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1.Introduction
The generalized Hurwitz Theorem asserts that, over a field of characteristic dif-

ferent from 2, if A is a finite dimensional composition algebra with identity, then
its dimension is equal to 1, 2, 4 or 8. Moreover, A is isomorphic either to the base
field, a separable quadratic extension of the base field, a generalized quaternion
algebra or a generalized octonion algebra, [5].

A well known consequence of the cited theorem is that the values of n for which
the Euclidean spaces Rn can be equipped with a 2-fold vector cross product, sat-
isfying the same requirements as the usual one in R3, are restricted to 1 (trivial
case), 3 and 7. See [3] for a complete discussion on r-fold vector cross products
on d-dimensional vector spaces.

The 2-fold vector cross product can be found in mathematical models of phys-
ical processes, control theory problems in particular, which involve differential
equations, [6, 8]. In [6] and [7], through certain 3 × 3 skewsymmetric matrices,
it is used in the description of spacecraft attitude control. In [6], the analogue
problem in the 7-dimensional case is also considered.

The present work is devoted to vector cross product differential and difference
equations in R3 and in R7.
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To begin with, definitions and results related to the subject are collected in sec-
tion 2. Namely, the approach of the 2-fold vector cross product in R3 and in R7

from a matrix point of view, through the hypercomplex matrices Su considered
in [1], is recalled.

In the second place, further properties connected to the matrices Su, which will
be needed in sections 4 and 5, are established in section 3. This section continues
the study of the properties of Su started in [1], some of which are recalled in the
previous section.

Thirdly, some differential equations involving the 2-fold vector cross product in
R3 and in R7 are studied in section 4. Each of these ones is rewritten in matrix
form and, when tractable, either the classical theory or a convenient Drazin inverse
is applied.

Last but not least, discrete analogues of those vector cross product differential
equations in R3 and in R7 are considered in section 5. As expected, the solution
of the difference equation proceeds similarly to that of the differential equation
when the classical theory does not apply.

2.Preliminaries
In what follows, let F be a field of characteristic different from 2.
Let V be a d-dimensional vector space over F , equipped with a nondegenerate

symmetric bilinear form 〈·, ·〉. A bilinear map × : V × V → V is a 2-fold vector
cross product if, for any u, v ∈ V ,

(i) 〈u× v, u〉 = 〈u× v, v〉 = 0,

(ii) 〈u× v, u× v〉 =
∣∣∣∣ 〈u, u〉 〈u, v〉〈v, u〉 〈v, v〉

∣∣∣∣, [3].

Throughout this work, Rm×n denotes the set of all m × n real matrices. With
n = 1, we identify Rm×1 with Rm. With m = n = 1, we identify R1×1 with R.

Consider the usual real vector space R8, with canonical basis {e0, . . . , e7},
equipped with the multiplication ∗ given by ei ∗ ei = −e0 for i ∈ {1, . . . , 7},
being e0 the identity, and the below Fano plane, where the cyclic ordering of each
three elements lying on the same line is shown by the arrows.
Then O = (R8, ∗) is the real (non-split) octonion algebra. Every element x ∈ O
may be represented∗ by

x = x0 + x, where x0 ∈ R and x =
7∑
i=1

xiei ∈ R7

∗The identity e0 is usually omitted in x = x0e0 + x.
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FIGURE 1. Fano plane for O.

are, respectively, the real part and the pure part of the octonion x.
The multiplication ∗ can be written in terms of the Euclidean inner product

and the 2-fold vector cross product in R7, hereinafter denoted by 〈·, ·〉 and ×,
respectively. Concretely, as in [6], for any x, y ∈ O, we have

x ∗ y = x0y0 − 〈x, y〉+ x0y + y0x+ x× y.
A similar relation may be written for the multiplication of the real (non-split)
quaternion algebra H = (R4, ∗|R4), the Euclidean inner product 〈·, ·〉|R3 and the 2-
fold vector cross product×|R3. For this reason, throughout the work and whenever
clear from the context, the same notations 〈·, ·〉 and × are used either in R7 or in
R3.

In [1], [6] and [9], hypercomplex matrices related to the Lie algebra (R3,×)
and to the Maltsev algebra (R7,×) were considered. If u ∈ R7 (respectively, R3),
then let Su be the matrix in R7×7 (respectively, R3×3) defined by

Sux = u× x (1)

for any x ∈ R7 (respectively, R3). So, for u =
[
u1 u2 u3 u4 u5 u6 u7

]T
(respectively,

[
u1 u2 u3

]T ), Su is the skew-symmetric matrix

[
E F
G H

]
=



0 −u3 u2 −u5 u4 −u7 u6
u3 0 −u1 −u6 u7 u4 −u5
−u2 u1 0 u7 u6 −u5 −u4
u5 u6 −u7 0 −u1 −u2 u3
−u4 −u7 −u6 u1 0 u3 u2
u7 −u4 u5 u2 −u3 0 −u1
−u6 u5 u4 −u3 −u2 u1 0


(respectively, E).

Proposition 2.1. [1, 9] Let n ∈ {3, 7}, u, v ∈ Rn, γ ∈ R\{0} and τ, η ∈ R.
Then:



4 P. D. BEITES, A. P. NICOLÁS, P. SARAIVA AND J. VITÓRIA

(i) Sτu+ηv = τSu + ηSv;
(ii) Suv = −Svu;

(iii) Su is singular;
(iv) S2

u = uuT − uTuIn;
(v) S3

u = −uTuSu;

(vi) (Su − γIn)−1 = −
1

γ2 + uTu

(
Su + γIn +

1

γ
uuT

)
.

Let A ∈ Rn×n.
If A is skew-symmetric then R = eA is the rotation matrix, called exponential

of A, defined by the absolutely convergent power series

eA =
∞∑
k=0

Ak

k!
.

Conversely, given a rotation matrix R ∈ SO(n), there exists a skew-symmetric
matrix A such that R = eA, [4].

Theorem 2.2. [6] Let u = u0 + u ∈ O with ‖u‖ = β 6= 0 and t ∈ R. Then

etSu = cos(βt)I +
sin(βt)

β
Su +

1− cos(βt)

β2
uuT .

The index Ind(A) of A is the smallest l ∈ N0 such that R(Al) = R(Al+1) or,
equivalently, N(Al) = N(Al+1), where R and N stand for the column space (or
range) and the nullspace, [2]. Alternatively, but equivalently, the index can be
defined as the smallest l ∈ N0 such that Rn = R(Al)⊕N(Al).

Let Ind(A) = l. The Drazin inverse of A is the unique matrix AD ∈ Rn×n

which satisfies

AAD = ADA, ADAAD = AD, Al+1AD = Al.

When Ind(A) ∈ {0, 1}, AD is sometimes called the group-inverse of A and the
last equality assumes the form AADA = A. There are several methods for com-
puting AD, as described in [2] and references therein, some of which require all
eigenvalues to be well determined.

Let A,B ∈ Rn×n and t0 ∈ R. Let f = f(t) be a Rn-valued function of the
real variable t. Throughout the work, x = x(t) stands for an unknown Rn-valued

function of the real variable t and ẋ =
dx

dt
denotes the corresponding derivative

vector of x.
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A vector x0 ∈ Rn is a consistent initial vector for the differential equation

Aẋ+Bx = f (2)

if the initial value problem

Aẋ+Bx = f, x(t0) = x0, (3)

possesses at least one solution. In this case, x(t0) = x0 is said to be a consistent
initial condition. Furthermore, (2) is called tractable if (3) has a unique solution
for each consistent initial vector x0, [2].

Theorem 2.3. [2] Let A,B ∈ Rn×n. The homogeneous differential equation
Aẋ+Bx = 0 is tractable if and only if (λA+B)−1 exists for some λ ∈ R.

Let A,B ∈ Rn×n. Let f (k) = f (k)(t) ∈ Rn be the k-th term of a sequence of
vectors, k = 0, 1, 2, .... Throughout the present work, x(k) = x(k)(t) ∈ Rn stands
for the k-th term of an unknown sequence of vectors, k = 0, 1, 2, . . . We assume
that x(0) = x0 is given.

A vector x0 ∈ Rn is a consistent initial vector for the difference equation

Ax(k+1) = Bx(k) + f (k) (4)

if the initial value problem

Ax(k+1) = Bx(k) + f (k), k = 1, 2, . . . , x(0) = x0, (5)

has a solution for x(k). In this case, x(0) = x0 is said to be a consistent initial
condition. Furthermore, (4) is called tractable if (5) has a unique solution for
each consistent initial vector x0, [2].

Theorem 2.4. [2] Let A,B ∈ Rn×n. The homogeneous difference equation
Ax(k+1) = Bx(k) is tractable if and only if (λA+B)−1 exists for some λ ∈ R.

3.Matrix properties related to Su
In this section, several properties connected to the matrices Su are presented.

The first result allows to ease the computation of their powers.

Proposition 3.1. Let n ∈ {3, 7}, u ∈ Rn, β = ‖u‖ and m ∈ N. Then
(i) S2m+1

u = (−1)mβ2mSu;
(ii) S2m

u = (−1)m+1β2m−2uuT + (−1)mβ2mIn.

Proof : By induction, owed to properties (ii), (iv) and (v) of Su in Proposition
2.1.
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Next, the invertibility of some matrices related to Su is studied.

Proposition 3.2. Let n ∈ {3, 7}, u, v ∈ Rn and γ ∈ R. The matrix γSu + Sv is
singular.

Proof : As Su and Sv are skew-symmetric matrices, then, for any γ ∈ R, γSu+Sv
is also skew-symmetric of odd order. Hence, det(γSu + Sv) = 0.

Proposition 3.3. Let n ∈ {3, 7}, v ∈ Rn and α ∈ R. The matrix Sv + αIn is
non-singular if and only if α 6= 0.

Proof : An easy calculation of det(Sv +αIn) leads to α(α2 + ‖v‖2) if v ∈ R3 and
α(α2 + ‖v‖2)3 if v ∈ R7. In the stated conditions, det(Sv + αIn) = 0 if and only
if α = 0.

The remaining results of this section are devoted to the indexes of Su and certain
related matrices.

Theorem 3.4. Let n ∈ {3, 7} and u ∈ Rn\{0}. Then Ind(Su) = 1.

Proof : Let u ∈ R3\{0}. The matrix Su has index 1 if R3 = R(Su)⊕N(Su).
First of all, from (iv) in Proposition 2.1, every x ∈ R3 can be written as x =
1
‖u‖2 (uu

Tx − S2
ux). Clearly, S2

ux ∈ R(Su). By (ii) in Proposition 2.1, uuTx ∈
N(Su) since Su(uuTx) = (Suu)(u

Tx) = 0.
Secondly, let x ∈ R(Su) ∩ N(Su). As x ∈ R(Su), there exists y ∈ R3 such

that x = Suy. In addition, x ∈ N(Su) which, together with (v) in Proposition 2.1,
allows to write 0 = S2

ux = S3
uy = −‖u‖2Suy. Consequently, y ∈ N(Su), which

implies x = 0.
A perfectly analogous reasoning provides a proof for u ∈ R7\{0}.

Lemma 3.5. Let n ∈ {3, 7} and u ∈ Rn\{0}. Then N(Su) = 〈u〉.

Proof : Let n ∈ {3, 7} and u ∈ Rn\{0}. The inclusion 〈u〉 ⊆ N(Su) follows
from (i) and (ii) in Proposition 2.1, since, for all γ ∈ R, Su(γu) = 0. As proved
in [1] for n = 7 and in [9] for n = 3, the eigenvalues of Su are 0 and ±‖u‖i.
Furthermore, the characteristic polynomial of Su can be written as

det(Su − xIn) = −x(x2 + utu)s,

where s = 3 if n = 7 and s = 1 if n = 3. In both cases, the eigenvalue 0 has
algebraic multiplicity 1. As 0 6= u ∈ N(Su), the geometric multiplicity of 0 is 1.
Hence, dim N(Su) = dim 〈u〉 = 1. Therefore, N(Su) = 〈u〉.
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Theorem 3.6. Let n ∈ {3, 7}, u, v ∈ Rn\{0} and α ∈ R\{0}. Then Ind((Sv +
αIn)

−1Su) = 1.

Proof : Let n ∈ {3, 7}, u, v ∈ Rn\{0} and α ∈ R\{0}. By Proposition 3.3,
Sv + αIn is non-singular. Suppose that

N((Sv + αIn)
−1Su) ( N(((Sv + αIn)

−1Su)
2).

Hence, there exists x ∈ Rn\{0} such that ((Sv + αIn)
−1Su)

2x = 0 and (Sv +
αIn)

−1Sux 6= 0. It is clear that N((Sv + αIn)
−1Su) = N(Su). From Lemma

3.5, N(Su) = 〈u〉. Thus, (Sv + αIn)
−1Sux = δu for some δ ∈ R\{0}, that

is, Sux = δ(Svu + αu). This implies that δαu = u × x − δv × u and so,
〈u, δαu〉 = 〈u, u×x−δv×u〉 = 0, that is, δα‖u‖2 = 0, which is a contradiction.
Finally, N(((Sv + αIn)

−1Su)
0) 6= N((Sv + αIn)

−1Su). The result is proved.

4.Vector cross product differential equations
In the present section, some vector cross product differential equations in R3

and in R7 are considered.

Theorem 4.1. Let n ∈ {3, 7}, b ∈ Rn\{0} and x = x(t) an unknown Rn-valued
function of the real variable t. The unique solution of the vector cross product
differential equation

ẋ+ b× x = 0, (6)
with initial condition x(t0) = x0, is

x(t) = cos(β(t− t0))x0 −
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))
β2

bbTx0, (7)

where β = ‖b‖. Moreover, for any t, ‖x(t)‖2 is constant.

Proof : From (1), equation (6) assumes the form ẋ+Sbx = 0, which is a tractable
equation by Theorem 2.3. In fact, from Proposition 3.3, (λIn + Sb)

−1 exists for
every λ ∈ R\{0}. As the coefficient of the term in ẋ is a non-singular matrix,
the classical theory recalled in [2, p.171] applies to the homogeneous initial value
problem ẋ+ Sbx = 0, x(t0) = x0. Its unique solution is given by

x(t) = e−(t−t0)Sbx0.

Invoking Theorem 2.2, we obtain (7). Due to the skew-symmetry of Sb, for any t,

‖x(t)‖2 is constant since
d

dt
(‖x‖2) = 0, as

d

dt
〈x, x〉 = 〈ẋ, x〉+ 〈x, ẋ〉 = −(Sbx)Tx− xTSbx = −xT (STb + Sb)x = 0.
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Theorem 4.2. Let n ∈ {3, 7}, b ∈ Rn\{0}, f = f(t) a Rn-valued function of
the real variable t, continuous in some interval containing t0, and x = x(t) an
unknown Rn-valued function of the real variable t. The unique solution of the
vector cross product differential equation

ẋ+ b× x = f, (8)

with initial condition x(t0) = x0, is

x(t) = cos(β(t− t0))x0 −
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))
β2

bbTx0+∫ t

t0

(
cos(β(t− s))− sin(β(t− s))

β
Sb +

1− cos(β(t− s))
β2

bbT
)
f(s)ds,

(9)

where β = ‖b‖.

Proof : Again by (1), we can rewrite equation (8) as ẋ + Sbx = f , where the
coefficient of the term in ẋ is a non-singular matrix. Thus, the classical theory
applies to the inhomogeneous initial value problem ẋ + Sbx = f, x(t0) = x0. Its
unique solution is given by

x(t) = e−(t−t0)Sbx0 +

∫ t

t0

e−(t−s)Sbf(s)ds.

From Theorem 2.2, we obtain (9).

Theorem 4.3. Let n ∈ {3, 7}, a, b ∈ Rn\{0} and x = x(t) an unknown Rn-
valued function of the real variable t. The vector cross product differential equa-
tion

a× ẋ+ b× x = 0 (10)

is not tractable.

Proof : From (1), the rewriting of equation (10) leads to Saẋ + Sbx = 0. By
Proposition 3.2, for any λ ∈ R, λSa + Sb is a singular matrix and the result
follows from Theorem 2.3.

Taking into account the previous result, the remaining part of the section is
devoted to the study of differential equations which can be considered as pertur-
bations of (10).
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Theorem 4.4. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0} and x = x(t) an un-
known Rn-valued function of the real variable t. A vector x0 ∈ Rn is a consistent
initial vector for the vector cross product differential equation

a× ẋ+ b× x+ αx = 0 (11)

if and only if x0 is of the form

x0 = ŜaŜ
D
a q, (12)

for some q ∈ Rn, where

Ŝa = −
1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa. (13)

Moreover, if x0 ∈ Rn is a consistent initial vector for (11), then the unique solution
of (11), with initial condition x(t0) = x0, is

x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0. (14)

Proof : According to (1), equation (11) assumes the form Saẋ+ (Sb + αIn)x = 0
where α ∈ R\{0}. Let us denote Sb+αIn byB, matrix which, due to Proposition
3.3, is non-singular. Thus, (λSa + B)−1 exists for λ = 0 and, by Theorem 2.3,
Saẋ+Bx = 0 is a tractable equation.

Following the notation in [2], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ R is such that λSa+B is non-singular. By [2, Theorem 9.2.2, p. 174],
the consistency of an initial vector for (11) and its general solution are independent
of the used λ. Hence, in what follows, we drop the subscripts λ and take λ = 0.

From Theorem 3.6, Ind(Ŝa) = 1. Invoking [2, Theorem 9.2.3, p. 175], we
obtain the necessary and sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a vector
x0 ∈ Rn to be a consistent initial vector for (11). Since ŜDa Ŝa = ŜaŜDa , we get
(12). As Ŝa = B−1Sa, then, by (vi) of Proposition 2.1, we obtain (13).

Assume now that x0 ∈ Rn is a consistent initial vector for (11). As B̂ = In, once
again from [2, Theorem 9.2.3], the unique solution of the homogeneous initial
value problem Saẋ+Bx = 0, x(t0) = x0, is given by (14).

Theorem 4.5. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0}, f = f(t) a Rn-
valued function of the real variable t, continuously differentiable around t0, and
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x = x(t) an unknown Rn-valued function of the real variable t. A vector x0 ∈ Rn

is a consistent initial vector for the vector cross product differential equation

a× ẋ+ b× x+ αx = f (15)

if and only if x0 is of the form

x0 = (I − ŜaŜDa )f̂(t0) + ŜaŜ
D
a q, (16)

for some vector q ∈ Rn, where

Ŝa = −
1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa (17)

and

f̂ = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
f. (18)

Moreover, if x0 ∈ Rn is a consistent initial vector for (15), then the unique solution
of (15), with initial condition x(t0) = x0, is

x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0 + e−Ŝ

D
a t

∫ t

t0

eŜ
D
a sŜDa f̂(s) ds+ (I − ŜaŜDa )f̂(t). (19)

Proof : By (1), we can rewrite equation (15) as Saẋ + (Sb + αIn)x = f , where
α ∈ R\{0}. As in the proof of Theorem 4.4, let B = Sb + αIn, Ŝa = B−1Sa,
B̂ = In, f̂ = B−1f .

Taking into account Theorem 3.6, Ind(Ŝa) = 1. The necessary and sufficient
condition x0 ∈ {(I − ŜaŜ

D
a )f̂(t0) + R(ŜDa Ŝa)} for a vector x0 ∈ Rn to be a

consistent initial vector for (15) comes from [2, Theorem 9.2.3, p. 175], which
leads to (16). By (vi) of Proposition 2.1, we obtain (17) and (18).

Suppose now that x0 ∈ Rn is a consistent initial vector for (15). Once again
from [2, Theorem 9.2.3], the unique solution of the inhomogeneous initial value
problem Saẋ+Bx = f, x(t0) = x0, is given by (19).

5.Vector cross product difference equations
In the present section, some vector cross product difference equations in R3 and

in R7 are considered.

Theorem 5.1. Let n ∈ {3, 7}, b ∈ Rn\{0} and x(k) = x(k)(t) ∈ Rn the k-th
term of an unknown sequence of vectors, k = 0, 1, 2, ... The unique solution of the
vector cross product difference equation

x(k+1) = b× x(k), (20)
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with initial condition x(0) = x0, is

x(k) =


x0, k = 0

(−1)k−1
2 βk−1Sbx0, k ∈ N, odd(

(−1)k
2+1βk−2bbT + (−1)k

2βkIn

)
x0, k ∈ N, even

(21)

where β = ‖b‖.

Proof : Due to (1), equation (20) assumes the form x(k+1) = Sbx
(k), which is a

tractable equation by Theorem 2.4. In fact, from Proposition 3.3, (λIn + Sb)
−1

exists for every λ ∈ R\{0}. Taking into account the recurrence relation, the
unique solution of the homogeneous initial value problem x(k+1) = Sbx

(k), k =
0, 1, 2, . . . , x(0) = x0, is given by

x(k) = Skb x0, k = 0, 1, 2, ...

From Proposition 3.1, we arrive at (21).

Theorem 5.2. Let n ∈ {3, 7}, b ∈ Rn\{0}, f (k) = f (k)(t) ∈ Rn the k-th term of
a sequence of vectors, k = 0, 1, 2, ..., and x(k) = x(k)(t) ∈ Rn the k-th term of
an unknown sequence of vectors, k = 0, 1, 2, .... The unique solution of the vector
cross product difference equation

x(k+1) = b× x(k) + f (k), (22)

with initial condition x(0) = x0, is

x(k) =



x0, k = 0

(−1)k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sk−1−ib f (i), k ∈ N, odd

(
(−1)k

2+1βk−2bbT + (−1)k
2βkIn

)
x0 +

k−1∑
i=0

Sk−1−ib f (i), k ∈ N, even

(23)
where β = ‖b‖.

Proof : Again by (1), equation (22) assumes the form x(k+1) = Sbx
(k) + f (k). The

recurrence relation allows to obtain the unique solution of the inhomogeneous
initial value problem x(k+1) = Sbx

(k) + f (k), k = 0, 1, 2, . . . , x(0) = x0, given by

x(k) = Skb x0 +
k−1∑
i=0

Sk−1−ib f (i), k = 1, 2, ... (24)
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From Proposition 3.1, we obtain (23).

Corollary 5.3. Let n ∈ {3, 7}, b ∈ Rn\{0}, c ∈ Rn and x(k) = x(k)(t) ∈ Rn the
k-th term of an unknown sequence of vectors, k = 0, 1, 2, .... The unique solution
of the vector cross product difference equation

x(k+1) = b× x(k) + c, (25)

with initial condition x(0) = x0, is

x(k) =



x0, k = 0

(−1)k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sibc, k ∈ N, odd

(
(−1)k

2+1βk−2bbT + (−1)k
2βkIn

)
x0 +

k−1∑
i=0

Sibc, k ∈ N, even

(26)

where β = ‖b‖.

Proof : A particular case of the previous result, putting c instead of the sequence(
f (k)
)
k∈N0

.

Remark 5.4. Assume that all eigenvalues λi of Sb, which are 0 and ±‖b‖i by [1],
satisfy ‖λi‖ < 1. Under this hypothesis, In − Sb is invertible and

k−1∑
i=0

Sib = (In − Sb)−1
(
In − Skb

)
,

which leads to an alternative expression for the sum in (26).

Theorem 5.5. Let n ∈ {3, 7}, a, b ∈ Rn\{0} and x(k) = x(k)(t) ∈ Rn the k-th
term of an unknown sequence of vectors, k = 0, 1, 2, ... The vector cross product
difference equation

a× x(k+1) = b× x(k) (27)

is not tractable.

Proof : From (1), the rewriting of equation (27) leads to Sax(k+1) = Sbx
(k). From

Proposition 3.2, for any λ ∈ R, λSa+Sb is a singular matrix and the result follows
from Theorem 2.4.

Similarly to section 4, due to the previous result, perturbed versions of the dif-
ference equation (27) are now studied.
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Theorem 5.6. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0} and x(k) = x(k)(t) ∈ Rn

the k-th term of an unknown sequence of vectors, k = 0, 1, 2, .... A vector x0 ∈ Rn

is a consistent initial vector for the vector cross product difference equation

a× x(k+1) = b× x(k) + αx(k) (28)

if and only if x0 is of the form

x0 = ŜaŜ
D
a q, (29)

for some q ∈ Rn, where

Ŝa = −
1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa. (30)

Moreover, if x0 ∈ Rn is a consistent initial vector for (28), then the unique solution
of (28), with initial condition x(0) = x0, is

x(k) =
(
ŜDa

)k
x0, k = 0, 1, 2, . . . (31)

Proof : From (1), equation (28) assumes the form Sax
(k+1) = Bx(k) where B =

Sb + αIn with α ∈ R\{0}, by Proposition 3.3, is non-singular. Owed to this fact,
λSa + B is also a non-singular matrix if λ = 0 and, by Theorem 2.4, (28) is a
tractable equation.

Following the notation in [2], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ R is such that λSa+B is non-singular. By [2, Theorem 9.2.2, p. 174],
the consistency of an initial vector for (28) and its general solution are independent
of the used λ. Hence, in what follows, we drop the subscripts λ and take λ = 0.

By Theorem 3.6, Ind(Ŝa) = 1. Invoking [2, Theorem 9.3.2, p. 182-183], we
get the necessary and sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a vector
x0 ∈ Rn to be a consistent initial vector for (28). As ŜDa Ŝa = ŜaŜDa , we obtain
(29). Since Ŝa = B−1Sa, then, by (vi) of Proposition 2.1, we arrive at (30).

Suppose now that x0 ∈ Rn is a consistent initial vector for (28). Since B̂ =
In, once again from [2, Theorem 9.3.2], the unique solution of the homogeneous
initial value problem Sax

(k+1) = Bx(k), k = 0, 1, . . . , x(0) = x0, is given by
(31).

Theorem 5.7. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0}, f (k) = f (k)(t) ∈ Rn

the k-th term of a sequence of vectors, k = 0, 1, 2, ..., and x(k) = x(k)(t) ∈ Rn the
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k-th term of an unknown sequence of vectors, k = 0, 1, 2, .... A vector x0 ∈ Rn is
a consistent initial vector for the vector cross product difference equation

a× x(k+1) = b× x(k) + αx(k) + f (k), k = 0, 1, 2, . . . , (32)

if and only if x0 is of the form

x0 = −
(
In − ŜaŜDa

)
f̂ (0) + ŜaŜ

D
a q, (33)

for some q ∈ Rn, where

Ŝa = −
1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa (34)

and

f̂ (k) = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
f (k). (35)

Moreover, if x0 ∈ Rn is a consistent initial vector for (32), then the unique solution
of (32), with initial condition x(0) = x0, is

x(k) =


x0, k = 0(
ŜDa

)k
ŜaŜ

D
a x0 + ŜDa

k−1∑
i=0

(
ŜDa

)k−i−1
f̂ (i) −

(
In − ŜaŜDa

)
f̂ (k), k = 1, 2, . . .

(36)

Proof : The rewriting of equation (32) leads to Sax(k+1) = Bx(k) + f (k), where
B = Sb + αIn with α ∈ R\{0}, since we have (1). As in the proof of Theorem
5.6, let Ŝa = B−1Sa, B̂ = In, f̂ (k) = B−1f (k).

From Theorem 3.6, Ind(Ŝa) = 1. The necessary and sufficient condition x0 ∈
{−(In − ŜaŜDa )f̂ (0) + R(ŜDa Ŝa)} for a vector x0 ∈ Rn to be a consistent initial
vector for (32) comes from [2, Theorem 9.3.2, p. 182-183]. Thus, we obtain (33).
By (vi) of Proposition 2.1, we get (34) and (35).

Assume now that x0 ∈ Rn is a consistent initial vector for (32). Once again
from [2, Theorem 9.3.2], the unique solution of the inhomogeneous initial value
problem Sax

(k+1) = Bx(k) + f (k), k = 0, 1, 2, . . . , x(0) = x0, is given by (36).
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