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Universidade de Coimbra
Preprint Number 18–04

DECOMPOSITIONS OF LINEAR SPACES
INDUCED BY n-LINEAR MAPS
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ABSTRACT: Let V be an arbitrary linear space and f : V × . . . × V → V an n-linear
map. We show that, for any choice of basis B of V, the n-linear map f induces on V a
decomposition (depending on B) V = ⊕Vj as a direct sum of linear subspaces, which is
f -orthogonal in the sense f(V, . . . , Vj , . . . , Vk, . . . ,V) = 0 when j 6= k, and in such a
way that any Vj is strongly f -invariant in the sense f(V, . . . , Vj , . . . ,V) ⊂ Vj . We also
characterize the f -simplicity of any Vj . Finally, an application to the structure theory of
arbitrary n-ary algebras is also provided. It is the full generalization of some early result [6].
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1.Introduction
The main idea of the present paper is to prove the n-ary version of early result

of the first author about of decomposition of linear spaces induced by bilinear
maps [6]. The paper is organized as follows. In the second section we develop all
of the techniques needed to get our main results. We begin by introducing con-
nection techniques, previously used in different algebraic contexts [1–8], in the
framework of linear spaces V. As a consequence, we get that any choice of basis
B of V gives rise to a first decomposition of V as an f -orthogonal direct sum of
linear subspaces. In order to improve this decomposition we introduce an ade-
quate equivalence relation on the above family of linear subspaces, which allows
us to get our first main result asserting that V decomposes as an f -orthogonal di-
rect sum of strongly f -invariant linear subspaces. In Section three it is discussed
the relation among the previous decompositions of V given by different choices
of bases of V. It is shown that if two basis B and B′ of V belong to the same orbit
under an action of a certain subgroup of GL(V) on the set of all of the basis of V,
then they give rise to isomorphic decompositions of V. In Section four we prove
that any of the linear subspaces in the decompositions of V given in Section two
is f -simple if and only if its annihilator is zero and it admits an i-division basis.
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Finally, in Section five an application of the previous results to the the structure
theory of arbitrary n-ary algebras is provided.

2.Development of the techniques. First decomposition theorem
We begin by noting that throughout the paper all of the linear spaces V consid-

ered are of arbitrary dimension and over an arbitrary base field F. Hereinafter, V
is a linear space and f : V× · · · ×V→ V an n-linear map on V, n ≥ 2. We start
recalling some notions concerning V and f .

Definition 2.1. Two linear subspaces V1 and V2 of V are called f -orthogonal if

f(V, . . . , V (i)
1 , . . . , V

(j)
2 , . . . ,V) = 0,

for all i, j ∈ {1, . . . , n}, i 6= j, where the notations V (i)
1 and V (j)

2 mean that V1

and V2 occupy the i-th and j-th entries of f , respectively.
It is also said that a decomposition of V as a direct sum of linear subspaces

V =
⊕
j∈J

Vj

is f -orthogonal if Vj and Vk are f -orthogonal for any j, k ∈ J with j 6= k.

Definition 2.2. A linear subspaceW of V is called f -invariant if f(W, . . . ,W ) ⊂
W. The linear space W is called strongly f -invariant if

f(V, . . . ,W (i), . . . ,V) ⊂ W,

for all i ∈ {1, . . . , n}. The linear space V will be called f -simple if f(V, . . . ,V) 6=
0 and its only strongly f -invariant subspaces are {0} and V.

Definition 2.3. The annihilator of f is defined as the set

Ann(f) = {v ∈ V : f(V, . . . , v(i), . . . ,V) = 0, for all i ∈ {1, . . . , n}}.

Let us fix a basis B = {ei}i∈I of V. For each ei ∈ B, we introduce a symbol
ei /∈ B and the following set

B := {ei : ei ∈ B}.
We will also write (ei) := ei ∈ B, V∗ := V \ {0} and P(V∗) the power set of V∗.

We define the n-linear mapping

F : P(V∗)×
(
(B∪̇B)× · · · × (B∪̇B)

)
→ P(V∗) (1)

as
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(i) F (∅,B∪̇B, . . . ,B∪̇B) = ∅.
(ii) For any ∅ 6= U ∈ P(V∗) and ξi ∈ B, i = 1, . . . , n− 1,

F (U, ξ1, . . . , ξn−1) =


⋃

k ∈ {1, . . . , n}
σ ∈ Sn−1

{f(ξσ(1), . . . , u
(k), . . . , ξσ(n−1)) : u ∈ U}

 \ {0}.

(iii) For any ∅ 6= U ∈ P(V∗) and ξi ∈ B, i = 1, . . . , n− 1,

F (U, ξ1, . . . , ξn−1) =


⋃

k ∈ {1, . . . , n}
σ ∈ Sn−1

{u ∈ V : f(ξσ(1), . . . , u
(k), . . . , ξσ(n−1)) ∈ U}

 \ {0}.

(iv) F (U, ξ1, . . . , ξn−1) = ∅, if there are i, j ∈ {1, . . . , n− 1}, i 6= j, such that
ξi ∈ B, ξj ∈ B.

Remark 2.4. It is clear that

F (U, ξσ(1), . . . , ξσ(n−1)) = F (U, ξ1, . . . , ξn−1),

and
F (U, ξσ(1), . . . , ξσ(n−1)) = F (U, ξ1, . . . , ξn−1),

for all ξ1, . . . , ξn−1 ∈ B, ξ1, . . . , ξn−1 ∈ B, σ ∈ Sn−1.

Lemma 2.5. Concerning the mapping F previously defined, we have
1. For any v ∈ V∗ and ξi ∈ B i = 1, . . . , n− 1,
w ∈ F ({v}, ξ1, . . . , ξn−1) if and only if v ∈ F ({w}, ξ1, . . . , ξn−1).

2. For any U ∈ P(V∗) and ξi ∈ B∪̇B, i = 1, . . . , n− 1,
v ∈ F (U, ξ1, . . . , ξn−1) if and only if F ({v}, ξ1, . . . , ξn−1) ∩ U 6= ∅.

Proof : 1. Let us start admitting that w ∈ F ({v}, ξ1, . . . , ξn−1), being v ∈ V∗ and
ξi ∈ B, i = 1, . . . , n− 1. This means that

w = f(ξσ(1), . . . , v
(k), . . . , ξσ(n−1)),

for some k ∈ {1, . . . , n− 1} and σ ∈ Sn−1, and thus

v ∈ F ({w}, ξσ(1), . . . , ξσ(n−1)).

According to the previous remark, we have:

v ∈ F ({w}, ξ1, . . . , ξn−1).

The reciprocal result can be proved analogously.
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2. Suppose that U ∈ P(V∗) and ξi ∈ B∪̇B, i = 1, . . . , n− 1. Let us first admit
that v ∈ F (U, ξ1, . . . , ξn−1). Then v ∈ F ({w}, ξ1, . . . , ξn−1) for some w ∈ U . By
item 1., this is equivalent to w ∈ F ({v}, ξ1, . . . , ξn−1) and thus

w ∈ F ({v}, ξ1, . . . , ξn−1) ∩ U 6= ∅.

The reciprocal assertion can be proved in a similar way.

Definition 2.6. Let ei, ej ∈ B. We say that ei is connected to ej if either,
(i) ei = ej or

(ii) there exists an ordered list (X1, X2, . . . , Xm), where Xi = (ai1, . . . , ain−1)
such that aik ∈ B∪̇B, i ∈ {1, . . . ,m}, k ∈ {1, . . . , n− 1}, satisfying:

1. F ({ei}, X1) 6= ∅,
F (F ({ei}, X1), X2) 6= ∅,
...
F (. . . (F (F ({ei}, X1), X2), . . . , Xm−1) 6= ∅.

2. ej ∈ F (F (. . . (F (F ({ei}, X1), X2), . . . , Xm−1), Xm).

In this case we say that (X1, X2, . . . , Xm) is a connection from ei to ej.

Lemma 2.7. Let (X1, X2, . . . , Xm−1, Xm) be any connection from some ei to some
ej, where ei, ej ∈ B with ei 6= ej. Then the ordered list (Xm, Xm−1, . . . , X2, X1)
is a connection from ej to ei.

Proof : The proof will be done by induction on m. In the case m = 1 we have that
ej ∈ F ({ei}, X1) = F ({ei}, a11, . . . , a1n−1) implying that

ei ∈ F ({ej}, a11, . . . , a1n−1) = F ({ej}, X1),

by 1. of Lemma 2.5. Thus (X1) is a connection from ej to ei.

Admit now that the assertion holds for any connection with m ≥ 1
elements, and let us show this assertion also holds for any connection
(X1, X2, . . . , Xm, Xm+1) with m + 1 ((n − 1)-tuples) elements. So, consider a
connection (X1, X2, . . . , Xm, Xm+1) from ei to ej. Let us begin by setting

U := F (F (. . . (F (F ({ei}, X1), X2), . . . , Xm−1), Xm).

Applying 2. of Definition 2.6 we have that ej ∈ F (U,Xm+1). Then, by 2. of
Lemma 2.5, F ({ej}, Xm+1) ∩ U 6= ∅. Admit that

x ∈ F ({ej}, Xm+1) ∩ U 6= ∅. (2)
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Since x ∈ U we have that (X1, X2, . . . , Xm−1, Xm) is a connection from ei to x
with m elements. Henceforth (Xm, Xm−1, . . . , X2, X1) connects x to ei. From
here, and by Equation (2), we obtain

ei ∈ F (F (. . . (F (F ({ej}, Xm+1), Xm), . . . , X2), X1),

which means that
(Xm+1, Xm, . . . , X2, X1)

connects ej to ei.

Proposition 2.8. The relation ∼ in B, defined by ei ∼ ej if and only if ei is
connected to ej, is an equivalence relation.

Proof : The relation∼ is clearly reflexive (see (i) of Definition 2.6) and symmetric
(see Lemma 2.7). Hence let us verify its transitivity.

Admit that ei, ej, ek ∈ B are pairwise different such that ei ∼ ej and ej ∼
ek (the cases when two among those elements are equal are tivial). Then there
are connections (X1, . . . , Xm) and (Y1, . . . , Yp) from ei to ej and from ej to ek,
respectively. Therefore, (X1, . . . , Xm, Y1, . . . , Yp) is a connection from ei to ek,
showing the transitivity of ∼ and the result is proved.

Henceforth, by the above defined equivalence relation, we introduce the quo-
tient set

B/ ∼:= {[ei] : ei ∈ B},
where [ei] stands for the set of elements in B which are connected to ei.

For each [ei] ∈ B/ ∼ we may introduce the linear subspace

V[ei] :=
⊕
ej∈[ei]

Fej,

allowing us to write
V =

⊕
[ei]∈B/∼

V[ei]. (3)

Next we show that this is a decomposition of V in pairwise f -orthogonal sub-
spaces.

Lemma 2.9. For any [ei], [ej] ∈ B/ ∼ with [ei] 6= [ej], we have that

f(V, . . . , V (k1)
[ei]

, . . . , V
(k2)

[ej ]
, . . . ,V) = 0, (4)

for all k1, k2 ∈ {1, . . . , n}, k1 6= k2.
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Proof : In order to prove (4) it is sufficient to show that

f(ξσ(1), . . . , V
(k1)

[ei]
, . . . , V

(k2)
[ej ]

, . . . , ξσ(n−2)) = 0,

for any permutation σ ∈ Sn−2, ξ1, . . . , ξn−2 ∈ B. Admit the opposite assertion.
Then there are ek ∈ [ei], ep ∈ [ej] and v ∈ V∗ such that

v = f(ξσ(1), . . . , e
(k1)
k , . . . , e(k2)

p , . . . , ξσ(n−2)), (5)

for some σ ∈ Sn−2. By definition of F , from (5) we may deduce two facts:

(i) v ∈ F ({ek}, ep, ξ1, . . . , ξn−2)

(ii) v ∈ F ({ep}, ek, ξ1, . . . , ξn−2)

From (ii) and 1. of Lemma 2.5, we have

(iii) ep ∈ F ({v}, ek, ξ1, . . . , ξn−2)

From (i) and (iii), we observe that (X1, X2), where

X1 = (ep, ξ1, . . . , ξn−2) , X2 =
(
ek, ξ1, . . . , ξn−2

)
is a connection from ek to ep. Thus, [ei] = [ek] = [ep] = [ej], causing a contradic-
tion.

As consequence of Lemma 2.9 and Equation (3) we have.

Proposition 2.10. Given V and f as initially defined, V decomposes as the f -
orthogonal direct sum of linear subspaces

V =
⊕

[ei]∈B/∼

V[ei].

The family of linear subspaces of V formed by all of the V[ei], [ei] ∈ B/ ∼,
which gives rise to the decomposition in Proposition 2.10, is not good enough for
our purposes. So we need to introduce a new equivalence relation on this family,
as follows.

We begin by observing that the above mentioned decomposition of V allows us
to consider, for any V[ei], the projection map

ΠV[ei]
: V→ V[ei].

Also, let us consider these family of, nonzero, linear subspaces of V,

F := {V[ei] : [ei] ∈ B/ ∼}.
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Definition 2.11. We will say that V[ei] ≈ V[ej ] if and only if either V[ei] = V[ej ] or
there exists a subset

{[ξ1], [ξ2], . . . , [ξm]} ⊂ B/ ∼,
such that

(i) [ξ1] = [ei] and [ξm] = [ej ].
(ii)∑

1≤k1<k2≤n

[
ΠV[ξ1]

(f(V, . . . , V (k1)
[ξ2]

, . . . , V
(k2)
[ξ2]

, . . . ,V)) + ΠV[ξ2]
(f(V, . . . , V (k1)

[ξ1]
, . . . , V

(k2)
[ξ1]

, . . . ,V))
]
6= 0.

∑
1≤k1<k2≤n

[
ΠV[ξ2]

(f(V, . . . , V (k1)
[ξ3]

, . . . , V
(k2)
[ξ3]

, . . . ,V)) + ΠV[ξ3]
(f(V, . . . , V (k1)

[ξ2]
, . . . , V

(k2)
[ξ2]

, . . . ,V))
]
6= 0.

...∑
1≤k1<k2≤n

[
ΠV[ξm−1]

(f(V, . . . , V (k1)
[ξm] , . . . , V

(k2)
[ξm] , . . . ,V)) + ΠV[ξm]

(f(V, . . . , V (k1)
[ξm−1]

, . . . , V
(k2)
[ξm−1]

, . . . ,V))
]
6= 0.

Clearly ≈ is an equivalence relation on F and so we can introduce the quotient
set

F/ ≈:= {[V[ei]] : V[ei] ∈ F}.

For any [V[ei]] ∈ F/ ≈, we denote by
︷︸︸︷
V[ei] the linear subspace of V︷︸︸︷

V[ei] :=
⊕

V[ej ]∈[V[ei]]

V[ej ].

By Equation (3) and the definition of ≈, we clearly have

V =
⊕

[V[ei]]∈F/≈

︷︸︸︷
V[ei] . (6)

Also, we can assert by Lemma 2.9 that

f(V, . . . ,
︷︸︸︷
V[ei]

(k1)

, . . . ,
︷︸︸︷
V[ej ]

(k2)

. . . ,V) = 0

when [V[ei]] 6= [V[ej ]] in F/ ≈, for all k1, k2 ∈ {1, . . . , n}, k1 6= k2.

Proposition 2.12. For any [V[ei]] ∈ F/ ≈,
︷︸︸︷
V[ei] is a strongly f -invariant linear

subspace of V.
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Proof : We begin by proving that

f(V, . . . ,
︷︸︸︷
V[ei]

(k1)

, . . . ,
︷︸︸︷
V[ei]

(k2)

, . . . ,V) ⊂
︷︸︸︷
V[ei] . (7)

Indeed, in case some 0 6= w ∈ f(V, . . . ,
︷︸︸︷
V[ei]

(k1)

, . . . ,
︷︸︸︷
V[ei]

(k2)

, . . . ,V), decompo-
sition (6) allows us to write

w = w1 + w2 + · · ·+ wm

for some 0 6= wj ∈
︷︸︸︷
V[ξj ] for j = 1, . . . ,m and ξj ∈ B. Observe now that

Lemma 2.9 gives us that there exist nonzero x, y ∈ V[ek] with V[ek] ⊂
︷︸︸︷
V[ei] and

z1, . . . zn−2 ∈ V, such that

0 6= w = f(z1, . . . , x
(k1), . . . , y(k2), . . . , zn−2) (8)

Let us consider 0 6= w1 ∈
︷︸︸︷
V[ξ1] , being so w1 ∈ V[er] for some V[er] ⊂

︷︸︸︷
V[ξ1] .

By Equation (8) we have ΠV[er ](f(z1, . . . , x
(k1), . . . , y(k2), . . . , zn−2)) = w1 6= 0.

That is
ΠV[er ](f(V, . . . , V (k1)

[ek] , . . . , V
(k2)

[ek] , . . . ,V)) 6= 0

and we get that the set {[ek], [er]} gives us V[ek] ≈ V[er]. Hence

V[ei] ≈ V[ek] ≈ V[er] ≈ V[ξ1]

and we conclude V[ξ1] ⊂
︷︸︸︷
V[ei] . From here w1 ∈

︷︸︸︷
V[ei] . In a similar way we get that

any wj ∈
︷︸︸︷
V[ei] for j = 2, ...,m and so w ∈

︷︸︸︷
V[ei] . Consequently, the inclusion (7)

holds, as desired.

Finally, by decomposition (6), Lemma 2.9 and Equation (7), we have the fol-
lowing inclusion

n∑
j=1

f(V, . . . ,
︷︸︸︷
V[ei]

(j)

, . . . ,V) ⊂
︷︸︸︷
V[ei] .

Theorem 2.13. Let V be a linear space equipped with an n-linear map f : V ×
. . .×V→ V. For any basis B = {ei : i ∈ I} of V we have that V decomposes as
the f -orthogonal direct sum of strongly f -invariant linear subspaces

V =
⊕

[V[ei]]∈F/≈

︷︸︸︷
V[ei] .
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Proof : Consider the decomposition, as direct sum of linear subspaces

V =
⊕

[V[ei]]∈F/≈

︷︸︸︷
V[ei] ,

given by Equation (6). Now Lemma 2.9 shows that this decomposition is f -
orthogonal and Proposition 2.12 that all of the linear subspaces

︷︸︸︷
V[ei] are strongly

f -invariant.

3.On the relation among the decompositions given by different
choices of bases
Observe that the decomposition of V as an f -orthogonal direct sum of strongly

f -invariant linear subspaces given by Theorem 2.13 is related with the initial
choice of the basis. Indeed, as it was exemplified in [6] (for n = 2), two different
bases of V may lead to two different of those decompositions of V. Let V be the
R-linear space V := R4 equipped with the n-linear map f : R4 × · · · × R4 → R4

defined as
f(x1, . . . , xn)) =

(x11x21, x11x21, 0, 0),

where
xi = (xi1, . . . , xi4)

for each i ∈ {1, . . . , n}
Let us consider the following two bases of R4:

B := {e1, . . . , e4},
that is, the canonical basis, and

B′ := {(1, 0, 1, 0), (1, 0,−1, 0), e2, e4}.
Then it is possible to observe that the decomposition of V = R4, given in The-

orem 2.13 with respect to the basis B is given by

R4 = (Re1 ⊕ Re2)
⊕

(Re3)
⊕

(Re4).

However, the same kind of decomposition with respect to B′ is given by

R4 = (R(1, 0, 1, 0)⊕ R(1, 0,−1, 0)⊕ Re2)
⊕

(Re4).

Thus, it will be an interesting task to find a sufficient condition for two differ-
ent decompositions of a linear space V, induced by an n-linear map f and two
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different bases of V, being isomorphic. The following notion will help us in this
purpose.

Definition 3.1. Let V be a linear space equipped with an n-linear map f : V ×
· · · × V→ V and consider

Γ := V =
⊕
i∈I

Vi and Γ′ := V =
⊕
j∈J

Wj

two decompositions of V as an f -orthogonal direct sum of strongly f -invariant
linear subspaces. It is said that Γ and Γ′ are isomorphic if there exists a linear
isomorphism g : V→ V satisfying

f(g(v1), . . . g(vn)) = g(f(v1, . . . , vn))

for any v1, . . . , vn ∈ V, and a bijection σ : I → J such that

g(Vi) = Wσ(i)

for any i ∈ I .

Lemma 3.2. Let V be a linear space equipped with an n-linear map f : V×· · ·×
V→ V and consider B = {ei : i ∈ I} a fixed basis of V, and let g : V→ V be a
linear isomorphism satisfying

f (g (ξ1) , . . . , g (ξn)) = g (f (ξ1, . . . , ξn))

for any ξi ∈ B. Then for any U ∈ P(V∗) and ξk ∈ B, k ∈ I , the following
assertions hold.

(i) g (F (U, ξ1, . . . , ξn−1)) = F (g(U), g (ξ1) , . . . , g (ξn−1)),
(ii) g

(
F
(
U, ξ1, . . . , ξn−1

))
= F

(
g(U), g (ξ1), . . . , g (ξn−1)

)
,

where F is the mapping defined by Equation (1).

Proof : (i) We have

g (F (U, ξ1, . . . , ξn−1)) =


⋃

k ∈ {1, . . . , n}
σ ∈ Sn−1

{
g
(
f(ξσ(1), . . . , u

(k), . . . , ξσ(n−1))
)

: u ∈ U
}
 \ {0}

=


⋃

k ∈ {1, . . . , n}
σ ∈ Sn−1

{
f
(
g
(
ξσ(1)

)
, . . . , g(u)(k), . . . , g

(
ξσ(n−1)

))
: u ∈ U

}
 \ {0}

= F (g(U), g (ξ1) , . . . , g (ξn−1)) .
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(ii) In this case we have

g
(
F
(
U, ξ1, . . . , ξn−1

))
=


⋃

k ∈ {1, . . . , n}
σ ∈ Sn−1

{
u ∈ V : f

(
ξσ(1), . . . , (g

−1(u))(k), . . . , ξσ(n−1)

)
∈ U

}
 \ {0}

=


⋃

k ∈ {1, . . . , n}
σ ∈ Sn−1

{
u ∈ V : f

(
g
(
ξσ(1)

)
, . . . , u(k), . . . , g

(
ξσ(n−1)

))
∈ g(U)

}
 \ {0}

= F
(
g(U), g (ξ1), . . . , g (ξn−1)

)
.

Observe that in both cases we took into account Remark 2.4.

Proposition 3.3. Let V be a linear space equipped with an n-linear map f :
V × · · · × V → V and consider B = {ei : i ∈ I} a fixed a basis of V. Further,
admit that g : V→ V is a linear isomorphism satisfying

f (g (ξ1) , . . . , g (ξn)) = g (f (ξ1, . . . , ξn))

for any ξi ∈ B. Then the decompositions

Γ := V =
⊕

[V[ei]]∈F/≈

︷︸︸︷
V[ei] and Γ′ := V =

⊕
[V[g(ei)]]∈F

′/≈

︷ ︸︸ ︷
V[g(ei)],

corresponding to the choices of B and B′ := {g(ei) : i ∈ I} respectively in
Theorem 2.13, are isomorphic.

Proof : Firstly, let us observe that, according to the previous result, we may state
that if ei is connected to some ej, for some i, j ∈ I , ei, ej ∈ B through a con-
nection (X1, X2, . . . , Xm), where Xi = (ai1, . . . , ain−1) such that aik ∈ B∪̇B,
i ∈ {1, . . . ,m}, k ∈ {1, . . . , n− 1}, then g(ei) is connected to g(ej) through the
connection (g(X1), g(X2), ..., g(Xn)), where g(Xi) := (g(ai1), . . . , g(ain−1)) and
g(aik) ∈ B′ ∪B′, (where g(ek) := g(ek)). Thus, it is possible to conclude that

g(V[ei]) = V[g(ei)]

for any [ei] ∈ B/ ∼. Further, it is also clear that the mapping µ such that

µ(V[ei]) = V[g(ei)]

defines a bijection between the families F := {V[ei] : [ei] ∈ B/ ∼} and F′ :=
{V[g(ei)] : [g(ei)] ∈ B′/ ∼}.



12 A. J. CALDERÓN, I. KAYGORODOV AND P. SARAIVA

Since Lemma 3.2 also gives us that
g
(

ΠV[ei]
(f(V, . . . , V (k1)

[ej ]
, . . . , V

(k2)
[ej ]

, . . . ,V)
)

= ΠV[g(ei)]

(
f(V, . . . , V (k1)

[g(ej)]
, . . . , V

(k2)
[g(ej)]

, . . . ,V)
)

for i, j ∈ I and k1, k2 ∈ {1, . . . , n}, with k1 < k2. This allows to deduce that

g(
︷︸︸︷
V[ei] ) =

︷ ︸︸ ︷
V[g(ei)] (9)

for any [V[ei]] ∈ F/ ≈, which induces a second bijection, σ, now between the
families F/ ≈ and F′/ ≈ given by

σ([V[ei]]) = [V[g(ei)]]. (10)
From Equations (9) and (10) we conclude that the decompositions Γ and Γ′ are

isomorphic.
Being f an n-linear map on V, the following set

Of (V) = {g ∈ GL(V) : f(g(v1), . . . , g(vn)) = g(f(v1, . . . , vn)) for any v1, . . . , vn ∈ V},

(where GL(V) denotes the group of all of the linear isomorphisms of V), is known
as the orbit of V (associated to f ). We have that Of(V) is a subgroup of GL(V).
If we also denote by B the set of all of the bases of V we get the action

Of(V)×B→ B (11)
given by (g, {ei}i∈I) = {g(ei)}i∈I . The previous result states that if two bases
B and B′ of V belong to the same orbit under the action given by Equation (11),
then they induce two isomorphic decompositions of V. Finally, this can be stated
as follows.

Corollary 3.4. Let V be a linear space equipped with an n-linear map f : V ×
· · · × V → V and fix two bases B = {ei : i ∈ I} and B′ = {ui : i ∈ I} of
V. Suppose there exists a bijection µ : I → I such that the linear isomorphism
g : V→ V determined by g(ei) := uµ(i) for any i ∈ I , satisfies

f
(
g(v1), . . . , u

(k1)
µ(i), . . . , u

(k2)
µ(j), . . . , g(vn−2)

)
= g(f(v1, . . . , e

(k1)
i , . . . , e

(k2)
j , . . . , vn−2))

for any i, j ∈ I , k1, k2 ∈ {1, . . . , n}, with k1 < k2. Then the decompositions

Γ := V =
⊕

[V[ei]]∈F/≈

︷︸︸︷
V[ei] and Γ′ := V =

⊕
[V[ui]]∈F

′/≈

︷︸︸︷
V[ui] ,

corresponding to the choices of B and B′ respectively in Theorem 2.13, are iso-
morphic.
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4.A characterization of the f -simplicity of the components
Our aim in this section is to establish a characterization theorem on the f -

simplicity of the linear subspaces
︷︸︸︷
V[ei] , which appear in the decomposition of

V given in Theorem 2.13.

Let us begin by recalling several concepts from the theory of algebras.

Let A be an algebra equipped with an n-ary multiplication [., . . . , .] : A×· · ·×
A→ A and B a basis of A. The basis B is said to be an i-division basis if for any
ei ∈ B and b1, . . . , bn−1 ∈ A such that

[b1, . . . , e
(k)
i , . . . , bn−1] = w 6= 0

for some k ∈ {1, . . . , n}we have that ei, b1, . . . , bn−1 ∈ I(w), where I(w) denotes
the ideal of A generated by w.

The above notion can be generalized to the case of a linear space V equipped
with an n-linear map f : V× · · · × V → V. We refer to the minimal strongly f -
invariant subspace of V that contains v as the strongly f -invariant subspace of V
generated by v, and will be denoted by I(v). Observe that the sum of two strongly
f -invariant subspaces of V is also a strongly f -invariant subspace, and that all of
V is a strongly f -invariant subspace.

Definition 4.1. Let V be a linear space, B = {ei}i∈I a fixed basis of V and f :
V × · · · × V → V an n-linear map. It is said that B is an i-division basis of V
respect to f , if for any ei ∈ B and b1, . . . , bn−1 ∈ V such that

f
(
b1, . . . , e

(k)
i , . . . , bn−1

)
= w 6= 0

for some k ∈ {1, . . . , n}we have that ei, b1, . . . , bn−1 ∈ I(w), where I(w) denotes
the strongly f -invariant subspace of V generated by w.

Let us return to the decomposition of the linear space V, given an n-linear map
f : V× · · · × V→ V and fixed a basis B,

V =
⊕

[V[ei]]∈F/≈

︷︸︸︷
V[ei]

as deduced by Theorem 2.13. For any
︷︸︸︷
V[ei] we can restrict f to the n-linear map

f ′ :
︷︸︸︷
V[ei] × · · · ×

︷︸︸︷
V[ei] →

︷︸︸︷
V[ei]

and consider on
︷︸︸︷
V[ei] the basis B′ := B ∩

︷︸︸︷
V[ei] . Then we can assert:
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Theorem 4.2. The linear space
︷︸︸︷
V[ei] is f ′-simple if and only if Ann(f ′) = 0 and

B′ is an i-division basis of
︷︸︸︷
V[ei] with respect to f ′.

Proof : Suppose that
︷︸︸︷
V[ei] is f ′-simple. Observe firstly that Ann(f ′) is a strongly

f ′-invariant subspace of
︷︸︸︷
V[ei] , and thus Ann(f ′) = 0. Additionally, if we consider

some ej ∈ B′ and b1, . . . , bn−1 ∈
︷︸︸︷
V[ei] such that

f ′
(
b1, . . . , e

(k)
j , . . . , bn−1

)
= w 6= 0

for some k ∈ {1, . . . , n}, since
︷︸︸︷
V[ei] is f ′-simple, we have

I(w) =
︷︸︸︷
V[ei]

and so ej, b1, . . . , bn−1 ∈ I(w). Thus, the basis B′ is an i-division basis of
︷︸︸︷
V[ei]

with respect to f ′.

Conversely, let us suppose that Ann(f ′) = 0 and that the set B′ is an i-division

basis of
︷︸︸︷
V[ei] with respect to f ′. Consider any nonzero strongly f ′-invariant linear

subspace W of
︷︸︸︷
V[ei] and take some nonzero w ∈ W . Since Ann(f ′) = 0, there

are nonzero elements
ξ1, . . . , ξn−1 ∈ B′

such that
0 6= f

(
ξ1, . . . , w

(j), . . . , ξn−1

)
∈ W

for some j ∈ {1, . . . , n}. Since B′ is an i-division basis, we get

ξk ∈ W, (12)

for all k ∈ {1, . . . , n− 1}.
Let us now prove that V[ξk] ⊂ W for each k ∈ {1, . . . , n − 1}. To do so, we

have to show that for any νj ∈ [ξk] such that νj 6= ξk, we must conclude that
νj ∈ W . It is clear that ξk is connected to any νj ∈ [ξk], and thus there is a
connection (X1, X2, ..., Xm), where Xi = (ai1, . . . , ain−1) such that ail ∈ B∪̇B,
i ∈ {1, . . . ,m}, l ∈ {1, . . . , n− 1}, from ξk to νj.

Recall that we are dealing with an f -orthogonal and strongly f -invariant (read
Theorem 2.13) decomposition of V. Thus, we may claim that the elements ail
satisfy

ail ∈ B′ ∪B′, (13)
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and that the whole connection process from ξk to νj can be deduced in
︷︸︸︷
V[ei] .

We have that

F ({ξk}, X1) = F ({ξk}, a11, . . . , a1n−1) 6= ∅.

There are two cases to discuss.
First case: a1l ∈ B′, l = 1, . . . , n− 1 and so there exists

0 6= x = f
(
a11, . . . , ξ

(r)
k , . . . , a1n−1

)
,

for some r ∈ {1, . . . , n}.
Second case: a1l ∈ B′, l = 1, . . . , n − 1 and so there exists 0 6= x ∈

︷︸︸︷
V[ei] such

that
f
(
a11, . . . , x

(r), . . . , a1n−1

)
= ξk,

for some r ∈ {1, . . . , n}.
Consider the first case. As a consequence of the inclusion (12), we obtain x ∈

W.
Consider now the second case. By the i-division property of the basis B′ and

due to inclusion (12) we conclude that x ∈ I(ξk) ⊂ W .
So, in both cases we have shown that

F ({ξk}, X1) ⊂ W. (14)

By the connection definition, we have

F (F ({ξk}, X1), X2) 6= ∅,

where F ({ξk}, a1) ⊂ W as seen in (14).
Given an arbitrary t ∈ F (F ({ξk}, X1), X2), as before, we have two cases to

distinguish. In the first one a2l ∈ B′, l = 1, . . . , n − 1 and so there exists z ∈
F ({ξk}, X1) such that

0 6= z = f
(
a21, . . . , ξ

(r′)
k , . . . , a2n−1

)
,

for some r′ ∈ {1, . . . , n}.
In the second one a2l ∈ B′, and then there exists z ∈ F ({ξk}, X1) such that
0 6= f(a21, . . . , t

(r′), . . . , a2n−1) = z .

In the first case the inclusion (14) shows that t ∈ W. In the second case the
i-division property of B′ gives us that t ∈ I(z) ⊂ W .
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In both cases, we have

F (F ({ξk}, X1), X2) ⊂ W.

Iterating this argument on the connection (13), we obtain that

νj ∈ F (F (. . . (F (F ({ξk}, X1), X2), . . . , Xm−1), Xm) ⊂ W

and so we can assert that
V[ξk] ⊂ W. (15)

To finish the proof, we must prove that all V[νj ] such that V[νj ] ≈ V[ξk] verifies
V[νj ] ⊂ W.

Under the above assumption, there exists a subset

{[ξk], [ν2], ..., [νj]} ⊂ B/ ∼ (16)
satisfying the conditions in Definition 2.11. From here,∑

1≤i<i′≤n

[
ΠV[ξk]

(f(V, . . . , V (i)
[ν2]
, . . . , V

(i′)
[ν2]

, . . . ,V)) + ΠV[ν2]
(f(V, . . . , V (i)

[ξk]
, . . . , V

(i′)
[ξk]

, . . . ,V))
]
6= 0.

Therefore, there are i, i′ ∈ {1, . . . , n} with i < i′, such that

ΠV[ν2]
(f(V, . . . , V (i)

[ξk], . . . , V
(i′)

[ξk] , . . . ,V)) 6= 0

or
ΠV[ξk]

(f(V, . . . , V (i)
[ν2], . . . , V

(i′)
[ν2] , . . . ,V)) 6= 0.

Consider the first case, in which

ΠV[ν2]
(f(V, . . . , V (i)

[ξk], . . . , V
(i′)

[ξk] , . . . ,V)) 6= 0.

Then there exist e′k, e
′′
k ∈ [ξk] and b1, . . . , bn−2 ∈ V such that

0 6= f(b1, . . . , e
′
k

(i)
, . . . , e′′k

(i′)
, . . . , bn−2) = x2 + c

where 0 6= x2 ∈ V[ν2] and c ∈
⊕

[νj ] 6=[ν2]

V[νj ].

Since Ann(f ′) = 0, and taking into account Lemma 2.9, there exist
e′21, . . . , e

′
2n−1 ∈ [ν2] such that

0 6= f(e′21, . . . , x2
(r), . . . , e′2n−1) = q

for some r ∈ {1, . . . , n}. By Lemma 2.9 and (15) we have that

0 6= f(e′21, . . . , f(b1, . . . , e
′
k

(i)
, . . . , e′′k

(i′)
, . . . , bn−2)

(r)
, . . . , e′2n−1) =
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f(e′21, . . . , (x2 + c)(r), . . . , e′2n−1) = f(e′21, . . . , x2
(r), . . . , e′2n−1) = q ∈ W.

From here, by the i-division property of B′ we conclude that

e′21, . . . , e
′
2n−1 ∈ I(q) ⊂ W.

Concerning the second case, recall that we have

ΠV[ξk]
(f(V, . . . , V (i)

[ν2], . . . , V
(i′)

[ν2] , . . . ,V)) 6= 0.

Similarly to the first case, there exist e′2, e
′′
2 ∈ [ν2] and b1, . . . , bn−2 ∈ V such that

0 6= f(b1, . . . , e
′
2
(i)
, . . . , e′′2

(i′)
, . . . , bn−2) = xk + d

where 0 6= xk ∈ V[ξk] and d ∈
⊕

[νj ]6=[ξk]

V[νj ]. Again, since Ann(f ′) = 0, there exist

e′k1, . . . , e
′
kn−1 ∈ [ξk] such that

0 6= f(e′k1, . . . , xk
(r), . . . , e′kn−1) = s

for some r ∈ {1, . . . , n}.
By Lemma 2.9 and inclusion (15) we have that

0 6= f(e′k1, . . . , f(b1, . . . , e
′
2
(i)
, . . . , e′′2

(i′)
, . . . , bn−2)

(r)
, . . . , e′kn−1) =

f(e′k1, . . . , (xk + d)(r), . . . , e′kn−1) = f(e′k1, . . . , xk
(r), . . . , e′kn−1) = s ∈ W.

From here, by the i-division property of B′ we conclude that

e′21, . . . , e
′
2n−1 ∈ I(q) ⊂ W.

Applying the i-division property of B′ this leads to

f(b1, . . . , e
′
2
(i)
, . . . , e′′2

(i′)
, . . . , bn−2) ∈ I(s) ⊂ W.

A second application of the i-division property of B′ allows us to write e′2 ∈ W .

At this point, we have shown in both cases that there are elements in [ν2] be-
longing to W . Hence by using the same previous argument as done with ξk, (see
inclusions (12) and (15)), we get that

V[ν2] ⊂ W.
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It is clear that this reasoning can be repeated for all other elements of the set
(16). Henceforth

V[νj ] ⊂ W

and consequently, since ︷︸︸︷
V[ei] =

︷︸︸︷
V[ξk] :=

⊕
V[ej ]∈[V[ξk]]

V[ej ]

we proved that ︷︸︸︷
V[ei] = W,

that is
︷︸︸︷
V[ei] is f -simple.

Remark 4.3. The above result can be restated as follows.
The linear space

︷︸︸︷
V[ei] is f ′-simple if and only if Ann(f ′) = 0 and every non-zero

element in
︷︸︸︷
V[ei] is an i-division element with respect to f ′.

5.Application to the structure theory of arbitrary n-ary algebras
In this section we will apply the results obtained in the previous sections to the

structure theory of arbitrary n-ary algebras.

We will denote by A an arbitrary n-ary algebra in the sense that there are no
restrictions on the dimension of the algebra nor on the base field F, and that no
specific identity on the product (n-Lie (Filippov) [9], n-ary Jordan [10], n-ary
Malcev [11], etc.) is supposed. That is, A is just a linear space over F endowed
with a n-linear map

[·, . . . , ·] : A× . . .× A→ A

(x1, . . . , xn) 7→ [x1, . . . , xn]

called the product of A.

We recall that given an n-ary algebra (A, [·, . . . , ·]), a subalgebra of A is a linear
subspace B closed for the product. That is, such that [B, . . . ,B] ⊂ B. A linear
subspace I of A is called an ideal of A if [A, . . . ,I(r), . . . ,A] ⊂ I, for all r ∈
{1, . . . , n}. An n-ary algebra A is said to be simple if its product is nonzero and
its only ideals are {0} and A. We finally recall that the annihilator of the algebra
(A, [., . . . , .]) is defined as the linear subspace

Ann(A) = {x ∈ A : [A, . . . , x(k), . . . ,A] = 0, for all k ∈ {1, . . . , n} }.
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If we fix any basis B = {ei}i∈I of A, and denote the product [., . . . , .] of A as f ,
Theorem 2.13 applies to get that A decomposes as the f -orthogonal direct sum of
strongly f -invariant linear subspaces

A =
⊕

[A[ei]
]∈F/≈

︷︸︸︷
A[ei] .

Now observe that the f -orthogonality of the linear subspaces means that, when
[A[ei]] 6= [A[ej ]], we have

[A, . . . ,

(k1)︷︸︸︷
A[ei] , . . . ,

(k2)︷︸︸︷
A[ej ], . . . ,A] = 0,

for all k1, k2 ∈ {1, . . . , n}, k1 6= k2, and that the strongly f -invariance of a linear

subspace
︷︸︸︷
A[ei] means that

︷︸︸︷
A[ei] is actually an ideal of A. From here, we can state:

Theorem 5.1. Let (A, [·, . . . , ·]) be an arbitrary algebra. Then for any basis B =
{ei : i ∈ I} of A one has the decomposition

A =
⊕

[A[ei]
]∈F/≈

︷︸︸︷
A[ei] ,

being any
︷︸︸︷
A[ei] an ideal of A. Furthermore, any pair of different ideals in this

decomposition is f -orthogonal.

In the same context, if we restrict the product [·, . . . , ·] of A to any ideal
︷︸︸︷
A[ei] ,

we get the algebra (
︷︸︸︷
A[ei] , [·, . . . , ·]). Now, by observing that the f ′-simplicity of

(
︷︸︸︷
A[ei] , [·, . . . , ·]) is equivalent to the simplicity of (

︷︸︸︷
A[ei] , [·, . . . , ·]) as an algebra,

and that Ann(f ′) = Ann(
︷︸︸︷
A[ei]), Theorem 4.2 allows us to assert the following.

Theorem 5.2. The ideal (
︷︸︸︷
A[ei] , [·, . . . , ·]) is simple if and only if Ann(

︷︸︸︷
A[ei]) = 0

and B′ := B ∩
︷︸︸︷
A[ei] is an i-division basis of

︷︸︸︷
A[ei] .



20 A. J. CALDERÓN, I. KAYGORODOV AND P. SARAIVA

References
[1] Barreiro E.; Calderón A.; Kaygorodov I.; Sánchez J.M.: n-Ary generalized Lie-type color algebras

admitting a quasi-multiplicative basis, arXiv:1801.02071
[2] Barreiro, E.; Kaygorodov, I.; Sánchez, J. M.: k-Modules over linear spaces by n-linear maps admitting

a multiplicative basis, arXiv:1707.07483
[3] Calderón A.; Navarro F.J.: Arbitrary algebras with a multiplicative basis. Linear Algebra Appl. 498

(2016), 106-116.
[4] Calderón, A.J.: Associative algebras admitting a quasi-multiplicative basis. Algebr. Represent. Theory

17 (2014), no. 6, 1889-1900.
[5] Calderón, A.J.: Lie algebras with a set grading. Linear Algebra Appl. 452 (2014), 7-20.
[6] Calderón, A.J.: Decompositions of linear spaces induced by bilinear maps, Linear Algebra Appl. DOI:

10.1016/j.laa.2017.04.029
[7] Calderón, A.J.; Navarro, F.J.; Sánchez, J.M.: n-Algebras admitting a multiplicative basis. J. Algebra

Appl. 16 (2018), 11, 1850025 (11 pages).
[8] Cao, Y.; Chen, L.Y.: On the structure of graded Leibniz triple systems. Linear Algebra Appl. 496

(2016), 496-509.
[9] Filippov, V.: n-Lie algebras, Sib. Math. J. 26 (1985), 6, 126-140.

[10] Kaygorodov, I.; Pozhidaev, A.; Saraiva, P.: On a ternary generalization of Jordan algebras,
arXiv:1709.06826

[11] Pozhidaev, A.: n-ary Mal’tsev algebras, Algebra and Logic 40 (2001), 3, 309-329.

ANTÓNIO J. CALDERÓN MARTÍN
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