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GEVREY WELL POSEDNESS OF THE GENERALIZED
GOURSAT-DARBOUX PROBLEM FOR A LINEAR PDE

JORGE MARQUES AND JAIME CARVALHO E SILVA

Abstract: We consider the generalized Goursat-Darboux problem for a third order
linear PDE with real coefficients. Our purpose is to find necessary conditions for
the problem to be well-posed in the Gevrey classes Γs with s > 1. It is proved that
there exists some critical index s0 such that if the Goursat-Darboux problem is well
posed in Γs for s > s0 then some conditions should be imposed on the coefficients
of the derivatives with respect to one of the variables. In order to prove our results,
we first construct an explicit solution of a family of problems with data depending
on a parameter η > 0 and then we obtain an asymptotic representation of a solution
as η tends to infinity.
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1. Introduction
The simplest generalized Goursat-Darboux problem for a third order linear

PDE with real constant coefficients in the classes of Gevrey functions was
studied in [8]. Given an open set Ω ⊆ R3+m, neighborhood of origin, the
problem is defined on Ω by

∂t∂x∂yu(t, x, y, z) =
∑

0≤|j|≤3

Aj∂
j
zu(t, x, y, z)

u(0, x, y, z) = f1(x, y, z)
u(t, 0, y, z) = f2(t, y, z)
u(t, x, 0, z) = f3(t, x, z)

(1.1)

where initial data satisfy necessary compatibility conditions
f1(0, y, z) = f2(0, y, z)
f1(x, 0, z) = f3(0, x, z)
f2(t, 0, z) = f3(t, 0, z)
f1(0, 0, z) = f2(0, 0, z) = f3(0, 0, z) .

(1.2)
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Let us begin by introducing the Gevrey classes [5] and the concept of the
well posed problem in the sense of Hadamard [6].

Definition 1.1. (Gevrey classes)
Let s > 1 be a real number and Ω be an open subset of Rn. The Gevrey

class of index s on Ω, Γs(Ω), is the space of the all functions f ∈ C∞(Ω)
such that for every compact K ⊂ Ω there exist constants C > 0 and L > 0
satisfying

sup
x∈K
| ∂αf(x) |≤ CL|α|α!s , for all multi-index α. (1.3)

We choose a topology for Γs(Ω) in according to Rodino [11].

Definition 1.2. (Problem well-posed in the Gevrey classes)
Let s > 1 be a real number and Ω be an open subset of Rn, neighborhood

of origin. We say that the problem (1.1)-(1.2) is Γs(Ω) well-posed on Ω if
there exists a neighborhood U ⊂ Ω such that

• For every data fi ∈ Γs(Ω∩Σi), i = 1, 2, 3, the problem (1.1)-(1.2) has
a solution u ∈ Γs(U) and it is unique;
• It depends continuously on the data. It means that for every com-

pact K ⊂ Ω and every constant L > 0 there exist compacts Ki and
constants Li > 0, i = 1, 2, 3, and C > 0 such that

‖u‖sL,K ≤ C
(
‖f1‖sL1,K1

+ ‖f2‖sL2,K2
+ ‖f3‖sL3,K3

)
. (1.4)

We are now interested in the so-called case I [2], for a more general class
of PDEs. Our goal is to find necessary conditions for the problem to be
well-posed in the Gevrey classes We will try to find some critical index s0

such that if the generalized Goursat-Darboux problem is well posed in Γs

for s > s0 then some conditions should be imposed on the coefficients of the
derivatives with respect to one of the variables.

2. Formulation of the generalized Goursat-Darboux prob-
lem

For simplicity we suppose m = 1 but the formulation and solvability of
our problem can be generalized to m > 1. Let Ω ⊆ R4 be an open set,
neighborhood of origin and let

Pi(∂z) = D2,i∂
2
z+D1,i∂z , i = 1, 2, 3 ∧ Q(∂z) = E3∂

3
z+E2∂

2
z+E1∂z+E0 (2.1)
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be a differential operators with real constant coefficients.
We consider the following generalized Goursat-Darboux problem on Ω:
∂t∂x∂yu(t, x, y, z) = (P1(∂z)∂t + P2(∂z)∂x + P3(∂z)∂y +Q(∂z))u(t, x, y, z)
u(0, x, y, z) = f1(x, y, z)
u(t, 0, y, z) = f2(t, y, z)
u(t, x, 0, z) = f3(t, x, z)

(2.2)
where the initial data satisfy the necessary compatibility conditions (1.2) on
three characteristic hyperplanes t = 0, x = 0 and y = 0.
It was showed in [2] that if the problem (2.2)-(1.2) is locally C∞ well-posed in
the neighborhood of origin then the coefficients of the derivatives with respect
to z are zero. So we expect stronger results in the Gevrey framework.
From now on we suppose that the problem (2.2) is Γs well-posed on Ω. As
we have done in [8] the problem (2.2) can be reduced to the Cauchy problem
following ideas of Bronshtein [1]. By linearity, if u(t, x, y, z) is a solution of
the problem (2.2) on Ω then

v(t, x, y, z) = u(t, x, y, z) + u(x, y, t, z) + u(y, t, x, z) (2.3)

is a solution of the corresponding problem on Ω′ ⊂ Ω
∂t∂x∂yv(t, x, y, z) = (P (∂z)∂t + P (∂z)∂x + P (∂z)∂y +Q(∂z)) v(t, x, y, z)
v(0, x, y, z) = f1(x, y, z) + f3(x, y, z) + f2(y, x, z)
v(t, 0, y, z) = f2(t, y, z) + f1(y, t, z) + f3(y, t, z)
v(t, x, 0, z) = f3(t, x, z) + f2(x, t, z) + f1(t, x, z) .

(2.4)
where

P (∂z) =
1

3
(P1(∂z) + P2(∂z) + P3(∂z)) . (2.5)

We then reduce the number of the independent variables by setting t = x = y.
For every parameter η > 0, taking

v(0, x, y, z) = v(t, 0, y, z) = v(t, x, 0, z) = eiηz

we are looking for a unique solution depending continuously on the data. If
vη is the solution of the problem on Ω′{

∂t∂x∂yv(t, x, y, z) = (P (∂z)∂t + P (∂z)∂x + P (∂z)∂y +Q(∂z)) v(t, x, y, z)
v(0, x, y, z) = v(t, 0, y, z) = v(t, x, 0, z) = eiηz

(2.6)
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then wη(r, z) = vη(r, r, r, z) is the solution of the Cauchy problem on Ω̃ ⊆ R2{
∂3
rw(r, z) = 27

(
(D2∂

2
z +D1∂z)∂r + (E3∂

3
z + E2∂

2
z + E1∂z + E0)

)
w(r, z)

w(0, z) = eiηz ,
(2.7)

where Dj =
1

3
(Dj,1 +Dj,2 +Dj,3) , j = 1, 2. We remark that there are two

arbitrary data ∂rw(0, z) and ∂2
rw(0, z).

3. Solving the Cauchy problem
If the Cauchy problem (2.7) is well-posed in the Gevrey classes then nec-

essarily

E2
3 − 4D3

2 ≥ 0 (3.1)

by applying the Lax-Mizohata theorem [9].
We determine a unique solution of the problem (2.7) in the form wη(r, z) =
mη(r)e

iηz, hence mη(r) is the solution of the initial value problem
m′′′(r) = 27(−D2η

2 + iD1η)m′(r) + 27(−E3iη
3 − E2η

2 + iE1η + E0)m(r)
m(0) = 1
m′(0) = α
m′′(0) = β

(3.2)
where α and β are unknown. In order to solve the corresponding linear ODE
we use its characteristic equation

λ3 + p(η)λ+ q(η) = 0 , (3.3)

p(η) = −27(−D2η
2 + iD1η) and q(η) = −27(−E3iη

3 − E2η
2 + iE1η + E0).

That equation has a solution ζη which is given by ζη = zη +ωη. To obtain ζη
we proceed in three steps (Vieta’s method):

(1) Find Aη 6= 0 such that A2
η = ∆η =

(
q(η)

2

)2

+
(
p(η)

3

)3

;

(2) Find a solution zη 6= 0 of the equation z3 = −q(η)
2 +Aη by de Moivre’s

formula;

(3) Calculate ωη = −p(η)

3zη
.

The other two solutions are ζη = γzη + γωη and ζη = γzη + γωη.
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Lemma 3.1. Let γ and γ be conjugate complex roots of unity. If ζη = zη+ωη,
ζη 6= 0, is a solution of (3.3) then the solution of the problem (3.2) is given
by

mη(r) = 1
3(1 + aη + bη)e

(zη+ωη)r + 1
3 (1 + γaη + γbη) e

(γzη+γωη)r+

+1
3 (1 + γaη + γbη) e

(γzη+γωη)r
(3.4)

where

aη =
αz2

η − (β + 2p(η)/3)ωη

z3
η − ω3

η

∧ bη =
−αω2

η + (β + 2p(η)/3)zη

z3
η − ω3

η

. (3.5)

If ζη is a real root of the (3.3) we simplify (3.4) by using the Euler’s formula.

Theorem 3.1 (Characteristic equation with one real root). If ζη = zη + ωη ∈
R− {0} and κη = zη − ωη ∈ R− {0} then

mη(r) = 1
3(1− cη)eζηr + 1

3 (2 + cη) cos (
√

3κηr/2)e−ζηr/2+

+
√

3
3 dη sin (

√
3κηr/2)e−ζηr/2

(3.6)

where

cη = −αζη + β + 2p(η)/3

ζ2
η + p(η)/3

= −aη − bη

and

dη =
−i[α(ζ2

η + κ2
η)/2− (β + 2p(η)/3)ζη]

(ζ2
η + p(η)/3)κη

= −i(aη − bη) .

If ζη is a pure imaginary root of the (3.3), (3.4) can be written in a simpler
expression.

Theorem 3.2 (Characteristic equation with a pure imaginary root). If ζη =
zη+ωη = −iYη and κη = zη−ωη = −iXη with Xη ∈ R−{0} and Yη ∈ R−{0}
then

mη(r) = 1
3

[
(2 + cη) cosh (

√
3Xηr/2) +

√
3dη sinh (

√
3Xηr/2)

]
eiYηr/2+

+1
3(1− cη)e−iYηr

(3.7)
where cη = −aη − bη and dη = −i(aη − bη).
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4. Results
In the next asymptotic estimates we use big O, little o and ∼ symbols to

compare the growth of functions [10].

Definition 4.1. Let f and g be complex functions of the real variable η,
η > 0. As η →∞, we say that

(i): f and g are asymptotically equal, f(η) ∼ g(η), if limη→∞
f(η)
g(η) = 1;

(ii): f is of order not exceeding g, f(η) = O(g(η)), if there exists a
constant k such that |f(η)| ≤ k|g(η)| for all η > 0;

(iii): f is of order less than g, f(η) = o(g(η)), if limη→∞
f(η)
g(η) = 0.

In previous works ([2], [3], [7]) an explicit solution of the generalized
Goursat-Darboux problem involves a hypergeometric function of several vari-
ables. However some difficulties for obtaining asymptotic representations for
these kind of functions were point out in the paper [4].
In our work we have a linear combination of complex exponential functions
as solution of the Cauchy problem. In the next propositions, we provide
asymptotic representations, as η tends to infinity, for the absolute value of
complex functions mη on a compact, which depends on η.

Theorem 4.1. If p(η) = 0, q(η) = −27E1ηi, E1 6= 0, and s > 3 then there
exist a constant c > 0 and a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3
√
|E1|η1/s (4.1)

as η tends to infinity.

Theorem 4.2. If q(η) = O(η), p(η) = −27D1ηi, D1 6= 0, and s > 2 then there
exist a constant c > 0 and a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3
√
|D1|η1/s (4.2)

as η tends to infinity.

Theorem 4.3. If p(η) = O(η), q(η) = 27E2η
2, E2 6= 0, and s > 3/2 then there

exist a constant c > 0 and a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3
√
|E2|η1/s (4.3)

as η tends to infinity.
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Theorem 4.4. Let p(η) = 27D2η
2 + O(η), q(η) = 27E3iη

3 + O(η2) such that
E2

3 − 4D3
2 > 0.

(i): If D2 6= 0 and s > 1 then there exist a constant c > 0 and a compact
Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce|
3
√
ρ2−9D2|η1/s (4.4)

as η tends to infinity, where ρ = 27
2

(√
E2

3 − 4D3
2 + E3

)
6= 0;

(ii): If D2 = 0∧E3 6= 0 and s > 1 then there exist a constant c > 0 and
a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3
√
|E3|η1/s (4.5)

as η tends to infinity.

In the proofs of the propositions, our approach is based on asymptotic
analysis of the initial data in order to have only one exponential function as
dominant term, that is, when one exponential function tends to infinity and
the others tend to zero.
Finally we present main results.

Theorem 4.2. If the problem (2.2)-(1.2) is Γs well-posed on Ω then

(i)::
s > 1 ⇒ 27E2

3 = 4(D2,1 +D2,2 +D2,3)
3 ; (4.6)

(ii)::

s >
3

2
⇒ E2 = 0 ; (4.7)

(iii)::
s > 2 ⇒ D1,1 +D1,2 +D1,3 = 0 ; (4.8)

(iv)::
s > 3 ⇒ E1 = 0 . (4.9)

Proof : We suppose that the problem (2.2)-(1.2) is Γs well-posed on Ω with
s > 1. Then for every η > 0 the corresponding problem (2.6) has a unique
solution vη on Ω′.
On the one hand, we determine a prior an estimate for the Gevrey norm
of vη, an upper bound, from the initial data, ‖eiηz‖sL,K , for every compact

K ⊂ Ω ⊆ R3+m and every constant L > 0. The partial derivatives of eiηz
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with respect to multi-index (l, k, j, α), such that l 6= 0 or k 6= 0 or j 6= 0, are
zero. Otherwise, it is clear that

∂αz (eiηz) = (iη)|α|eiηz ,

it follows that
sup

(t,x,y,z)∈K
| ∂α(eiηz) |= η|α| .

Using | α |! ≤ m|α|α! and | α ||α|≤ e|α| | α |! we get

‖eiηz‖sL,K ≤ sup
α

(
| α |−s|α| L−|α|(msesη)|α|

)
.

Since the supremum is equal to esmL
−1/sη1/s there exist constants c1 = smL−1/s

and C > 0 such that

‖vη‖sL,K ≤ C‖eiηz‖sL,K ≤ Cec1η
1/s

(4.10)

for every η > 0. It is a condition for stability of solution.
On the other hand, let’s see that if we suppose, E2

3−4D3
2 > 0 in (i), E2 6= 0 in

(ii), D1 6= 0 in (iii), E1 6= 0 in (iv), then we obtain a contradiction with (4.10).
By using previous propositions we construct an asymptotic representation of
a solution as η tends to infinity. For every neighborhood of the origin O there
exist a compact Kη, Kη ⊂ O, and constants C > 0 and c2 > 0 such that

sup
r∈Kη

| vη(r, r, r, z) |∼ Cec2η
1/s

(4.11)

Notice that Kη ⊂ O only if s0 = 1 in (i), s0 = 3/2 in (ii), s0 = 2 in (iii) and
s0 = 3 in (iv). We have

sup
r∈Kη

| mη(r) |= sup
r∈Kη

| wη(r, z) |= sup
r∈Kη

| vη(r, r, r, z) |

and
‖vη‖sL,Kη

> sup
r∈Kη

| vη(r, r, r, z) | ,

for all L > 0. We can choose L with L >

(
sm

c2

)s
such that

‖vη‖sL,Kη
> Cec2η

1/s

(4.12)

as η tends to infinity. We conclude that (4.12) contradicts (4.10) because of
c2 > c1.
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