
Pré-Publicações do Departamento de Matemática
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COMPLEXITY OF GRADIENT DESCENT FOR
MULTIOBJECTIVE OPTIMIZATION
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Abstract: A number of first-order methods have been proposed for smooth mul-
tiobjective optimization for which some form of convergence to first order criticality
has been proved. Such convergence is global in the sense of being independent of
the starting point.

In this paper we analyze the rate of convergence of gradient descent for smooth
unconstrained multiobjective optimization, and we do it for non-convex, convex, and
strongly convex vector functions. These global rates are shown to be the same as
for gradient descent in single-objective optimization, and correspond to appropriate
worst case complexity bounds. In the convex cases, the rates are given for implicit
scalarizations of the problem vector function.
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1. Introduction
Let us consider an unconstrained multiobjective optimization problem writ-

ten in the form

min
x∈Rn

F (x) ≡ (f1(x), . . . , fm(x)),

where each objective function fi : Rn → R is continuously differentiable and
with a gradient Lipschitz continuous with constant Li > 0, i = 1, . . . ,m.

A number of descent methods have been developed and analyzed for smooth
multiobjective optimization (see Fukuda and Drummond [9]). Steepest de-
scent or gradient methods for multiobjective optimization (see Fliege and
Svaiter [8]) converge globally (i.e., independently of the starting point) to a
critical Pareto point. In gradient-based dynamic approaches (Attouch and
Goudou [1]), the steepest descent method can be recovered by an appropri-
ate time discretization of a system of differential equations whose solution
converges to a Pareto point. Other first-order globally convergent algorithms
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include proximal algorithms (see e.g. Bonnel, Iusem, and Svaiter [4]), trust-
region methods (Carrizo, Lotito, and Maciel [5]), and several conjugate gra-
dient methods (Pérez and Prudente [13]). A Newton’s method for multiob-
jective optimization was proposed and analyzed by Fliege, Drummond, and
Svaiter [7].

Perhaps the simplest gradient method for MOO takes the form xk+1 =
xk + tkdk, where tk > 0 is the stepsize and where the search direction dk is
obtained from solving (see [8])

dk = arg min
d∈Rn

{
max

i∈{1,...,m}
∇fi(xk)>d+

1

2
‖d‖2

}
. (1)

When m = 1, one retrieves the steepest descent direction dk = −∇f1(xk).
For single-objective optimization (m = 1), it is well known (see the book

by Nesterov [12]) that the steepest descent or gradient method decreases the

gradient to zero at the rate of 1/
√
k regardless of the starting point. More-

over, the corresponding worst case bound in the number of iterations needed
to achieve a gradient of norm smaller then ε ∈ (0, 1), which is of the order
of ε−2, was proven to be sharp or tight, in the sense that there exists an ex-
ample for n = 1 (Cartis, Gould, and Toint [6]), dependent on an arbitrarily
small parameter τ > 0, for which such a number is of the order of ε−2+τ .
The global rate 1/

√
k is shared by many first-order methods which impose a

sufficient decrease condition, like trust-region methods (using gradient infor-
mation) [6] and direct-search methods for derivative-free optimization [14].
Such a global rate is improved to 1/k in the convex case (Nesterov [12]),
and higher-order methods deliver a rate that tends precisely to 1/k when the
order tends to infinity (Birgin et al. [3]). Finally, it is also well known that
gradient descent exhibits a linear rate of convergence in the strongly convex
case (Nesterov [12]).

The goal of this paper is to extend this theory to multiobjective opti-
mization. We will see without too much surprise that the same rates of the
single-objective setting are attainable, although the convex and strongly con-
vex cases unveil interesting questions. The rate of 1/

√
k in the non-convex

case does not raise any issue as it is derived for a measure of first-order crit-
icality. In the convex cases, however, as the rates are derived for function
values it is not foreseeable, before a careful analysis, what gap or error should
be quantified.
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2. Pareto criticality
Let ∇F (x) denote the transpose of the Jacobian matrix of the vector-

valued objective function F . A necessary condition for a point x ∈ Rn to be
a (local) weak Pareto minimizer is

range
(
∇F (x)>

)
∩ (−R++)m = ∅, (2)

where R++ is the set of (strictly) positive real numbers. Points that satisfy
condition (2) are then called (first-order) Pareto critical points. If a point x
is not Pareto critical, then there exists a direction d ∈ Rn such that

∇F (x)>d ∈ (−R++)m,

i.e., d is descent direction for F at the point x. This motivates the first term
of the objective function in subproblem (1).

Now note that subproblem (1) can be rewritten equivalently as the follow-
ing (differentiable) quadratic optimization problem

(dk, αk) = arg min
d∈Rn,α∈R

α +
1

2
‖d‖2 ≡ q(d, α)

subject to ∇fi(xk)>d ≤ α, i = 1, . . . ,m.

(3)

From the KKT conditions of problem (3) we have

dk = −
m∑
i=1

λki∇fi(xk), (4)

where λki ≥ 0 are the Lagrange multipliers associated with the linear inequal-
ity constraints in (3), and

m∑
i=1

λki = 1. (5)

The solution of subproblem (3) is intimately related to Pareto criticality as
stated in the following result from [8] (a proof is included for completeness).

Lemma 2.1. [8, Lemma 1] Let (dk, αk) be the solution of problem (3).

(1) If xk is Pareto critical, then dk = 0 ∈ Rn and αk = 0.
(2) If xk is not Pareto critical, then αk < 0 and

αk ≤ −(1/2)‖dk‖2 < 0, (6)

∇fi(xk)>dk ≤ αk, i = 1, . . . ,m. (7)
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Proof : If xk is Pareto critical, then there is no d such that ∇fi(xk)>d < 0,
∀i ∈ {1, . . . ,m}, otherwise condition (2) would not be satisfied, leading to
the existence of an ī such that αk ≥ ∇fī(xk)Tdk ≥ 0. Item 1 follows then by
noting that (d, α) = (0, 0) is a feasible point of subproblem (3).

As for Item 2, if xk is not Pareto critical, then there exists a d such that
∇fi(xk)>d < 0, ∀i, resulting in αk < 0. Equation (7) follows directly from
the constraints of subproblem (3). Since (d, α) = (0, 0) is a feasible point,
one has q(dk, αk) ≤ q(0, 0) = 0, hence (6).

3. Gradient descent in the non-convex case
In this section we will analyze the gradient method described in Algorithm 1

(see [8]). At each step, the steepest descent direction dk is first computed by
solving (1) or equivalently (3). Then a backtracking procedure along dk is
applied which stops when a classical sufficient decrease condition is satisfied.
Each backtracking starts at t = 1 and halves the stepsize until it finds one
for which all functions have decreased sufficiently.

Algorithm 1 MO gradient descent

1: Choose β ∈ (0, 1) and x0 ∈ Rn. Set k := 0.
2: Compute dk by solving the subproblem (3).
3: Stop if xk is Pareto critical.
4: Compute a stepsize tk ∈ (0, 1] as the maximum of

T k :=

{
t =

1

2j
| j ∈ N0, F (xk + tdk) ≤ F (xk) + βt∇F (xk)>dk

}
. (8)

5: Set xk+1 := xk + tkdk, k := k + 1, and goto Step 2.

We start by showing the existence of a uniform lower bound on tk that will
be used later in the analysis. Such a lower bound also shows that Step 4 of
Algorithm 1 will always stop in a finite number of steps. The argument is a
classic one in line-search methods.

Lemma 3.1. In Algorithm 1 the stepsize always satisfies tk ≥ tmin ≡
min

{
1−β

2Lmax
, 1
}

where Lmax = max{L1, . . . , Lm}.

Proof : Let i ∈ {1, . . . ,m}. When 2t does not satisfy the sufficient decrease
condition (8) of Algorithm 1,

fi(x
k + (2t)dk)− fi(xk) > β(2t)∇fi(xk)>dk. (9)
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Due to Lipschitz continuity we have,

fi(x
k + (2t)dk)− fi(xk) ≤ (2t)∇fi(xk)>dk +

Li
2
‖(2t)dk‖2. (10)

By combining (9) and (10) one obtains

0 < (2t)(1− β)∇fi(xk)>dk + 2Lit
2‖dk‖2

which using (6)–(7) then implies

−Lit‖dk‖2 < (1− β)∇fi(xk)Tdk < −(1− β)

2
‖dk‖2,

establishing that

t >
1− β
2Li

.

The result follows by noting that t is never larger than one and that Lmax =
max{L1, . . . , Lm}.

Is is then easy to prove that Algorithm 1 has a convergence rate of the
order of 1/

√
k.

Theorem 3.1. Suppose that at least one of the functions f1, . . . , fm is bounded
from below. Let fmin

i be the lower bound on the function fi when bounded from
below. For those indices i, let Fmin be the minimum of the lower bounds fmin

i

and let Fmax
0 be the maximum of the values fi(x0).

The gradient method described in Algorithm 1 generates a sequence {xk}
such that

min
0≤l≤k−1

‖dl‖ ≤
√
Fmax

0 − Fmin

M

1√
k
,

where M = βtmin

2 and tmin is given in Lemma 3.1.

Proof : Let i be an index of a function fi bounded from below. From the
sufficient decrease condition (8) and the properties (6)–(7) of the direction dk,

fi(x
k + tkdk)− fi(xk) ≤ βtk∇fi(xk)>dk ≤ −β

tk

2
‖dk‖2,

and then from Lemma 3.1,

fi(x
k)− fi(xk + tkdk) ≥ βtk

2
‖dk‖2 ≥ βtmin

2
‖dk‖2 ≡ M‖dk‖2.
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Summing up all decreases until iteration k − 1, yields

fi(x
0)− fi(xk−1 + tk−1dk−1) =

k−1∑
l=0

fi(x
l)− fi(xl + tldl)

≥ M
k−1∑
l=0

‖dl‖2 ≥M(k)

(
min

0≤l≤k−1
‖dl‖

)2

,

and the proof is concluded from the definitions of Fmax
0 and Fmin.

4. The convex and strongly convex cases
In single-objective optimization when the function is convex, the analysis

of the gradient method is typically carried out for a fixed stepsize, inversely
proportional to the Lipschitz constant of the gradient of the objective func-
tion. It is also known that it can be alternatively imposed a sufficient decrease
condition, different from the traditional one used in the non-convex case. We
restate in Algorithm 2 the gradient method for multiobjective optimization
using such an alternative sufficient decrease condition (11).

Algorithm 2 MO gradient descent (convex case)

1: Choose γ ∈ (0, 1) and x0 ∈ Rn. Set k := 0.
2: Compute dk by solving the subproblem (3).
3: Stop if xk is Pareto critical.
4: Compute a stepsize tk ∈ (0, 1] as the maximum of

T k :=

{
t =

1

2j
| j ∈ N0, F (xk + tdk) ≤ F (xk) + t∇F (xk)>dk +

γ t

2
‖dk‖2e

}
,

(11)
where e is the vector of ones in Rm.

5: Set xk+1 := xk + tkdk, k := k + 1, and goto Step 2.

It is also known that a lower bound on the stepsize can be obtained when
imposing this alternative sufficient decrease condition.

Lemma 4.1. In Algorithm 2 the stepsize always satisfies tk ≥ tmin ≡
min

{
γ

2Lmax
, 1
}

where Lmax = max{L1, . . . , Lm}.
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Proof : By using the Lipschitz continuity of ∇fi, one can easily see that, for
all t ∈ (0, γLi

],

fi(x
k + tkdk) ≤ fi(x

k) + t∇fi(xk)>dk +
Li
2
‖tdk‖2

≤ fi(x
k) + t∇fi(xk)>dk +

γ

2t
‖tdk‖2.

Hence the sufficient decrease condition (11) is satisfied for t ∈ (0, γ
Lmax

] and
the result comes then from the fact that in the backtracking scheme the
stepsize starts at one and is halved each time.

Notice that when imposing (11) one obtains from (6)–(7), for all i ∈
{1, . . . ,m},

fi(x
k + tkdk) ≤ fi(x

k)− tk

2
‖dk‖2 +

γtk

2
‖dk‖2

= fi(x
k)− 1− γ

2
tk‖dk‖2.

Using the lower bound on tk from Lemma 4.1 we thus obtain a decrease that
leads to a global rate of 1/

√
k for min0≤l≤k−1 ‖dl‖ as in Theorem 3.1. This

then proves that lim infk→∞ ‖dk‖ = 0. Then, if L(x0) = {x ∈ Rn : F (x) ≤
F (x0)} is bounded, the sequence {xk} has a limit point x∗ that is Pareto
critical. As the multipliers λk lie in a bounded set, one can also say, without
loss of generality, that the subsequence K for which xk converges to x∗ is
such that λk converges to a λ∗ such that

m∑
i=1

λ∗i∇fi(x∗) = 0,
m∑
i=1

λ∗i = 1, λ∗i ≥ 0, i = 1, . . . ,m. (12)

In the derivation of the global rates for the convex cases we will make the
slightly stronger assumption that the whole sequence (xk, λk) converges to
(x∗, λ∗). Under the convexity assumption on the objectives fi, the point x∗

is then a weak Pareto point, and if in addition x∗ is the unique minimum of
the scalar function

∑
i λ
∗
ifi, then x∗ is a Pareto point (see Theorem 5.13 and

Lemma 5.14 in the book of Jahn [10]).
We will now assume convexity of all components of F . As so, we will make

use of the following known inequality

fi(x) ≤ fi(y) +∇fi(x)>(x− y)− µi
2
‖x− y‖2, (13)
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valid for all x, y either when fi is convex and µi is set to zero or when fi is
strongly convex with modulus µi > 0. We start by an intermediate lemma
establishing an upper bound in the same vein of the known case m = 1. At
this point there is no need to make assumptions about the point x∗.

Lemma 4.2. Assume that {xk} converges to x∗. If fi is convex or strongly
convex of modulus µi > 0, i = 1, . . . ,m, then

m∑
i=1

λki
(
fi(x

k+1)− fi(x∗)
)
≤ 1

2tmin

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
−µ

2
‖xk−x∗‖2,

(14)
where µ = min1≤i≤m µi and tmin is given in Lemma 4.1.

Proof : Since γ < 1, one has for all i = 1, . . . ,m

fi(x
k+1) ≤ fi(x

k) +∇fi(xk)>(tkdk) +
1

2tk
‖tkdk‖2. (15)

One can now use the convexity (µi = 0) / strong convexity (µi > 0) of fi,
see (13), to bound fi(x

k) in (15), obtaining

fi(x
k+1) ≤ fi(x

∗) +∇fi(xk)>(xk − x∗)− µ

2
‖xk − x∗‖2

+∇fi(xk)>(tkdk) +
1

2tk
‖tkdk‖2, i = 1, . . . ,m.

Rearranging terms, multiplying by λki and summing for all i = 1, . . . ,m,

m∑
i=1

λki
(
fi(x

k+1)− fi(x∗)
)
≤

(
m∑
i=1

λki∇fi(xk)

)
(xk − x∗ + tkdk)

+

(
tk

2
‖dk‖2 − µ

2
‖xk − x∗‖2

) m∑
i=1

λki .
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From (4) and (5),

m∑
i=1

λki
(
fi(x

k+1)− fi(x∗)
)

≤ −(dk)>(xk − x∗ + tkdk) +
tk

2
‖dk‖2 − µ

2
‖xk − x∗‖2

= − 1

2tk
(
2(tkdk)>(xk − x∗) + ‖tkdk‖2

)
− µ

2
‖xk − x∗‖2

= − 1

2tk
(
‖xk − x∗ + tkdk‖2 − ‖xk − x∗‖2

)
− µ

2
‖xk − x∗‖2

=
1

2tk
(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
− µ

2
‖xk − x∗‖2

≤ 1

2tmin

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
− µ

2
‖xk − x∗‖2.

The last inequality results from tk ≥ tmin and from the fact that the nonnega-
tivity of the terms λki [(fi(x

k+1)−fi(x∗)] necessarily implies the nonnegativity
of ‖xk − x∗‖2 − ‖xk+1 − x∗‖2.

Remark 4.1. If a fixed stepsize with tk = t̄ constant would be used (instead
of imposing sufficient decrease), then as long as 0 < t̄ ≤ 1/Lmax the result
of Lemma 4.2 would still be true without assuming that {xk} converges to
x∗. In such a case we would not know whether the left-hand-side in (14) is
nonnegative or not, and thus if such a result could be used later to prove an
effective rate.

We proceed separating the convex case from the strongly convex one. Next
we address the convex case establishing the desired 1/k rate for a certain
sequence of weights {λ̄k} that converges to the optimal weights λ∗ in (12)
when the multipliers {λk} do so.

Theorem 4.1. Suppose that the functions f1, . . . , fm are convex. Assume
that {xk} converges to x∗.

The gradient method described in Algorithm 2 generates a sequence {xk}
such that

m∑
i=1

λ̄k−1
i fi(x

k)−
m∑
i=1

λ̄k−1
i fi(x

∗) ≤ ‖x
0 − x∗‖2

2tmink
,
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where the weights λ̄k−1
i ≡ 1

k

∑k−1
l=0 λ

l
i satisfy

m∑
i=1

λ̄k−1
i = 1 and λ̄k−1

i ≥ 0, i = 1, . . . ,m.

Finally, if {λk} converges to λ∗, then so does {λ̄k}.

Proof : By summing (14) from l = 0, . . . , k − 1, and since fi(x
l) ≤ fi(x

l−1)
for all i, l, one derives

k−1∑
l=0

m∑
i=1

λli
(
fi(x

k)− fi(x∗)
)
≤ 1

2tmin

(
‖x0 − x∗‖2 − ‖xk − x∗‖2

)
≤ 1

2tmin
‖x0 − x∗‖2.

Hence
m∑
i=1

(
k−1∑
l=0

λli

)(
fi(x

k)− fi(x∗)
)
≤ 1

2tmin
‖x0 − x∗‖2.

The proof is completed dividing both sides of this last inequality by k.

Now we show that gradient descent also attains for multiobjective opti-
mization a linear convergence rate in the strongly convex case.

Theorem 4.2. Suppose that the functions fi are strongly convex with mod-
ulus µi > 0, i = 1, . . . ,m. Assume that {xk} converges to x∗.

The gradient method described in Algorithm 2 generates a sequence {xk}
such that

‖xk − x∗‖ ≤
(√

1− tminµ
)k
‖x0 − x∗‖. (16)

Proof : We go back to (14) and write

m∑
i=1

λki
(
fi(x

k+1)− fi(x∗)
)
≤ 1

2tmin

(
(1− tminµ) ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

By noting that the left-hand side is nonnegative,

‖xk+1 − x∗‖2 ≤ (1− tminµ) ‖xk − x∗‖2,

and the proof is completed applying this last inequality recursively.
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If the pair (x∗, λ∗) is Pareto critical and the fi’s are convex, f ∗ ≡
∑m

i=1 λ
∗
ifi

is a convex function with minimizer at x∗. When all functions fi are strongly
convex, so is f ∗ with modulus µ∗ = minλ∗i>0 µi. Moreover the function f ∗

has a gradient that is Lipschitz continuous with constant L∗ = maxλ∗i>0 Li.
Hence, from (16) and the properties of strongly convex functions, we also
derive a linear rate for the optimality gap in f ∗,

m∑
i=1

λ∗ifi(x
k)−

m∑
i=1

λ∗ifi(x
∗) ≤ L∗

2µ∗
‖xk−x∗‖ ≤ L∗

2µ∗

(√
1− tminµ

)k
‖x0−x∗‖.

5. Concluding remarks
This paper is a first step in trying to understand the worst-case behavior

of numerical algorithms for smooth multiobjective optimization. We derived
global rates for gradient descent matching what is known in single-objective
optimization, for non-convex (1/

√
k), for convex (1/k), and for strongly con-

vex (rk for some r ∈ (0, 1)) vector-valued objective functions. Such global
rates translate into worst-case complexity bounds of the order of 1/ε2, 1/ε,
and log(1/ε) iterations, respectively, to reach an approximate optimality cri-
terion of the form ‖dk‖ ≤ ε for some ε ∈ (0, 1), where dk is the steepest
descent direction (1).

There are a number of aspects to be further investigated, among which
are the use of momentum and/or proximal operators (see the recent book [2]
by Beck). In particular, proving a global rate of 1/k2 for an accelerated
gradient method, as Nesterov [11] did for single-objective optimization, is
more intricate than it seems at least using the steepest descent direction (1)
and the proof technology of our paper.

References
[1] H. Attouch and X. Goudou. A continuous gradient-like dynamical approach to pareto-

optimization in Hilbert spaces. Set-Valued and Variational Analysis, 22:189–219, 2014.
[2] A. Beck. First-Order Methods in Optimization. MPS-SIAM Series on Optimization. SIAM,

Philadelphia, 2017.
[3] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and Ph. L. Toint. Worst-case

evaluation complexity for unconstrained nonlinear optimization using high-order regularized
models. Math. Program., 163:359–368, 2017.

[4] H. Bonnel, A. N. Iusem, and B. F. Svaiter. Proximal methods in vector optimization. SIAM
J. Optim., 15:953–970, 2005.

[5] G. A. Carrizo, P. A. Lotito, and M. C. Maciel. Trust region globalization strategy for the
nonconvex unconstrained multiobjective optimization problem. Math. Program., 159:339–369,
2016.



12 J. FLIEGE, A. I. F. VAZ AND L. N. VICENTE

[6] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest descent, New-
ton’s and regularized Newton’s methods for nonconvex unconstrained optimization. SIAM J.
Optim., 20:2833–2852, 2010.

[7] J. Fliege, L. M. G. Drummond, and B. F. Svaiter. Newton’s method for multiobjective opti-
mization. SIAM J. Optim., 20:602–626, 2009.

[8] J. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria optimization. Mathe-
matical Methods of Operations Research, 51:479–494, 2000.

[9] E. H. Fukuda and L. M. G. Drummond. A survey on multiobjective descent methods. Pesquisa
Operacional, 34:585–620, 2014.

[10] J. Jahn. Vector Optimization. Springer, 2009.
[11] Y. Nesterov. A method of solving a convex programming problem with convergence rate

O(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.
[12] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers,

Dordrecht, 2004.
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