) in [X, r; C]. Let m ∈ M . Then we can write m as a
product of elements in X, say m = x1 . . . xk. We define ρm by using the
diagram (9)

ρm = µx1...xk ◦ νx1 . . . νxk ◦ λ−1
x1...xk

.

We have to check that the natural transformation ρm is well-defined. Suppose
y1 . . . yl = m with yj ∈ X. As 〈X, r〉 is a presentation of M , there is a zigzag
z : x1 . . . xk → y1 . . . yl in 〈X∗, X∗rX∗〉. Since ν is a morphism in [X, r; C] we
get that the diagram

Fx1 . . . Fxk
τz //

νx1 ...νxk
��

Fy1 . . . Fyl
νy1 ...νyl
��

Gx1 . . . Gxk

σz // Gy1 . . . Gyl

commutes. As in the proof of Proposition 6.2, we can find a zigzag z′ in
〈M ∗,M∗r̃M ∗〉 such that λz′ = τz and µz′ = σz. Now, consider the zigzag

z′′ : x1| . . . |xk � m� y1| . . . |yl

in 〈M ∗,M∗r̃M ∗〉. Since z′ and z′′ have the same source and target, we get as
in the proof of Proposition 6.2, that λz′ = λz′′ and µz′ = µz′′. Thus we have
the commutative diagram

Fy1 . . . Fyl
λz′′ //

λy1,...,yl

$$

νy1 ...νyk
��

Fx1 . . . Fxk
λx1,...,xk //

νx1 ...νxk
��

Fx1...xk
ρm
��

Gy1 . . . Gyl

µz′′ //

µy1,...,yl

::
Gx1 . . . Gxk

µx1,...,xk// Gx1...xk,

which shows that ρm does not depend on the choice of the presentation of m
in 〈X, r〉.
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Now we have to check that (ρm)m∈M is a well-defined morphism in [M ; C],i.e.
that for every m1, m2 ∈M the diagram

Fm1
Fm2

λm1,m2 //

ρm1
ρm2

��

Fm1m2

ρm1m2
��

Gm1
Gm2

µm1,m2// Gm1m2
.

commutes. Suppose m1 = x1 . . . xk and m2 = y1 . . . yl with xi, yj ∈ X. Then
since we can use the presentation x1 . . . xky1 . . . yl of m1m2 to define ρm1m2

,
we get that in the diagram

Fx1 . . . FxkFy1 . . . Fyl

λx1,...,xk,y1,...,yl

))λx1,...,xkλy1,...,,yl //

νx1 ...νxkνy1 ...νyl
��

Fm1
Fm2

λm1,m2 //

ρm1
ρm2

��

Fm1m2

ρm1m2

��

Gx1 . . . GxkGy1 . . . Gyl

µx1,...,xk,y1,...,yl

55

µx1,...,xk
µy1,...,,yl // Gm1

Gm2

µm1,m2 // Gm1m2
,

the triangles commute by the definition of the λ’s, the left rectangle commutes
by the definition of ρm1

and ρm2
, and the external rectangle commutes by the

definition of ρm1m2
. Since all λ’s are isomorphisms, we get that also the right

rectangle commutes. This shows that ρ is a well-defined morphism from
(F, λ) to (G, µ) in [M ; C].

We say that a set Z of pairs of parallel zigzags in 〈X∗, X∗rX∗〉 defines a
coherent presentation of M , if the functor ResZ : [M ; C] → [X, r,Z; C] is an
equivalence of categories. The main result of this section is the following
theorem.

Theorem 6.3. Let 〈X, r〉 be a presentation of a monoid M with neutral
element e. Suppose that

1) the transitive closure � of X∗rX∗ is a well-founded preorder on X∗;
2) there exists a well-founded monomial preorder � on X∗rX∗ such that all

natural e.d.s are decreasing;
3) there is a complete set Y of critical e.d.s that are decreasing with respect

to �.
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Denote by L the collection of all pairs (p,∅b), where b ∈ Attr(A), ∅b is the
empty path at b, and p : b� b. Then ResYtL is an equivalence of categories.

Proof : Let E be the collection of e.d.s defined by (7). In view of (8), it is
enough to show that

ResEtL : [M ; C]→ [X, r, E t L; C]
is an equivalence of categories. Since ResEtL is fully faithful, it is enough to
check that it is a dense functor. Let (F, τ) ∈ [X, r, E t L; C]. Then

fF,τ : 〈X∗, X∗rX∗〉 → End(C)
satisfies conditions of Corollary 3.6. In particular, for any two zigzags z,
z′ : u v in 〈X∗, X∗rX∗〉 we have τz = τz′.

Now, for every m in M we choose a presentation x1 . . . xk of m in 〈X, r〉. We
will assume that if m ∈ X, then its chosen presentation is m itself. We define
Gm = Fx1 . . . Fxk using the above chosen presentation. Now, let m′ ∈M and
y1 . . . yl be its chosen presentation. Then x1 . . . xky1 . . . yl is a presentation of
mm′, which, in general, is different of the chosen presentation, say, z1 . . . zn
of mm′. Since 〈X, r〉 is a presentation of M , we get that there is zigzag
ζ : x1 . . . xky1 . . . yl  z1 . . . zn in 〈X∗, X∗rX∗〉. We define λm,m′ = τζ . As we
already mentioned the resulting natural isomorphism is independent of the
choice of ζ. Now, if m′′ ∈M , the compositions

GmGm′Gm′′
Gmλm′,m′′−−−−−→ GmGm′m′′

λm,m′m′′−−−−→ Gmm′m′′

GmGm′Gm′′
λm,m′Gm′′−−−−−→ Gmm′Gm′′

λmm′,m′′−−−−→ Gmm′m′′

(10)

are equal to τζ ′ and τζ ′′ for suitable parallel zigzags ζ ′, ζ ′′ in 〈X∗, X∗rX∗〉.
Thus the natural transformations (10) are equal. Hence we get that (G, λ)
is an object of [M ; C].

We have to check that Res(G, λ) = (F, τ). Since for every x ∈ X, we
have Gx = Fx, we get Res(G, λ) = (F, σ). Thus, we have only to check that
σ = τ . For every r = (u, v) ∈ r, we defined σr as λz for a suitable zigzag
z in 〈M ∗,M∗r̃M ∗〉. Since every λm,m′ is of the form τz′ for a zigzag z′ in
〈X∗, X∗rX∗〉, we get that there is a zigzag ζ : u  v in 〈X∗, X∗rX∗〉 such
that λz = τζ . But now τζ = τr. This shows that σr = τr.

Example 6.4. Suppose 〈X∗, X∗rX∗〉 is terminating and r satisfies the Knuth-
Bendix condition. Let Y be a complete set of critical e.d.s. Then, in view
of Example 3.7, we get that ResY is an equivalence of categories. Thus one
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of the ways to find a coherent presentation of a monoid M is to perform the
Knuth-Bendix completion procedure on a given presentation. Unfortunately,
this process can either not to finish or to lead to an enormous coherent
presentation which is not useful for practical purposes.

7. Coherent presentation for the 0-Hecke monoid
The 0-Hecke monoid H(Σn+1) is defined by the following presentation

X = {T1, . . . , Tn}

r′ = {ai | 1 ≤ i ≤ n} t { bi+1 | 1 ≤ i ≤ n− 1} t
{
cji
∣∣ 1 ≤ i ≤ j − 2 ≤ n− 2

}
,

where

ai = (TiTi, Ti), bi+1 = (Ti+1TiTi+1, TiTi+1Ti), cji = (TjTi, TiTj).

In this section we find a coherent presentation of H(Σn+1) that extends the
above presentation of H(Σn+1). It is easy to see that 〈X∗, X∗r′X∗〉 is not
(locally) confluent. We denote by r′′ the set r′ t

{
cij
∣∣ i ≤ j − 2

}
, where

cij = (TiTj, TjTi). It is well-know that 〈X∗, X∗r′′X∗〉 is confluent.
In the diagrams below we will write i in place of Ti. We will also use ′ for

decrement and ̂ for increment, thus for an integer k

k′ = k − 1, k̂ = k + 1.

We will show that the set P of pairs of paths in 〈X∗, X∗r′′X∗〉 defined below
gives a coherent presentation of H(Σn+1), i.e. that

ResP : [H(Σn+1); C]→ [X, r′′,P ; C]

is an equivalence of categories. The set P consists of the pairs of paths that
one obtains from the following diagrams

st
cst //

99ts
cts // st (11)

kkk
kak //

akk
��

kk

ak
��

kk
ak // k

(12)
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kk′kk
kk′ak //

bkk
��

kk′k

bk
��

k′kk′k
k′bk // k′k′kk′

ak′kk
′

// k′kk′

(13)

kkk′k
kbk //

akk
′k

��

kk′kk′

bkk
′

��

k′kk′k′

k′kak′��

kk′k
bk // k′kk′

(14)

stt
sat //

cstt
��

st

cst
��

tst
tcst // tts

at // ts

(15)

kk′kk′k

bkk
′k
��

kk′bk // kk′k′kk′
kak′kk

′
// kk′kk′

bkk
′

��

k′kk′k′k

k′kak′k ��

k′kk′k′

k′kak′��

k′kk′k
k′bk // k′k′kk′

ak′kk
′
// k′kk′

(16)

tss′s
tbs //

ctss
′s
��

ts′ss′
cts′ss

′
// s′tss′

s′ctss
′

��

sts′s

scts′s
��

s′sts′

s′scts′��

ss′ts
ss′cts // ss′st

bst // s′ss′t

(17)

kji
kcji

//

ckji
��

kij
ckij // ikj

ickj
��

jki
jcki // jik

cjik
// ijk

(18)
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k̂kk′k̂kk̂
k̂kk′bk̂ //

k̂kck′k̂kk̂ ��

k̂kk′kk̂k
k̂bkk̂k // k̂k′kk′k̂k

ck̂k′kk
′k̂k
// k′k̂kk′k̂k

k′k̂kck′k̂k��

k̂kk̂k′kk̂

bk̂k
′kk̂ ��

k′k̂kk̂k′k

k′bk̂k
′k

��

kk̂kk′kk̂

kk̂bkk̂ ��

k′kk̂kk′k

k′kk̂bk��

kk̂k′kk′k̂

kck̂k′kk
′k̂ ��

k′kk̂k′kk′

k′kck̂k′kk
′

��

kk′k̂kk′k̂
kk′k̂kck′k̂ // kk′k̂kk̂k′

kk′bk̂k
′
// kk′kk̂kk′

bkk̂kk
′
// k′kk′k̂kk′.

(19)
The diagrams (18) and (19) were called Tits-Zamolodchikov 3-cells in [2].

We will say that a path p in 〈X∗, X∗r′′X∗〉 is a c-path if all the steps in p
are of the form X∗cstX

∗ for some s, t such that |s− t| ≥ 2.

Proposition 7.1. Suppose (F, τ) ∈ [X, r′′,P ; C]. If p, p′ : u � v are two
c-paths in 〈X∗, X∗r′′X∗〉, then τp = τp′.

Proof : Let c be the subset r′′ consisting of all cji with j ≥ i+ 2. Using (11),
we see that τcij = τ−1

cji
for all j ≥ i + 2. Therefore, there are zigzags z, z′ in

〈X∗, X∗cX∗〉 such that τp = τz and τp′ = τz′.
The ARS 〈X∗, X∗cX∗〉 is terminating and locally confluent, with the only

critical e.d.s given by (18) with k ≥ j + 2, j ≥ i + 2. Therefore, by Exam-
ple 3.7, we get that τz = τz′.

The easiest way to prove our result would be to have a complete set of
decreasing critical e.d.s for 〈X∗, X∗r′′X∗〉. The author does not know at the
moment if this is possible. Instead, we will proceed as follows

1) first we replace r′′ with a bigger set r of generating rules;
2) then we define a preorder on X∗rX∗ so that there is a complete set of

decreasing critical e.d.s for 〈X, r〉 and all natural e.d.s are decreasing;
3) further we show that all the chosen critical e.d.s can be subdivided into

diagrams in P ;
4) finally we show that for all (F, τ) ∈ [X, r,P ; C] and any attractor loop
p : b� b one has τp = 1Fb

.
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Let

r = { ai | 1 ≤ i ≤ n} t
{
bji
∣∣ 1 ≤ i < j ≤ n

}
t
{
cst
∣∣ |s− t| ≥ 2

}
.

Here ai, cst are defined as before and

bji = (j . . . ij, j′jj′ . . . i),

where j . . . i denotes the interval of the arithmetic progression with the step
−1. Note that in particular bjj′ = bj, and therefore r′′ ⊂ r. We define the
preorder � on X∗rX∗ as follows. Given r, r′, we write r � r′ to indicate
that urv � u′r′v′ for all u, v, u′, v′ ∈ X∗. Moreover, for example, c� a will
indicate that cst � ai for all s, t, and i. We will write #ju for the number
of occurrences of j in u ∈ X∗. The preorder � is defined by the rules

1) for i ≤ j′′, bji ∼ bjj′j
′′ . . . i, i.e. to compare two elements in X∗rX∗, we

first replace, if necessary, all bji by bjj′j
′′ . . . i, and then proceed with the

rules below;
2) we order the relations in r by

i) b� c� a;
ii) bi+1,i � bi,i−1;
iii) cij � cts for all j ≥ i+ 2 and t ≥ s+ 2;
iv) for k ≥ j + 2 and t ≥ s+ 2, ckj � cts, if k > t or k = t and j > s;
v)
{
cij
∣∣ j ≥ i+ 2

}
are ordered arbitrary;

3) if words contain the same generating rule r ∈ r we proceed as follows:
i) if r = ai, then we just compare lengths of the words: the longer word

is greater;
ii) if r = cji with j ≥ i+ 2, then ucjiv � u′cjiv

′ if
a)
∑
k≥j

#ku >
∑
k≥j

#ku
′;

b)
∑
k≥j

#ku =
∑
k≥j

#ku
′ and

∑
k≤i

#kv >
∑
k≤i

#kv
′.

iii) if r = bkk′, then ubkk′v � u′bkk′v
′ if

(#kuv,#k′uv, . . . ,#1uv) > (#ku
′v′,#k′u

′v′, . . . ,#1u
′v′)

with respect to the lexicographical order on Nk.

If for two words w, w′ ∈ X∗rX∗ we cannot conclude either w � w′ or w′ � w,
according to the above rules, then w ∼ w′. It is obvious that the preorder �
is monomial.
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Proposition 7.2. All the natural e.d.s of the ARS 〈X∗, X∗rX∗〉 are decreas-
ing with respect to the preorder �.

Proof : Let r, r′ ∈ r and w ∈ X∗. Then N (r, w, r′) has the top arrow rws(r′),
the bottom arrow rwt(r′), the left arrow s(r)wr′, and the right arrow t(r)wr′.
If rws(r′) � rwt(r′) and s(r)wr′ � t(r)wr′ then the e.d. N (r, w, r′) is obvi-
ously decreasing.

Thus, we have to find triples (r, w, r′) for which rwt(r′) � rws(r′) or
t(r)wr′ � s(r)wr′.

First we identify triples (r, w, r′) such that rwt(r′) � rws(r′). If r is of type
a, then rwt(r′) � rws(r′) if and only if the length of t(r′) is greater than the
length of s(r′). But there is no rule r′ ∈ r with such property. Thus r cannot
be of type a.

Now, suppose r if of type c. We have two cases: either r = cij or r = cji,
with j ≥ i + 2. If r = cij then rws(r′) ∼ rwt(r′). If r = cji then rwt(r′) �
rws(r′) if and only if ∑

k≤i

#kt(r
′) >

∑
k≤i

#ks(r
′). (20)

It is clear that r′ can be of type a or c as for such rules we have #kt(r
′) =

#ks(r
′) for arbitrary k. If r′ = bml with m > l, then

#kt(r
′) =


#ks(r

′)− 1, k = m

#ks(r
′) + 1, j = m− 1

#ks(r
′), otherwise.

(21)

Thus (20) holds only if i = m−1, i.e. r′ = bi+1,l with i+1 > l. As b� c we get
that s(r)wr′ � rwt(r′). Moreover, s(r)wr′ ∼ t(r)wr′ as #ks(cji) = #kt(cji)
for all k. Thus N (r, w, r′) is decreasing in this case.

Let us consider the case r = bji for some j > i. Then we have rwt(r′) >
rws(r′) if and only if(

#jt(r
′), . . .#1t(r

′)
)
> (#js(r

′), . . . ,#1s(r
′)).

This is possible only in the case r′ = bj+1,k for some k < j+1. As bj+1,j � bjj′,
we get that s(r)wr′ � rwt(r′). Moreover

#j+1s(r) = #j+1(j . . . ij) = 0 = #j+1(j
′j . . . i) = #j+1t(r)

#js(r) = #j(j . . . ij) = 2 > 1 = #j(j
′j . . . i) = #jt(r).
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Thus s(r)wr′ � t(r)wr′ and we get that N (r, w, r′) is decreasing.
Now we will analyze the triples (r, w, r′) such that t(r)wr′ � s(r)wr′. It

is impossible to have r′ of type a as the length of t(r)w never exceeds the
length of s(r)w. Suppose r′ is of type c. Then r′ = cij or r′ = cji for some j,
i such that j > i + 1. If r′ = cij then t(r)wr′ ∼ s(r)wr′. Thus we have only
to consider the case r′ = cji. In this situation t(r)wr′ � s(r)wr′ if and only
if ∑

k≥j

#kt(r) >
∑
k≥j

#ks(r). (22)

As for rules r′′ of type a or c, the inequality #kt(r
′′) ≤ #ks(r

′′) holds for
every k, we get that r cannot be of type a or c. If r = bml for some m > l,
then the sums in (22) are equal unless j = m, in which case the left hand
side of (22) is less than the right hand side of (22). This shows that r′ cannot
have type c.

Suppose r′ = bji for some j > i. Then t(r)wr′ � s(r)wr′ if and only if(
#jt(r), . . . ,#1t(r)

)
>
(
#js(r), . . . ,#1s(r)

)
with respect to the lexicographical order on Nj. This is possible only in the
case r = bj+1,l for some l < j + 1. As bj+1,j � bjj′, we get that rws(r′) �
t(r)wr′. Moreover, as #j+1s(r

′) = #j+1t(r
′) and #js(r

′) > #jt(r
′), we have

rws(r′) � rwt(r′). This shows that N (r, w, r′) is decreasing in this case.

Now we construct a complete set of decreasing critical e.d.s for the ARS
〈X∗, X∗rX∗〉.

Note that there are not any rules r, r′ ∈ r such that s(r′) is a proper
subword of s(r). Therefore all the cricital pairs for r are of the form (ru, vr′)
for some r, r′ ∈ r and non-empty u, v ∈ X∗.

If r = cij with j ≥ i + 2, then the following commutative diagram is
decreasing and resolving for this critical pair

iju
ciju

//

vr′

��

jiu

cjiu
��

iju

vr′
��

t(r) // t(r).
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In fact, cij � cji implies that ciju � cjiu. As � is monomial, we get that
vr′ ∼ vr′. Similarly, if r′ = cij with j ≥ i+ 2, the diagram

uij
ucij

//

ru

��

uji

ucji
��

uij

ru
��

t(r) // t(r).

(23)

is decreasing and resolves the critical pair (ru, vcij).
It is left to consider the critical pairs with r and r′ equal to one of ak, bji,

j ≥ i + 1, cts, t ≥ s + 2. In the diagrams below we will abbreviate c-paths

by
c∗

�. This does not create any ambiguity in view of Proposition 7.1.
We first consider all the critical pairs involving at least one ak. The dia-

gram (12) is a decreasing critical e.d. for the critical pair (kak, akk). For the
critical pair (akk

′ . . . jk, kbkj), we consider the diagram

E(ak, bkj) =

kk . . . jk
kbkj

//

akk
′...jk

��

kk′k . . . j

b′k...j
��

k′kk′k′ . . . j

k′kak′k
′′...j

��

k . . . jk
bkj

// k′k . . . j.

(24)

The diagram (24) is decreasing since kbkj is greater than all the other arrows.
Note, that for j = k′ the word k′′ . . . j is empty and we recover (14).

For the critical pair (bkjk, k . . . jak), we consider the diagram

E(bkj, ak) =

k . . . jkk
k...jak //

bkjk
��

k . . . jk

bkj
��

k′k . . . jk
k′bkj

// k′k′k . . . j
ak′k...j // k′k . . . j.

(25)

The diagram (25) is decreasing since bkjk is greater then any other arrow. In
the case j = k′, we recover the diagram (13).
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All the critical pairs involving two b-rules are of the form (bkjk
′ . . . i, k . . . jbki).

For j = k′, we get

E(bkk′ ,bki)=

kk′k . . . ik
kk′bki //

bkk′k
′...ik

��

kk′k′k . . . i

kak′k...i
��

kk′k . . . i

bkk′k
′...i

��

k′kk′k′ . . . i

k′kak′k
′′...i

��

k′kk′k′ . . . ik

k′kak′k
′′...ik

##

k′k . . . ik
k′bki // k′k′k . . . i

ak′k...i // k′k . . . i.
(26)

The diagram (26) is decreasing since bkk′k
′ . . . ik ∼ kk′bki dominates all the

other arrows. Note that for i = k′ the subword k′′ . . . i is empty and we
recover the diagram (16).

The diagram corresponding to the case j ≤ k′′ is not drawn in the rect-
angular form for the typographical reasons. We also write S for the word
k′′′ . . . jk′′ . . . i.

E(bkj ,bki)=

k . . . jk . . . ik

bkjk
′...ik

{{

k...jbki

##
k′k . . . jk′ . . . ik

c∗

����

k . . . jk′k . . . i

c∗

����
k′kk′k′′k′kS

k′kbk′k′′kS

��

kk′k′′k′kk′S

kbk′k′′kk
′S

��
k′kk′′k′k′′kS

c∗

����

kk′′k′k′′kk′S

c∗

����
k′k′′kk′kk′′S

k′k′′bkk′k
′′S

��

k′′kk′kk′′k′S

k′′bkk′k
′′k′S

��
k′k′′k′kk′k′′S

bk′k′′kk
′k′′S

��

k′′k′kk′k′′k′S

k′′k′kbk′k′′S

��
k′′k′k′′kk′k′′S

c∗ // // k′′k′kk′′k′k′′S

(27)
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In (27) all the arrows are dominated by the two top arrows bkjk
′ . . . ik ∼

k . . . jbki. For j = k′′ and i = k′, (27) becomes (19).
Now we will consider critical pairs involving one b-rule and one c-rule of

the form ckj with k ≥ j + 2.
For (ckjj

′ . . . ij, kbji), k ≥ j + 2, j ≥ i+ 1, we consider the diagram

E(ckj ,bji) =

kj . . . ij
kbji

//

ckjj
′...ij

��

kj′j . . . i

c∗����

jkj′ . . . ij
c∗ // // j . . . ikj

j...ickj
// j . . . ijk

bjik
// j′j . . . ik.

(28)

In (28), we have kbji ∼ bjik and kbji dominates every arrow in the vertical
c-path. Thus we have to show that ckjj

′ . . . ij dominates every arrow in
the horizontal c-path. The horizontal c-path involves the rules generated by
cks with s < j and at the last step the rule j . . . ickj. Since, by definition,
ckj � cks if j > s, we see that ckjj

′ . . . ij dominates all the horizontal c-arrows
except probably the last one. But it is easy to see that also

ckjj
′ . . . ij � j . . . ickj.

Now suppose k ≥ s+ 2 and k ≥ j+ 1. For the critical pair (bkjs, k . . . jcks)
we will consider several cases. If j ≥ s + 2, then we can take a diagram
similar to (28)

E(bkj, cks) =

k . . . jks
k...jcks //

bkjs

��

k . . . jsk

c∗����

ksk′ . . . jk

cksk
′...jk

��

sk . . . jk

sbkj
��

k′k . . . js
c∗ // // sk′k . . . j.

(29)

In (29), bkjs ∼ sbkj and dominates every arrow in the horizontal c-path. We
have to check that k . . . jcks dominates all arrows in the vertical c-path. This
is done using that cks � cts for all k′ ≥ t ≥ j, and that k . . . jcks � cksk

′ . . . jk.
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For j = s+ 1 we consider the diagram

E(bkj, ckj′) =

k . . . jkj′
k...jckj′

//

bkjj
′

��

k . . . j′k

bkj′
��

k′k . . . j′ // k′k . . . j′.

(30)

The diagram (30) is decreasing since bkjj
′ ∼ bkk′k

′′ . . . j′ ∼ bkj′.
For j = s, we consider the diagram

E(bkj, ckj) =

k . . . jkj
k...jckj

//

bkjj

��

k . . . jjk

k...̂ajk
��

k . . . jk

bkj
��

k′k . . . jj
k...̂aj

// k′k . . . j

(31)

In (31), bkjj dominates all the arrows.
For k′′ ≥ s ≥ j + 1, we take the diagram

E(bkj, cks) =

k . . . jks
k...jcks //

bkjs

��

k . . . jsk

c∗����

k . . . ŝks . . . js

k...ŝkbsj
��

k . . . ŝks′s . . . j

bkŝs
′s...j

��

k′k . . . ŝs . . . js
k′k...ŝbsj

// k′k . . . ŝs′s . . . j.

(32)

Note that for s = k′′ the subword k′′ . . . ŝ is empty. We claim that bkjs
dominates all the arrows. This is obvious for all arrows except bkŝs

′ . . . j.
We have bkjs ∼ bkk′k

′′ . . . js and bkŝs
′s . . . j ∼ bkk′k

′′ . . . ŝs′s . . . j. Now for all
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s+ 1 ≤ t ≤ k, we have

#t(k
′′ . . . js) =

{
0, t = k, k′

1, s+ 1 ≤ t ≤ k′′

= #t(k
′′ . . . ŝs′s . . . j).

Further,
#s(k

′′ . . . js) = 2 > 1 = #s(k
′′ . . . ŝs′s . . . j).

Thus
bkjs � bkŝs

′s . . . j.

It is left to consider the critical pairs involving two c-rules of the form cts
with t ≥ s+ 2. They are all of the type (ckji, kcji). The diagram (18) gives a
decreasing convergence diagram for this pair as ckji dominates all the arrows
in (18). This is true as ckj � cki � cji and ckji > ickj for i < j.

We will denote the set of pairs of paths that one obtains from the chosen
critical e.d.s by Y . We also write L for the set (p,∅w), were p : w � w are
the loops at semi-normal elements of 〈X∗, X∗rX∗〉. By Theorem 6.3, we get
that ResYtL is an equivalence of categories.

Now we identify pairs of paths coming from loops in the attractor of
〈X∗, X∗rX∗〉.

Proposition 7.3. The preorder � on 〈X∗, X∗rX∗〉 is well-founded. Equiv-
alently Attr(w) 6= ∅ for every w ∈ X∗.

Proof : Suppose
w0 → w1 → · · · → wk → . . . (33)

is an infinite sequence in 〈X∗, X∗rX∗〉. Then we have

l(w0) ≥ l(w1) ≥ · · · ≥ l(wk) ≥ . . .

Since the set of words of length not greater than l = l(w0) is finite, we see
that there is a word w that appears in (33) infinitely many times. Let wk = w
be the first appearance of w in (33). Then for all m > k, there is n > m such
that wn = w. Thus we get that for all m > k there are paths w = wk � wm
and wm � wn = w. This shows that for every m > k, we have w �� wm,
that is � is a well-founded preorder.

Proposition 7.4. Let w be a semi-normal element in 〈X∗, X∗rX∗〉 and
p : w � w a path in 〈X∗, X∗rX∗〉. Then p is a c-path.
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Proof : Define the map

l : X∗ → Nn

u 7→ (l(u),#n(u),#n−1(u), . . . ,#2(u)).

We will write u ≥ v if l(u) ≥ l(v) with respect to the lexicographical order
on Nn. If u ≥ v and v ≥ u, then we write u ≡ v. It is obvious that
(u, v) ∈ X∗rX∗ implies that u ≥ v and u ≡ v if and only if (u, v) = w′cijw

′′

for some w′, w′′ ∈ X∗. Thus p is a path in 〈X∗, X∗cX∗〉.
Let L′ be a subset of L consisting of (11). Combining Proposition 7.1 and

Proposition 7.4, we get

Corollary 7.5. The functor ResYtL′ is an equivalence of categories.

Next we are going to relate the categories [X, r,Y ∪L′; C] and [X, r′′,P ; C],
where P was defined on page 21.

We have two functors Res : [X, r; C]→ [X, r′′; C] and P: [X, r′′; C]→ [X, r; C].
The first functor is defined by (F, τ) → (F, res(τ)), where res(τ) is the
restriction of τ to r′′. The functor P: [X, r′′; C] → [X, r; C] is defined by
P(F, τ) = (F, τ̃) where

τ̃(ai) = τ(ai), τ̃(cst) = τ(cst), τ̃(bkk′) = τ(bk)

and τ̃(bkj) for j ≤ k′′ is computed recursively using the relation

τ̃(bkj) = (τ̃(bk,j+1)Fj) ◦ (Fk . . . Fj+1τ(cjk)).

Let Z be the set of pairs of paths in 〈X∗, X∗rX∗〉obtained from (30).
Then it is easy to see that Res and P induce mutually inverse equivalences
of categories

Res : [X, r,Z; C]� [X, r′′; C] : P

It is also clear that if (F, τ) ∈ [X, r,Y t L′; C] then Res(F, τ) ∈ [X, r′′,P ; C]
since the images of the pairs in P under P appear among the pairs Y t L′.

Now we are going to show that for every (F, τ) ∈ [X, r′′,P ; C], we get
P(F, τ) ∈ [X, r,Y t L′; C]. Let us write (F, τ̃) for P(F, τ). We have to show
that every diagram in Y t L′ is mapped into a commutative diagram under
fF,τ̃ . For L′ this is obvious, since L′ ⊂ P and (F, τ) ∈ [X, r′′,P ; C]. Now, we
have to check that all the diagrams (23-32) become commutative under fF,τ̃ .

For (23) this is obvious, since τ(cst)τ(cts) = id for all |s − t| ≥ 2. The
commutativity of the other diagrams follows by an induction argument and
the patching diagrams listed bellow. We label natural e.d.s by N .
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As we already noted before (24) for j = k′ becomes (14). Now, for j ≤ k′′,
we have

kk . . . jk
kk...̂cjk

//

akk
′...jk

��

kk . . . ̂kj

akk
′...̂kj

��

kbk̂j
// kk′k . . . ̂j

����

N E(ak, bk̂)j

k . . . jk
k...̂cjk

// k . . . ̂kj // // k′k . . . j.

(34)

Further (25) for j = k′ is (13), and for j ≤ k′′, we have the diagram

k . . . jkk

k...̂cjkk

��

k...jak // k . . . jk

k...̂cjk

��

(15)

k . . . ̂kjk
k...̂kcjk

//

bk̂jk

��

k . . . ̂kkj
k...̂akj //

bk̂kj

��

k . . . ̂kj

����

N E(bk̂, ak)j

k′k . . . jk
k′k...̂cjk

// k′k . . . ̂kj // // k′k . . . ̂j.

(35)

The diagram (26) for i = k′ is (16). For i ≤ k′′, we use the diagram

kk′k . . . ik

bkk′k
′...ik

��

kk′k...̂ıcik // kk′k . . . ı̂ki
kk′bkı̂ //

bkk′k
′...̂ıki

��

kk′k′k . . . ı̂i

����

N E(bkk′, bkı̂)i

k′kk′k′ . . . ik
k′kk′k′...̂ıcik // k′kk′k′ . . . ı̂ki // // k′k . . . ı̂i.

(36)
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The diagram (27) for j = k′′ and i = k′ is (19). Let us first consider the
case i = k′. Then we use the patching diagram

k . . . jkk′k

k...̂cjkk
′k

��

k...jbkk′ // k . . . jk′kk′

c∗

����

(17)

k . . . ̂kjk′k
c∗ //

bk̂jk
′k

��

k . . . ̂kk′kj

bk̂k
′kj

��

k...̂bkj // k . . . ̂k′kk′j

����

N E(bk̂, bkk′)j

k′k . . . ̂jk′k
c∗ // k′k . . . ̂k′kj // // k′′k′kk′′k′k′′ . . . ̂j.

(37)

For i ≤ k′′, we use

k . . . jk . . . ik

bkjk
′...ik

��

k...jk...̂ıcik
))

k . . . jk . . . ı̂ki

bkjk
′...̂ıki

��

k...jbkı̂i // k . . . jk′k . . . ı̂i

����

N E(bkj, bkı̂)i

k′k . . . jk′ . . . ik

k′k...jk′...̂ıcik

99
k′k . . . jk′ . . . ı̂ki // // k′′k′kk′′k′k′′ . . . jk′′ . . . ı̂i.

(38)
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The diagram (28) for i = j′ is (17). For i ≤ j′′, we consider the diagram

kj . . . ij

kj...vcij

''

ckjj
′...ij

��

kj . . . vji
kbjvi

//

ckjj
′...vji

��

kj′j . . . vi

����

N E(ckj, bjv)i

jkj′ . . . ij

jkj′...vcij

<<
jkj′ . . . vji // // j′j . . . vki.

(39)

The commutativity of fF,τ̃(E(bkk′, cks)) for s ≤ k′′′ follows from the commu-
tativity of the diagram obtained by application fF,τ to (17). Now, we show
that fF,τ̃(E(bkj, cks)) is commutative for s ≤ k′′′ and j ≤ k′′ by induction on
j, using the diagram

k . . . jks

k...̂cjks

��

k...jcks // k . . . jsk

c∗

��

(18)

k . . . ̂kjs

bk̂js

��

k...̂kcjs

&&

k . . . ̂ksj
k...̂cksj //

bk̂sj

��

k . . . ̂skj

����

N E(bk̂, cks)j

k′k . . . js

k′k...̂cjs

==
k′k . . . ̂sj // // sk′k . . . ̂j.

(40)
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The commutativity of the diagrams fF,τ̃(E(bkj, ckj′)) follows from the defini-
tion of τ̃ . Next we check that fF,τ̃(E(bkj, ckj)) is commutative.

k . . . jkj

k...̂cjkj (11)

��

k...jckj
// k . . . jjk

k...̂ajk

��

(15)

k . . . ̂kjj

k...̂ckjj

YY

k...̂kaj

//

bk̂jj

��

k . . . ̂kj
k...̂ckj

//

bk̂j

��

k . . . ̂jk

bkj

��

N E(bk̂, ckj)

k′k . . . ̂kjj
k′k...̂kaj

// k′k . . . ̂j // k′k . . . j

(41)

To prove the commutativity of fF,τ̃(E(bkj, cks)), one notices that commu-
tativity of fF,τ̃(E(bkj, ckj′) for all j ≤ k′, implies that for any k′′ ≥ s ≥ j + 1,
the following diagram commutes uppon application of fF,τ̃ to it:

k . . . jks //c∗ //

bkjs
��

k . . . ŝks . . . js

bkŝs...js
��

k′k . . . js // k′k . . . js.

(42)

Further one uses that τ̃(csk)τ̃(cks) = id and the natural e.d. with r = bkŝ,
r′ = bsj, and w = ∅.

This finishes the proof that the diagrams (12-19) give a coherent presenta-
tion for the 0-Hecke monoid H(Σn+1).
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