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Universidade de Coimbra
Preprint Number 18–03

ALMOST FORMALITY OF QUASI-SASAKIAN AND
VAISMAN MANIFOLDS WITH APPLICATIONS TO

NILMANIFOLDS

BENIAMINO CAPPELLETTI-MONTANO, ANTONIO DE NICOLA, JUAN CARLOS
MARRERO AND IVAN YUDIN

Abstract: We provide models that are as close as possible to being formal for
a large class of compact manifolds that admit a transversely Kähler structure, in-
cluding Vaisman and quasi-Sasakian manifolds. As an application we are able to
classify the corresponding nilmanifolds.

Keywords: Models, formal models, Vaisman manifolds, Sasakian manifolds, nil-
manifolds, solvmanifolds, mapping torus, Boothby-Wang fibrations.
Math. Subject Classification (2010): Primary: 53C25; Secondary: 53C55,
53D35, 55P62.

Contents

1. Introduction 2
2. Elements of rational homotopy theory 4
2.1. Basics on CDGAs 4
2.2. Hirsch extensions of a CDGA 5
2.3. Operation of a Lie algebra in a CDGA 8
2.4. Algebraic connection 10
2.5. Chevalley model 13
3. Models of quasi-Sasakian manifolds 17
4. Models of quasi-Vaisman manifolds 22
5. Almost formal nilmanifolds 28
6. Mapping torus and solvmanifolds 33

Received January 19, 2018.
This work was partially supported by CMUC – UID/MAT/00324/2013, funded by the Por-

tuguese Government through FCT/MEC and co-funded by the European Regional Development
Fund through the Partnership Agreement PT2020 (A.D.N. and I.Y.), by MICINN (Spain) and Eu-
ropean Union (Feder) grant MTM 2015-64166-C2-2P (A.D.N. and J.C.M.) by Prin 2015 — Real and
Complex Manifolds; Geometry, Topology and Harmonic Analysis — Italy and by GESTA — funded
by Fondazione di Sardegna and Regione Autonoma della Sardegna (BCM) — Italy (B.C.M.), and
by the exploratory research project in the frame of Programa Investigador FCT IF/00016/2013
(I.Y.). J.C.M. acknowledges the Centre for Mathematics of the University of Coimbra in Portugal
for its support and hospitality in a visit where a part of this work was done.

1



2 B. CAPPELLETTI-MONTANO, A. DE NICOLA, J. C. MARRERO AND I. YUDIN

6.1. Mapping torus and quasi-Vaisman manifolds. 34
6.2. Model of a mapping torus 37
6.3. Mapping torus and a semi-direct product. 38
6.4. Examples of quasi-Sasakian and and quasi-Vaisman manifolds. 39
7. Boothby-Wang construction and quasi-Sasakian manifolds. 42
References 46

1. Introduction
The existence of a Kähler or Sasakian structure on a compact manifold has

strong topological consequences. For instance, a compact Kähler manifold
M is formal [15] and satisfies the Hard Lefschetz Theorem [20]. Recently
it was discovered that also Sasakian manifolds, which are considered as an
odd dimensional counterpart of Kähler manifolds, satisfy a Hard Lefschetz
Theorem [12]. Moreover, in 2008 Tievsky [26] proved that in order to admit
a Sasakian structure, the de Rham algebra Ω∗(M) of a compact manifold M
has to be quasi-isomorphic as CDGA to an elementary Hirsch extension of
the basic cohomology algebra H∗B(M) of the canonical 1-dimensional foliation
defined by the Reeb vector field. Both the formality for Kähler manifolds and
the Tievsky model in the Sasakian case give topological obstructions. For
example, they imply that the only nilmanifolds that can be endowed with
a Kähler structure are the even dimensional tori (see [19]), while the only
Sasakian nilmanifolds are the quotients of the generalized Heisenberg group
H(1,m) by co-compact discrete subgroups (see [10]).

On the other hand, not much is known about the topology of general Vais-
man manifolds, which are related both to Kähler and Sasakian geometry. A
well-known fact is that the difference between two consecutive Betti num-
bers bk(M) − bk−1(M) is even for each even integer k ∈ {1, . . . , n}, where
dim(M) = 2n + 2. Recently the authors proved that a Hard Lefschetz
Theorem holds for Vaisman manifolds. This gives a topological obstruc-
tion stronger than the aforementioned property of the Betti numbers. The
original motivation for the present paper was to find a model for a compact
Vaisman manifold. Indeed, we show that, if η denotes the anti-Lee 1-form of
a compact Vaisman manifold M , then the CDGA

(H∗B(M,F)⊗
∧
〈x, y〉 , dx = 0, dy = [dη]B) (1.1)
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is quasi-isomorphic to Ω∗(M), where F denotes the flat 2-dimensional folia-
tion generated by the Lee and anti-Lee vector fields.

In fact the above CDGA can be seen as an example of a more general class
that we call almost formal CDGAs. A CDGA (B, d) is said to be almost
formal of index l if it is quasi-isomorphic to the CDGA (A⊗

∧
〈y〉 , dy = z),

where A is a connected CDGA with the zero differential and z ∈ A2 is
a closed homogeneous element satisfying zl 6= 0, zl+1 = 0. Notice that
compact Vaisman manifolds are in general not formal, as there are examples
of compact Sasakian manifolds that are not formal (see [5]) and the product of
a Sasakian manifold with the circle is Vaisman. We show that there are many
geometric realizations of almost formal CDGAs. Actually, both Vaisman and
quasi-Sasakian turn out to have almost formal models. Further examples of
almost formal manifolds are given by a generalization of Vaisman manifolds,
which we call quasi-Vaisman. A quasi-Vaisman manifold is a Hermitian
manifold (M,J, g) admitting a closed 1-form θ such that its metric dual is
parallel, holomorphic and

dΩ = θ ∧ dη,
where Ω is the fundamental 2-form of M and η = −θ ◦ J . One proves that
a quasi-Vaisman manifold is Vaisman if and only if it is locally conformally
symplectic (l.c.s.) of the first kind (see [28]; see also [3] for a recent discussion
on l.c.s. manifolds of the first kind).

Having an almost formal model gives strong constraints on the topology of
the manifold. Indeed, we are able to completely characterize almost formal
nilmanifolds. In particular we classify quasi-Vaisman and quasi-Sasakian
nilmanifolds. As a special case, we obtain a more conceptual proof of the fact,
recently proved in another way by Bazzoni [2], that a (2n + 2)-dimensional
compact nilmanifold G/Γ admits a Vaisman structure if and only if G is
isomorphic to H(1, n)× R as Lie groups.

We provide examples of quasi-Vaisman solvmanifolds which are not Vais-
man and are modelled on groups which are not allowed for quasi-Vaisman
nilmanifold due to our classification.

In order to construct such examples we exploit the close relation between
quasi-Vaisman and quasi-Sasakian manifolds. In some sense, Vaisman mani-
folds is to Sasakian geometry as quasi-Vaisman manifolds is to quasi-Sasakian
geometry. Indeed we prove that the mapping torus of a quasi-Sasakian man-
ifold is quasi-Vaisman. In turn, the mapping torus of a quasi-Vaisman man-
ifold carries a canonical quasi-Sasakian structure. The interplays between
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these concepts motivates us to construct new examples of quasi-Sasakian
manifolds. In particular, we provide explicit examples of quasi-Sasakian solv-
manifolds and the corresponding formal models.

Though our truly motivation was the study of Vaisman manifolds, the
methodology for finding the model (1.1) for (quasi-)Vaisman manifolds can
be applied in more general contexts. In fact, what is needed is just an in-
finitesimal action f : g → X(M) of an abelian Lie algebra on a Riemannian
manifold (M, g) such that every f(a) is a Killing vector field, and the ex-
istence of an algebraic connection χ : g∗ → Ω1(M) for f . This occurs for
Vaisman, and more in general for quasi-Vaisman manifolds, where we have
the 2-dimensional Riemannian foliation definied by the commuting Lee and
anti-Lee vector fields. We also obtain a model for a mapping torus of a Rie-
mannian manifold (M, g) induced by an isometry in terms of the invariant
forms of M . The same methods could be applied also for a large class of man-
ifolds, such as locally conformal hyperKähler manifold with parallel Lee form
[24], which are foliated by a Riemannian 4-dimensional flat foliation defined
by the Lee vector field and its multiplication by the complex structures, or
normal metric contact pairs [1] (known also as Hermitian bicontact manifolds
[9]), where one has 2 commuting Killing Reeb vector fields, or S-manifolds,
where we have s mutually commuting Killing vector fields [6].

2. Elements of rational homotopy theory
The aim of this section is to give an overview of results in rational homotopy

theory that we use in this article. The main references for this section are [17]
and [18].

2.1. Basics on CDGAs. Throughout this section K denotes a field of
characteristic 0. The most relevant cases for geometry are when K is the field
of rational numbers Q, the field of real numbers R, or the field of complex
numbers C. In this paper only the cases K = R, C will appear.

Let V , W be graded vector spaces over K. We say that a K-linear map
f : V → W is homogeneous of degree k if f(Vm) ⊂ Wm+k for all m ∈ N.

A derivation of a graded algebra A over K is a homogeneous map D : A→
A where we consider A as a graded vector space, such that

D(aa′) = D(a)a′ + (−1)klaD(a′)

where k is the degree of D and a ∈ Al. We will denote the set of derivations
of degree k on A by Derk(A).
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A commutative differential graded algebra (A, d) (CDGA for short) over K
is a graded algebra A =

⊕
k≥0Ak over K such that for all x ∈ Ak and y ∈ Al

we have

xy = (−1)kl yx

endowed with a differential d, that is d : A → A is a derivation of degree 1,
such that d2 = 0. A morphism of CDGAs is a morphism of graded algebras
f : A → B such that d ◦ f = f ◦ d. An example of commutative differen-
tial graded algebra over R is given by the de Rham complex (Ω∗ (M) , d) of
differential forms on a smooth manifold M , with the multiplication given by
the wedge product.

The graded commutator of a derivation A of degree k and a derivation B
of degree l is defined by

[A,B] = AB − (−1)klBA.

A CDGA (A, d) is directly quasi-isomorphic to a CDGA (B, d) if there is
a morphism of CDGAs f : A→ B such that

Hk (f) : Hk (A)→ Hk (B)

are isomorphisms for all k ≥ 0. Two CDGAs (A, d) and (B, d) are quasi-
isomorphic if there is a chain of CDGAs A = A0, A1, . . . , Ar = B, such
that either Aj is directly quasi-isomorphic to Aj+1 or Aj+1 is directly quasi-
isomorphic to Aj for every 0 ≤ j ≤ r − 1. We say that a CDGA (A, d) is
formal if it is quasi-isomorphic to (H∗(A), 0).

Given a graded vector space V =
⊕

k≥0 Vk, we denote by
∧
V the free com-

mutative graded algebra generated by V . Recall that
∧
V , considered as an

associative algebra, is the tensor product of the exterior algebra constructed
on
⊕

k≥0 V2k+1 with the symmetric algebra on
⊕

k≥0 V2k. Thus every element
in
∧
V can be written as a sum of the elements of the form

v := va11 . . . vamm

where vj ∈ Vkj and aj ∈ N if kj is even while aj = 1 if kj is odd. We define
the degree of v to be

a1k1 + · · ·+ amkm.

2.2. Hirsch extensions of a CDGA. In order to define Hirsch extensions
of a CDGA, we will need the following notion which was extensively studied
in Chapter III of [18].
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Definition 2.1. Let V be a graded vector space. A V -CDGA is a triple
(A, d, f), where (A, d) is a CDGA and f : V → A is a homomorphism of
graded vector spaces of degree 1, such that d ◦ f = 0.

Remark 2.2. In [18], V -CDGAs were called V -differential algebras and the
expression “V -differential algebra” was abbreviated with “(V, δ)-algebra”. �

Suppose (A, d, f) is a V -CDGA. Then A ⊗
∧
V is a commutative graded

algebra with the multiplication defined by

a⊗ v · a′ ⊗ v′ := (−1)kl (aa′)⊗ vv′

where v ∈ (
∧
V )k and a′ ∈ Al. We define the differential df on A⊗

∧
V by

df(a⊗ 1) := da⊗ 1, df(1⊗ v) := f(v)⊗ 1,

where v ∈ V and we extend df to A ⊗
∧
V by using Leibniz rule. We say

that (A ⊗
∧
V, df) is an Hirsch extension of (A, d) by V (along f). If V is

a graded vector space of dimension m and y1,. . . , ym is a homogeneous basis
of V , then we will often specify (A⊗

∧
V, df) as

(A⊗
∧
〈y1, . . . , ym〉 , dy1 = f(y1), . . . , dym = f(ym)).

Remark 2.3. The underlying complex of (A⊗
∧
V, df) was called a Koszul

complex in [18]. �

Let (A, d, fA) and (B, d, fB) be V -CDGAs. A homomorphism h : A → B
of CDGAs is called a homomorphism of V -CDGAs if h ◦ fA = fB. Given a
homomorphism h : (A, d, fA)→ (B, d, fB) of V -CDGAs, we define

h̃ : (A⊗
∧

V, dfA)→ (B ⊗
∧

V, dfB)

by
h̃(a⊗ v1 ∧ · · · ∧ vk) = h(a)⊗ v1 ∧ · · · ∧ vk.

It is clear that h̃ is a homomorphism of CDGAs.

Remark 2.4. Note that if h is an isomorphism of V -CDGAs then, clearly,

h̃ is an isomorphism of CDGAs, as h̃−1 = h̃−1. �

We will say that a homomorphism h of V -CDGAs is a quasi-isomorphism of
V -CDGAs if h is a quasi-isomorphism of underlying CDGAs. The following
claim is a specialization of Proposition 4.3 in [25].

Proposition 2.5. If h is a quasi-isomorphism of V -CDGAs then h̃ is a
quasi-isomorphism of CDGAs.
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Two V -CDGAs ((A, d), fA) and ((B, d), fB) are quasi-isomorphic if there
is a sequence of V -CDGAs

(A, d, fA) = (A0, d, f0), (A1, d, f1), . . . , (Ar, d, fr) = (B, d, fB),

such that for every 1 ≤ k ≤ r either there is a quasi-isomorphism of V -
CDGAs

hk : (Ak, d, fk)→ (Ak−1, d, fk−1)

or a quasi-isomorphism of V -CDGAs

hk : (Ak−1, d, fk−1)→ (Ak, d, fk).

Given a V -CDGA (A, d, f), we will denote by f# the composite

V
f−→ Ker(d : A→ A)→ H∗(A).

It is clear that if two V -CDGAs are quasi-isomorphic as V -CDGAs then
they also quasi-isomorphic as CDGAs. The following converse result is
Proposition XI in Chapter III of [18].

Proposition 2.6. Let V be a graded vector space such that V2k = 0 for all k ≥
0. Suppose (A, d, fA) and (B, d, fB) are V -CDGAs that are quasi-isomorphic
as CDGAs. Let γ : H∗(A)→ H∗(B) be the isomorphism induced by a chain

of quasi-isomorphisms connecting (A, d) and (B, d). If γ ◦ f#
A = f#

B , then
there is a chain of quasi-isomorphisms of V -CDGAs connecting (A, d) and
(B, d) such that the resulting induced isomorphism from H∗(A) to H∗(B) is
equal to γ.

Remark 2.7. The condition V2k = 0 for k ≥ 0 is most surely redundant, but
it was difficult to find an appropriate reference, and as we will use only the
case when V is concentrated in degree 1, we decided to not pursue the case
of general V in this article. �

Now, combining Proposition 2.5 and Proposition 2.6, we get

Theorem 2.8. Let V be a graded vector space concentrated in odd degrees.
Suppose (A, d, fA) and (B, d, fB) are V -CDGAs that are quasi-isomorphic
as CDGAs. Denote by γ : H∗(A) → H∗(B) the isomorphism in cohomology
induced by the chain of quasi-isomorphisms between (A, d) and (B, d). If

γ ◦ f#
A = f#

B then (A⊗
∧
V, dfA) and (B ⊗

∧
V, dfB) are quasi-isomorphic.

Theorem 2.8 becomes very useful in the case of a formal CDGA.
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Corollary 2.9. Suppose V is a graded vector space concentrated in odd de-
grees and (A, d, f) is a V -CDGA such that (A, d) is a formal CDGA. Then
(A⊗

∧
V, df) is quasi-isomorphic to (H∗(A)⊗

∧
V, df#).

Definition 2.10. A CDGA (A, d) is called a finitely generated Sullivan alge-
bra, if there is a sequence of CDGAs (A0, d0) ∼= (K, 0), . . . , (An, dn) ∼= (A, d),
such that (Aj+1, dj+1) is an elementary extension of (Aj, dj) by a finitely di-
mensional graded vector space.

Note that the general definition of a Sullivan algebra can be given in a
similar manner, but it involves technicalities on infinite ordinals. We will use
the following

Theorem 2.11. (a) Let (A, d) be a CDGA and (B, d) a Sullivan algebra
quasi-isomorphic to (A, d). Then there is a quasi-isomorphism (B, d)→
(A, d).

(b) Let (A, d) be a CDGA. Then there is a Sullivan algebra (B, d), which is
quasi-isomorphic to (A, d).

The formal definition of a minimal Sullivan algebra can be found in [17].
In the finitely generated case the definition can be phrased as follows.

Definition 2.12. A finitely generated Sullivan algebra (A, d) is called min-
imal (Sullivan) if for any finitely generated Sullivan algebra (B, d) which is
quasi-isomorphic to (A, d) and for each integer k, we have dimAk ≤ dimBk.

For every CDGA (A, d) there is a unique minimal (Sullivan) algebra (B, d),
which is quasi-isomorphic to (A, d). We will call (B, d) the minimal model
of (A, d).

Given a smooth manifold M , the de Rham complex of differential forms
(Ω∗ (M) , d) endowed with the wedge product is a CDGA. We say that a
CDGA (A, d) is a model for a manifold M if (A, d) is quasi-isomorphic to
(Ω∗ (M) , d). The minimal model of (Ω∗ (M) , d) will be also called the mini-
mal model of M .

2.3. Operation of a Lie algebra in a CDGA. To motivate the definition
of an operation of a Lie algebra in a CDGA, we will start by considering the
right action of a Lie group G on a smooth manifold M . Then we have a
homomorphism of topological groups

F : G→ Diff(M).
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By passing to tangent spaces at the neutral element, we get a homomorphism
of Lie algebras

f : g→ X(M),

where f := TeF and X(M) is the Lie algebra of vector fields on M . This
motivates the following definition.

Definition 2.13. Let M be a smooth manifold and g a Lie algebra. An
(infinitesimal) right action of g on M is a homomorphism of Lie algebras
f : g→ X(M).

For every point p ∈ M , we denote by evp the map from X(M) to TpM
defined by evaluating a vector field X at the point p.

We say that an action f : g → X(M) is free if for every point p ∈ M the
composition

g
f−→ X(M)

evp−→ TpM

is injective. Given a free action f : g→ X(M) we construct a map of vector
bundles

f̂ : M × g→ TM

(p, a) 7→ (p, evp ◦ f(a)).

The image of f̂ generates an integrable distribution Df ⊂ TM of rank k =
dim g. We denote the corresponding foliation by Ff .

Let f : g → X(M) be an action of a Lie algebra g on a smooth manifold
M . Then for every a ∈ g, we have the usual derivations if(a) = if(a) and
Lf(a) = Lf(a) on Ω∗(M) of degree −1 and 0, respectively. Thus we get two
linear maps

if : g→ Der−1(Ω
∗(M)), Lf : g→ Der0(Ω

∗(M)).

These maps have the following properties

Lf([a, b]) = [Lf(a),Lf(b)]

Lf(a) = [if(a), d]

if(a)2 = 0

if([a, b]) = [Lf(a), if(b)]

(2.1)

This motivates the following definition.
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Definition 2.14. Let g be a Lie algebra and (A, d) a CDGA. We say that
a linear map i : g → Der−1(A) is an operation of g in (A, d) if for L : g →
Der0(A) defined by L(a) = [i(a), d], the equations (2.1) hold upon erasing
subscript f .

Remark 2.15. Given an operation i, in the sequel we will write ia and La

instead of i(a) and L(a), respectively. �
Note that the third equation in (2.1) can be stated in a stronger form.

Lemma 2.16. Let i : g→ Der−1(A) be an operation in a CDGA (A, d). Then
for every a, b ∈ g, we have

[ia, ib] = 0.

Proof : We have i2a+b = 0. As i is a linear map, this implies that (ia+ ib)
2 = 0.

Using that i2a = i2b = 0, we get iaib + ibia = 0.

Let i : g → Der−1(A) be an operation in a CDGA (A, d) and L = [i, d].
Then we define the CDGAs (AL, d) and (Ai,L, d) by

AL := { a ∈ A |Lxa = 0,∀x ∈ g} ; Ai,L := { a ∈ A |Lxa = ixa = 0,∀x ∈ g} .
Specializing to the case of an operation arising from an action f : g→ X(M),
we recover the invariant de Rham complex Ω∗Lf (M) and the basic de Rham

complex Ω∗if ,Lf (M) = Ω∗B(M,Ff).

Theorem 2.17. Let f : g → X(M) be an action on a compact Riemannian
manifold (M, g). Suppose f(x) is a Killing vector field for every x ∈ g. Then
the inclusion h : Ω∗Lf (M) ↪→ Ω∗(M) induces an isomorphism in cohomology,
in other words, h is a quasi-isomorphism of CDGAs.

Proof : The result follows from [14, Theorem 3.4] and [14, Theorem 3.5].

2.4. Algebraic connection. Let g be a finite dimensional Lie algebra. We
denote by ad∗ the coadjoint representation of g

ad∗ : g→ End(g∗)

defined by
ad∗a(α)(b) = −α([a, b]),

for a, b ∈ g. Let i : g → Der−1(A) be an operation of a Lie algebra g in a
CDGA (A, d). As usually, L = [i, d]. Following Chapter VIII of [18], we say
that

χ : g∗ → A1
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is an algebraic connection for i if

ia(χ(α)) = α(a), a ∈ g, α ∈ g∗;

La ◦ χ = χ ◦ ad∗a, a ∈ g.
(2.2)

Remark 2.18. Note that for A = Ω∗(M), an algebraic connection χ : g∗ →
Ω1(M) corresponds to a vector bundle map χ̂ : M × g∗ → T ∗M , given by
χ̂ (p, α) = χ(α)p, from the trivial vector bundle M × g∗ to the cotangent
bundle T ∗M of M . So, we can consider the map pr2 ◦ χ̂∗ : TM → g. This
map is a standard connection for the infinitesimal action f : g → X(M).
Define a subbundle of the tangent bundle by

x ∈M → H(x) = {v ∈ TxM | (pr2 ◦ χ̂∗)(v) = 0}.

Then H is an Ehresmann connection on TM . In fact, the first condition
in (2.4) implies that TM = Df ⊕ H. Moreover, if we also denote by χ̂∗ :
X(M)→ Γ(M×g) the corresponding morphism of C∞(M)-modules between
X(M) and the space of sections of the trivial vector bundle M×g→M then
χ̂∗ is equivariant, that is,

χ̂∗ ◦ La = ada ◦ χ̂∗, a ∈ g.

Here, ad is the natural extension of the adjoint action of g to the space of
sections Γ(M × g). �

Now, suppose that (M, g) is a Riemannian manifold and that f : g→ X(M)
is a free action of g on M . Denote by [g : TM → T ∗M the vector bundle
isomorphism induced by g. Then, in the trivial vector bundle M × g→ M ,
we can consider the bundle metric 〈·, ·〉 given by

〈ξ, η〉 = g(f(ξ), f(η))

for ξ, η ∈ Γ(M × g). It is clear that 〈·, ·〉 induces an isomorphism between
the vector bundle M × g→M and its dual bundle M × g∗ →M

[〈·,·〉 : M × g→M × g∗.

We will denote by

]〈·,·〉 : M × g∗ →M × g

the inverse morphism of [〈·,·〉.
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Theorem 2.19. Let (M, g) be a Riemannian manifold, and g a Lie algebra.
Suppose that f : g→ X(M) is an action of g on M such that every f(a) is a
Killing vector field. Define

χ̂ = [g ◦ f̂ ◦ ]〈·,·〉, (2.3)

where f̂ : M × g→ TM is the vector bundle monomorphism induced by the
action f . Then χ : g∗ → Ω1(M) given by χ(α)p = χ̂(p, α) is an algebraic
connection for the operation if : g→ Der−1(Ω

∗(M)).

Proof : If a ∈ g, α ∈ g∗ and p ∈M then, using (2.3), it follows that

ia(χ(α))(p) = gp(f̂(]〈·,·〉(p, α), f̂(p, a)) = 〈]〈·,·〉(p, α), (p, a)〉 = α(a). (2.4)

It is left to check that for any X ∈ X(M), we have(
Lf(a)χ(α)

)
(X) = χ(ad∗aα)(X). (2.5)

Now, if b ∈ g, from (2.4), it follows that(
Lf(a)χ(α)

)
(f(b)) = −χ(α)[f(a), f(b)] = −χ(α)(f [a, b]) = −α[a, b]. (2.6)

This proves (2.5) for X = f(b).
Now, denote the orthogonal complement of Df in TM byH. Let Z ∈ Γ(H).

We are going to show that for all a ∈ g, the Lie derivative Lf(a)Z of Z is
a section of H. For this it is enough to verify that for all b ∈ g, we have
g(Lf(a)Z, f(b)) = 0. Since f(a) is a Killing vector field, we get

0 = (Lf(a)g)(Z, f(b)) = −g(Lf(a)Z, f(b))− g(Z, [f(a), f(b)])

= −g(Lf(a)Z, f(b))− g(Z, f([a, b])) = −g(Lf(a)Z, f(b)).

Denote by P the orthogonal projection from TM on Df . Let P̄ := Id − P .
Then for any X ∈ X(M), we have PX ∈ Γ(Df) and P̄X ∈ Γ(H). Thus, for
any a ∈ g

Lf(a)X = Lf(a)PX + Lf(a)P̄X.

Since Lf(a)PX ∈ Γ(Df) and Lf(a)P̄X ∈ Γ(H), we get

Lf(a) ◦ P = P ◦ Lf(a), Lf(a) ◦ P̄ = P̄ ◦ Lf(a). (2.7)
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From the definition of χ, it follows that for any β ∈ g∗, we have (χ(β))(X) =
(χ(β)) (PX). Thus by using (2.7) we have

(χ(ad∗aα))(X) = (χ(ad∗aα))(PX),

(Lf(a)χ(α))(X) = Lf(a)(χ(α)(X))− χ(α)(Lf(a)X)

= Lf(a)(χ(α)(PX))− χ(α)(PLf(a)X)

= Lf(a)(χ(α)(PX))− χ(α)(Lf(a)PX) = (Lf(a)χ(α))(PX).

This shows that we have to check (2.5) only for X ∈ Γ(Df). Since both sides
of (2.5) are tensorial in X, it is enough to check (2.5) for X of the form f(b),
b ∈ g. This, by (2.6), ends the proof.

Under additional hypotheses on the action of g on M , the formula for the
algebraic connection χ can be made more explicit.

Corollary 2.20. Let (M, g) be a Riemannian manifold, and g a Lie algebra.
Suppose that f : g → X(M) is an action of g on M such that every f(a) is
a Killing vector field. Suppose that for every pair a, b of elements in g, the
functions g (f(a), f(b)) are constant. Then for any orthonormal basis {ei} of
g and the dual basis

{
ei
}

of g∗

χ(ei) := g(f(ei),−)

gives an algebraic connection for the action f : g→ X(M).

2.5. Chevalley model. If g is a reductive Lie algebra and the operation
i : g → Der−1(A) admits an algebraic connection χ, then Chevalley Funda-
mental Theorem [18, Theorem I, sec. 9.3] provides a model of (AL, d) con-
structed from (Ai,L, d), the primitive elements in H∗(g), and the connection
χ. In this article we will need only the case when g is abelian. As the de-
scription and derivation of the Chevalley model drastically simplifies in this
situation, we will present only this case.

If g is abelian, then (2.2) imply that

La(χ(α)) = 0,

for all a ∈ g and α ∈ g∗. Thus

χ(g∗) ⊂ AL. (2.8)

We define χ̄ : g∗ → A2 to be the composition d◦χ. As d commutes with L(a)
for all a ∈ g, we get that χ̄(g∗) ⊂ AL. Moreover, for any a ∈ g and α ∈ g∗,
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we have

iaχ̄(α) = iadχ(α) = Laχ(α)− dia(χ(α)) = 0− d(αa) = 0.

Thus χ̄(g∗) ⊂ Ai,L and we can consider Ai,L as a V -CDGA for V = g∗, where
g∗ is seen as a graded vector space concentrated in degree 1. Therefore we
can construct the CDGA (Ai,L ⊗

∧
g∗, dχ̄). Then Chevalley Fundamental

Theorem in this case can be formulated as follows.

Theorem 2.21. The application

f : (Ai,L ⊗
∧

g∗, dχ̄)→ (AL, d)

a⊗ α1 ∧ · · · ∧ αk 7→ aχ(α1) . . . χ(αk).

is an isomorphism of CDGAs.

To prove Theorem 2.21, we first examine the following partial case.
Let B be a CDGA and i : g → Der−1(B) an operation on B with an

algebraic connection χ : g∗ → B1 such that La = 0 for all a. Then BL = B
and Bi,L = Bi. Thus Theorem 2.21 implies

Theorem 2.22. The application

f : (Bi ⊗
∧
g∗, dχ̄)→ (B, d)

b⊗ α1 ∧ · · · ∧ αk 7→ bχ(α1) . . . χ(αk).

is an isomorphism of CDGAs.

Now we show that Theorem 2.21 is a corollary of Theorem 2.22.

Proof of Theorem 2.21 using Theorem 2.22: Take B = AL. Then the opera-
tion i : g → Der−1(A) induces an operation on B. To see this, we have only
to check that for every a ∈ g and every b ∈ B, one gets ia(b) ∈ B. In other
words, we have to show that La′ia(b) = 0 for all a, a′ ∈ g and b ∈ B. We
have

La′iab = [La′, ia]b+ iaLa′b = i[a′,a]b+ 0 = 0 (2.9)

where we used first that La′b = 0 as b ∈ B = AL and then that [a′, a] = 0 as
g is commutative.

Let us denote the resulting operation on B by i′.
Now, by (2.8), we have that the connection χ can be corestricted on B =

AL. Let us denote the resulting map g∗ → B by χ′. Then it is straightforward
that χ′ is an algebraic connection for i′. Thus we can apply Theorem 2.22 to
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B, i′, and χ′. But now we recovered the map from the claim of Theorem 2.21.
This shows that Theorem 2.21 is a consequence of Theorem 2.22.

In order to prove Theorem 2.22, we need the following result.

Proposition 2.23. Let (B, d) be a CDGA, D ∈ Der−1(B) such that [D, d] =
0, D2 = 0, and η ∈ B1 such that Dη = 1. Denote by BD ⊂ B the kernel of
D. Then the map

f : (BD ⊗
∧
〈y〉 , dy = dη)→ (B, d)

a⊗ 1 + b⊗ y 7→ a+ bη

is an isomorphism of CDGAs.

Proof : Let b ∈ Bk. Then

D(ηb) = b− ηDb.

Thus every element b ∈ Bk can be written as b = D(ηb) + ηDb. Note that
D(ηb) ∈ BD and Db ∈ BD, as D2 = 0. Hence

b = f(D(ηb)⊗ 1 + (−1)k−1Db⊗ y).

This shows that the map f is surjective.
Now we show that f is injective. Suppose b1 ∈ BD,k and b2 ∈ BD,k−1 are

such that f(b1⊗ 1 + b2⊗ y) = 0. Then b1 + b2η = 0. Applying D and taking
into account that Db1 = Db2 = 0 and Dη = 1, we get that b2 = 0. But then
also b1 = 0. This proves that Ker(f) = {0}.

That f is a homomorphism of CDGAs follows from a straightforward com-
putation.

Proof of Theorem 2.22: Let us choose a basis a1, . . . , an of g and denote by
α1, . . . , αn the dual basis of g∗. We will assume that n ≥ 2. Let

B(k) = {b ∈ B | ia1b = · · · = iakb = 0}, 1 ≤ k ≤ n.

By abuse of notation, B(0) = B. As all iaj are derivations, we get that B(k)

is a subalgebra of B. Moreover, since iaj commute with the differential of B,

the algebras B(k) are endowed with the induced CDGA-structure.
Let us fix 0 ≤ k ≤ n− 1. Define the derivation D on B(k) by

Db = iak+1
b.
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To verify that D is well defined we have to show that Db ∈ B(k). Let j ≤ k.
Then by Lemma 2.16

iajDb = iajiak+1
b = −iak+1

iajb = 0.

From the axioms of operation it follows that D2 = 0. Moreover, [D, d] = 0
as Lak+1

= 0. Denote χ(αk+1) by η. From the definition of an algebraic
connection it follows that Dη = iak+1

χ(αk+1) = αk+1(ak+1) = 1 and for j ≤ k

iajη = iajχ(αk+1) = αk+1(aj) = 0.

Hence η ∈ B(k). Thus we can apply Proposition 2.23 to B(k) with the above

defined D and η. Note that B
(k)
i(ak+1) coincides with B(k+1). We get the iso-

morphism of CDGAs

fk : (B(k+1) ⊗
∧
〈yk+1〉 , dyk+1 = dχ(αk+1))→ (B(k), d)

b⊗ 1 7→ b

b⊗ yk+1 7→ bχ(αk+1).

Note, that for every j ≤ k, we have dχ(αj) ∈ B(k+1) ⊂ B(k). To see this, we
have to verify that iasdχ(αj) = 0 for all s ≤ k+ 1. But ias(χ(αj)) = αj(as) =
δjs, since χ is an algebraic connection for the operation i. Thus, as [ia, d] = 0
for all a ∈ g, we get

iasdχ(αj) = −diasχ(αj) = −dδjs = 0.

Hence the maps

hk : 〈yk, . . . , y1〉 → B(k+1) ⊗
∧
〈yk+1〉

yj 7→ dχ(αj)⊗ 1

h′k : 〈yk, . . . , y1〉 → B(k)

yj 7→ dχ(αj)

are well defined. Moreover, dhk = 0, dh′k = 0 and fk ◦ hk = h′k. Hence fk is
a homomorphism of V -CDGAs for V = 〈yk, . . . , y1〉. By Remark 2.4, we get
the isomorphism f̃k of CDGAs from

(B(k+1) ⊗
∧
〈yk+1, . . . , y1〉 , dyk+1 = dχ(αk+1), . . . , dy1 = dχ(α1))

to
(B(k) ⊗

∧
〈yk, . . . , y1〉 , dyk = dχ(αk), . . . , dy1 = dχ(α1))
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defined by

f̃k(b⊗1) = b⊗1, f̃k(1⊗yk+1) = χ(αk+1)⊗1, f̃k(1⊗yj) = 1⊗yj, j ≤ k.

It is not difficult to check that f equals to f̃0 ◦ f̃1 ◦ · · · ◦ f̃n−1. Thus f is a
quasi-isomorphism of CDGAs. Then the claim follows upon the identification
of 〈yn, . . . , y1〉 with g∗ = 〈αn, . . . , α1〉.

3. Models of quasi-Sasakian manifolds
First of all, we will recall the definition of a quasi-Sasakian structure as a

particular class of an almost contact metric structure (for more details, see
[7, 8]).

An almost contact metric structure on a manifold M of dimension 2n+ 1
is given by an endomorphism ϕ of TM , a vector field ξ, a 1-form η and a
Riemannian metric h satisfying the following conditions

ϕ2 = −Id + η ⊗ ξ, η(ξ) = 1, h ◦ (φ⊗ φ) = h− η ⊗ η.

A manifold M endowed with an almost contact metric structure is said to
be an almost contact metric manifold. The vector field ξ is called the Reeb
vector field of M . Note that

ϕ(ξ) = 0, η(X) = h(X, ξ),

for X ∈ X(M). In particular, we can consider the free action f : R→ X(M)
of the abelian Lie algebra R on M given by

f(a) = aξ, for a ∈ R.

For an almost contact metric structure (ϕ, ξ, η, h) on M , the fundamental
2-form Φ is defined by

Φ(X, Y ) = h(X,ϕY ), for X, Y ∈ X(M).

The almost contact metric structure (ϕ, ξ, η, h) is said to be

– normal if Nϕ + dη ⊗ ξ = 0, where Nϕ is the Nijenhuis torsion of ϕ;
– co-Kähler if it is normal, dη = 0 and dΦ = 0;
– Sasakian if it is normal and dη = Φ;
– quasi-Sasakian if it is normal and dΦ = 0.

A standard example of a quasi-Sasakian manifold is the nilpotent Lie group

G = H(1, l)× R2(n−l),
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where H(1, l) is the generalized Heisenberg group of dimension 2l + 1. We
remind to the reader that the Heisenberg group H(1, l) is the Lie subgroup
of dimension 2l + 1 in the general linear group GLl+2(R) with elements of
the form  1 P t

0 Il Q
0 0 1

 ,

where Il denotes the l×l identity matrix. We can take a basis of left-invariant
1-forms {α1, . . . , α2l+1, β1, . . . , β2(n−l)} on G given by

αi = dpi, αl+i = dqi, α2l+1 = dt−
l∑

i=1

pidq
i, βk = dxk, (3.1)

for i ∈ {1, . . . , l} and k ∈ {1, . . . , 2(n− l)}. It is clear that

dαj = 0, dα2l+1 = −
l∑

j=1

αj ∧ αl+j and dβk = 0,

with j ∈ {1, . . . , 2l} and k ∈ {1, . . . , 2(n− l)}. Then, if we denote by

{X1, . . . , X2l+1, Y1, . . . , Y2(n−l)}
the dual basis of vector fields, we have that

Xi =
∂

∂pi
, Xl+i =

∂

∂qi
+ pi

∂

∂t
, X2l+1 =

∂

∂t
, Yk =

∂

∂xk
, (3.2)

for i ∈ {1, . . . , l} and k ∈ {1, . . . , 2(n − l)}. Now, we can define the left-
invariant quasi-Sasakian structure (ϕ, ξ, η, h) on G given by

ϕ =
l∑

i=1

(αi ⊗Xl+i − αl+i ⊗Xi) +
n−l∑
j=1

(βj ⊗ Yn−l+j − βn−l+j ⊗ Yj) (3.3)

and

ξ = X2l+1, η = α2l+1 and h =
2l+1∑
i=1

αi ⊗ αi +

2(n−l)∑
k=1

βk ⊗ βk. (3.4)

So, if Γ is a cocompact discrete subgroup of G, then (ϕ, ξ, η, h) induces a
quasi-Sasakian structure on the compact nilmanifold Γ\G. In other words,
Γ\G is a compact quasi-Sasakian nilmanifold. Note that G is a nilpotent
Lie group and the structure constants of its Lie algebra with respect to



ALMOST FORMALITY OF QUASI-SASAKIAN AND VAISMAN MANIFOLDS 19

the previous basis are rational numbers. Therefore, G admits a cocompact
discrete subgroup (see [21]).

Remark 3.1. If n = l in the previous example, then the quasi-Sasakian
structure on Γ\G is Sasakian and if l = 0 then it is co-Kähler. However,
if n 6= l and l 6= 0 then the compact nilmanifold Γ\G does not admit either a
Sasakian or a co-Kähler structure. In fact, a compact co-Kähler nilmanifold
is diffeomorphic to a torus and a compact Sasakian nilmanifold is diffeomor-
phic to a compact quotient of a Heisenberg group of odd dimension with a
cocompact discrete subgroup (see [10]). So, we can conclude that the class
of the compact quasi-Sasakian manifolds is actually distinct from the classes
of compact co-Kähler and compact Sasakian manifolds. �

Now, we will show that on a quasi-Sasakian manifold the foliation of rank
1 generated by the Reeb vector field is transversely Kähler. Kähler manifolds
are defined as a special case of Hermitian manifolds.

An almost Hermitian structure on a manifold M of even dimension 2(n+1)
is a couple (J, g), where J is a (1, 1) tensor field on M , g is a Riemannian
metric and

J2 = −Id, g(JX, JY ) = g(X, Y ),

for X, Y ∈ X(M).
The fundamental 2-form of M is defined by

Ω(X, Y ) = g(X, JY ), for X, Y ∈ X(M)

A manifold M endowed with an almost Hermitian structure is said to be an
almost Hermitian manifold. The almost Hermitian manifold (M,J, g) is said
to be:

– Hermitian if NJ = 0, where NJ is the Nijenhuis torsion of J ;
– Kähler if it is Hermitian and dΩ = 0.

Definition 3.2. The 1-form θ := 1
nδΩ◦J on a Hermitian manifold (M,J, g)

is called the Lee 1-form.

Let F be a foliation on a manifold M of codimension q. Denote by νF
the vector bundle TM/TF on M . Given a foliated chart U ⊂ M for F, we
have the quotient map fU : U → Rq. Note, that fU induces an isomorphism
fU,p : (νF)p → TfU (p)Rq for every point p ∈ U .

If U and V are two foliated charts with a non-empty intersection then there
is a smooth function τUV : fU(U ∩ V )→ fV (U ∩ V ) such that fV = τUV ◦ fV
on U ∩ V .
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The foliation F is called transversely Kähler, if for every foliated chart U
there is given a Kähler structure on f(U) so that every transition function
τUV preserves the Kähler structure.

An endomorphism J of the distribution associated to F such that [J, J ]FN =
0, J2 = −Id, and LXJ = 0 for all X ∈ ΓF is called foliated complex structure
on F.

Proposition 3.3. Let J be a foliated complex structure on F and g an F-
invariant metric on F. Define Ω(X, Y ) = g(X, JY ) for X, Y ∈ Γ(νF). If
dΩ = 0, then F is transversely Kähler.

Proof : Let U be a foliated chart and f = fU : U → Rq the corresponding
projection. Since LXJ = 0 and LXg = 0 for all X ∈ Γ(F), we have a well-
defined almost complex structure J ′ on f(U) and a well-defined Riemannian
metric g′ on f(U) induced by J and g, respectively. More precisely, given a
point x ∈ f(U) choose an arbitrary p ∈ f−1(x). We have the isomorphism
h := fU,p : (νF)p → TxRq Then

J ′X = hJh−1(X), g′(X, Y ) = g(h−1X, h−1Y ) (3.5)

for any X, Y ∈ Txf(U). Since J is integrable and dΩ = 0, standard compu-
tations show that (J ′, g′) is a Kähler structure on f(U).

Now, let V be another foliated chart and denote by (J ′′, g′′) the correspond-
ing Kähler structure on f(V ). Then using (3.5) and similar formulas for J ′′

and g′′, it is easy to see that τUV is a holomorphic isometry. This shows that
F is transversely Kähler.

Proposition 3.4. On a quasi-Sasakian manifold the foliation of rank 1 gen-
erated by the Reeb vector field is transversely Kähler.

Proof : If (ϕ, ξ, η, h) is the almost contact metric structure on the quasi-
Sasakian manifold M then Lξϕ = 0 (see, for instance, Theorem 6.1 in [8]).
Thus, using that ξ is a Killing vector field, we have that the couple (ϕ, h)
induces a transverse Kähler structure (J, g) with respect to the foliation of
rank 1 generated by ξ. In fact, since Nϕ + dη ⊗ ξ = 0, it follows that the
transverse Nijenhuis torsion of J is zero. In addition, the transverse funda-
mental 2-form of (J, g) is just the fundamental 2-form Φ of M which is basic
and closed.

Now we are ready to describe a model for quasi-Sasakian manifolds that
generalizes the Tievsky model [26] for the Sasakian manifolds.
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Theorem 3.5. Let (M 2n+1, ϕ, ξ, η, g) be a compact quasi-Sasakian manifold.
Then the CDGA (

H∗B(M, ξ)⊗
∧
〈y〉 , dy = [dη]B

)
(3.6)

is quasi-isomorphic to Ω∗(M). In other words the CDGA (3.6) is a model
of M .

Proof : Since ξ is a Killing vector field, it follows from Theorem 2.17 that
the inclusion Ω∗Lξ → Ω∗(M) is a quasi-isomorphism. As ξ is Killing and

of constant length, by Corollary 2.20 the map χ : R → Ω1(M) given by
χ(t) = tη is an algebraic connection for the operation i on Ω∗(M). Therefore
by Theorem 2.21 the CDGA(

Ω∗B(M, ξ)⊗
∧
〈y〉 , dy = dη

)
is quasi-isomorphic to Ω∗Lξ(M) and thus to Ω∗(M).

By Proposition 3.4 the foliated manifold (M, ξ) is transversely Kähler.
Now, by [13, Theorem 3] the CDGA Ω∗B(M, ξ) ⊗ C over C is formal. It
is proved in [25, Theorem 12.1] that the property to be formal or non-formal
is preserved under field extensions. Thus Ω∗B(M, ξ) is a formal CDGA over
R. In other words, Ω∗B(M, ξ) is quasi-isomorphic to (H∗B(M, ξ), 0). By Corol-
lary 2.9, we get that (

Ω∗B(M, ξ)⊗
∧
〈y〉 , dy = dη

)
and (

H∗B(M, ξ)⊗
∧
〈y〉 , dy = [dη]B

)
are quasi-isomorphic. This proves the theorem.

Motivated by the models described in Theorem 3.5, we introduce the fol-
lowing class of CDGAs.

Definition 3.6. We say that a CDGA (B, d) is almost formal of index l if it
is quasi-isomorphic to the CDGA (A⊗

∧
〈y〉 , dy = z), where A is a connected

CDGA with the zero differential and z ∈ A2 is a closed homogeneous element
satisfying zl 6= 0, zl+1 = 0.

The previous definition and Theorem 3.5 suggest us to introduce the fol-
lowing notion for quasi-Sasakian manifolds.
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Definition 3.7. Let (M 2n+1, ϕ, ξ, η, h) be a quasi-Sasakian manifold. The
index of M is the natural number l, 0 ≤ l ≤ n, satisfying

[dη]lB 6= 0 and [dη]l+1
B = 0.

Remark 3.8. If M is a compact Sasakian (resp. co-Kähler) manifold of
dimension 2n + 1 then, from Lemma 3.1 in [10], we have that the index of
M is maximal and equal to n (resp., minimal and equal to 0). �

Using Theorem 3.5, we deduce that the model (3.6) of a compact quasi-
Sasakian manifold of index l is an almost formal CDGA of the same index.

4. Models of quasi-Vaisman manifolds
In this section, we will introduce a particular class of Hermitian structures

as a natural extension of Vaisman structures.
Recall that a Hermitian manifold (M,J, g) is said to be locally conformal

Kähler (or LCK) if the fundamental 2-form Ω and the Lee 1-form θ satisfy
the identities

dΩ = Ω ∧ θ, dθ = 0.

The manifold is said to be a Vaisman manifold if, moreover, the Lee 1-form is
parallel with respect to the Levi-Civita connection of g. The anti-Lee 1-form
η is defined as η = −θ ◦ J while the Lee and anti-Lee vector fields U, V are
defined as the metric duals of θ, η, respectively.

Let (M,J, g) be a Vaisman manifold with Lee and anti-Lee 1-forms θ and
η, respectively, and Lee and anti-Lee vector fields U and V , respectively. We
will assume (without loss of generality) that the norm of θ is 1. In these
conditions, one can prove that

dΩ = dη ∧ θ,
and that, moreover, the Lee vector field U is Killing and an infinitesimal
automorphism of the complex structure, that is,

LUg = 0 and LUJ = 0

(see, for instance, Propositions 4.2 and 4.3 in [16]; see also [27]).
Motivated by the previous results, we introduce the following definition.

Definition 4.1. A quasi-Vaisman structure on a manifold M is a triple
(J, g, θ), with (J, g) a Hermitian structure, θ a closed 1-form and such that
the metric dual U of θ is unitary, Killing and, in addition,

LUJ = 0, dΩ = dη ∧ θ,
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where Ω is the fundamental 2-form of M and

η = −θ ◦ J. (4.1)

On a quasi-Vaisman manifold, with quasi-Vaisman structure (J, g, θ), the
closed 1-form θ doesn’t coincide, in general, with the Lee 1-form of the Her-
mitian manifold (M,J, g). For this reason, we will use the following termi-
nology. The 1-form θ is called the the quasi-Lee 1-form and its metric dual
U ∈ X(M) is called the quasi-Lee vector field. The 1-form η = −ω ◦ J is the
quasi-anti-Lee 1-form and its metric dual V ∈ X(M) is the quasi-anti-Lee
vector field. It is clear that

JU = V, JV = −U. (4.2)

Remark 4.2. Let (M,J, g) be a quasi-Vaisman manifold. Then, using the
general relation

2g(∇XU, Y ) = (LUg)(X, Y ) + dθ(X, Y ), for X, Y ∈ X(M),

where ∇ is the Levi-Civita connection of g, we deduce that U (resp. θ) is a
parallel vector field (resp. 1-form). �

Remark 4.3. It is easy to check that a quasi-Vaisman manifold (M,J, g, θ)
is Vaisman if and only if Ω = dη + θ ∧ η, i.e. if and only if it is an l.c.s.
manifold of first kind. �

Quasi-Sasakian and quasi-Vaisman manifolds are closely related. We will
show in Section 6.1 that if (N,ϕ, ξ, η, h) is a quasi-Sasakian manifold then
the product of N with the real line R or the circle S1 admits a quasi-Vaisman
structure (J, g), with J and g given by

J = ϕ+ ξ ⊗ θ − E ⊗ η, g = h+ θ ⊗ θ,
where θ is the standard volume form on R or on S1 and E is the dual vector
field to θ. In particular, the nilpotent Lie group

G = H(1, l)× R2(n−l)+1

admits a left-invariant quasi-Vaisman structure. Thus, if Γ is a cocompact
discrete subgroup then the compact nilmanifold Γ\G admits a quasi-Vaisman
structure.

Remark 4.4. Note that if n = l in the previous example, then the quasi-
Vaisman structure on Γ\G is Vaisman and if l = 0 then it is Kähler. However,
if n 6= l and l 6= 0 then the compact nilmanifold Γ\G doesn’t admit either
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a Vaisman or a Kähler structure. Indeed, a compact Kähler nilmanifold is
diffeomorphic to a torus (see [4, 19]) and a compact Vaisman nilmanifold is
diffeomorphic to a compact quotient of a product H(1, k)×R by a cocompact
discrete subgroup (see [2]). So, we can conclude that the class of the compact
quasi-Vaisman manifolds is distinct from the classes of compact Vaisman and
Kähler manifolds. �

Next, we will see that the quasi Lee and anti-Lee vector fields in a quasi-
Vaisman manifold M induce a free action of the abelian Lie algebra R2 on
M .

Proposition 4.5. Let (M,J, g) be a quasi-Vaisman manifold and U, V the
quasi Lee and anti-Lee vector fields on M . Then, the map f : R2 → X(M)
given by

f(a, b) = aU + bV, for a, b ∈ R
is a free action of the abelian Lie algebra R2 on M .

Proof : Using (4.2) and the fact that U is unitary, we deduce that V is also
unitary. Thus, from (4.1), it follows that

θ(U) = η(V ) = 1, θ(V ) = η(U) = 0, (4.3)

which implies that the vector fields U and V generate a distribution of rank
2 on M .

Next, we show that
[U, V ] = 0.

In fact, a direct computation proves that

(LUΩ)(X, JY ) = −(LUg)(X, Y ) + g(X, (LUJ)(JY )),

and, therefore,
LUΩ = 0. (4.4)

On the other hand, using (4.2), it follows that

iV Ω = θ. (4.5)

Then, from (4.4) and (4.5), we have that

i[U,V ]Ω = iVLUΩ− LU iV Ω = −LUθ

and, using (4.3) and the fact that θ is closed, we deduce that

i[U,V ]Ω = 0.

Since Ω is non-degenerate, this implies that [U, V ] = 0.
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Next, we will prove that the quasi anti-Lee vector field of a quasi-Vaisman
manifold is Killing and an infinitesimal automorphism of the complex struc-
ture. We will need the following result.

Lemma 4.6. On a quasi-Vaisman manifold M we have that

LUη = 0, LV θ = 0, LV η = 0,

where U, V are the quasi-Lee and anti-Lee vector fields, and θ, η are the quasi-
Lee and anti-Lee 1-forms.

Proof : First we will show that

LUη = 0. (4.6)

If X is a vector field on M then, using (4.1), it follows that

(LUη)(JX) = U(θ(X)) + θ(J [U, JX]).

Now, since LUJ = 0, we have [U, JX] = J [U,X] and we deduce that

(LUη)(JX) = (LUθ)(X) = dθ(U,X) + d(θ(U))(X) = 0.

On the other, using again that θ is closed and (4.3), we obtain that

LV θ = iV (dθ) + d(θ(V )) = 0.

Finally, we will prove that LV η = 0. In fact, if X is a vector field on M then,
from (4.1), (4.2) and since NJ(U,X) = 0, we have that

(LV η)(JX) = V (θ(X)) + θ([JU,X] + [U, JX]− J [U,X])

= (LV θ)(X) + θ((LUJ)(X)).

Thus, using (4.6) and the fact that LUJ = 0, we conclude that (LV η)(JX) = 0.

Next, using the previous result, we will prove that the flat foliation gener-
ated by U and V is transversely Kähler.

Proposition 4.7. On a quasi-Vaisman manifold the flat foliation generated
by the quasi Lee and anti-Lee vector fields is transversely Kähler.

Proof : Let (M,J, g) be a quasi-Vaisman manifold with quasi Lee and anti-
Lee vector fields U and V , respectively. Then, we have that

LUJ = 0, LUg = 0.
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Next, we will show that LV J = 0. Indeed, if X is a vector field on M then,
since NJ(U,X) = 0 and JU = V , we deduce that

(LV J)(X) = J [U, JX] + [U,X] = −(LUJ)(JX),

which, using LUJ = 0, implies that (LV J)(X) = 0. Now, we will prove that
LV Ω = 0. In fact,

LV Ω = d(iV Ω) + iV (dΩ) = dθ + iV (dη ∧ θ) = iV (dη ∧ θ).
Therefore, from (4.3) and Lemma 4.6, we obtain that

LV Ω = LV η ∧ θ = 0.

Now, we will see that V is Killing. If X, Y are vector fields on M , we deduce
that

0 = (LV Ω)(X, JY ) = −(LV g)(X, Y ) + g(X, (LV J)(JY ))

and, since LV J = 0, we conclude that LV g = 0.
Thus, the Hermitian structure (J, g) induces a transversely Kähler struc-

ture (Ĵ , ĝ) on M with respect to the flat foliation F generated by U and V .
In fact, using that NJ = 0, we deduce that the transverse Nijenhuis torsion
of Ĵ is zero. On the other hand, the transverse Kähler 2-form Ω̂ = Ω− η ∧ θ
is basic and closed.

Now we use Theorem 2.21 to provide a model for quasi-Vaisman manifolds.

Theorem 4.8. Let (M 2n+2, J, g) be a compact quasi-Vaisman manifold and
U , V , F defined as above. Then the CDGA

(H∗B(M,F)⊗
∧
〈x, y〉 , dx = 0, dy = [dη]B) (4.7)

is quasi-isomorphic to Ω∗(M). In other words the CDGA (4.7) is a model
of M .

Proof : We consider the action f : R2 → X(M) defined in Proposition 4.5.
Since the image of f is generated by U and V and they are Killing, we get
by Theorem 2.17 that the inclusion Ω∗LU ,LV (M) = Ω∗Lf (M) → Ω∗(M) is a
quasi-isomorphism.

Since the vector fields U and V are unitary and mutually orthogonal, we can
apply Corollary 2.20 to compute an algebraic connection χ for the operation
if . For an appropriate choice of a basis {x, y} of

(
R2
)∗

we get

χ(x) = g(U,−) = θ, χ(y) = g(V,−) = η.
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By Theorem 2.21 we obtain that

(Ω∗B(M,F)⊗
∧
〈x, y〉 , dx = 0, dy = dη)

is quasi-isomorphic to Ω∗LU ,LV (M) and thus also to Ω∗(M).
By Proposition 4.7 the foliated manifold (M,F) is transversely Kähler.

Now one can proceed as in the proof of Theorem 3.5, replacing where needed
ξ with F, in order to get that

(Ω∗B(M,F)⊗
∧
〈x, y〉 , dx = 0, dy = dη)

and
(H∗B(M,F)⊗

∧
〈x, y〉 , dx = 0, dy = [dη]B)

are quasi-isomorphic. This completes the proof of the theorem.

Note that the model in Theorem 4.8 is in fact an almost formal CDGA. To
see this we can take

A := H∗B(M,F)⊗
∧
〈x〉

and z = [dη]B considered as an element in A.
Now, as in the quasi-Sasakian case, we can also introduce the following

definition.

Definition 4.9. The index of a quasi-Vaisman manifold (M 2n+2, J, g) with
quasi anti-Lee 1-form η is the natural number l, 0 ≤ l ≤ n, which satisfies

[dη]lB 6= 0 and [dη]l+1
B = 0.

So, the model (4.7) of a compact quasi-Vaisman manifold of index l is an
almost formal CDGA of the same index.

Remark 4.10. Let M be a compact Vaisman manifold of dimension 2n +
2. Then, the index of M is maximal and equal to n. Indeed, if Ω is the
fundamental 2-form of M and θ, η are the Lee and anti-Lee 1-form then,
using Proposition 4.3 in [16] (see also [27]), we have that Ω = dη+ η ∧ θ. On
the other hand, if U and V are the Lee and anti-Lee vector fields then, as we
know, iUdη = iV dη = 0 and, since Ω is non-degenerate, we conclude that

ν = θ ∧ η ∧ (dη)n

is a volume form on M . Now, suppose that the index of M is less than n.
Then, there exists a basic (2n− 1)-form µ such that dµ = (dη)n. So,

ν = θ ∧ η ∧ dµ = d(θ ∧ η ∧ µ) + θ ∧ dη ∧ µ.
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But, since µ is a basic form, we have that iV (θ ∧ dη ∧ µ) = 0 and, therefore,
θ ∧ dη ∧ µ = 0. This implies that ν = d(θ ∧ η ∧ µ) which, using that M is
compact and that ν is a volume form, is a contradiction. �

5. Almost formal nilmanifolds
A compact homogeneous space of a nilpotent Lie group is called a nilman-

ifold. It was proved by Malcev [21] that every nilmanifold is diffeomorphic
to Γ\G for some nilpotent Lie group G and a cocompact subgroup Γ of G.

In [19] Hasegawa determined the minimal Sullivan model of a nilmanifold
using Nomizu theorem. Namely

Theorem 5.1 ([19]). Let M ∼= Γ\G be a compact nilmanifold. Denote by
g the Lie algebra of G and by

(∧
g∗, dCE

)
its Chevalley-Eilenberg complex

considered as a CDGA with the multiplication of the exterior algebra. Then(∧
g∗, dCE

)
is a minimal model of Ω∗(M).

The Heisenberg Lie algebra h(1, l) of the Heisenberg Lie group H (1, l) has
the following multiplicative structure with respect to a suitable basis p1,
p2,. . . , pl, q1, q2, . . . , ql, h:

[pi, pj] = 0, [qi, qj] = 0, [pi, qj] = δijh, [pi, h] = 0, [qi, h] = 0 (5.1)

for all possible pairs i and j. Such a basis may be chosen as follows

pi = Xi, qi = Xl+i, h = X2l+1, for i ∈ {1, . . . , l},
where Xi, Xl+i and X2l+1 are the left-invariant vector fields on H(1, l) given
by (3.2). It is clear that the Lie algebra of H(1, l)× Rr is h(1, l)⊕ ar, where
ar denotes the r-dimensional abelian Lie algebra. We will write g instead
of h(1, l) ⊕ ar in this discussion to avoid cumbersome formulas. Choose a
basis u1, . . . , ur of ar. Then all the elements u1, . . . , ur are in the center
of g and this with (5.1) determines its multiplicative structure. Thus the
Chevalley-Eilenberg differential on (h(1, l)⊕ ar)

∗ is given by

dh∗ = −
l∑

j=1

p∗j ∧ q∗j , dp∗j = dq∗j = du∗j = 0,

with {p∗1, . . . , p∗l , q∗1, . . . , q∗l , h∗} the dual basis of {p1, . . . , pl, q1, . . . , ql, h}. De-
note by A the subalgebra of

∧
g∗ generated by p∗i , q

∗
i , and u∗j . Then

A =
∧
〈p∗1, . . . , p∗l , q∗1, . . . , q∗l , u∗1, . . . , u∗r〉
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and the restriction of dCE to A is zero. Thus (
∧

g∗, dCE) can be identified
with (A⊗

∧
〈h∗〉 , dh∗ = z), where

z = −
l∑

j=1

p∗j ∧ q∗j .

Thus we see that a nilmanifold M modelled on H(1, l) × Rr has an almost
formal model of index l. In Theorem 5.3 we will show that these examples
exhaust all nilmanifolds having almost formal models. We will use it in order
to classify nilmanifolds admitting quasi-Sasakian or quasi-Vaisman structure.

We start by proving a vanishing property for general almost formal mani-
folds.

Proposition 5.2. Suppose M is an m-dimensional manifold that admits an
almost formal model (A⊗

∧
〈y〉 , dy = z) of index l. Then An = 0 for all

n ≥ m.

Proof : First we show that for every n ≥ m the map

An → An+2

a 7→ az
(5.2)

is injective. Suppose a ∈ An\{0} is such that az = 0. Then d(a⊗y) = az = 0.
Since the image of d : (A⊗

∧
〈y〉)n → (A⊗

∧
〈y〉)n+1 lies inside of An+1, this

implies that [a⊗ y] is a non-zero cohomology class in Hn+1 (A⊗
∧
〈y〉) ∼=

Hn+1(M). As M is of dimension m < n + 1, we get a contradiction. This
shows that the maps (5.2) are injective. But then also the maps

An → An+2l+2

a 7→ azl+1

are injective for all n ≥ m. Since zl+1 = 0 this implies An = 0.

Now we give a characterization of almost formal nilmanifolds.

Theorem 5.3. Let G be an m-dimensional nilpotent Lie group with the Lie
algebra g and Γ a cocompact subgroup of G. Then the manifold Γ\G admits
an almost formal model of index l if and only if G is isomorphic to H(1, l)×
Rm−2l−1.
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Proof : We denote the dimension of H1(Γ\G) ∼= H1(
∧

g∗) by b1. We can
choose a basis α1, . . . , αm of g∗ such that α1, . . . , αb1 is a basis of Ker(dCE1 )
and

dCE1 αk =
∑
i<j<k

γijk αi ∧ αj. (5.3)

Notice that since dCE0 = 0, we have Ker(dCE1 ) = H1(
∧

g∗).
Let (A⊗

∧
〈y〉), dy = z) be the almost formal model of Γ\G of dimension

m and index l. By Theorem 5.1 the CDGA
(∧

g∗, dCE
)

is the minimal model
of Γ\G. Therefore there is a quasi-isomorphism of CDGA’s

ψ :
∧

g∗ → A⊗
∧
〈y〉 .

By Proposition 5.2, we have Am = 0, and hence (A⊗
∧
〈y〉)m = Am−1y. We

will use the following lemma several times in the rest of the proof.

Lemma 5.4. The element ψ(α1)φ(α2) · · ·ψ(αm) in Am−1y is non-zero. As a
consequence the elements ψ(α1), . . . , ψ(αm) in A1 are linearly independent.
In particular, the restriction ψ|g∗ is injective.

Proof of Lemma: It follows from (5.3) that the Chevalley-Eilenberg differen-
tial

dm−1 :
m−1∧

g∗ →
m∧

g∗

is zero. Thus Hm(
∧
g∗) =

∧m g∗. In particular, α1 ∧ · · · ∧ αm is a non-zero
element in Hm(

∧
g∗). Since ψ is a quasi-isomorphism we get that [ψ(α1 ∧

· · · ∧ αm)] is a non-zero element in the mth cohomology group of A⊗
∧
〈y〉.

But then ψ(α1 ∧ · · · ∧ αm) = ψ(α1)ψ(α2) · · ·ψ(αm) is a non-zero element of
Am−1y. This proves the first claim of the lemma.

Now suppose there is a j such that

ψ(αj) =
∑
i6=j

aiψ(αi)

for some real numbers ai ∈ R. Then, since ψ(αi)
2 = 0 in A ⊗

∧
〈y〉, we get

that ψ(α1)ψ(α2) · · ·ψ(αm) = 0. Thus we got a contradiction to the already
proved fact. This shows that the elements ψ(α1), . . . , ψ(αm) are linearly
independent in A1.

Now we resume the proof of the theorem. We will distinguish two cases:
the first when z = 0 and the second when z 6= 0.
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For z = 0 we have l = 0 and thus we need to show that G ∼= Rm or
equivalently that g is an abelian Lie algebra. Notice that g is abelian if and
only if dCE1 is zero. Thus it is enough to check that Ker(dEC1 ) = g∗.

Since z = 0 the differentials in the complex A⊗
∧
〈y〉 are zero. Therefore,

its first cohomology group coincides with its component of degree one(
A⊗

∧
〈y〉
)

1
= A1 ⊕ A0y.

As ψ is a quasi-isomorphism it induces the isomorphism

[ψ] : Ker(dCE1 ) = H1(
∧

g∗)→ A1 ⊕ A0y

α 7→ ψ(α).
(5.4)

Thus we get the commutative diagram

Ker
(
dCE1

) [ψ]

∼=
//

� _

��

A1 ⊕ A0y

g∗
77 ψ|g∗

77

where ψ|g∗ is injective by Lemma 5.4. Thus we get that the isomorphism [ψ]
is the composition of two monomorphisms. But this is possible only if both
of them are isomorphisms as well. Therefore Ker(dCE1 ) = g∗ as required.

Now we assume that z 6= 0. In this case the first differential in A⊗
∧
〈y〉

is given by

d1(a1 + a0y) = a0z,

where a0 ∈ A0 = R. Thus a1 + a0y is in the kernel of d1 if and only if a0 = 0.
Moreover d0 = 0 in A⊗

∧
〈y〉. Thus we get

H1
(
A⊗

∧
〈y〉
)

= A1.

As ψ is a quasi-isomorphism the induced map

[ψ] : Ker(dCE1 ) = H1
(∧

g∗
)
→ A1

α 7→ ψ(α).
(5.5)

is an isomorphism of vector spaces. It follows from Lemma 5.4 that ψ(α1),
. . . , ψ(αb1) is a basis of A1.

Now we will show that b1 = m− 1. Suppose b1 = m. Then

ψ(α1)ψ(α2) . . . ψ(αm) ∈ Am = 0
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and thus the above product must be zero, which contradicts to Lemma 5.4.
Now assume b1 ≤ m− 2. Then

dim g∗ = m > b1 + 1 = dimA1 + 1 = dim(A1 ⊕ A0y).

But this is impossible as ψ|g∗ : g∗ → A1 ⊕ A0y is a monomorphism by
Lemma 5.4. Thus b1 = m− 1 and

dim g∗ = m = b1 + 1 = dim(A1 ⊕ A0y).

This equality together with Lemma 5.4 imply that ψ|g∗ is an isomorphism.
Now without loss of generality we can assume that αm = (ψ|g∗)−1(y). Further
there is a basis β1, . . . , βm−1 of Ker(dCE1 ) such that

dCE1 αm =
r∑
j=1

β2j−1 ∧ β2j

for some natural number r ≤
⌊
m−1

2

⌋
. Now to prove that g ∼= h(1, l)⊕am−2l−1

it remains to show that r = l. We have

zr = (dy)r = (dψ(αm))r = ψ
(
(dCE1 αm)r

)
= r!ψ(β1) . . . ψ(β2r) 6= 0

by Lemma 5.4. Further

zr+1 = ψ
(
(dCE1 αm)r+1

)
= 0.

Thus r = l as claimed and this finishes the proof.

Remark 5.5. Note, that the above theorem can be also restated in more
topological terms. Namely, an m-dimensional aspherical nilpotent manifold
M admits an almost formal model of dimension m and index l if and only if

π1(M)⊗ R ∼= H(1, l)× Rm−2l−1.

�

Next, using Theorem 5.3 we are able to classify quasi-Sasakian and quasi-
Vaisman compact nilmanifolds.

Theorem 5.6. The (2n + 1)-dimensional compact nilmanifold Γ\G admits
a quasi-Sasakian structure of index l if and only if G and H(1, l) × R2(n−l)

are isomorphic as Lie groups.

Proof : In Section 3, it was explained how to construct a quasi-Sasakian struc-
ture on

Γ\
(
H(1, l)× R2n−l)
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for any cocompact subgroup Γ of H(1, l) × R2n−1. It is easy to prove that
this structure has index l.

Now, suppose M := Γ\G is a nilmanifold that admits a quasi-Sasakian
structure such that [dη]lB 6= 0 and [dη]l+1

B = 0. Then the almost formal
model (3.6) is of index l. Therefore by Theorem 5.3, we have that G and
H(1, l)× R2(n−l) are isomorphic.

Theorem 5.7. The (2n+2)-dimensional compact nilmanifold Γ\G admits a
quasi-Vaisman structure if and only if G is isomorphic to H(1, l)×R2(n−l)+1

as a Lie group. Moreover, in this case,

[dη]lB 6= 0, [dη]l+1
B = 0.

Proof : In Section 4 it was shown that every nilmanifold modelled on H(1, l)×
R2(n−l)+1 admits a quasi-Vaisman structure. It is easy to check that this
structure has index l.

Now, suppose M = Γ\G admits a quasi-Vaisman structure of index l.
Then by Theorem 4.8 it has an almost formal model of index l. Applying
Theorem 5.3, we get that G and H(1, l)× R2(n−l)+1 are isomorphic.

Note that using Remark 3.8 and Theorem 5.6, we directly deduce a result
which was initially proved in [10].

Corollary 5.8. The (2n+1)-dimensional compact nilmanifold Γ\G admits a
Sasakian structure if and only if G and H(1, n) are isomorphic as Lie groups.

Finally, using Remark 4.10 and Theorem 5.7, we directly deduce another
result which has been proved recently in [2].

Corollary 5.9. The (2n + 2)-dimensional compact nilmanifold Γ\G admits
a Vaisman structure if and only if G and H(1, n)×R are isomorphic as Lie
groups.

6. Mapping torus and solvmanifolds
Let M be a compact Riemannian manifold with Riemannian metric h and

f : M → M be an isometry. Suppose that a is a positive constant and
consider the mapping torus

M(f,a) = (M × R)/ρ(f,a),

with ρ(f,a) : Z × (M × R) → M × R the action of the discrete subgroup Z
defined by

ρ(f,a)(k, (x, t)) = (fk(x), t+ ak).
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Let dt ⊗ dt be the standard flat metric on R and g the product metric on
M × R

g = h+ dt⊗ dt.
Then, it is clear that the Z-action is isometric. So, g induces a Riemannian
metric on the mapping torus M(f,a).

Now, denote by U the vector field on M(f,a) induced by the ρ(f,a)-invariant

vector field ∂
∂t on M ×R. Since the vector field U is unitary and parallel, the

following theorem is a direct consequence of [11, Corollary 3.2].

Theorem 6.1. Let (M,h) be a compact Riemannian manifold and Hk(M(f,a))
the de Rham cohomology group of order k of the mapping torus of M by the
isometry f : M →M and the positive constant a. Then,

Hk(M(f,a)) ' Hk
U(M(f,a))⊕Hk−1

U (M(f,a)),

where H∗U(M(f,a)) is the basic cohomology of M(f,a) with respect to the foliation

generated by the vector field U induced by the invariant vector field ∂
∂t on

M × R. Moreover,

Hk
U(M(f,a)) '

{
α ∈ Ωk(M)

∣∣α is h-harmonic and f ∗α = α
}
.

6.1. Mapping torus and quasi-Vaisman manifolds. It is well known
that if M is a Sasakian manifold then a mapping torus of M with respect to
any Sasakian automorphism can be endowed with a Vaisman structure.

Now, we show that a similar relation holds between quasi-Sasakian and
quasi-Vaisman manifolds. Let (M,ϕ, ξ, η, h) be a quasi-Sasakian manifold.
We start by constructing a quasi-Vaisman structure on M ×R. Write dt for
the volume form on R. Define the metric on M × R by

g = h+ dt⊗ dt
and the complex structure J by

J = ϕ− ∂

∂t
⊗ η + ξ ⊗ dt,

that is

J

(
X, a

∂

∂t

)
=

(
ϕX + aξ,−η(X)

∂

∂t

)
.

Proposition 6.2. The manifold (M ×R, J, g, dt) with J and g defined above
is a quasi-Vaisman manifold. Also the manifold M × S1 ∼= (M × R) /Z
inherits a quasi-Vaisman structure from M × R.
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Proof : As (ϕ, ξ, η, h) is a normal almost contact metric structure, we have
that (J, g) is Hermitian (see [8, Section 6.1]). Moreover, its fundamental
2-form is given by Ω := g ◦ (Id⊗ J). As dt ◦ J = −η, we get

g ◦ (Id⊗ J) = Φ + η ⊗ dt− dt⊗ η,
where Φ is the fundamental 2-form of the almost contact metric structure
(ϕ, ξ, η, h). Thus

Ω = Φ + η ⊗ dt− dt⊗ η = Φ + η ∧ dt
and

dΩ = dη ∧ dt.
It is clear that U = ∂

∂t is parallel unit vector field on M × R. It is left to
show that LUJ = L ∂

∂t
J = 0. Now, we have

(LUJ) (X, aU) = LU (ϕX + aξ,−η(X)U)− J (LU (X, aU)) = 0,

where X ∈ X (M) and a ∈ R. This proves that LUJ = 0.

Now let f : M →M be a diffeomorphism that preserves the almost contact
metric structure. For every positive constant a ∈ R, we consider the mapping
torus M(f,a) of M by f and a, that is,

M(f,a) = (M × R)/Z,
where the action ρ of the discrete subgroup Z on M × R is given by

ρ(k, (x, t)) = (fk(x), t+ ka).

The above action preserves the quasi-Vaisman structure on M×R. Therefore
the quotient compact smooth manifold

M(f,a) = (M × R) /Z
is quasi-Vaisman.

On the other hand, let (M,J, g, θ) be a quasi-Vaisman manifold. Since θ is

a closed form, the foliation Ker θ = 〈U〉⊥ is integrable. Let L be a leaf of this
foliation. Notice that if M is a mapping torus of a quasi-Sasakian manifold
N , then L is isometric to N and thus it is quasi-Sasakian. We are going to
show that this holds also for a general quasi-Vaisman manifold.

Define an almost contact structure (φ, ξ, η, g) on L where ξ = V , η and g
are given by restricting from M , and

φξ := 0, φX = JX, for X ∈ 〈U, V 〉⊥ .
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Proposition 6.3. The almost contact structure (φ, ξ, η, g) on L is quasi-
Sasakian.

Proof : We have to check that Nφ+dη⊗ ξ = 0 and dΦ = 0, where Φ(X, Y ) =
g(X,φY ).

For every W ∈ 〈U〉⊥, we have

φ(W ) = φ (W − η(W )V ) = J(W − η(W )V ) = JW + η(W )U. (6.1)

For X, Y ∈ 〈U, V 〉⊥, we obtain by applying (6.1) several times

Nφ(X, Y ) = φ2 [X, Y ]− φ [φX, Y ] + [X,φY ]) + [φX, φY ]

= NJ (X, Y ) + η ([X, Y ])V + η (J [X, Y ]− [JX, Y ]− [X, JY ])U.

Since X and Y are orthogonal to V , we have η ([X, Y ]) = −dη (X, Y ). Fur-
ther, using integrability, the last term in the above formula can be written
as η (J [JX, JY ])U . Since X and Y are orthogonal to V , it follows that

JX and JY are orthogonal to U . As the foliation 〈U〉⊥ is integrable, we

get that [JX, JY ] is orthogonal to U , and thus J [JX, JY ] ∈ 〈V 〉⊥. This
shows that η (J [JX, JY ]) = 0. Therefore Nφ (X, Y ) = −dη (X, Y )V for X,

Y ∈ 〈U, V 〉⊥.

Now, suppose that X ∈ 〈U, V 〉⊥. Then, applying (6.1), we get

Nφ (X, V ) = − [X, V ]− J [JX, V ] + η ([X, V ])V − η ([JX, V ]− J [X, V ])U.

From integrability of J , we have

[X, V ] + J [JX, V ] = (LUJ) (X)

[JX, V ]− J [X, V ] = (LUJ) (JX) .

As, by definition of quasi-Vaisman manifold LUJ = 0, we get thatNφ (X, V ) =
−dη (X, V )V .

It is left to show that dΦ = 0. For any X, Y , Z ∈ 〈U〉⊥, we have
dΦ (X, Y, Z) = dΩ (X, Y, Z) = (dη ∧ θ) (X, Y, Z) = 0 as θ (X) = θ (Y ) =
θ (Z) = 0.

Now, we show that starting with a quasi-Vaisman manifold we can con-
struct a new quasi-Sasakian manifold by using mapping torus construction.

Suppose that (M 2n+2, J, g, θ) is a quasi-Vaisman manifold with quasi-anti-
Lee 1-form η, quasi-Lee vector field U , and quasi-anti-Lee vector field V .
Then, on the product manifold M×R we consider the almost contact metric
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structure (ϕ, ξ, η, h), where h is the metric product of g and the standard
metric on R, that is,

h = g + dt⊗ dt, (6.2)

the Reeb vector field ξ = V , η = h(ξ,−), and the (1, 1)-tensor field ϕ is given
by

ϕU =
∂

∂t
, ϕ

∂

∂t
= −U, ϕV = 0,

ϕX = JX, for X ∈ 〈U, V 〉⊥ .
(6.3)

Proposition 6.4. The almost contact metric structure (ϕ, ξ, η, h) on M ×R
is quasi-Sasakian.

Proof : As U is parallel, from Proposition 6.3 it follows that M is a local
product of a real line and a quasi-Sasakian manifold. Therefore M × R is a
local product of a quasi-Sasakian manifold and R2, where the distribution D

tangent to the two dimensional factor is generated by U and ∂
∂t . Clearly, the

restriction JD of φ to D is an integrable almost complex structure on D. For
X, Y ∈ D, we define ω (X, Y ) = h (X, JDY ). We get

ω

(
U,

∂

∂t

)
= h

(
U, JD

∂

∂t

)
= h(U,−U) = −1.

This implies that ω is a volume form on every leaf of D. Thus the leaves of
D are Kähler. Therefore, M × R is a local product of quasi-Sasakian and a
Kähler manifolds, and hence it is a quasi-Sasakian manifold per se.

Let (M,J, g, θ) be a Vaisman manifold. Suppose f : M →M is an isometry
that preserves the quasi-Vaisman structure. Then for every a ∈ R>0, the
mapping torus M(f,a) inherits a quasi-Sasakian structure from M × R.

6.2. Model of a mapping torus. In this section, we will describe a model
for a mapping torus by an isometry.

Proposition 6.5. Let (M, g) be a compact Riemannian manifold, f an isom-
etry of M , and a a positive real number. Then the CDGA(

Ω∗(M)f ⊗
∧
〈y〉 , dy = 0

)
is a model of the mapping torus M(f,a), where

Ω∗(M)f = {α ∈ Ω∗(M) | f ∗α = α}.
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Proof : Denote by ξ the vector field on M(f,a) induced by the vector field ∂/∂t
on M × R. Since ξ is unitary and parallel, by Theorem 2.17, the inclusion
Ω∗Lξ

(
M(f,a)

)
↪→ Ω∗(M(f,a)) is a quasi-isomorphism of CDGAs.

Denote by θ the metric dual of ξ. By Corollary 2.20, the map

χ : R→ Ω1(M(f,a))

s 7→ sθ

is an algebraic connection for the locally free action of R on M(f,a) induced
by ξ. Since dθ = 0, by Theorem 2.21 the CDGA(

Ω∗B(M(f,a), ξ)⊗
∧
〈y〉 , dy = 0

)
is quasi-isomorphic to Ω∗Lξ(M(f,a)) and thus to Ω∗(M(f,a)).

Define f̂ : M ×R→M ×R by f̂(m, t) = (f(m), t+ a). Then the following
homomorphisms of CDGAs induced by pull-backs of differential forms

Ω∗B
(
M(f,a), ξ

) π∗−−→ Ω∗B (M × R, ∂/∂t)f̂ pr∗1←−−− Ω∗(M)f (6.4)

are isomorphisms of CDGAs. Tensorising (6.4) with
∧
〈y〉 and defining dy =

0 on all resulting graded algebras, we get the isomorphisms of CDGAs.

6.3. Mapping torus and a semi-direct product. Let G be a Lie group
and Γ a cocompact subgroup of G. Consider an action φa : G → G, a ∈ R
of R on G. Then the product on the semi-direct product Goφ R is given by
(g, t)(g′, t′) = (gφt(g

′), t+ t′). Suppose there is a ∈ R>0 such that φa(Γ) = Γ.
Then the group aZ acts on Γ and the semi-direct product Γ oφ aZ can be
considered as a cocompact discrete subgroup of Goφ R.

Moreover, the action of aZ on G descends to an action on Γ\G. There-
fore, we can consider the mapping torus (Γ\G)(φa,a). We have the following
identification.

Proposition 6.6. Suppose G is endowed with a Riemannian metric g, which
is invariant under the action of Γ, and all φa are isometries. Then the
mapping torus (Γ\G)(φa,a) and the quotient

(Γ oφ aZ) \ (Goφ R) (6.5)

are isometric Riemannian manifolds.
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Proof : The mapping torus (Γ\G)(φa,a) is by definition the quotient of (Γ\G)×
R under the action ρ of aZ defined by ρak([g], t) = ([φka(g)], ak + t) =
([φka(g)], ak+t). We can identify (Γ\G)×R with Γ\ (G× R). Thus (Γ\G)(φa,a)

is isometric to the iterated quotient (aZ) \ (Γ\ (G× R)).
Now, as Γ is a normal subgroup of Γ oφ aZ, by two step reduction, the

manifold (6.5) is isometric to the quotient of Γ\ (Goφ R) under the action
of the group Γ\ (Γ oφ aZ) ∼= aZ given by

[(γ, ak)] · [(g, t)] = [(γ, ak) · (g, t)] = [(γφak(g), ak + t)] = [(φak(g), ak + t)].

Now one can see that both (Γ\G)(φa,a) and (6.5) are quotients of Γ\ (G× R)
under the same action of aZ. Hence they are isometric.

6.4. Examples of quasi-Sasakian and and quasi-Vaisman manifolds.
In this section we give some explicit examples of solvmanifolds that admit a
quasi-Sasakian or a quasi-Vaisman structure. We also exhibit almost formal
models for them.

Example 6.7. We start by reviewing a construction of a Vaisman solvman-
ifold considered in [22]. Consider the Heisenberg group H(1, 1). In the nota-
tion of Section 3, its standard left-invariant Sasakian structure (ϕH , ξH , ηH , hH)
is given by

ϕH = α1 ⊗X2 − α2 ⊗X1, ξH = X3, ηH = α3, hH =
3∑
i=1

αi ⊗ αi.

Further, define Γ (1, 1) as the subgroup of H (1, 1) consisting of the matrices
in H (1, 1) with integer entries. It is obviously cocompact. Denote by L the
compact Sasakian manifold Γ(1, 1)\H (1, 1).

Consider the action F of R on H(1, 1) given by

Fu(p, q, t) = (p cosu+q sinu,−p sinu+q cosu, t+
1

4
(q2−p2) sin(2u)−pq sin2 u).

It acts by group automorphisms and preserves the standard left-invariant
Sasakian structure (see [22]). For u = π

2 , we have

Fπ
2

(p, q, t) = (q,−p, t− pq).
So the cocompact subgroup Γ (1, 1) of H (1, 1) is preserved by Fπ

2
. Hence

we can consider the Vaisman manifold M := L(f,π2 ) with f = Fπ
2
. By

Proposition 6.6, M is a solvmanifold modelled on the solvable group G :=
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H (1, 1) oF R. Notice that G is not nilpotent and even not a completely
solvable Lie group.

Now we will find an almost formal model of M . By Proposition 6.5, the
CDGA (

Ω∗ (L)f ⊗
∧
〈y〉 , dy = 0

)
(6.6)

is a model of M . We will use the following remark.

Remark 6.8. If A and B are quasi-isomorphic CDGAs, then the CDGAs
(A⊗

∧
〈y〉 , dy = 0) and (B ⊗

∧
〈y〉 , dy = 0) are quasi-isomorphic as well. �

Thus to simplify (6.6), we can replace Ω∗(L)f with a quasi-isomorphic
CDGA. Since L is a nilmanifold, by Nomizu theorem, the inclusion

j :
∧

h (1, 1)∗ → Ω∗(L),

given by left-invariant extension, is a quasi-isomorphism of CDGAs. The
image of j is generated by 1-forms α1, α2, α3. By easy computation

f ∗α1 = α2, f ∗α2 = −α1, f ∗α3 = α3.

In particular, the image of j is invariant under the action of f .
Notice that the automorphism f of Ω∗(L) is of finite order, namely f 4 = Id.

Therefore the map

̂ :
(∧

h (1, 1)∗
)f∗
→ Ω∗(L)f

induced by j is a quasi-isomorphism. The image of ̂ has a basis

1, α3, α1 ∧ α2, α1 ∧ α2 ∧ α3.

The de Rham differential gives zero on all elements of this basis, except α3:

dα3 = d (dt− pdq) = −dp ∧ dq = −α1 ∧ α2.

Thus we can conclude that Ω∗(L)f is quasi-isomorphic to the CDGA(
B ⊗

∧
〈α3〉 , dα3 = −α1 ∧ α2

)
, (6.7)

where B is a CDGA with zero differential and B0 = 〈1〉, B2 = 〈α1 ∧ α2〉,
Bk = 0 for k 6= 0 or 2. Substituting (6.7) in (6.6) instead of Ω∗(L)f , we
obtain the model (

B ⊗
∧
〈α3, y〉 , dα3 = −α1 ∧ α2, dy = 0

)
(6.8)
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of M . If we define A = (B ⊗
∧
〈y〉 , dy = 0), then (6.8) becomes(

A⊗
∧
〈α3〉 , dα3 = −α1 ∧ α2

)
. (6.9)

Notice that A has a zero differential, and therefore (6.9) is an almost formal
model. Using Theorem 6.1 and carefully examining the quasi-isomorphisms
we used, one can show that in fact A is isomorphic to the basic cohomol-
ogy algebra H∗B(M,V ) and B is isomorphic to the basic cohomology algebra
H∗B (M, 〈U, V 〉).

Example 6.9. Let G = H(1, 1) oF R with the action F defined above and
Γ = Γ(1, 1) oF

π
2Z its cocompact subgroup. Then the Vaisman manifold M

constructed in Example 6.7 is isomorphic to Γ\G. We consider the triv-
ial action of R on G. By Proposition 6.6, the corresponding mapping torus
N := M(Id,1) is a solvmanifold modelled on the solvable group G × R. By
Proposition 6.4 and the discussion thereafter, N has a quasi-Sasakian struc-
ture induced by the Vaisman structure on M . Hence N is an example of a
quasi-Sasakian solvmanifold.

By Proposition 6.5, the CDGA(
Ω∗(M)⊗

∧
〈z〉 , dz = 0

)
(6.10)

is a model of N . By Remark 6.8 we can replace Ω∗(M) in (6.10) with any
model of M . Therefore, substituting (6.9) in (6.10), we get that the CDGA(

A⊗
∧
〈α3, z〉 , dα3 = −α1 ∧ α2, dz = 0

)
(6.11)

is a model of N . Defining C = (A⊗
∧
〈z〉 , dz = 0), we can write (6.11) as(

C ⊗
∧
〈α3〉 , dα3 = −α1 ∧ α2

)
. (6.12)

As A has a zero differential, the same is true for C. Hence (6.12) is an
almost formal model of N .

Example 6.10. Now we construct an example of a quasi-Vaisman solvman-
ifold. We start with the nilpotent Lie group G = H(1, 1) × R2, which is the
group G defined in Section 3 with l = 1 and n = 2. As it was shown there, G
admits a left-invariant quasi-Sasakian structure. Denote by Γ the subgroup
Γ(1, 1)×Z2 of G and by N the resulting compact quasi-Sasakian nilmanifold
Γ\G.
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We define the action A of R on G = H(1, 1)× R2 by

Au((p, q, t), (x, y)) = (Fu(p, q, t), (x cosu+ y sinu,−x sinu+ y cosu)) .
(6.13)

For u = π
2 , we get

Aπ
2
((p, q, t), (x, y)) = ((−q, p, t− pq), (y,−x)).

Denote Aπ
2

by f̂ . Then by Proposition 6.6, the mapping torus N(f̂ ,π2 ) is a

solvmanifold modelled on G oA R. Notice that G oA R is not nilpotent and
even not completely solvable. By the discussion after Proposition 6.2, the
mapping torus N(f̂ ,π2 ) has a natural quasi-Vaisman structure induced by the

quasi-Sasakian structure on N .
Now we compute an almost formal model of N(f̂ ,π2 ). By Proposition 6.5,

the CDGA (
Ω∗(N)f̂ ⊗

∧
〈y〉 , dy = 0

)
(6.14)

is a model of N(f̂ ,π2 ). Arguing as in Example 6.7, we can replace Ω∗(N)f̂ with

the CDGA (
B ⊗

∧
〈α3〉 , dα3 = −α1 ∧ α2

)
,

where B is the CDGA with zero differential and

Bk =


〈1〉 , k = 0

〈α1 ∧ α2, β1 ∧ β2〉 , k = 2

0, otherwise.

Defining A =
(
B ⊗

∧
〈y〉 , dy = 0

)
, we get that (6.14) is quasi-isomorphic to(

A⊗
∧
〈α3〉 , dα3 = −α1 ∧ α2

)
,

which provides an almost formal model for N(f̂ ,π2 ).

7. Boothby-Wang construction and quasi-Sasakian man-
ifolds.

Let (M,J, g) be a compact Kähler manifold and β ∈ Ω2(M) such that
iJβ = 0 and [β] ∈ H2(M,Z). By [8, Theorem 2.5], there is a principal circle
bundle π : N →M and a 1-form η on N such that dη = π∗β. Denote by ξ the
vertical vector field such that η(ξ) = 1. We can consider η as a connection
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form on the circle bundle N , where Ker η give subspaces of horizontal vectors.
Denote by π̃ the horizontal lift corresponding to this connection. Define

φ := π̃Jπ∗.

By [23, Theorem 6] the structure (φ, ξ, η) is a normal almost contact structure
on N . Now, we define the Riemannian metric h on N by

h(X, Y ) = g(π∗X, π∗Y ) + η(X)η(Y ).

Now, denote by ω the symplectic form on M . Then

Φ(X, Y ) = h(X,φY ) = g(π∗X, π∗π̃Jπ∗Y )

= g(π∗X, Jπ∗Y ) = ω(π∗X, π∗Y ) = (π∗ω)(X, Y ).

Thus

dΦ = π∗dω = 0.

This shows that (φ, ξ, η, h) is a quasi-Sasakian structure on N . Note, that
the index of this structure is the largest natural number l such that [β]l 6= 0
in H2(M).

In Theorem 5.6 we described all nilmanifolds that can admit a quasi-
Sasakian structure. This characterization is based on the index of the quasi-
Sasakian structure. There is also another widely considered invariant of
quasi-Sasakian structures: the rank. We say that a quasi-Sasakian manifold
has rank 2p+ 1 if

η ∧ (dη)p 6= 0, (dη)p+1 = 0.

It is easy to see that the first of the above equations can be replaced by the
seemingly weaker condition (dη)p 6= 0. In fact, if η ∧ (dη)p = 0 then also

(dη)p = iξ(η ∧ (dη)p) = 0,

i.e. if (dη)p 6= 0 then η ∧ (dη)p 6= 0.
It is straightforward to check that if a quasi-Sasakian manifold has rank

2p + 1 and index l then l ≤ p. Therefore if a compact nilmanifold ad-
mits a quasi-Sasakian structure of rank 2p + 1 it is modelled on Lie group
H(1, l) × R2n+1 with l ≤ p. In Section 3, we showed that for every co-
compact subgroup Γ of G = H(1, p) × R2(n−r) the manifold Γ\G admits a
quasi-Sasakian structure of rank 2p+ 1. But the following question remains
open:
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Question 1. For which l < p and which cocompact subgroups Γ of

G = H(1, l)× R2(n−l)

the manifold Γ\G admits a quasi-Sasakian structure of rank 2p+ 1?

As a first step to answer this question, we show that for every l < p there
is a cocompact subgroup Γ in G = H(1, l) × R2(n−l) such that the manifold
Γ\G admits a quasi-Sasakian structure of rank 2p+ 1.

Denote by Γ̃ the subgroup of H(1, l) consisting of matrices in H(1, l) with
integer entries. Further we identify R2(n−l) with Cn−l considered with its
standard Kähler structure. Define

Γ = Γ̃× (Z + iZ)(n−l) ⊂ H(1, l)× Cn−l.

Then

Γ\G ∼=
(

Γ̃\H(1, l)
)
× Tn−lC ,

where TC denotes the complex torus C/ (Z + iZ). Denote by (φ, ξ, η, h) the
quasi-Sasakian structure on Γ\G constructed in Section 3. Then all integral
curves of ξ have the same length, and we get the principal circle bundle

S1 // // Γ\G
π
����

TnC.

(7.1)

Write vol for the volume form on TC and denote by prj the projection from
TnC to the jth component. Then

dη = π∗(pr∗1vol + . . . pr∗l vol).

Thus (7.1) corresponds to the class v := [pr∗1vol + . . . pr∗l vol] in H2(TnC,Z).
Let f be any non-constant function in C∞(TC). Then diJdf is a non-zero

2-form on TC, since

diJdf = (∆f)vol.

Moreover iJdiJdf = d2
Jf = 0, where dJ = iJ ◦ d + d ◦ iJ is the differential

operator induced by J . Define the 2-form β on TnC by

β = pr∗1vol + · · ·+ pr∗l vol + pr∗l+1diJdf + · · ·+ pr∗pdiJdf.

Our aim is to apply the Boothby-Wang construction described in this section
to the complex manifold TnC and the 2-form β. For this we have to check that
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iJβ = 0 and [β] ∈ H2(TnC,Z). The first assertion follows from iJdiJdf = 0.
For the second notice that

[β] = [pr∗1vol + . . . pr∗l vol] = v ∈ H2(TnC,Z).

Denote the resulting quasi-Sasakian manifold by (N, φ, ξ′, η′, h′). Since the
cohomology class of β equals to v, we see that N is diffeomorphic to Γ\G,
i.e. N is a nilmanifold. Write π for the projection of N on TnC. Then

dη′ = π∗β.

Thus

(dη′)p = π∗
(
pr∗1vol ∧ . . . pr∗l vol ∧ pr∗l+1diJdf ∧ · · · ∧ pr∗pdiJdf

)
6= 0

and

(dη′)p+1 = 0,

which shows that η′ has rank 2p + 1. Further, we can identify the basic
cohomology H∗B(N, ξ) with H∗(TnC) via π∗. Under this identification [dη′]B
corresponds to [β] = v. Since vl 6= 0 but vl+1 = 0, we see that l is the index
of N .

Thus we have

Proposition 7.1. For any l < p ≤ n there exists a compact (2n + 1)-
dimensional quasi-Sasakian nilmanifold of rank 2p+ 1 with index l.

Note that in the above example the quasi-Sasakian structure on N can be
considered as a modification of the quasi-Sasakian structure on Γ\G con-
structed in Section 3. Namely, we have the isomorphism of principal circle
bundles

N
∼= //

�� ��

Γ\G

}}}}

TnC
and one can verify that ξ is preserved under this isomorphism. Thus we can
state the following question

Question 2. For which Γ ⊂ G = H(1, l)× R2(n−l) there is a quasi-Sasakian
structure on Γ\G of rank 2p+ 1 with l < p and the same Reeb vector field as
in the quasi-Sasakian structure defined in Section 3?
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It is clear that if the answer to Question 2 is positive for Γ\G then the
answer to Question 1 is also positive for Γ\G.

Note that in the above example the form dη′ on N does not have a constant
rank, in the sense that there are points x ∈ N such that (dη′)px = 0. In fact,
since diJdf is an exact 2-form on a compact 2-dimensional manifold TC, there
are points y ∈ TC such that (diJdf)y = 0. Now for any x ∈ N with prpπx = y
one gets (dη′)px = 0.

We will say that a quasi-Sasakian manifold (M,φ, ξ, η, h) is of constant
rank 2p + 1 if (η ∧ dη)px 6= 0 at every point x ∈ M and (dη)p+1 = 0. A
(partial) answer to the above question should produce an invariant of Γ that
guarantees or obstructs the existence of such a structure.

We also can make the same question but with the constant rank in mind.

Question 3. For which cocompact subgroups Γ of G = H(1, l)×R2(n−l) there
is a quasi-Sasakian structure on Γ\G of constant rank 2p + 1 for a fixed
integer p > l?.

Differently from the Question 1, in this case we don’t know if such Γ’s exist.
Moreover, we do not even know the answer to the following

Question 4. Is it possible to have a quasi-Sasakian structure on a compact
manifold M 2n+1 of index l and constant rank 2p+ 1 with l < p < n?
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