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Abstract: We study traces on the boundary of generalized smoothness Morrey spaces
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N s

u,p,q(Ω), Triebel-Lizorkin-Morrey spaces Es
u,p,q(Ω), and Triebel-Lizorkin type spaces

F s,τ
p,q (Ω), which are all included in our scales as special cases. Moreover, to complete our
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1. Introduction

The concept of generalized Besov-Morrey spacesN s
Mϕ

p ,q
(Rn) and Triebel-Lizorkin-

Morrey spaces Es
Mϕ

p ,q
(Rn) with parameters s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and

a function ϕ : (0,∞) → (0,∞) was developed in [NNS16], where the authors
studied several properties of these spaces and obtained results concerning traces
on hyperplanes. One immediate and obvious advantage of these generalized scales
of spaces is, that for different choices of the function parameter ϕ, one recov-
ers a lot of well-known (scales of) spaces as special cases for which the obtained
results immediately follow. For a detailed overview we refer to the discussion
in [NNS16, Appendix A].
Thinking about possible applications to PDEs, it is highly desirable to investigate
not only spaces defined on Rn but also corresponding spaces on domains and have
trace results on their boundaries as well. This will be the focus of the present paper.

Let us briefly sketch the history of the scales of spaces we wish to consider in
the sequel and why they are important to study. Generalized Morrey spaces were
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introduced by Nakai in [Nak94] and defined as

Mϕ
p (R

n) :=
{
f ∈ Lloc

p (Rn) : ‖f | Mϕ
p (R

n)‖ < ∞
}
,

where

‖f | Mϕ
p (R

n)‖ := sup
Q∈Q

ϕ
(
ℓ(Q)

)( 1

|Q|

∫

Q

|f(y)|p dy

) 1

p

and Q denotes the set of all dyadic cubes Q with side length ℓ(Q). In particular,
one recovers the Morrey spaces Mu,p(R

n), 0 < p ≤ u < ∞, if ϕ(t) = tn/u and
the Lebesgue spaces Lp(R

n) when ϕ(t) = tn/p. It should be mentioned that the
passage from the classical Morrey spaces to the generalized Morrey spaces is not a
mere question of generalization. These spaces naturally emerge when one considers
the limiting case of the Sobolev embedding, cf. [SW13, EGNS14,NNS16]. To be
more precise, in [SW13, Thm. 5.1] is was shown that for 1 < p < u < ∞ there

exists a constant Cu,p such that for ϕ(t) = (1 + tn)1/u (log(e+ t−n))−1 it holds
that

‖f |Mϕ
1 (R

n)‖ ≤ Cu,p‖(1−∆)n/2uf |Mu,p(R
n)‖ for all f ∈ Mϕ

1 (R
n).

This is a generalization of Sobolev’s embedding since for u = p the right hand side

becomes ‖f |H
n/u
u (Rn)‖, showing the importance of generalized Morrey spaces in

the limiting situation when s = n
u
.

The generalized Besov-Morrey space N s
Mϕ

p ,q
(Rn) is then defined with the help

of Mϕ
p (R

n) to be the set of all f ∈ S ′(Rn) such that

∥∥f | N s
Mϕ

p ,q
(Rn)

∥∥ :=

( ∞∑

j=0

2jsq
∥∥F−1(µjFf) | M

ϕ
p (R

n)
∥∥q
)1/q

<∞ (1.1)

with the usual modification if q = ∞. Similar for the generalized Triebel-Lizorkin-
Morrey spaces Es

Mϕ
p ,q
(Rn), where we interchange the order in which the ℓq- and

Mϕ
p -norms are taken. Concerning the functions µj appearing in (1.1) and further

details we refer to Definition 2.3.
These scales of spaces cover many well-known function spaces for suitable choices

of the function ϕ. For ϕ(t) = tn/u we get the Besov-Morrey spaces

N s
u,p,q(R

n) = N s
Mϕ

p ,q
(Rn), ϕ(t) = tn/u,
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which were introduced in [KY94] by Kozono and Yamazaki and used by them
and by Mazzucato [Maz03] to study Navier-Stokes equations and the correspond-
ing Triebel-Lizorkin-Morrey spaces Es

u,p,q(R
n), which were originally introduced

in [TX05] by Tang and Xu, where the authors established the Morrey version of
Fefferman-Stein vector-valued inequality. Additionally, if p = u, the both scales in-
clude the classical Besov and Triebel-Lizorkin spaces Bs

p,q(R
n) and F s

p,q(R
n) as spe-

cial cases. Furthermore, we also recover the Triebel-Lizorkin-type spaces F s,τ
p,q (R

n)
defined in [YSY10], when 0 ≤ τ < 1/p, as F s,τ

p,q (R
n) = Es

u,p,q(R
n) with u = p

1−pτ .

Note that the corresponding Besov-type spaces Bs,τ
p,q (R

n) are not covered by our
approach. In particular, by [YSY10, Cor. 3.3, p. 64] we have

N s
u,p,q(R

n) →֒ Bs,τ
p,q (R

n) with u =
p

1− pτ
, (1.2)

and the embedding is proper if τ > 0 and q < ∞. In this paper we now define
generalized Besov-Morrey spaces N s

Mϕ
p ,q
(Ω) and Triebel-Lizorkin Morrey spaces

Es
Mϕ

p ,q
(Ω) on Ck domains Ω ⊂ Rn via restriction of their counterparts on Rn. Our

main result concerning traces on the boundary can be formulated as follows. Let
n ≥ 2,

s >
1

p
+ (n− 1)

(
1

min(1, p)
− 1

)
(1.3)

and put ϕ∗(t) := ϕ(t) t−1/p. Then, subject to some further restriction on ϕ, we
have

Tr ∂ΩN
s
Mϕ

p ,q
(Ω) = N

s− 1

p

Mϕ∗

p ,q
(∂Ω), (1.4)

where we require the smoothness k of the domain Ω to be large enough, cf. The-
orem 3.8. Similar for the generalized Triebel-Lizorkin Morrey spaces Es

Mϕ
p ,q
(Ω).

These results generalize corresponding trace results on hyperplanes from [NNS16,
Thm. 5.1].

Concerning the spaces Bs,τ
p,q (Ω), which by (1.2) are not covered by our scale of

generalized Besov-Morrey spaces, in Theorem 3.20 we show that for 0 ≤ τ ≤ 1
p
,

n ≥ 2, and (1.3), we have

Tr∂ΩB
s,τ
p,q (Ω) = B

s− 1

p
, nτ
n−1

p,q (∂Ω),

where again the smoothness k of the domain Ω has to be large enough. These
results are in good agreement with the corresponding trace results for the spaces
F s,τ
p,q (Ω), which are covered by the results from Theorem 3.8. For the proof we
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develop in Theorem 3.12 a quarkonial decomposition for the spaces Bs,τ
p,q (R

n),
which is of independent interest. We apply the trace results for the Besov type
spaces in order to obtain some a priori estimates for solutions of elliptic boundary
value problem, which extend the results from [Bar05].

The paper is organized as follows. In Section 2, we introduce the generalized
smoothness Morrey spaces on domains we want to study and provide some impor-
tant properties needed for our later investigations. In Section 3, we obtain trace
results on the boundary. For this a delicate construction of a lift and an extension
operator is needed. Finally, Section 4, gives some applications to PDEs.

2. Preliminaries

We start by collecting some general notation used throughout the paper.
As usual, we denote by N the set of all natural numbers, N0 = N ∪ {0},

and Rn, n ∈ N, the n-dimensional real Euclidean space with |x|, for x ∈ Rn,

denoting the Euclidean norm of x and 〈x〉 :=
√
1 + |x|2. Moreover, Rn

+ =
{x = (x′, xn) ∈ R

n, x′ ∈ R
n−1, xn > 0} stands for the half-space. By Z

n we
denote the lattice of all points in R

n with integer components. Let N
n
0 , where

n ∈ N, be the set of all multi-indices, α = (α1, . . . , αn) with αj ∈ N0 and
|α| :=

∑n
j=1 αj . If x = (x1, . . . , xn) ∈ Rn and α = (α1, . . . , αn) ∈ Nn

0 , then
we put xα := xα1

1 · · · xαn
n . For a ∈ R, let [a] := max{k ∈ Z : k ≤ a} and

a+ := max(a, 0). We denote by c a generic positive constant which is independent
of the main parameters, but its value may change from line to line. The expression
A . B means that A ≤ cB. If A . B and B . A, then we write A ∼ B.

Given two quasi-Banach spaces X and Y , we write X →֒ Y if X ⊂ Y and the
natural embedding is bounded.

If E is a measurable subset of Rn, we denote by χE its characteristic function
and by |E| its Lebesgue measure. By supp f we denote the support of the function
f .

Let BC(Rn) be the space of all bounded continuous functions f : Rn → C and
BUC(Rn) be the set of those functions that are bounded and uniformly continuous.
Both spaces are Banach spaces endowed with the norm ‖f | L∞(Rn)‖. For
k ∈ N0, we denote by BCk(Rn) the space of all functions f ∈ BC(Rn) such
that Dαf ∈ BC(Rn) for all α ∈ N0 with |α| ≤ k, endowed with the norm∑

|α|≤k ‖D
αf | L∞(Rn)‖. Let ν ∈ R, thenHν

2 (R
n) denotes the fractional Sobolev

spaces, i.e.,

Hν
2 (R

n) := {f ∈ S ′(Rn) : ‖f |Hν
2 (R

n)‖ := ‖(1−∆)ν/2f |L2(R
n)‖ < ∞}.
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For each cube Q ⊂ R
n we denote its centre by xQ, its side length by ℓ(Q),

and, for a ∈ (0,∞), we denote by aQ the cube concentric with Q having the side
length aℓ(Q). For x ∈ R

n and r ∈ (0,∞) we denote by Q(x, r) the compact cube
centred at x with side length r, whose sides are parallel to the axes of coordinates.
We write simply Q(r) = Q(0, r) when x = 0.

The following is our convention for dyadic cubes. For j ∈ Z and k ∈ Zn,
denote by Qjk the dyadic cube 2−j([0, 1)n+ k) and xQjk

its lower left corner. Let
Q := {Qjk : j ∈ Z, k ∈ Z

n}, Q∗ := {Q ∈ Q : ℓ(Q) ≤ 1} and jQ := − log2 ℓ(Q)
for all Q ∈ Q.

Moreover, for p, q ∈ (0,∞], put

σp := n

(
1

min(1, p)
− 1

)
, σp,q := n

(
1

min(1, p, q)
− 1

)
.

Recall first that the classical Morrey space Mu,p(R
n), 0 < p ≤ u < ∞, is

defined to be the set of all locally p-integrable functions f ∈ Lloc
p (Rn) such that

‖f | Mu,p(R
n)‖ := sup

Q∈Q
|Q|

1

u
− 1

p

(∫

Q

|f(y)|pdy

) 1

p

< ∞ . (2.1)

In this paper we consider generalized Morrey spaces according to the following
definition.

Definition 2.1. Let 0 < p < ∞ and ϕ : (0,∞) → (0,∞) be a function. Then
Mϕ

p (R
n) is the set of all locally p-integrable functions f ∈ Lloc

p (Rn) for which

‖f | Mϕ
p (R

n)‖ := sup
Q∈Q

ϕ
(
ℓ(Q)

)( 1

|Q|

∫

Q

|f(y)|p dy

) 1

p

< ∞ .

Remark 2.2. The above definition goes back to [Nak94]. When ϕ(t) := t
n
u for

t > 0 and 0 < p ≤ u <∞ then Mϕ
p (R

n) coincides with Mu,p(R
n), which in turn

recovers the Lebesgue space Lp(R
n) when u = p. Another example of particular

interest is the case of ϕ(t) := (1 + tn)
1

u

(
log(e + t−n)

)−1
, which arises naturally

in the target space when studying embeddings of Sobolev-Morrey spaces in the
critical case, cf. [SW13, Thm. 5.1].

Observe that in the quasi-norm (2.1), in the proper Morrey case of p < u, as ℓ(Q)

increases the integral also increases while the remaining term |Q|
1

u
− 1

p = ℓ(Q)
n
u
−n

p

decreases. If we want to keep this feature in the generalized Morrey case it is
natural to consider functions ϕ in the class Gp, 0 < p < ∞, where Gp is set of
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all nondecreasing functions ϕ : (0,∞) → (0,∞) such that ϕ(t)t−n/p is a nonin-
creasing function, in this context we also refer to [Nak00].

Let S(Rn) be the set of all Schwartz functions on Rn, endowed with the usual
topology, and denote by S ′(Rn) its topological dual, namely, the space of all
bounded linear functionals on S(Rn) endowed with the weak ∗-topology. For all
f ∈ S(Rn) or f ∈ S ′(Rn), we use Ff to denote its Fourier transform, and F−1f
for its inverse.

Now let us define the generalized Besov-Morrey spaces and the generalized
Triebel-Lizorkin-Morrey spaces introduced in [NNS16].

Definition 2.3. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp. Let
µ0, µ ∈ S(Rn) be nonnegative compactly supported functions satisfying

µ0(x) > 0 if x ∈ Q(2),

0 /∈ suppµ and µ(x) > 0 if x ∈ Q(2) \Q(1).

For j ∈ N, let µj(x) := µ(2−jx), x ∈ Rn.

(i) The generalized Besov-Morrey space N s
Mϕ

p ,q
(Rn) is defined to be the set of

all f ∈ S ′(Rn) such that

∥∥f | N s
Mϕ

p ,q
(Rn)

∥∥ :=

( ∞∑

j=0

2jsq
∥∥F−1(µjFf) | M

ϕ
p (R

n)
∥∥q
)1/q

<∞

with the usual modification made in case of q = ∞.
(ii) When q < ∞, assume that there exist C, ε > 0 such that

tε

ϕ(t)
≤ C

rε

ϕ(r)
if t ≥ r. (2.2)

The generalized Triebel-Lizorkin-Morrey space Es
Mϕ

p ,q
(Rn) is defined to be

the set of all f ∈ S ′(Rn) such that

∥∥f | Es
Mϕ

p ,q
(Rn)

∥∥ :=

∥∥∥∥
( ∞∑

j=0

2jsq|F−1(µjFf)(·)|
q

)1/q

| Mϕ
p (R

n)

∥∥∥∥ <∞

with the usual modification made in case of q = ∞.

Convention. We shall adopt the nowadays usual custom to write As
Mϕ

p ,q
instead of

N s
Mϕ

p ,q
or Es

Mϕ
p ,q

, respectively, when both scales of spaces are meant simultaneously
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in some context, assuming always that there exist C, ε > 0 such that (2.2) holds,
when q <∞ and As

Mϕ
p ,q

denotes Es
Mϕ

p ,q
.

Remark 2.4. The above spaces have been introduced in [NNS16]. There the
authors have proved that those spaces are independent of the choice of the functions
µ0 and µ considered in the definition, as different choices lead to equivalent quasi-
norms, cf. [NNS16, Theorem 1.4]. When ϕ(t) := t

n
u for t > 0 and 0 < p ≤ u <∞

then

N s
Mϕ

p ,q
(Rn) = N s

u,p,q(R
n) and Es

Mϕ
p ,q
(Rn) = Es

u,p,q(R
n)

are the usual Besov-Morrey and Triebel-Lizorkin-Morrey spaces, which are studied
in [YSY10] or in the recent survey papers by Sickel [Si12, Si13]. We remark that,
in this particular case, the additional condition (2.2) on ϕ required in Definition
2.3(ii) for the generalized Triebel-Lizorkin-Morrey spaces is automatically fulfilled,
as there always exist 0 < ε < n/u. Of course, we can recover the classical
Besov spaces Bs

p,q(R
n) and the classical Triebel-Lizorkin spaces F s

p,q(R
n) for any

0 < p <∞, 0 < q ≤ ∞, and s ∈ R, since

Bs
p,q(R

n) = N s
p,p,q(R

n) and F s
p,q(R

n) = Es
p,p,q(R

n).

Furthermore, we also recover the Triebel-Lizorkin-type spaces F s,τ
p,q (R

n) defined
in [YSY10], when 0 ≤ τ < 1/p as

F s,τ
p,q (R

n) = Es
u,p,q(R

n) with u =
p

1− pτ
, (2.3)

for any 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R, cf. [YSY10, Cor. 3.3, p. 63]. Note
that the corresponding Besov-type spaces Bs,τ

p,q (R
n), see page 29 for the definition,

are not covered by our approach. In particular, by [YSY10, Cor. 3.3, p. 64] we
have

N s
u,p,q(R

n) →֒ Bs,τ
p,q (R

n) with u =
p

1− pτ
, (2.4)

and the embedding is proper if τ > 0 and q < ∞. However, if τ = 0 or q = ∞
then both spaces coincide. Besides the elementary embeddings

As+ε
Mϕ

p ,q1
(Rn) →֒ As

Mϕ
p ,q2

(Rn), ε > 0,

and

As
Mϕ

p ,q1
(Rn) →֒ As

Mϕ
p ,q2

(Rn), q1 ≤ q2,

cf. [NNS16, Prop. 3.3], we can also easily prove that

N s
Mϕ

p ,min{p,q}(R
n) →֒ Es

Mϕ
p ,q
(Rn) →֒ N s

Mϕ
p ,∞

(Rn).
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It is known that

E0
u,p,2(R

n) = Mu,p(R
n) for 1 < p ≤ u <∞,

cf. [Maz03, Prop. 4.1]. The following is the counterpart for the generalized Triebel-
Lizorkin-Morrey spaces.

Proposition 2.5. Let 1 < p < ∞ and ϕ ∈ Gp satisfy (2.2). If ϕ is strictly
increasing, then

E0
Mϕ

p ,2
(Rn) = Mϕ

p (R
n).

P r o o f : This is a consequence of Theorem 3.12 and Proposition 3.18 of
[YZY15] letting φ(x, r) := ϕ(r)−1r

n
p for any x ∈ R

n and r > 0.

The following result is a direct consequence of Theorem 2.19 from [NNS16] and
plays a crucial role.

Theorem 2.6. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, ϕ ∈ Gp, and assume

ν >
n

min(1, p, q)
+
n

2
.

Suppose that for each j ∈ N we are given a compact set Kj of Rn with diameter
dj, Hj ∈ S(Rn) and fj ∈ Mϕ

p (R
n) ∩ S ′(Rn) with suppFfj ⊂ Kj.

(i) The inequality

‖2jsF−1(HjFfj) | M
ϕ
p (R

n)‖ .

(
sup
k∈N0

‖Hk(dk·) | H
ν
2 (R

n)‖

)
‖2jsfj | M

ϕ
p (R

n)‖

holds for all j ∈ N.
(ii) Assume (2.2) in addition when q < ∞. If the collection of measurable

functions {fj}∞j=1 satisfies
∥∥∥∥
( ∞∑

j=1

2jsq|fj|
q

)1/q

| Mϕ
p (R

n)

∥∥∥∥ <∞,

then we have
∥∥∥∥
( ∞∑

j=1

2jsq|F−1(HjFfj)|
q

)1/q

| Mϕ
p (R

n)

∥∥∥∥

.

(
sup
k∈N0

‖Hk(dk·) | H
ν
2 (R

n)‖

)∥∥∥∥
( ∞∑

j=1

2jsq|fj|
q

)1/q

| Mϕ
p (R

n)

∥∥∥∥.
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The atomic decomposition. An important tool in our later considerations is the
characterization of the generalized Besov-Morrey and Triebel-Lizorkin-Morrey spaces
by means of atomic decompositions. We follow [NNS16] and start by defining the
appropriate sequence spaces and atoms.

Definition 2.7. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp.

(i) The generalized Besov-Morrey sequence space n
s
Mϕ

p ,q
(Rn) is the set of all

doubly indexed sequences λ := {λjm}j∈N0,m∈Zn ⊂ C for which the quasi-
norm

‖λ | ns
Mϕ

p ,q
‖ :=

( ∞∑

j=1

2jsq
∥∥∥∥
∑

m∈Zn

λjmχQjm

∣∣∣Mϕ
p (R

n)

∥∥∥∥
q)1/q

is finite (with the usual modification if q = ∞).
(ii) Assume in addition (2.2) when q < ∞. The generalized Triebel-Lizorkin-

Morrey sequence space esMϕ
p ,q
(Rn) is the set of all doubly indexed sequences

λ := {λjm}j∈N0,m∈Zn ⊂ C for which the quasi-norm

‖λ|esMϕ
p ,q
‖ :=

∥∥∥∥
{ ∞∑

j=1

2jsq
(∑

m∈Zn

|λjm|χQjm

)q}1/q ∣∣∣Mϕ
p (R

n)

∥∥∥∥

is finite (with the usual modification if q = ∞).

Convention. We adopt the same custom to write asMϕ
p ,q

instead of ns
Mϕ

p ,q
or esMϕ

p ,q
,

for convenience, when both scales are meant simultaneously, assuming always that
there exist C, ε > 0 such that (2.2) holds, when q <∞ and a = e.

Definition 2.8. Let L ∈ N0 ∪ {−1}, K ∈ N0, and d > 1. A CK-function
a : Rn → C is said to be a (K,L, d)-atom centered at Qjm, where j ∈ N0 and
m ∈ Z

n, if
2−j|α||Dαa(x)| ≤ χdQjm

(x) (2.5)

for all x ∈ Rn and for all α ∈ Nn
0 with |α| ≤ K, and when for j ∈ N it holds
∫

Rn

xβa(x)dx = 0, (2.6)

for all β ∈ N
n
0 with |β| ≤ L when L ≥ 0. In the sequel we write ajm instead of a

if the atom is located at Qjm, i.e., supp ajm ⊂ dQjm.

The following coincides with [NNS16, Thm. 4.4, Thm. 4.5], cf. also [NNS16,
Rmk. 4.3].
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Theorem 2.9. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp. Assume
in addition that ϕ satisfies (2.2) when q < ∞ and A = E . Let also d > 1,
L ∈ N0 ∪ {−1} and K ∈ N0 be such that

K ≥ [1 + s]+ and L ≥

{
max(−1, [σp − s]), if A = N ,

max(−1, [σpq − s]), if A = E .

(i) Let f ∈ As
Mϕ

p ,q
(Rn). Then there exists a family {ajm}j∈N0,m∈Zn of (K,L, d)-

atoms and a sequence λ = {λjm}j∈N0,m∈Zn ∈ a
s
Mϕ

p ,q
(Rn) such that

f =
∞∑

j=0

∑

m∈Zn

λjmajm in S ′(Rn)

and

‖λ | asMϕ
p ,q
(Rn)‖ . ‖f | As

Mϕ
p ,q
(Rn)‖.

(ii) Let {ajm}j∈N0,m∈Zn be a family of (K,L, d)-atoms and λ = {λjm}j∈N0,m∈Zn ∈
a
s
Mϕ

p ,q
(Rn). Then

f =
∞∑

j=0

∑

m∈Zn

λjmajm

converges in S ′(Rn) and belongs to As
Mϕ

p ,q
(Rn). Furthermore

‖f | As
Mϕ

p ,q
(Rn)‖ . ‖λ | asMϕ

p ,q
(Rn)‖.

The quarkonial decomposition. The consideration of special atoms, so-called quarks,
and subatomic or quarkonial decompositions goes back to [Tri97]. For the quarko-
nial decomposition for the spaces As

Mϕ
p ,q
(Rn) we follow [NNS16].

Throughout this section the function θ ∈ S(Rn) is fixed so that it has compact
support and {θ(· −m)}m∈Zn forms a partition of unity:

∑

m∈Zn

θ(x−m) = 1 for x ∈ R
n (2.7)

and, for some R > 0,

supp θ ⊂ 2RQ00. (2.8)

Remark 2.10. In [NNS16] the authors used supp θ ⊂ Q(2R) instead of (2.8).
We changed the notation since this does not fit with the cubes used in that paper
with left corner 2−jm; in particular, cf. [NNS16, formula (4.27)].
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Definition 2.11. Let β ∈ Nn
0 , ν ∈ N0 and m ∈ Zn. Then the function θβ and

the quark (βqu)νm are defined by

θβ(x) := xβθ(x) and (βqu)νm(x) := θβ(2νx−m) for x ∈ R
n.

The following coincides with [NNS16, Thm. 4.18].

Theorem 2.12. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp. Assume in
addition that ϕ satisfies (2.2) when q <∞ and A = E . Suppose further that

s >

{
σp, if A = N ,

σp,q, if A = E ,

and let ρ be such that ρ > R, where R is a constant as in (2.8).

(i) Let f ∈ As
Mϕ

p ,q
(Rn). Then there exists a triply indexed complex sequence

λ := {λβνm}β∈Nn
0 ,ν∈N0,m∈Zn

such that

f =
∑

β∈Nn
0

∞∑

ν=0

∑

m∈Zn

λβνm (βqu)νm, (2.9)

convergence being in S ′(Rn), and

‖λ | as
M

ϕ
p ,q
(Rn)‖ρ := sup

β∈Nn
0

2ρ|β| ‖λβ | asMϕ
p ,q
(Rn)‖ . ‖f | As

Mϕ
p ,q
(Rn)‖.

The numbers λβνm depend continuously and linearly on f .
(ii) If λ := {λβνm}β∈Nn

0 ,ν∈N0,m∈Zn satisfies ‖λ | as
M

ϕ
p ,q
(Rn)‖ρ < ∞, then

f =
∑

β∈Nn
0

∞∑

ν=0

∑

m∈Zn

λβνm (βqu)νm (2.10)

converges in S ′(Rn) and belongs to As
Mϕ

p ,q
(Rn). Furthermore

‖f | As
Mϕ

p ,q
(Rn)‖ . ‖λ | as

M
ϕ
p ,q
(Rn)‖ρ.
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Embeddings into BUC(Rn). The next result was proved in [NNS16, Lem. 3.4] and
will be used in Theorem 3.7 for the construction of a suitable extension operator.

Proposition 2.13. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp. Assume
in addition that ϕ satisfies (2.2) when q <∞ and A = E . If s > 0 is such that

∞∑

j=1

1

2sjϕ(2−j)
< ∞, (2.11)

then
As

Mϕ
p ,q
(Rn) →֒ B0

∞,1(R
n) →֒ BUC(Rn).

Remark 2.14. Since ϕ ∈ Gp, it is clear that (2.11) is satisfied when s > n
p .

Moreover, (2.11) is also necessary in order to have N
M

ϕ
p ,q

,∞(Rn) →֒ B0
∞,1(R

n),

cf. [NNS16, Rmk. 3.5].

2.1. Generalized smoothness Morrey spaces on domains. Let Ω ⊂ R
n

be a domain. Recall that domain always stands for open set. Furthermore, Γ = ∂Ω
denotes the boundary of Ω. We define generalized smoothness Morrey spaces on
domains in the usual way by restriction. Recall that D′(Ω) is the collection of all
complex-valued distributions on Ω. If g ∈ S ′(Rn) then the restriction of g to Ω is
an element of D′(Ω), which will be denoted by g

∣∣
Ω
.

Definition 2.15. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp. Additionally
assume that ϕ satisfies (2.2) when q < ∞ and A = E . The space As

Mϕ
p ,q
(Ω)

is defined as the restriction of the corresponding space As
Mϕ

p ,q
(Rn) to Ω, quasi-

normed by
‖f |As

Mϕ
p ,q
(Ω)‖ := inf ‖g|As

Mϕ
p ,q
(Rn)‖,

where the infimum is taken over all g ∈ As
Mϕ

p ,q
(Rn) with g

∣∣
Ω
= f in the sense of

D′(Ω).

Since in the sequel we will deal with so-called Ck domains Ω ⊂ Rn and traces
on their boundary, we give a precise definition.

Definition 2.16. Let Ω be a bounded domain in Rn. Then Ω is said to be a Ck

domain, k ∈ N ∪ {∞}, if there exist N open balls K1, . . . , KN such that

N⋃

j=1

Kj ⊃ Γ and Kj ∩ Γ 6= ∅ if j = 1, . . . , N,
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with the following property: for every ball Kj there are diffeomorphic Ck maps
ψ(j) such that

ψ(j) : Kj → Vj , j = 1, . . . , N,

where

ψ(j)(Kj ∩ Ω) ⊂ R
n
+, ψ(j)(Kj ∩ Γ) ⊂ R

n−1.

Kj

Ω

∂Ω = Γ

ψ(j)

(
ψ(j)
)−1

y

y′

Vj

Rn−1

ψ(j)(Ω ∩Kj)

ψ(j)(Γ ∩Kj)

Remark 2.17. The Ck maps ψ(j) can be extended outside Kj in such a way
that the extended vector functions (denoted by ψ(j) as well) yield diffeomorphic
mappings from R

n onto itself (k-diffeomorphisms). Note that our understand-

ing of a Ck diffeomorphism implies that the inverse
(
ψ(j)
)−1

is also a Ck map.
In [NNS16, Sect. 5.3] a diffeomorphism with this property was called regular. We
do not make this distinction.

Resolution of unity. Let Kj with j = 1, . . . , N be the same balls as in Definition
2.16. Let K0 be an inner domain with K0 ⊂ Ω, so that

Γ ⊂
N⋃

j=1

Kj and Ω ⊂ K0 ∪

(
N⋃

j=1

Kj

)
.

Let {ϕj}Nj=0 be a related resolution of unity of Ω, i.e., ϕj are nonnegative func-
tions with

ϕj ∈ D(Kj) and
N∑

j=0

ϕj(x) = 1 (2.12)
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in a neighbourhood of Ω. Obviously, the restriction of ϕj to Γ is a resolution of
unity with respect to Γ. Now we can decompose f ∈ Lp(Ω) such that

f(x) = ϕ0(x)f(x) +
N∑

j=1

ϕj(x)f(x), x ∈ Ω,

where the term ϕ0f can be extended outside of Ω by zero.

Generalized smoothness Morrey spaces on the boundary. We consider the bound-
ary ∂Ω = Γ of a bounded Ck domain Ω. Then D′(Γ) stands for the distributions
on the compact Ck manifold Γ.

We require the introduction of Besov-Morrey and Triebel-Lizorkin-Morrey spaces
on Γ. We rely on the resolution of unity according to (2.12) and the local diffeo-
morphisms ψ(j) mapping Γj = Γ∩Kj onto Wj = ψ(j)(Γj), recall Definition 2.16.
We define

gj(y) := (ϕjf) ◦ (ψ
(j))−1(y), j = 1, . . . , N,

which restricted to y = (y′, 0) ∈ Wj,

gj(y
′) = (ϕjf) ◦ (ψ

(j))−1(y′), j = 1, . . . , N, f ∈ D′(Γ),

makes sense. This results in distributions gj ∈ D′(Wj) with compact supports
in the (n − 1)-dimensional Ck domain Wj. We do not distinguish notationally
between gj and (ψ(j))−1 as distributions of (y′, 0) and of y′.

Kj

Ω

∂Ω = Γ

ψ(j)

(
ψ(j)
)−1

Γj

Vj

R
n−1

supp gj

Wj

suppϕjf

Our constructions enable us to define the generalized smoothness Morrey spaces
on the boundary Γ as follows.

Definition 2.18. Let n ≥ 2, and let Ω be a bounded Ck domain in R
n with

boundary Γ, and ϕj, ψ
(j), Wj be as above. Assume 0 < p < ∞, 0 < q ≤ ∞,
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s ∈ R, and ϕ ∈ Gp. Additionally assume that ϕ satisfies (2.2) when q < ∞ and
A = E . Then we introduce

As
Mϕ

p ,q
(Γ) := {f ∈ D′(Γ) : gj ∈ As

Mϕ
p ,q
(Wj), j = 1, . . . , N},

equipped with the quasi-norm

‖f |As
Mϕ

p ,q
(Γ)‖ :=

N∑

j=1

‖gj|A
s
Mϕ

p ,q
(Wj)‖.

Remark 2.19. The spaces As
Mϕ

p ,q
(Γ) turn out to be independent of the particular

choice of the covering {Kj}Nj=1, the resolution of unity {ϕj}Nj=1 and the local dif-

feomorphisms {ψ(j)}Nj=1 (the proof is similar to the proof of [Tri83, Prop. 3.2.3(ii)],
making use of Theorem 2.20 and Proposition 2.21 below).
Note that we could furthermore replace Wj in the definition of the norm above by
Rn−1 if we extend gj outside Wj with zero, i.e.,

‖f |As
Mϕ

p ,q
(Γ)‖ ∼

N∑

j=1

‖gj|A
s
Mϕ

p ,q
(Rn−1)‖.

2.2. Diffeomorphisms and multipliers. The following theorem about dif-
feomorphisms and pointwise multiplication can be found in [NNS16, Thm. 5.4,
Thm. 5.5].

Theorem 2.20. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp. Additionally
assume that ϕ satisfies (2.2) when q <∞ and A = E . Moreover, let

k > s >

{
σp, if A = N ,

σp,q, if A = E .

(i) For all g ∈ BCk(Rn) we have that

f → gf

is a linear and bounded operator from As
Mϕ

p ,q
(Rn) into itself, i.e., there

exists a positive constant C(k) such that

‖gf |As
Mϕ

p ,q
(Rn)‖ ≤ C(k)‖g|BCk(Rn)‖ · ‖f |As

Mϕ
p ,q
(Rn)‖.

(ii) For all k-diffeomorphisms ψ we have that

f → f ◦ ψ
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is a linear and bounded operator from As
Mϕ

p ,q
(Rn) into itself. In particular,

we have for some positive constant C(ψ),

‖f ◦ ψ|As
Mϕ

p ,q
(Rn)‖ ≤ C(ψ)‖f |As

Mϕ
p ,q
(Rn)‖.

For later purposes we establish an equivalent norm for As
Mϕ

p ,q
(Ω).

Proposition 2.21. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and ϕ ∈ Gp.
Additionally assume that ϕ satisfies (2.2) when q <∞ and A = E . Furthermore,
let Ω ⊂ R

n be a bounded Ck domain with

k > s >

{
σp, if A = N ,

σp,q, if A = E .

Then

‖ϕ0f |A
s
Mϕ

p ,q
(Rn)‖+

N∑

j=1

‖(ϕjf)(ψ
(j)−1

(·))|As
Mϕ

p ,q
(Rn

+)‖ (2.13)

is an equivalent quasi-norm in As
Mϕ

p ,q
(Ω), where we extended ϕ0f by zero outside

K0 and (ϕjf)(ψ
(j)−1

(·)) by zero from ψ(j)(Kj ∩ Ω) to Rn
+ for j = 1, . . . , N .

The proof is the same as for the classical case, cf. [Tri83, Prop. 3.2.3] relying
now on Theorem 2.20.

3. Traces on the boundary of Ck domains Ω

The trace operator plays an important role when dealing with existence and
uniqueness of solutions of boundary value problems on domains.

Assume that n ≥ 2. If x = (x1, · · · , xn) ∈ Rn, we put x′ = (x1, · · · , xn−1) ∈
Rn−1 and in this case we might also write x = (x′, xn). We explain our under-
standing of the trace operator on the hyperplane {(x′, 0) : x′ ∈ R

n−1} of Rn,
interpreted as R

n−1, in the context of the scales of (generalized) Besov-Morrey
and Triebel-Lizorkin-Morrey spaces.

If f is a smooth function, e.g., f ∈ S(Rn), it makes sense to define the restriction
of f pointwise on the hyperplane and define the trace operator Tr Rn−1 by

(Tr Rn−1f)(x′) := f(x′, 0), x′ ∈ R
n−1. (3.1)

Let X(Rn) := As
Mϕ

p ,q
(Rn) denote a generalized smoothness Morrey space accord-

ing to Definition 2.3. In order to define the trace for f ∈ X(Rn) we use the atomic
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decomposition from Theorem 2.9, i.e.,

f =

∞∑

j=0

∑

m∈Zn

λjmajm (3.2)

and define Tr Rn−1f by

Tr Rn−1f :=

∞∑

j=0

(
∑

m∈Zn

λjmajm(·
′, 0)

)
. (3.3)

This definition makes sense since the proof of the atomic decomposition from
Theorem 2.9 reveals that λjmajm is obtained canonically from f ∈ X(Rn), mean-
ing there exists a continuous linear operator Ijm from X(Rn) into the space of
L∞-functions with compact support such that Ijm(f) := λjmajm.

If f ∈ S(Rn) then (3.3) actually coincides with (3.1). This can be seen as
follows: the limit in (3.2) takes place in BUC(Rn) since f ∈ Bε

∞,∞(Rn) →֒
BUC(Rn) for all ε ∈ (0, 1). But this in turn implies pointwise convergence since

lim
J→∞

(
sup
x∈Rn

∣∣∣∣f(x)−
J∑

j=0

∑

m∈Zn

λjmajm(x)

∣∣∣∣

)
= 0,

demonstrating that (3.3) is well-defined.

Remark 3.1. In order to explain the understanding of the trace operator in some
function space X(Rn) one usually uses the fact that S(Rn) is dense in X(Rn),
since then the trace is completely defined by density arguments. However, this
is not available when dealing with generalized Besov-Morrey and Triebel-Lizorkin-
Morrey spaces, which is why we have to rely on the atomic decomposition tech-
niques as described from above. This approach was also used in [NNS16,Saw10].

Below we now recall the trace results on hyperplanes, which were obtained in
[NNS16, Thms. 5.1, 5.3].

Theorem 3.2. Let n ≥ 2. Let 0 < p < ∞, 0 < q ≤ ∞, and ϕ ∈ Gp.
Additionally assume that ϕ satisfies (2.2) when q <∞ and A = E . Define s∗ and
ϕ∗ by

s∗ := s−
1

p
and ϕ∗(t) := ϕ(t) t−1/p, t > 0.
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Assume that

s >
1

p
+ (n− 1) ·





(
1

min(1,p) − 1
)
, if A = N ,(

1
min(1,p,q) − 1

)
, if A = E .

and that ϕ∗ is increasing and satisfies

∞∑

j=0

1

ϕ∗(2js)
.

1

ϕ∗(s)
, 0 < s ≤ 1.

Then Tr Rn−1 is a bounded linear operator from As
Mϕ

p ,q
(Rn) onto As∗

Mϕ∗

p ,r
(Rn−1),

Tr Rn−1As
Mϕ

p ,q
(Rn) = As∗

Mϕ∗

p ,r
(Rn−1) where r =

{
q, if A = N ,

p, if A = E .

3.1. Lift operator. In this section we use the family of lift operators {Jσ}σ∈R
due to Franke and Runst [FR95], which goes back to Triebel [Tri78], and extend
it to our setting such that it has the following properties:

• Jσ is an isomorphism from As
Mϕ

p ,q
(Rn) to As−σ

Mϕ
p ,q
(Rn).

• Jσ and J−σ are inverse to each other.
• If f ∈ S ′(Rn) is supported on R

n−1 × (−∞, 0], so is Jσf .

Note that by [NNS16, Prop. 3.2] the lift operators (1−∆)σ/2 also satisfy the above
conditions except the third one, which is crucial for us.

We start with the construction of a function on which our family of operators is
build on. Let η ∈ S(R) be a positive real-valued function with supp η ⊂ [−2,−1]
and

∫
R
η(x)dx = 2. For any 0 ≤ ε ≪ 1, we define a holomorphic function ψε on

C by

ψε(z) :=

∫ 0

−∞

η(t)e−iεtzdt− iz.

Let H := {z ∈ C : Im(z) > 0} and H := {z ∈ C : Im(z) ≥ 0}. Furthermore,
we consider the domain Ω = {z ∈ C : |z| > 4,Re(z) > 0}. If z ∈ C satisfies
|z| > 4 and Im(z) > 0, it follows that −iz ∈ Ω. Hence, we see that

dist(ψε(z),Ω) ≤ |ψε(z) + iz| =

∣∣∣∣
∫ 0

∞

η(t)e−iεtzdt

∣∣∣∣ < 2. (3.4)
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If z ∈ C satisfies |z| ≤ 4 and Im(z) ≥ 0, then we have Re(ψ0(z)) = 2 + Im(z).
Thus, for any 0 < ε≪ 1, we obtain

Re(ψε(z)) =

∫ 0

−∞

η(t)eεtIm(z) cos(εtRe(z))dt+ Im(z) ≥
3

2
,

since the integrand is continuous. If ε > 0 is a sufficiently small number, we see
that ψε maps H to

Ω0 := {z ∈ C : Re(z) > 1} ∪ {z ∈ C : |Im(z)| > 1}.

1

1 2 4

4 4

4

−4

−4 −1Re Re

ImIm

Ω0

Re(z) ≥ 1

Ω

ψε

H

Below fix a small ε > 0. We select a branch-cut of log on C \ (−∞, 0] such
that log 1 = 0. Then we define za = exp(a log z) for z ∈ C \ (−∞, 0]. For any
σ ∈ R, we define the function Φ(σ) : Rn−1 ×H → C by

Φ(σ)(x′, zn) :=

(
〈x′〉ψε

(
zn
〈x′〉

))σ

, zn ∈ H,

which is well-defined for σ ∈ R. Here we put 〈x′〉 =
√
1 + x21 + . . .+ x2n−1.

Setting Φ(1) = Φ we have the following lemma clarifying the behaviour of Φ with
respect to differentiation, cf. [Saw10, L. 4.3].

Lemma 3.3. For any multi-index α ∈ N
n
0 , there exists a constant cα > 0 such

that

|∂αΦ(x′, zn)| ≤ cα (〈x
′〉+ |zn|)

1−|α|
(3.5)

for all (x′, zn) ∈ Rn−1 ×H. Furthermore, we can even arrange that c0 satisfies

c−1
0 (〈x′〉+ |zn|) ≤ |Φ(x′, zn)| ≤ c0 (〈x

′〉+ |zn|) (3.6)
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for all (x′, zn) ∈ Rn−1 ×H.

We will also use the same symbol Φ(σ) for Φ(σ)
∣∣
Rn−1×R

. Then by Theorem 2.6
and Lemma 3.3, we derive the following proposition.

Proposition 3.4. Let 0 < p < ∞, 0 < q ≤ ∞, and ϕ ∈ Gp. Additionally
assume that ϕ satisfies (2.2) when q < ∞ and A = E . Then for any σ ∈ R we
have the following properties:

(i) Jσ := F−1[Φ(σ)F ] is a linear isomorphism between As
Mϕ

p ,q
(Rn) andAs−σ

Mϕ
p ,q
(Rn).

(ii) J−σ is the inverse operator of Jσ.
(iii) For any f ∈ As

Mϕ
p ,q
(Rn), we have ‖Jσf |A

s−σ
Mϕ

p ,q
(Rn)‖ ∼ ‖f |As

Mϕ
p ,q
(Rn)‖.

P r o o f : Let µ0, µ be functions as in Definition 2.3, and let R ∈ N be such
that

suppµ0 ⊂ {x ∈ R
n : |x| ≤ 2R} and suppµ ⊂ {x ∈ R

n : 2−R ≤ |x| ≤ 2R}.

We consider the case As
Mϕ

p ,q
(Rn) = Es

Mϕ
p ,q
(Rn) as the other case follows in an

analogous way. We have

∥∥Jσf | Es−σ
Mϕ

p ,q
(Rn)

∥∥ =

∥∥∥∥
( ∞∑

j=0

2j(s−σ)q|F−1(µjΦ
(σ)Ff)(·)|q

)1/q

| Mϕ
p (R

n)

∥∥∥∥.

Let φ ∈ S(Rn) be such that

φ(x) := 1 if 2−R ≤ |x| ≤ 2R and suppφ ⊂{x ∈ R
n : 2−R−1≤|x|≤2R+1}.

Then

F−1(µjΦ
(σ)Ff) = F−1(Φ(σ)φ(2−j·)µjFf) , j ∈ N.

Applying Theorem 2.6 with ν ∈ N such that ν > n
min(1,p,q) +

n
2 and

Hj(x) := 2−σjΦ(σ)(x)φ(2−jx), j ∈ N,

we obtain
∥∥∥∥
( ∞∑

j=1

2j(s−σ)q|F−1(µjΦ
(σ)Ff)(·)|q

)1/q

| Mϕ
p (R

n)

∥∥∥∥

.

(
sup
k∈N

‖Hk(2
k+R+1·) | Hν

2 (R
n)‖

)∥∥∥∥
( ∞∑

j=1

2jsq|F−1(µjFf)(·)|
q

)1/q

| Mϕ
p (R

n)

∥∥∥∥

. ‖f | Es
Mϕ

p ,q
(Rn)‖,
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where we used Lemma 3.3 to estimate the first term in the last inequality. The
term corresponding to j = 0 can be dealt with in a similar way, so that we arrive
at ∥∥Jσf | Es−σ

Mϕ
p ,q
(Rn)

∥∥ . ‖f | Es
Mϕ

p ,q
(Rn)‖.

The proof is completed by observing that JσJ−σf = f .

For the support of Jσf we have the following result. A proof may be found
in [Saw10, Prop. 4.6].

Proposition 3.5. If f ∈ S ′(Rn) is supported in Rn−1× (−∞, 0], then so is Jσf .

We have seen that our family of lift operators satisfies all the required properties
stated at the beginning of this section. This now enables us to prove the following
corollary, which will be used in the next section in order to construct a suitable
extension operator.

Corollary 3.6. Let 0 < p < ∞, 0 < q ≤ ∞, and ϕ ∈ Gp. Additionally assume
that ϕ satisfies (2.2) when q < ∞ and A = E .

(i) Let f ∈ As
Mϕ

p ,q
(Rn

+). Then Jσf := (Jσg)
∣∣
Rn

+

does not depend on the

choice of the representative g ∈ As
Mϕ

p ,q
(Rn) of f .

(ii) Jσ is an isomorphism from As
Mϕ

p ,q
(Rn

+) to As−σ
Mϕ

p ,q
(Rn

+). Furthermore, J−σ

is the inverse of Jσ.

P r o o f : We will prove (i). Let g1, g2 ∈ As
Mϕ

p ,q
(Rn) satisfy f = g1

∣∣
Rn

+

=

g2
∣∣
Rn

+

. Then we have

(Jσg1)
∣∣
Rn

+

− (Jσg2)
∣∣
Rn

+

= (Jσ(g1 − g2))
∣∣
Rn

+

= 0,

by linearity of Jσ, the fact that (g1 − g2)
∣∣
Rn

+

= 0 and Proposition 3.5. Thus, we

obtain

(Jσg1)
∣∣
Rn

+

= (Jσg2)
∣∣
Rn

+

,

which means that Jσf does not depend on g ∈ As
Mϕ

p ,q
(Rn) satisfying g

∣∣
Rn

+

= f .

Assertion (ii) follows immediately from the properties of Jσ as an operator on
As

Mϕ
p ,q
(Rn).
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3.2. Extension operator for As
Mϕ

p ,q
(Rn

+). Having constructed the lift operator

Jσ, we are now able to establish the following extension theorem. We shall deal
with the following set in the sequel:

R(N) :=

{
(p, q, s) :

1

N
≤ p <∞,

1

N
≤ q ≤ ∞, |s| < N

}
.

Theorem 3.7. Let 0 < p < ∞, 0 < q ≤ ∞, and ϕ ∈ Gp. Additionally assume
that ϕ satisfies (2.2) when q < ∞ and A = E . Then for N ∈ N, there exists an
extension operator ExtN ,

ExtN :
⋃

(p,q,s)∈R(N)

As
Mϕ

p ,q
(Rn

+) −→
⋃

(p,q,s)∈R(N)

As
Mϕ

p ,q
(Rn),

that satisfies the properties: if (p, q, s) ∈ R(N) then the restriction ExtN
∣∣
As

M
ϕ
p ,q

(Rn
+)

is a continuous mapping from As
Mϕ

p ,q
(Rn

+) to As
Mϕ

p ,q
(Rn) satisfying ExtNf

∣∣
Rn

+

= f

for all f ∈ As
Mϕ

p ,q
(Rn

+).

P r o o f : Step 1. We start with the general set up. Details may be found
in [Eva98, Ch. 5]. Let M ∈ N be large enough. We define λ1, . . . , λM so that

M∑

j=0

(−j)lλj = δ0,l, (3.7)

for all l = 0, . . . ,M . Here δ0,l denotes the Kronecker-symbol, i.e., δ0,0 = 1 and
δ0,l = 0 for l ≥ 1, and it is assumed that 0l = δ0,l. The determinant of this
system of linear equations is a constant multiple of the Vandermonde determi-
nant {ji}i,j=0,1,...,M , which is never 0. Therefore, the unknowns λ1, . . . , λM are
determined uniquely by (3.7). Given a function f : Rn−1× [0,∞) → C, we define

f ∗(x) :=

{
f(x), if xn ≥ 0,∑M

j=0 λjf(x
′,−jxn), if xn ≤ 0.

By definition of the λj we see that
∑M

j=0 λjf(x
′, 0) = f(x′, 0). Furthermore, if f

is in BCM and defined in a neighbourhood of Rn−1 × [0,∞), then f ∗ : Rn → C

also belongs to BCM(Rn).
Step 2. We define ExtN for s > n

p . By Proposition 2.13 and Remark 2.14, in this

case we have

As
Mϕ

p ,q
(Rn) →֒ BUC(Rn). (3.8)
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We assume now that

1

N
≤ p < ∞,

1

N
≤ q ≤ ∞,

n

p
< s ≤ N. (3.9)

Let M ≫ (n + 1)N be large enough (M > s for all s in (3.9)), where M
is the integer from Step 1. Given f ∈ As

Mϕ
p ,q
(Rn

+), we pick a representative

g ∈ As
Mϕ

p ,q
(Rn) such that

f = g
∣∣
Rn

+

, ‖g|As
Mϕ

p ,q
(Rn)‖ ≤ 2‖f |As

Mϕ
p ,q
(Rn

+)‖.

Taking the quarkonial decomposition of g,

g =
∑

β∈N0

∑

j∈N0

∑

m∈Zn

λβjm(βqu)jm,

the coefficients satisfy

‖λ|asMϕ
p ,q
‖ρ ≤ c‖g|As

Mϕ
p ,q
(Rn)‖ ≤ c′‖f |As

Mϕ
p ,q
(Rn

+)‖

with ρ > R, cf. Theorem 2.12. Since (3.8) holds, we see that

g∗ :=
∑

β∈N0

∑

j∈N0

∑

m∈Zn

λβjm(βqu)
∗
jm

does not depend on the particular choice of the representative g. Define

ExtNf :=
∑

β∈N0

∑

j∈N0

∑

m∈Zn

λβjm(βqu)
∗
jm

and its β-partial sum

ExtβNf :=
∑

j∈N0

∑

m∈Zn

λβjm(βqu)
∗
jm.

Although the sum defining ExtNf is not a quarkonial decomposition, we are still
able to regard 2−(R+ε)|β|ExtβNf as an atomic decomposition if 0 < ε < ρ − R.
Putting δ := −R− ε+ ρ > 0 we have

∥∥∥ExtβNf |As
Mϕ

p ,q
(Rn)

∥∥∥ ≤ 2(R+ε)|β|‖λβ|asMϕ
p ,q
‖

≤ 2(R+ε)|β|2−ρ|β|‖λ|asMϕ
p ,q
‖ρ

= 2−δ|β|‖λ|asMϕ
p ,q
‖ρ . 2−δ|β|‖f |As

Mϕ
p ,q
(Rn

+)‖.
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With this for κ := min(1, p, q) we compute

‖ExtNf |A
s
Mϕ

p ,q
(Rn)‖κ =

∥∥∥
∑

β

ExtβNf |A
s
Mϕ

p ,q
(Rn)

∥∥∥
κ

≤
∑

β

‖ExtβNf |A
s
Mϕ

p ,q
(Rn)‖κ

.
∑

β

2−δ|β|κ‖f |As
Mϕ

p ,q
(Rn

+)‖
κ . ‖f |As

Mϕ
p ,q
(Rn

+)‖
κ.

Thus, we see that ExtN is a continuous mapping with the desired properties.
Step 3. We deal with the construction of ExtN in general. For (p, q, s) ∈ R(N),
choose σ ∈ R and L ∈ N large enough so that

n

p
≤ nN < −N + σ < s+ σ < N + σ < L.

Hence, s + σ satisfies the assumptions of Step 2, so that ExtL
∣∣As+σ

Mϕ
p ,q
(Rn

+) is a

continuous mapping from As+σ
Mϕ

p ,q
(Rn

+) to As+σ
Mϕ

p ,q
(Rn) and ExtLf

∣∣
Rn

+

= f for all

f ∈ As+σ
Mϕ

p ,q
(Rn

+). Since J−σ maps As
Mϕ

p ,q
(Rn

+) to As+σ
Mϕ

p ,q
(Rn

+) and As
Mϕ

p ,q
(Rn) to

As+σ
Mϕ

p ,q
(Rn) continuously, the following composite mapping

ExtN := Jσ ◦ ExtL ◦ J−σ : As
Mϕ

p ,q
(Rn

+) → As
Mϕ

p ,q
(Rn)

makes sense.
We verify that ExtNf

∣∣
Rn

+

= f for f ∈ As
Mϕ

p ,q
(Rn

+). For this we pick a smooth

test function ψ ∈ D(Rn
+) and denote by Eψ its extension to S(Rn) obtained by

setting ψ(x) ≡ 0 outside Rn
+. We see that

〈ExtNf |Rn
+
, ψ〉 = 〈ExtNf, Eψ〉 =〈ExtLJ−σf,F [Φ(σ)F−1Eψ]〉

=〈J−σf,F [Φ(σ)F−1Eψ]
∣∣
Rn

+

〉

from the property of ExtL and Proposition 3.5. We further obtain for a represen-
tative g ∈ As

Mϕ
p ,q
(Rn) of f ,

〈ExtNf |Rn
+
, ψ〉 = 〈J−σg,F [Φ(σ)F−1Eψ]〉 = 〈g, Eψ〉 = 〈f, ψ〉.

Therefore, ExtNf
∣∣
Rn

+

= f for all f ∈ As
Mϕ

p ,q
(Rn

+) and the proof is finished.
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3.3. Traces for the spaces As
Mϕ

p ,q
(Ω). Now we are able to state and proof our

main theorem concerning traces of the generalized smoothness Morrey spaces on
domains.

Theorem 3.8. Let n ≥ 2. Let 0 < p < ∞, 0 < q ≤ ∞, and ϕ ∈ Gp.
Additionally assume that ϕ satisfies (2.2) when q <∞ and A = E . Furthermore,
let Ω ⊂ R

n, with boundary Γ, be a Ck domain for k large enough. Define s∗ and
ϕ∗ by

s∗ := s−
1

p
and ϕ∗(t) := ϕ(t) t−1/p, t > 0.

Assume that

s >
1

p
+ (n− 1) ·





(
1

min(1,p) − 1
)
, if A = N ,(

1
min(1,p,q) − 1

)
, if A = E ,

(3.10)

and that ϕ∗ is increasing and satisfies
∞∑

j=0

1

ϕ∗(2js)
.

1

ϕ∗(s)
, 0 < s ≤ 1.

Then TrΓ is a linear and bounded operator from As
Mϕ

p ,q
(Ω) onto As∗

Mϕ∗

p ,r
(Γ),

TrΓA
s
Mϕ

p ,q
(Ω) = As∗

Mϕ∗

p ,r
(Γ) where r =

{
q, if A = N ,

p, if A = E .

P r o o f : Our understanding of the trace operator on Γ is as follows. If f is
smooth, using the partition of unity from (2.12) we can write

TrΓf =

N∑

j=1

ϕj (TrΓf) .

Note that the term with ϕ0 is unimportant because only the values of f near the
boundary are of interest. Locally we see that for x ∈ Kj ∩ Ω with ψ(j)(x) = y ∈
Vj ∩ R

n
+, we have

ϕjTrΓf(x) = ϕjTrΓf ◦ (ψ(j))−1 ◦ ψ(j)(x) =ϕjTrΓf ◦ (ψ(j))−1(y)

=TrRn−1gj(y) = gj(y
′, 0),

where in the second step we extended gj := ϕjf ◦(ψ(j))−1 by zero outside Vj∩R
n
+

for TrRn−1 to make sense (concerning the notation we refer to Definition 2.16).
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Thus, the trace is well defined for smooth f . For general f we use the fact that
TrRn−1gj can be understood as explained at the beginning of Section 3, since
gj ∈ As

Mϕ
p ,q
(Rn). Therefore, the trace makes sense in this case as well and by the

definition of the spaces on the boundary Γ, we have that TrΓf ∈ As∗

Mϕ∗

p ,r
(Γ), if

TrRn−1gj ∈ As∗

Mϕ∗

p ,r
(Rn−1) for all j = 1, . . . , N .

Step 1. We wish to prove in this step that

TrΓA
s
Mϕ

p ,q
(Ω) ⊂ As∗

Mϕ∗

p ,r
(Γ). (3.11)

According to Theorem 3.7 there exists a bounded extension operator

Ext : As
Mϕ

p ,q
(Rn

+) −→ As
Mϕ

p ,q
(Rn)

with

‖Extf |As
Mϕ

p ,q
(Rn)‖ ∼ ‖f |As

Mϕ
p ,q
(Rn

+)‖.

In particular, for the trace operator Tr Rn−1 we see that

Tr Rn−1(Exth)(x) = Tr Rn−1h(x) = h(x′, 0),

whenever the pointwise trace for h makes sense. Using Theorem 3.2 we have

‖Tr Rn−1h | As∗

Mϕ∗

p ,r
(Rn−1)‖ = ‖Tr Rn−1(Exth) | As∗

Mϕ∗

p ,r
(Rn−1)‖

≤ c‖Exth | As
Mϕ

p ,q
(Rn)‖ ∼ ‖h | As

Mϕ
p ,q
(Rn

+)‖,

(3.12)

which shows that

TrRn−1As
Mϕ

p ,q
(Rn

+) ⊂ As∗

Mϕ∗

p ,r
(Rn−1). (3.13)

With this we calculate

‖Tr Γf | As∗

Mϕ∗

p ,r
(Γ)‖ =

N∑

j=1

‖TrRn−1gj | A
s∗

Mϕ∗

p ,r
(Rn−1)‖

=
N∑

j=1

‖ϕjf ◦ (ψ(j))−1(·, 0) | As∗

Mϕ∗

p ,r
(Rn−1)‖

≤
N∑

j=1

‖ϕjf ◦ (ψ(j))−1 | As
Mϕ

p ,q
(Rn

+)‖

≤ c‖f | As
Mϕ

p ,q
(Ω)‖, (3.14)
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where in the third step we used (3.12) and the last step is a consequence of
Proposition 2.21. In fact the calculations in (3.14) show that our problem (3.11)
reduces to (3.13).

Step 2. In order to see that the trace operator Tr Γ is onto As∗

Mϕ∗

p ,r
(Γ), we

establish the existence of a bounded extension operator

Ẽx : As∗

Mϕ∗

p ,r
(Γ) −→ As

Mϕ
p ,q
(Ω), Ẽx g

∣∣
Γ
= g,

such that for g ∈ As∗

Mϕ∗

p ,r
(Γ) we have

‖Ẽx g | As
Mϕ

p ,q
(Ω)‖ ≤ c‖g | As∗

Mϕ∗

p ,r
(Γ)‖.

We choose functions ηj ∈ D(Rn), j = 1, . . . , N with

supp ηj ⊂ Kj, ηj = 1, if x ∈ suppϕj.

Put

Ẽx g(x) :=

N∑

j=1

ηj(x) · Ex
(
(ϕjg)(ψ

(j))−1(·, 0)
)(

ψ(j)(x)
)
, x ∈ Ω,

where

Ex : As∗

Mϕ∗

p ,r
(Rn−1) −→ As

Mϕ
p ,q
(Rn)

stands for the extension operator from Theorem 3.2, cf. [NNS16, Thm. 5.3]. In
particular, our construction can be extended from Ω to R

n by putting ηj(x) ·
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Ex (. . . )
(
ψ(j)(x)

)
= 0 outside Kj. This yields

∥∥Ẽx g | As
Mϕ

p ,q
(Ω)
∥∥ = inf

{
‖h|As

Mϕ
p ,q
(Rn)‖ : h ∈ As

Mϕ
p ,q
(Rn), h

∣∣
Ω
= Ẽx g

}

≤
∥∥∥

N∑

j=1

ηj(·)Ex
(
(ϕjg)(ψ

(j))−1(·, 0)
)
(ψ(j)(·)) | As

Mϕ
p ,q
(Rn)

∥∥∥

∼
N∑

j=1

∥∥∥ηj(·)Ex
(
(ϕjg)(ψ

(j))−1(·, 0)
)
(ψ(j)(·)) | As

Mϕ
p ,q
(Rn)

∥∥∥

∼
N∑

j=1

∥∥∥Ex
(
(ϕjg)(ψ

(j))−1(·, 0)
)
| As

Mϕ
p ,q
(Rn)

∥∥∥

≤ c

N∑

j=1

∥∥∥(ϕjg)(ψ
(j))−1(·, 0) | As∗

Mϕ∗

p ,r
(Rn−1)

∥∥∥

= c
∥∥g | As∗

Mϕ∗

p ,r
(Γ)
∥∥,

where in the 4th step we used Theorem 2.20(i), (ii), since ψ(j) is a k-diffeomorphism
from Rn onto itself, and ηj ∈ D(Rn) if we put ηj(x) = 0 whenever x ∈ Rn \Kj.
This completes the proof.

Remark 3.9. Note that the above proof relies on the available diffeomorphism
property, cf. Theorem 2.20(ii), and this assertion does in general not apply to
variable exponent spaces. In the latter case, the values of the exponent depend
on the point of the domain and therefore a diffeomorphism assertion like the one
referred to above cannot be expected in the context of these variable exponent
spaces, unless a strict condition is imposed. In this regard we refer for instance
to [Gon17, Theorem 6.5.6].

Furthermore, it would also be interesting to clarify the trace in the limiting case,
which corresponds in the classical case to s = 1/p, see e.g. [Tri97]. This study
will be postponed to future work.

3.4. Traces for the Besov-type spaces Bs,τ
p,q (Ω). We now turn our attention

to the Besov-type spaces Bs,τ
p,q (Ω), which by (2.4) are related but not included in
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the scale of generalized Besov-Morrey spaces N s
Mϕ

p ,q
(Ω) considered so far. Our aim

is to obtain trace results on Ck domains similar to Theorem 3.8 for these spaces.
We briefly sketch the main ideas needed in this context. Our understanding of
the trace operator is in the same spirit as explained in Section 3, we also refer
to [YSY10, p. 164] in this context. A close inspection of the proof of Theorem 3.8
reveals that the method we used carries over to other function spaces if we can
find substitutes for the following assertions:

(A) Multipliers and diffeomorphisms according to Theorem 2.20 (which in turn
lead to an equivalent quasi-norm as in Proposition 2.21).

(B) An extension operator according to Theorem 3.7.
(C) Results for traces on hyperplanes (and extension operators) as stated in

Theorem 3.2.

Let s, τ ∈ R and 0 < p, q ≤ ∞. The inhomogeneous Besov-type spaceBs,τ
p,q (R

n)
is defined to be the set of all f ∈ S ′(Rn) such that

‖f |Bs,τ
p,q (R

n)‖ := sup
Q∈Q

1

|Q|τ


 ∑

j=max(jQ,0)

[∫

Q

(
2js|F−1[µj(ξ)Ff(ξ)](x)|

)p
dx

]q/p



1/q

(3.15)
is finite, where the functions µj are as in Definition 2.3. In this case it follows
from [YSY10, Cor. 2.1] that the definition of Bs,τ

p,q (R
n) is independent of the choice

of µj .
Corresponding spaces Bs,τ

p,q (Ω) on domains Ω ⊂ R
n are defined via restriction as

in Definition 2.15, whereas on the boundary Γ = ∂Ω we use Definition 2.18 and
obtain the spaces via localization and pull-back onto Rn−1 with the help of suitable
diffeomorphisms (recall Definition 2.16).

The quarkonial decomposition. In this subsection we establish the quarkonial de-
composition for spaces Bs,τ

p,q (R
n). Recall the definition of quarks given in Definition

2.11, with θ satisfying (2.7) and (2.8). We start by defining the corresponding se-
quence spaces and provide an auxiliary lemma.

Definition 3.10. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, and τ ≥ 0. The
Besov-type sequence space bs,τp,q(R

n) is the set of all doubly indexed sequences
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λ := {λj,m}j∈N0,m∈Zn ⊂ C for which the quasi-norm

‖λ | bs,τp,q(R
n)‖ := sup

P∈Q

1

|P |τ

( ∑

j=max(jP ,0)

2j(s−
n
p
)q
( ∑

m∈Zn:Qjm⊂P

|λj,m|
p
)q/p)1/q

is finite (with the usual modification if p = ∞ or q = ∞).

Lemma 3.11. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, and τ ≥ 0. There exists a
positive constant c such that

‖λl | bs,τp,q(R
n)‖ ≤ c 〈l〉nτ‖λ | bs,τp,q(R

n)‖

for all λ = {λj,m}j∈N0,m∈Zn and all l ∈ Zn, where λl := {λj,m+l}j∈N0,m∈Zn.

P r o o f : Let P ∈ Q, P = Qν,m for some ν ∈ Z and k ∈ Zn. Denoting by
xP = (x1P , · · · , x

n
P ) the center of the cube P , if a cube Qjm = 2−jm + [0, 2−j)n

is contained in P , then

j ≥ ν and |xi+2−jmi−x
i
P | ≤ 2−ν−1 for all xi ∈ [0, 2−j), i ∈ {1, · · · , n}.

Then, for a point in the cube Qj,m+l = 2−j(m+ l) + [0, 2−j)n, we have

|2−j(mi+li)+xi−x
i
P | ≤ |2−jmi+xi−x

i
P |+2−j|li| ≤ 2−ν−1+2−ν|li| ≤ 2〈l〉2−ν−1,

and hence Qj,m+l ⊂ 2〈l〉P .
Let r ∈ N be such that 2r ≤ 2〈l〉 < 2r+1 and put P ∗ := 2r+1P . Then we have

1

|P |τ

( ∑

j=max(jP ,0)

2j(s−
n
p
)q
( ∑

m∈Zn:Qjm⊂P

|λj,m+l|
p
)q/p)1/q

≤
|P ∗|τ

|P |τ
1

|P ∗|τ

( ∑

j=max(jP ,0)

2j(s−
n
p
)q
( ∑

m∈Zn:Qj,m+l⊂P ∗

|λj,m+l|
p
)q/p)1/q

= 2(r+1)nτ 1

|P ∗|τ

( ∑

j=max(jP ∗,0)

2j(s−
n
p
)q
( ∑

m∈Zn:Qjm⊂P ∗

|λj,m|
p
)q/p)1/q

≤ 4nτ〈l〉nτ‖λ | bs,τp,q(R
n)‖.

By taking the supremum over all P ∈ Q we arrive at the desired inequality.

With this we now obtain the following quarkonial decomposition for our Besov-
type spaces.
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Theorem 3.12. Let 0 < p <∞, 0 < q ≤ ∞, 0 ≤ τ ≤ 1
p
, and s > σp. Let ρ be

such that ρ > R where R is a constant as in (2.8).

(i) If f ∈ Bs,τ
p,q (R

n) then there exists a triply indexed complex sequence

λ := {λβνm}β∈Nn
0 ,ν∈N0,m∈Zn

such that

f =
∑

β∈Nn
0

∞∑

ν=0

∑

m∈Zn

λβνm (βqu)νm

convergence being in S ′(Rn) and

‖λ | bs,τp,q(R
n)‖ρ := sup

β∈Nn
0

2ρ|β| ‖λβ | bs,τp,q(R
n)‖ . ‖f | Bs,τ

p,q (R
n)‖.

The numbers λβνm depend continuously and linearly on f .
(ii) If λ := {λβνm}β∈Nn

0
,ν∈N0,m∈Zn satisfies ‖λ | bs,τp,q(R

n)‖ρ <∞, then

f =
∑

β∈Nn
0

∞∑

ν=0

∑

m∈Zn

λβνm (βqu)νm (3.16)

converges in S ′(Rn) and belongs to Bs,τ
p,q (R

n). Furthermore,

‖f | Bs,τ
p,q (R

n)‖ . ‖λ | bs,τp,q(R
n)‖ρ.

P r o o f : We start by proving (i) and follow the proof presented in [Tri97,
14.15] in the context of classical Besov spaces. Let (φj)j∈N0

be a dyadic partition
of unity such that

φ0(x) = 1 if |x| ≤ 1 and suppφ0 ⊂ {x ∈ R
n : |x| ≤ 2}.

For ν ∈ N we put

φν(x) := φ0(2
−νx)− φ0(2

−ν+1x), x ∈ R
n.

Then
∞∑

ν=0

φν(x) = 1, x ∈ R
n,

and, for any f ∈ S ′(Rn), it follows that

f =

∞∑

ν=0

F−1(φνFf) with convergence in S ′(Rn).
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Let κ ∈ S(Rn) be such that κ(x) = 1 if |x| ≤ 2 and supp κ ⊂ πQ(0). For
(ν, k) ∈ N0 × Z

n, let Λν,k := c[F−1(φνFf)](2
−νk). Then we have, for any

x ∈ R
n,

[F−1(φνFf)](x) =
∑

k∈Zn

Λν,k (F
−1κ)(2νx− k)

=
∑

k∈Zn

Λν,k

∑

m∈Zn

(F−1κ)(2νx− k) θ(2ν+ρx−m),

where the last equality is due to
∑

m∈Zn θ(x−m) = 1 for all x ∈ Rn. Expanding

(F−1κ)(2ν · −k) in a Taylor series at the point 2−(ν+ρ)m, we obtain

(F−1κ)(2νx− k) =
∑

β∈Nn
0

2ν|β|

β!
[∂β(F−1κ)](2−ρm− k) (x− 2−(ν+ρ)m)β

thus,

[F−1(φνFf)](x) =
∑

k∈Zn

Λν,k

∑

m∈Zn

∑

β∈Nn
0

2−ρ|β|

β!
[∂β(F−1κ)](2−ρm− k) θβ(2ν+ρx−m)

and hence

f =
∞∑

ν=0

∑

m∈Zn

∑

β∈Nn
0

θβ(2ν+ρx−m)
∑

k∈Zn

Λν,k
2−ρ|β|

β!
[∂β(F−1κ)](2−ρm− k)

=
∞∑

ν=0

∑

m∈Zn

∑

β∈Nn
0

λβν+ρ,m (βqu)ν+ρ,m

with

λβν+ρ,m :=
2−ρ|β|

β!

∑

k∈Zn

[∂β(F−1κ)](2−ρm− k) Λν,k.

As a consequence of the Paley-Wiener-Schwartz theorem and iterative application
of Cauchy’s representation formula one can prove that

|∂β(F−1κ)(x)| ≤ c(η) β! 〈x〉−η for any η > 0,

where c(η) is a positive constant independent of x ∈ R
n and of the multi-index

β ∈ N
n
0 . Then, for l ∈ Z

n and l0 a lattice point in [0, 2ρ)n, we obtain

|λβν+ρ,2ρl+l0
| . 2−ρ|β|

∑

k∈Zn

〈l − k〉−η |Λν,k| = 2−ρ|β|
∑

k∈Zn

〈k〉−η|Λν,l+k|.
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For each k ∈ Zn let Λk := {|Λν,l+k|}ν∈N0,l∈Zn. By Zn = 2ρZn + [0, 2ρ)n we see
that with d := min(1, p, q) and by Lemma 3.11, we have

‖λβ | bs,τp,q(R
n)‖ . 2−ρ|β|

∥∥∥
∑

k∈Zn

〈k〉−ηΛk | bs,τp,q(R
n)
∥∥∥

. 2−ρ|β|
(∑

k∈Zn

〈k〉−ηd‖Λk | bs,τp,q(R
n)‖d

)1/d

. 2−ρ|β|
(∑

k∈Zn

〈k〉(nτ−η)d‖Λ | bs,τp,q(R
n)‖d

)1/d
.

Hence, choosing η large enough such that (nτ − η)d < −1, it follows that

‖λβ | bs,τp,q(R
n)‖ρ . ‖Λ | bs,τp,q(R

n)‖.

Finally we have to prove that ‖Λ | bs,τp,q(R
n)‖ . ‖f | Bs,τ

p,q (R
n)‖. Note that, for

ν ∈ N0 and k ∈ Zn and any y ∈ Qνk, we have

|Λν,k| = |[F−1(φνFf)](2
−νk)| = (1 + 2ν|y − 2−νk|)a

|[F−1(φνFf)](2−νk)|

(1 + 2ν|y − 2−νk|)a

. (φ∗νf)a(y),

where a > n
p

and (φ∗νf)a are the Peetre’s maximal functions defined by

(φ∗νf)a(x) := sup
y∈Rn

|[F−1(φνFf)](y)|

(1 + 2ν|x− y|)a
, x ∈ R

n.

Then

‖Λ | bs,τp,q(R
n)‖ = sup

P∈Q

1

|P |τ

( ∑

j=max(jP ,0)

2jsq
( ∑

m∈Zn:Qjm⊂P

∫

Qjm

|Λj,m|
p dy

)q/p)1/q

≤ sup
P∈Q

1

|P |τ

( ∑

j=max(jP ,0)

2jsq
( ∑

m∈Zn:Qjm⊂P

∫

Qjm

(φ∗jf)a(y)
p dy

)q/p)1/q

≤ sup
P∈Q

1

|P |τ

( ∑

j=max(jP ,0)

2jsq
(∫

P

(φ∗jf)a(y)
p dy

)q/p)1/q

. ‖f | Bs,τ
p,q (R

n)‖.

The last step is justified by the equivalent characterization ofBs,τ
p,q (R

n), cf. [LSUYY12,
Thm. 3.6] (in the homogeneous case) and [YSY10, Lem. 4.1].
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Now we prove (ii). We decompose the representation (3.16) as

f =
∑

β∈Nn
0

fβ

with

fβ :=

∞∑

ν=0

∑

m∈Zn

λβνm (βqu)νm.

Note that for all ν ∈ N0, m ∈ Zn, and β ∈ Nn
0 it holds

supp (βqu)νm ⊂ 2RQνm

and

|∂α(βqu)νm(x)| . 2|α|ν+(R+ε)|β|, x ∈ R
n,

for any ε > 0. Applying [YSY10, Thm. 3.3] we can conclude that fβ ∈ Bs,τ
p,q (R

n)
and

‖fβ | Bs,τ
p,q (R

n)‖ ≤ c1 2
(R+ε)|β| ‖λβ | bs,τp,q(R

n)‖,

where c1 > 0 is independent of β. So, with 0 < ε < ρ−R,

‖fβ | Bs,τ
p,q (R

n)‖ ≤ c1 2
(R+ε−ρ)|β| sup

β∈Nn
0

2ρ|β| ‖λβ | bs,τp,q(R
n)‖,

and applying the d-triangle inequality, where d := min(1, p, q), we get
∥∥∥
∑

β∈Nn
0

fβ | Bs,τ
p,q (R

n)
∥∥∥ ≤

(∑

β∈Nn
0

‖fβ | Bs,τ
p,q (R

n)‖d
)1/d

≤ c1

(∑

β∈Nn
0

2(R+ε−ρ)d|β|
)1/d

sup
β∈Nn

0

2ρ|β| ‖λβ | bs,τp,q(R
n)‖

≤ c2 ‖λ | bs,τp,q(R
n)‖ρ.

Remark 3.13. The restriction 0 ≤ τ ≤ 1
p in Theorem 3.12 can be replaced by

0 ≤ τ < τs,p with τs,p defined as in [YSY10, formula (1.6)], which follows from the
atomic decomposition theorem for the Besov-type spaces, cf. [YSY10, Thm. 3.3],
we rely on in the proof. For simplicity we restrict ourselves to τ ≤ 1

p
here, since

in [YY13] the remarkable result was proven that

Bs,τ
p,q (R

n) = B
s+(τ− 1

p
)

∞,∞ (Rn)
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whenever τ > 1
p

or τ = 1
p

and q = ∞. Hence, concerning traces, only τ ∈ [0, 1/p]

is of interest.

We now collect available substitutes for (A), (B), and (C) in order to establish
the trace results with the methods from Theorem 3.8.

Concerning (A), in terms of diffeomorphisms and multipliers we have the follow-
ing results.

Theorem 3.14. [YSY10, Thm. 6.1] Let s ∈ R, 0 < p, q ≤ ∞, and 0 ≤ τ ≤ 1
p
.

(i) If k ∈ N is sufficiently large, then for all g ∈ Ck(Rn) we have that

f → gf

is a linear and bounded operator from Bs,τ
p,q (R

n) into itself, i.e., there exists
a positive constant C(k) such that

‖gf |Bs,τ
p,q (R

n)‖ ≤ C(k)‖g|Ck(Rn)‖ · ‖f |Bs,τ
p,q (R

n)‖.

(ii) If k ∈ N is sufficiently large, then for all k-diffeomorphisms ψ we have that

f → f ◦ ψ

is a linear and bounded operator from Bs,τ
p,q (R

n) onto itself.

Concerning (B), with the help of the quarkonial decomposition from Theorem
3.12 we can construct the following the extension operator.

Theorem 3.15. Let 0 < p <∞, 0 < q ≤ ∞, and 0 ≤ τ ≤ 1
p . Then for N ∈ N,

there exists an extension operator ExtN ,

ExtN :
⋃

(p,q,s)∈R(N)

Bs,τ
p,q (R

n
+) −→

⋃

(p,q,s)∈R(N)

Bs,τ
p,q (R

n),

that satisfies the properties: if (p, q, s) ∈ R(N) then the restriction ExtN
∣∣
Bs,τ

p,q (Rn
+)

is a continuous mapping from Bs,τ
p,q (R

n
+) to Bs,τ

p,q (R
n) satisfying ExtNf

∣∣
Rn

+

= f for

all f ∈ Bs,τ
p,q (R

n
+).

P r o o f : The proof follows along the same lines as the proof of Theorem 3.7.
We use the same construction to obtain an extended function f ∗ as described in
Step 1 of the proof. In Step 2 instead of (3.8) we now make use of [YHM15,
Prop. 4.1], i.e.,

Bs,τ
p,q (R

n) →֒ BUC(Rn), if, and only if, s > n

(
1

p
− τ

)
.
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In particular, this enables us to define ExtN for s > n
p with the help of the quarko-

nial decomposition from Theorem 3.12. Finally, in Step 3 of Theorem 3.7 we note
that the lift operator from Corollary 3.6 can also be generalized to the Besov-type
spaces Bs,τ

p,q .

Remark 3.16. Our results on the extension operator generalize [YSY10, Thm. 6.11]
to the case when p ≤ 1.

An assertion for traces on hyperplanes as required in (C) is also available.

Theorem 3.17. [YSY10, Thm. 6.8] Let n ≥ 2, 0 < p, q ≤ ∞, 0 ≤ τ ≤ 1
p , and

s >
1

p
+ (n− 1)

(
1

min(1, p)
− 1

)
. (3.17)

Then TrRn−1 is a linear and bounded operator from Bs,τ
p,q (R

n) onto B
s− 1

p
, nτ
n−1

p,q (Rn−1),

TrRn−1Bs,τ
p,q (R

n) = B
s− 1

p
, nτ
n−1

p,q (Rn−1).

Remark 3.18. The proof in [YSY10, Thm. 6.8] also establishes the existence of

a linear and bounded extension operator Ẽx : B
s− 1

p
, nτ
n−1

p,q (Rn−1) → Bs,τ
p,q (R

n).

Remark 3.19. In Theorem 3.14(i),(ii) we will require

k ≥ max([s+ nτ + 1], 0). (3.18)

This follows from a closer look at the proof of [YSY10, Thm. 6.1], whenever s > σp.
This is always the case for us since with the restriction (3.17) on s from Theorem
3.17 we have

σp = n

(
1

min(1, p)
− 1

)

=
1

p
+ (n− 1)

(
1

min(1, p)
− 1

)
−
1

p
+

1

min(1, p)
− 1

︸ ︷︷ ︸
<0

<
1

p
+ (n− 1)

(
1

min(1, p)
− 1

)
<s.

The restriction (3.18) on k comes from the atomic decomposition of the Besov-
type spaces as established in [YSY10, Th. 3.3]. In this book we have the same
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restriction for the F s,τ
p,q scale. The fact that τ comes into play in (3.18) is a little

confusing. Note that for the atomic decomposition of the spaces Es
u,p,q we only

need k ≥ max{[s + 1], 0}, cf. Theorem 2.9, which is independent of τ . By the
coincidence Es

u,p,q = F s,τ
p,q with u = p

1−pτ
and 0 ≤ τ < 1

p
, the dependence on

τ in (3.18) can be removed for the F s,τ
p,q scale. This was also noted in [NNS16,

Thms. 4.4, 4.5] (mentioned in the proof given there). This raises the question
whether in (3.18) the dependence on τ can be removed for Bs,τ

p,q as well.

Putting together our substitues for (A)-(C), we obtain the following result con-
cerning traces on Ck domains for Besov-type spaces.

Theorem 3.20. Let n ≥ 2, 0 ≤ p <∞ , 0 < q ≤ ∞, 0 ≤ τ ≤ 1
p, and

s >
1

p
+ (n− 1)

(
1

min(1, p)
− 1

)
. (3.19)

Furthermore, let Ω ⊂ R
n be a bounded Ck domain with boundary Γ, where

k ≥ [s+ nτ + 1].

Then TrΓ is a linear and bounded operator from Bs,τ
p,q (Ω) onto B

s− 1

p
, nτ
n−1

p,q (Γ),

TrΓB
s,τ
p,q (Ω) = B

s− 1

p
, nτ
n−1

p,q (Γ).

4. Applications: A priori estimates for solutions of elliptic

boundary value problems

In [Bar05] the author obtains a priori estimates for solutions of elliptic boundary
value problems in the spaces Lp,λ,s(Rn), s ∈ R, λ ≥ 0, 1 ≤ p < ∞, which are
linked with our Besov-type spaces via

Lp,λ,s(Rn) = B
s, λ

np
p,p (Rn).

His estimates are based on trace results for the respective spaces on hyperplanes.
With the help of our trace results from Theorem 3.20 we are now able to to improve
the a priori estimates from [Bar05, Thm. 1.8] to Ck domains.

We consider the following elliptic Dirichlet problem:
{

Lu = f on Ω,

TrΓu = g on Γ = ∂Ω,
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where L is a differential operator of second order with smooth coefficients in Ω,
i.e.,

L =
∑

|α|≤2

aα(x)D
α
x ,

which is properly elliptic. By this we mean that the following conditions are satis-
fied:

(H1) For any x ∈ Ω,
∑

|α|=2

aα(x)ξ
α 6= 0, ξ ∈ R

n \ {0}.

(H2) For any x ∈ Γ, ξx ∈ Rn \ {0} tangent to Γ at x, the polynomial in the
complex variable z,

P (z) =
∑

|α|=2

aα(x)(ξx + zνx)
α,

has exactly one root with positive imaginary part (and therefore exactly one
root lying in the lower half plane). Here νx denotes the inward unit normal
vector to the boundary Γ at x.

In this setting [Bar05, Thm. 1.8] can be generalized (and reformulated) in terms
of our Besov-type spaces as follows.

Theorem 4.1. Let s > 0, 1 ≤ p < ∞, and 0 ≤ τ ≤ 1
p . Furthermore, let

Ω ⊂ Rn be a bounded Ck domain with boundary Γ, where

k ≥ [s+ nτ + 1].

Then, under the hypotheses (H1) and (H2), there is a constant C > 0 such that

‖u|Bs+2,τ
p,p (Ω)‖ ≤ C

(
‖Lu|Bs,τ

p,p(Ω)‖+ ‖TrΓu|B
s+2− 1

p
, nτ
n−1

p,p (Γ)‖+ ‖u|Bs+1,τ
p,p (Ω)‖

)

holds for any u ∈ Bs+2,τ
p,p (Ω).

Remark 4.2. It would be interesting to study whether the a priori estimates
from [Bar05] can be generalized to the spaces Bs,τ

p,q (Ω) when p 6= q or even to the
spaces As

Mϕ
p ,q
(Ω) with the help of our trace results obtained in Theorem 3.8. This

will be investigated in a forthcoming paper.
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