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Abstract: It is proved a characterization theorem for semi-classical orthogonal
polynomials on non-uniform lattices that states the equivalence between the Pearson
equation for the weight and some systems involving the orthogonal polynomials as
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1. Introduction
Semi-classical orthogonal polynomials on non-uniform lattices (snul) are

related to a divided difference operator, say D, whose support is the so-called
q-quadratic lattice [14, 18]. Under some specifications, D is the Askey-Wilson
operator [1]. Such families of orthogonal polynomials are well-know within
the theory of discrete orthogonal polynomials, and find many applications
within a vast list of topics from Mathematical Physics (see, amongst many
others, [8, 14, 15, 16, 18]).

In the classification of lattices and corresponding divided difference oper-
ators (see [18, Sec. 2, Table 2]), the q-quadratic lattices are a generalization
of other lower complexity lattices, such as the quadratic, q-linear and linear
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lattices. Such a hierarchy of lattices is related to the well-known q-Askey
scheme [9].

The main motivation for this paper concerns some properties that char-
acterize semi-classical orthogonal polynomials on the continuous setting, the
so-called structure relations, that is, differential relations connecting two con-
secutive polynomials,

AP ′n = LnPn +MnPn−1 , (1)

or, in view of the three-term recurrence relation,

AP ′n = L̃nPn + M̃nPn+1 , (2)

with A,Ln,Mn, L̃n, M̃n polynomials of degree independent of n (the degree of
Pn). The classification of orthogonal polynomials via such a kind of equations
has a long history, see, for instance, [13]. On a more general framework, (1)–
(2) are the lowering and raising relations, deduced in the ladder operator
scheme [5]. Similar equations to (1)–(2), with the derivative replaced by
difference operators, are well-known in the literature (see, for instance, the
introduction of [10] and references therein). For the snul case, see [11, 18].

In the present paper we give a characterization of semi-classical orthogonal
polynomials on snul via difference systems that involve the polynomials as
well some related functions, the so-called functions of the second kind (see
Section 2 for more details). Combining such systems with the three-term
recurrence relation we then deduce difference equations in the matrix form,
giving some fundamental relations that we regard as the discrete analog of
the ones appearing in the ladder operator scheme [5]. Here, we would like to
put emphasis on the formula for the determinant in Corollary 2. Through
such a formula, we obtain a closed form equation for the recurrence relation
coefficients of the so-called classical families of orthogonal polynomials on
snul [7].

The remainder of the paper is organized as follows. In Section 2 we give the
definitions and state the basic results which will be used in the forthcoming
sections. In Section 3 we show the main results of the paper, Theorem 1
and Corollaries 1 and 2. The compatibility conditions are discussed in Sub-
section 3.1. In Section 4 we show the formulae for the recurrence relation
coefficients of the classical polynomials on snul.
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2. Preliminary results
We consider the divided difference operator D given as in [11, Eq.(1.1)],

with the property that D leaves a polynomial of degree n−1 when applied to
a polynomial of degree n. The operator D, defined on the space of arbitrary
functions, is given in terms of two functions y1, y2 (at this stage, unknown),

(Df)(x) =
f(y2(x))− f(y1(x))

y2(x)− y1(x)
. (3)

The functions y1, y2 may be obtained as follows: applying D to f(x) = x2

and f(x) = x3, one obtains, respectively,

y1(x) + y2(x) = polynomial of degree 1 , (4)

(y1(x))2 + y1(x)y2(x) + (y2(x))2 = polynomial of degree 2 , (5)

the later condition being equivalent to y1(x)y2(x) = polynomial of degree
less or equal than 2. Hence, conditions (4)–(5) define y1 and y2 as the two
y-roots of a quadratic equation

ây2 + 2b̂xy + ĉx2 + 2d̂y + 2êx+ f̂ = 0 , â 6= 0 . (6)

Set λ = b̂2 − âĉ, τ =
(

(b̂2 − âĉ)(d̂2 − âf̂)− (b̂d̂− âê)2
)
/â.

If λ 6= 0, as y1, y2 are the roots of (6), we have

y1(x) = p(x)−
√
r(x) , y2(x) = p(x) +

√
r(x) , (7)

with p, r polynomials given by

p(x) = − b̂x+ d̂

â
, r(x) =

λ

â2

(
x+

b̂d̂− âê
λ

)2

+
τ

âλ
. (8)

The q-quadratic lattices correspond to the case λ τ 6= 0 [2, 11, 14, 15]. There
is a well-known parametrization of the conic (6), say x = x(s), y = y(s), such
that

y1(x) = x(s− 1/2) , y2(x) = x(s+ 1/2) ,

given as [2, 14, 11]

x(s) = κ1q
s + κ2q

−s + κ3 ,

for some appropriate constants κ’s, and q defined through

q + q−1 =
4b̂2

âĉ
− 2 , q 6= 1 . (9)
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Note that, in this case, we have the divided-difference operator (3) given as

Df(x(s)) =
f(x(s+ 1/2))− f(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
. (10)

In such a case, the polynomials p, r are then recovered under

x(s+ 1/2) + x(s− 1/2) = 2p(x(s)) , (x(s+ 1/2)− x(s− 1/2))2 = 4r(x(s)) .
(11)

The fundamental quantities to be used in the sequel depend on the data
p(x), r(x), q previously defined. Throughout the paper we shall use the no-
tation ∆y = y2 − y1. From (7), there follows

∆y = 2
√
r .

In this paper we will consider the general case λτ 6= 0, and the divided diffe-
rence operator given in its general form (3). We will also use some operators
defined [11], as follow. The operators E1 and E2, acting on arbitrary functions
f as

(E1f)(x) = f(y1(x)) , (E2f)(x) = f(y2(x)) ,

which gives us (3) given as

(Df)(x) =
(E2f)(x)− (E1f)(x)

(E2x)(x)− (E1x)(x)
.

The companion operator of D, defined as

(Mf)(x) =
(E1f)(x) + (E2f)(x)

2
. (12)

Some useful identities involving D and M are listed below (see [11]):

D(gf) = DgMf + MgDf , (13)

M(gf) = MgMf +
∆2
y

4
DgDf , (14)

D(1/f) =
−Df

E1f E2f
, (15)

M(1/f) =
Mf

E1f E2f
. (16)

Eq. (13) has the equivalent forms

D(gf) = Dg E1f + Df E2g , D(gf) = Dg E2f + Df E1g . (17)
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Also, one has the two equivalent forms

D(g/f) =
Dg E1f − Df E1g

E1f E2f
, D(g/f) =

DgE2f − DfE2g

E1f E2f
. (18)

Note that Mf is a polynomial whenever f is a polynomial. Furthermore,
if deg(f) = n, then deg(Mf) = n.

We shall consider orthogonal polynomials related to a (formal) Stieltjes
function defined by

S(x) =
+∞∑
n=0

unx
−n−1 (19)

where (un), the sequence of moments, is such that det
[
ui+j

]n
i,j=0
6= 0, n ≥ 0.

Without loss of generality, we will take u0 = 1. The orthogonal polynomials
related to S, Pn, n ≥ 0, are taken to be monic, and we will denote the
sequence {Pn}n≥0 by SMOP.

Monic orthogonal polynomials satisfy a three-term recurrence relation [17]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, ... , (20)

with P−1(x) = 0, P0(x) = 1, and γn 6= 0, n ≥ 1, γ0 = 1 .
Associated with {Pn}n≥0 we define two objects: the sequence of associ-

ated polynomials of the first kind, {P (1)
n }n≥0,, which satisfies the recurrence

relation

P (1)
n (x) = (x− βn)P (1)

n−1(x)− γnP (1)
n−2(x) , n = 1, 2, ...

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1, and the sequence of functions of the second

kind, qn, n ≥ 0,

qn+1 = Pn+1S − P (1)
n , n ≥ 0 , q0 = S .

The sequence {qn}n≥0 also satisfies a three-term recurrence relation,

qn+1(x) = (x− βn)qn(x)− γnqn−1(x) , n = 0, 1, 2, . . . . (21)

with initial conditions q−1 = 1, q0(x) = S(x).
Semi-classical orthogonal polynomials on non-uniform lattices are defined

through a difference equation for the corresponding Stieltjes function [11],

A(x)DS(x) = C(x)MS(x) +D(x) , (22)

where A(x), C(x), D(x) are polynomials in x, A 6= 0.
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From (3), (12) and (19), there follows that A,C,D are polynomials such
that

deg(A) ≤ m+ 2 , deg(C) ≤ m+ 1 , deg(D) ≤ m, (23)

where m is some nonnegative integer.
In the sequel we will use the following matrices:

Yn =

[
Pn+1 qn+1/w
Pn qn/w

]
, n ≥ 0 . (24)

In the account of (20) and (21), Yn satisfies the difference equation

Yn = AnYn−1 , An =

[
x− βn −γn

1 0

]
, n ≥ 1 ,

with initial condition Y0 =

[
x− β0 q1/w

1 S

]
. The matrix An is, as usual,

called the transfer matrix.
Orthogonal polynomials related to Stieltjes functions such that (22) holds

satisfy the difference equations, for all n ≥ 0 (put B ≡ 0 in [4, Theorem 1]
or [11]){

ADPn+1 = (ln + ∆yπn)E1Pn+1 − C/2E2Pn+1 + ΘnE1Pn ,

ADqn+1 = (ln + ∆yπn)E1qn+1 + C/2E2qn+1 + Θn E1qn .
(25)

Equivalently, we have{
ADPn+1 = (ln −∆yπn)E2Pn+1 − C/2E1Pn+1 + ΘnE2Pn ,

ADqn+1 = (ln −∆yπn)E2qn+1 + C/2E1qn+1 + Θn E2qn .
(26)

Here, ln, πn,Θn are polynomials of degrees bounded by

deg(Θn) ≤ max{deg(A)− 2, deg(C)− 1} , (27)

deg(ln) ≤ max{deg(A)− 1, deg(C)} , deg(πn) ≤ deg(C)− 1 . (28)
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Relations for ln, πn,Θn can be obtained through the so-called compatibility
conditions, stated later on, in Section 3. They are as follow, for all n ≥ 0 [6]:

πn+1 = −1

2

n+1∑
k=0

Θk−1

γk
, (29)

ln+1 + ln + M(x− βn+1)
Θn

γn+1
= 0 , (30)

−A+ M(x− βn+1)(ln+1 − ln)−
∆2
y

2
(πn+1 + πn) + Θn+1 =

γn+1

γn
Θn−1 , (31)

with initial conditions

π−1 = 0, π0 = −D/2, (32)

Θ−1 = D, Θ0 = A−
∆2
y

4
D − (l0 − C/2)M(x− β0), (33)

l−1 = C/2, l0 = −M(x− β0)D − C/2 . (34)

3. Characterization of semi-classical orthogonal polyno-
mials on snul

Theorem 1. Let S be a Stieltjes function related to a weight w, and let
{Yn}n≥0 be the corresponding sequence defined by (24),

{Yn =

[
Pn+1 qn+1/w
Pn qn/w

]
}n≥0.

The following statements are equivalent:
(a) the weight w satisfies a Pearson type equation,

ADw = CMw ; (35)

(b) the Stieltjes function satisfies ADS = CMS +D ;
(c) Yn satisfies the matrix equations

ADYn = Bn,1 E1Yn −
C

2
E2Yn , n ≥ 1 , (36)

and

ADYn = Bn,2 E2Yn −
C

2
E1Yn , n ≥ 1 , (37)
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with the matrices Bn,j, j = 1, 2, given by

Bn,j =

[
ln + (−1)j+1∆yπn Θn

−Θn−1

γn
ln−1 + (−1)j+1∆yπn−1 + Θn−1

γn
Ej(x− βn)

]
,

(38)
where the ln, πn and Θn’s are the polynomials in (25).

Proof : (a)⇒ (b). See [18, Prop. 4.1]).
(b)⇒ (c).
Take the first equation in (25) for n and use the recurrence relation (20),
thus getting

ADPn = (ln−1 + ∆yπn−1 + Θn−1/γn E1(x− βn))E1Pn − C/2E2Pn

−Θn−1/γn E1Pn+1 . (39)

Take the second equation in (25) for n and use the recurrence relation (21),
thus getting

ADqn = (ln−1 + ∆yπn−1 + Θn−1/γn E1(x− βn))E1qn + C/2E2qn

−Θn−1/γn E1qn+1 . (40)

Let us now compute AD
(qn+1

w

)
.

From (18) we have

D
(qn+1

w

)
=

Dqn+1 E2w − DwE2qn+1

E1wE2w
.

If we multiply the above equation by A and use (40) as well as (35), we
obtain, after some cancelations,

AD
(qn+1

w

)
= (ln + ∆yπn)E1

(qn+1

w

)
− C

2
E2

(qn+1

w

)
+ ΘnE1

(qn
w

)
. (41)

Now let us write (41) for n − 1 and use the three term recurrence relation
for qn, qn−1 = −qn+1/γn + (x− βn)/γnqn. We obtain

AD
(qn
w

)
= (ln−1 + ∆yπn−1 + Θn−1/γn E1(x− βn))E1

(qn
w

)
− C

2
E2

(qn
w

)
− Θn−1

γn
E1

(qn+1

w

)
. (42)

Writing the first equation in (25) together with (39), (41) and (42) in the
matrix form, we obtain (36).

The proof of (37) proceeds on a similar way.
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(c)⇒ (a).

One has

AD(detYn) = AD
(
Pn+1

qn
w

)
− AD

(qn+1

w
Pn

)
. (43)

Let us first compute AD
(
Pn+1

qn
w

)
.

Using (17), one has

AD
(
Pn+1

qn
w

)
= AD(Pn+1)E1

(qn
w

)
+ AD

(qn
w

)
E2Pn+1 .

The use of the equations resulting from positions (1, 1) of (37) and (2, 2) of
(36) in the above formula yields

AD(Pn+1
qn
w

) = (ln −∆yπn)E2Pn+1 E1

(qn
w

)
+ ΘnE2Pn E1

(qn
w

)
− C

2

(
E1

(
Pn+1

qn
w

)
+ E2

(
Pn+1

qn
w

))
− Θn−1

γn
E2Pn+1E1

(qn+1

w

)
+

(
ln−1 + ∆yπn−1 +

Θn−1

γn
E1(x− βn)

)
E1

(qn
w

)
E2Pn+1 . (44)

Now let us compute AD
(qn+1

w
Pn

)
.

Using (17), one has

AD
(qn+1

w
Pn

)
= AD

(qn+1

w

)
E2Pn + ADPnE1

(qn+1

w

)
.

The use of the equations resulting from positions (1, 2) of (36) and (2, 1)
of (37) in the above formula yields

AD
(qn+1

w
Pn

)
= (ln + ∆yπn)E2Pn E1

(qn+1

w

)
+ ΘnE2Pn E1

(qn
w

)
− C

2

(
E1

(
Pn
qn+1

w

)
+ E2

(
Pn
qn+1

w

))
− Θn−1

γn
E2Pn+1 E1

(qn+1

w

)
+

(
ln−1 −∆yπn−1 +

Θn−1

γn
E2(x− βn)

)
E2Pn E1

(qn+1

w

)
. (45)
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The substitution of (44) and (45) in (43) yields, after some cancelations,

AD(detYn) = −C
2

(
E1

(
Pn+1

qn
w
− Pn

qn+1

w

)
+ E2

(
Pn+1

qn
w
− Pn

qn+1

w

))
+

(
−∆y(πn − πn−1) + ln + ln−1 +

Θn−1

γn
E1(x− βn)

)
E2Pn+1 E1

(qn
w

)
−
(

∆y(πn − πn−1) + ln + ln−1 +
Θn−1

γn
E2(x− βn)

)
E2Pn E1

(qn+1

w

)
,

that is,

AD(detYn) = −CM(detYn)

+

(
−∆y(πn − πn−1) + ln + ln−1 +

Θn−1

γn
E1(x− βn)

)
E2Pn+1 E1

(qn
w

)
−
(

∆y(πn − πn−1) + ln + ln−1 +
Θn−1

γn
E2(x− βn)

)
E2Pn E1

(qn+1

w

)
.

Taking into account (30) we obtain

AD(detYn) = −CM(detYn)− ξn
(
E2Pn+1 E1

(qn
w

)
+ E2Pn E1

(qn+1

w

))
(46)

where

ξn = ∆y(πn − πn−1) +
Θn−1

2γn
(E2(x− βn)− E1(x− βn)) ,

thus,

ξn = ∆y(πn − πn−1 +
Θn−1

2γn
) .

In the account of (29) we get ξn = 0. As detYn =
∏n

k=0 γk/w, from (46)

with ξn = 0 we get AD
(

1
w

)
= −CM( 1

w). Using D(1/w) =
−Dw

E1wE2w
and

M(1/w) =
Mw

E1wE2w
we obtain ADw = CMw, as required.

As a consequence of Theorem 1 we obtain the results that follow.

Corollary 1. Let S be a Stieltjes function related to a semi-classical weight,
w, satisfying ADw = CMw. The following equation holds:

An+1 DYn = (Bn − C/2 I)MYn , n ≥ 1 , (47)
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where

An+1 = A+
∆2
y

2
πn ,

I is the identity matrix, and Bn is given as

Bn =

[
ln Θn

−Θn−1/γn ln−1 + Θn−1/γnM(x− βn)

]
. (48)

Proof : Let us write the matrices Bn,j given in (38) as

Bn,1 = B̂n + ∆yΠn + Θn−1/γn E1Kn , (49)

Bn,2 = B̂n −∆yΠn + Θn−1/γn E2Kn , (50)

where

B̂n =

[
ln Θn

−Θn−1/γn ln−1

]
, Πn =

[
πn 0
0 πn−1

]
, Kn =

[
0 0
0 (x− βn)

]
.

The sum of (36) with (37) gives us

ADYn = (B̂n − C/2 I)MYn − Πn
∆y

2
(E2Yn − E1Yn)

+
Θn−1

2γn
(E1Kn E1Yn + E2Kn E2Yn) . (51)

Taking into account the property (14), one has

1

2
(E1Kn E1Yn + E2Kn E2Yn) = MKnMYn +

∆2
y

4
DKnDYn . (52)

Also, one has
∆y(E2Yn − E1Yn) = ∆2

yDYn . (53)

The substitution of (52) and (53) in (51) yields

ADYn = (B̂n−C/2 I)MYn−Πn

∆2
y

2
DYn +

Θn−1

γn

(
MKnMYn +

∆2
y

4
F DYn

)
,

with F = DKn =

[
0 0
0 1

]
, thus we get(

AI +
∆2
y

2
Πn −

∆2
y

4

Θn−1

γn
F

)
DYn =

(
B̂n − C/2 I +

Θn−1

γn
MKn

)
MYn .

(54)
Taking into account (29), from (54) we get (47).
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3.1. Compatibility conditions. From Eqs. (36)–(37) we obtain the com-
patibility conditions, as given in [6],

ADAn = Bn,1 E1An − E2An Bn−1,1 , (55)

ADAn = Bn,2 E2An − E1An Bn−1,2 . (56)

Eqs. (55)–(56) yield (29)–(31) (see a proof in [6]).
Further relations, from which we obtain compatibility relations, are de-

duced in the following corollary. We will use the notation X(i,j) to denote
the element in position (i, j) of a matrix X.

Corollary 2. The matrix Bn given in (48) satisfies the following identities,
for all n ≥ 1:

trBn = 0 , (57)

detBn = −∆2
yπ

2
n + detB1,0 + A

n∑
k=1

Θk−1

γk
. (58)

Here, detB0,1 = detB0,2 = AD − C2/4.

Proof : Eq. (57) is (30). To deduce (58) we start by using (55), thus, we get

det(Bn,1) det(E1An) = det(E2An) det(Bn−1,1) + A (E2An Bn−1,1)(2,2) .

As det(EjAn) = γn , j = 1, 2, and (E2An Bn−1,1)(2,2) = (Bn−1,1)(1,2), we get

det(Bn,1) = det(Bn−1,1) + A
Θn−1

γn
. (59)

Similarly, we get

det(Bn,2) = det(Bn−1,2) + A
Θn−1

γn
. (60)

Iteration on (59) as well as in (60) yields, for all n ≥ 1 ,

det(Bn,1) = det(B0,1) + A

n∑
k=1

Θk−1

γk
, (61)

det(Bn,2) = det(B0,2) + A

n∑
k=1

Θk−1

γk
. (62)

On the other hand, we have

det(B0,1) = det(B0,2) . (63)
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A direct use of (38) gives us, after some simplifications where we use ln−1 +
Θn−1

γn
M(x− βn) = −ln and πn−1 − Θn−1

2γn
= πn (cf. (29) and (30)),

1

2
(det(Bn,1) + det(Bn,2)) = −l2n + Θn

Θn−1

γn
+ ∆2π2

n . (64)

Thus, in the account of (61)–(63), and taking into account that Bn can be
written as

Bn =

[
ln Θn

−Θn−1/γn −ln

]
, (65)

then (64) gives us

det(B0,1) + A
n∑
k=1

Θk−1

γk
= det(Bn) + ∆2π2

n .

thus, we get (58) as required.

Taking into account Θ−1/γ0 = D (see (29) and (33)), an equivalent equa-
tion for (58) is

detBn = −∆2
yπ

2
n −

C2

4
− 2Aπn , (66)

that is,

−l2n(x) + Θn(x)
Θn−1(x)

γn
= −∆2

yπ
2
n −

C2

4
− 2Aπn . (67)

Remark . Eq. (58) is the analogue of Magnus’ summation formula [12] (see
also [3, Cor.1]).

Let us emphasize that (30), (31), and (58) can be regarded as the analogue
of (S1), (S2), and (S ′2), respectively, in the ladder operator approach [5].

4. The recurrence relation coefficients of classical or-
thogonal polynomials on snul from compatibility con-
ditions

We consider the families of classical orthogonal polynomials (see, amongst
others, [2, 15] and [7, Th. 5]). We have A(x)Dw(x) = C(x)Mw(x) with

deg(A) ≤ 2 , deg(C) ≤ 1 .

Therefore, in the account of (27)–(28), deg(ln) = 1, deg(πn) = deg(Θn) = 0.
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We will use the following notations:

A(x) = a2x
2 + a1x+ a0 , C(x) = c1x+ c0 , D(x) = d0 ,

ln(x) = `n,1x+ `n,0 , πn(x) = πn , Θn(x) = Θn , πn,Θn constants .

In the next lemma we show that some quantities, to be used in the se-
quel, depend only on the lattice as well as on the coefficients of the Pearson
equation.

Lemma 1. Under the previous notations, the quantities `n,1, Θn/γn+1 and
πn are given, for all n ≥ 0, by

`n+1,1 =

(
qn+1 − q−(n+1)

q−1 − q

)(
`0,1 + p1

Θ0

γ1

)
+

(
qn − q−n

q−1 − q

)
`0,1 , (68)

Θn+1

γn+2
=

(
q−(n+1) − qn+1

q−1 − q

)(
(1 + q)(1 + q−1)

p1
`0,1 +

Θ0

γ1

)
+

(
q−(n+2) − qn+2

q−1 − q

)
Θ0

γ1
, (69)

πn+1 = −d0

2
− Θ0

2γ1

− 1

2(q−1 − q)

(
q−1 1− q−n

1− q−1
− q1− qn

1− q

)(
(1 + q)(1 + q−1)

p1
`0,1 +

Θ0

γ1

)
− 1

2(q−1 − q)

(
q−2 1− q−n

1− q−1
− q2 1− qn

1− q

)
Θ0

γ1
, (70)

`n,0 =
2r1π

2
n + c0c1/4 + a1πn

`n,1
, n ≥ 1 . (71)

with the initial conditions

`0,1 = −p1d0 −
c1

2
,

Θ0

γ1
=
−a2 + c1p1 + 2d0(r2 + p2

1)

p2
1 − r2

,

π0 = −d0

2
, `0,0 = −(p0 − β0)d0 − c0/2 . (72)

Here, d0 = −(a2+c1p1)/(p
2
1−r2), p1, r2 are the leading coefficients of p(x), r(x),

respectively, defined in (8), and q is defined through (9).
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Proof : Eqs. (68)–(70) are deduced from B ≡ 0 in [6, Lemma1]. The x-
coefficient of (67) gives us (71).

Theorem 2. Let A(x)Dw(x) = C(x)Mw(x) with deg(A) ≤ 2, deg(C) ≤ 1.
Let {Pn}n≥0 be the SMOP related to w, satisfying the recurrence relation
(20). Under the notations of the previous lemma, the recurrence relation
coefficients are given by the following equations:

γn+1 =
`2
n,0 − 4r0π

2
n − c2

0/4− 2a0πn
Θn

γn+1

Θn−1

γn

, n ≥ 1 , (73)

βn+1 =
`n+1,1 + `n,1 + p0Θn/γn+1

Θn/γn+1
, n ≥ 0 , (74)

with γ1 and β0 given by

γ1 =

(
a0 + p0c0 + p2

0d0 − r0d0 − c0β0 − 2p0d0β0 + d0β
2
0

)
(p2

1 − r2)

−a2 + c1p1 + 2d0(r2 + p2
1)

, (75)

β0 =
a1 + p1c0 + p0c1 + 2p0p1d0 − r1d0

c1 + 2p1d0
, (76)

with d0 = −(a2 + c1p1)/(p
2
1 − r2).

Proof : The equation (73) follows from the independent coefficient of (67),

−`2
n,0 + γn+1

Θn

γn+1

Θn−1

γn
= −4r0π

2
n − c2

0/4− 2a0πn , n ≥ 1 .

The equation (74) is obtained from the independent term of (30),

`n+1,0 + `n,0 + (p0 − βn+1)
Θn

γn+1
= 0 , n ≥ 0 .

To obtain β0 and γ1 we equate coefficients in (34) and (33), thus getting

`0,1 = −p1d0 − c1/2 , (77)

`0,0 = −(p0 − β0)d0 − c0/2 . (78)

0 = a1 − r1d0 − (`0,1 − c1/2)(p0 − β0)− (`0,0 − c0/2)p1 , (79)

Θ0 = a0 − r0d0 − (`0,0 − c0/2)(p0 − β0) . (80)

The use of (77) and (78) in (79) yields β0. From (80) we have, using (78),
Θ0 given by

Θ0 = a0 − r0d0 + ((p0 − β0)d0 + c0)(p0 − β0) . (81)
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From Θ0/γ1 given by

Θ0

γ1
=

1

p1
(−a2/p1 + 2p1d0 + c1)

combined with (81) we get γ1.

4.1. Askey-Wilson polynomials from compatibility conditions. The
Askey-Wilson operator [1] is obtained under the following specializations.
Let us define the base q = e2iη and consider the projection map from the
unit circle {z = eiθ, θ ∈ [−π, π[} onto [−1, 1] by x = 1

2(z + z−1). Consider
the symmetrised and canonical form of the lattice defined through (6) (see,
e.g., [18, Sec. 2])

â = ĉ , arbitrary and non-zero, b̂ = −âcos(η) , d̂ = ê = 0 , f̂ = −â sin2(η) ,
(82)

and θ = 2sη. Then we get the parametrization x(s) given by

x(s) =
1

2
(qs + q−s) , (83)

and we obtain, from (10), the Askey-Wilson operator (see [8, Eq. (12.1.12)])

Df(x) =
f(1

2(q1/2z + q−1/2z−1))− f(1
2(q−1/2z + q1/2z−1))

1
2(q1/2 − q−1/2)(z − z−1)

.

Using (11) combined with (83) or by plugging the data (82) into the definition
of p(x), r(x) in (8), we get

p(x) =
1

2
(q1/2 + q−1/2)x , r(x) =

1

4
(q1/2 − q−1/2)2(x2 − 1) . (84)

Let us take the Askey-Wilson weight [1] (see also [9])

w(x; {α1, α2, α3, α4}) =
h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)√
1− x2 h(x, α1)h(x, α2)h(x, α3)h(x, α4)

,

where

h(x, α) =
+∞∏
k=0

(1− 2αxqk + α2q2k) , x = cos(θ) .
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Let us denote by σj the j-th elementary symmetric polynomial of α1, . . . , α4,
that is,

σ1 = α1 + α2 + α3 + α4 , σ2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4

σ3 = α1α2α3 + α1α2α4 + α2α3α4 , σ4 = α1α2α3α4 .

We have ADw = CMw, with the polynomials

A(x) = a2x
2 + a1x+ a0 , C(x) = c1x+ c0

where [18, Prop. 5.1]

a2 = 2(1 + σ4q
−2) , a1 = −(q−1/2σ1 + q−3/2σ3) , a0 = −1 + q−1σ2 − q−2σ4 ,

(85)

c1 = 4
q−2σ4 − 1

q1/2 − q−1/2
, c0 = 2

q−1/2σ1 − q−3/2σ3

q1/2 − q−1/2
. (86)

The recurrence coefficients of the SMOP {Pn}n≥0 orthogonal with respect
to w are determined through (73)–(74). Thus, we recover the recurrence
coefficients for the monic Askey-Wilson polynomials,

βn =
[
σ1(q + σ4(q

2n − qn − qn−1)) + σ3(1− qn − qn+1 + σ4q
2n−1)

]
× qn−1

2(1− σ4q2n)(1− σ4q2n−2)
, n ≥ 0 , (87)

γn =
1

4

(1− qn)(1− σ4q
n−2)Gn

(1− σ4q2n−3)(1− σ4q2n−2)2(1− σ4q2n−1)
, n ≥ 1 , (88)

where

Gn = (1− α1α2q
n−1)(1− α1α3q

n−1)(1− α1α4q
n−1)

× (1− α2α3q
n−1)(1− α2α4q

n−1)(1− α3α4q
n−1) .
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