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Abstract: Profinite semigroups are a generalization of finite semigroups that come
about naturally when one is interested in considering free structures with respect
to classes of finite semigroups. They also appear naturally through dualization
of Boolean algebras of regular languages. The additional structure is given by a
compact zero-dimensional topology. Profinite topologies may also be considered on
arbitrary abstract semigroups by taking the initial topology for homomorphisms
into finite semigroups. This text is the proposed chapter of the Handdbook of
Automata Theory dedicated to these topics. The general theory is formulated in the
setting of universal algebra because it is mostly independent of specific properties of
semigroups and more general algebras naturally appear in this context. In the case
of semigroups, particular attention is devoted to solvability of systems of equations
with respect to a pseudovariety, which is relevant for solving membership problems
for pseudovarieties. Focus is also given to relatively free profinite semigroups per
se, specially “large” ones, stressing connections with symbolic dynamics that bring
light to their structure.
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1. Introduction

Profinite semigroups and profinite topologies in semigroups have become
an important tool in the theory of finite automata. There are many reasons
for this fact.
First, since finite automata describe transition finite semigroups (of trans-

formations or relations) by giving the action of their generators on a finite
set of states, the separation power of words by a class C of finite automata
translates in algebraic terms to the separation power of homomorphisms from
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free semigroups into the corresponding transition semigroups. More gener-
ally, the homomorphisms from a semigroup S into such semigroups determine
an initial topology on S, namely the corresponding profinite topology. The
topological separation axiom of Hausdorff is the familiar algebraic property
of being residually in C. But, actually, homomorphisms into finite semigroups
give a finer structure, namely a uniform structure, or even a metric struc-
ture in case the semigroup S is finitely generated. Thus, there is a natural
completion associated with our separation scheme, which is called the pro-C
completion of S. The topological semigroups thus obtained are so-called pro-
C semigroups. For the class C of all finite semigroups, the attribute “pro-C”
becomes simply “profinite”.
Another explanation for the importance of profinite topologies comes from

duality. Applying the above recipe to the free semigroup A+, with C a pseu-
dovariety V of finite semigroups, the resulting pro-V semigroup is known as
the free pro-V semigroup, for indeed it has the expected universal property.
It turns out that the topological structure of this free pro-V semigroup is
precisely the Stone dual of the Boolean algebra of regular languages over the
alphabet A that can be recognized by members of V. The further dualization
of residual operations determines the multiplication [58, 59].
Another fundamental reason why free profinite semigroups are important is

that their elements, sometimes called pseudowords , play the role of terms in
classical universal algebra. Indeed, pseudovarieties can be defined by formal
equalities between pseudowords.
To be able to apply these connections with the profinite world, some knowl-

edge of the structure of free pro-V semigroups is usually necessary for suitable
pseudovarieties V. The thus motivated structural investigation of these semi-
groups is in general quite hard and has only been carried out in a very limited
number of cases.
Another major difficulty lies in the fact that in most interesting cases, free

pro-V semigroups are uncountable. Thus, there are delicate questions when
trying to obtain decidability results using pseudowords. An important idea
in this context is to replace arbitrary pseudowords by those of a special kind,
namely the elements of the subalgebra with respect to a suitably enriched
language. This leads to the notions of reducibility and tameness which are
involved in some of the deepest results using profinite methods.
The aim of this chapter is to efficiently introduce these topics, illustrat-

ing with examples and results the wide range of application of profinite
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methods. We introduce profinite topologies in the context of general al-
gebraic structures. Although they were originally considered in this context
by Birkhoff [44], so far they have not been much studied outside the realm
of group and semigroup theories. In the context of ring theory, there is an
analog topology, which may or may not be profinite, and which is known as
the Krull topology. It is determined on a ring by a filtration by ideals. For
instance, for the ring of p-adic integers, the filtration consists of the ideals
generated by the powers of the prime p and the topology is “profinite” in the
sense that the quotient rings Z/pnZ are finite.
Since most of the theory is independent of the concrete algebraic struc-

tures in which one may be interested, and a lot of attention has been given
to general algebraic structures as recognizing devices for tree languages (see
Chapter 22), it seems worthwhile to formulate the theory in the more general
context. Moreover, the reducibility and tameness properties involve them-
selves general algebraic structures, even when semigroups are the aim of the
investigations. In Section 2, results are formulated in the context of general
algebras. Section 3 deals with applications in the special case of semigroups.
Section 4 introduces recent results concerning the structure of free profinite
semigroups over large pseudovarieties, where connections with symbolic dy-
namics play an important role.

2. Profinite topologies for general algebras

This section introduces profinite topologies for general (topological ab-
stract) algebras. The treatment presented here is meant to be a quick guide
to the main general results in this area. For most proofs, the reader is
referred to the bibliography. Occasionally, simple generalizations of the pre-
viously published results are presented here for we believe this contributes to
understanding the theory, and may be helpful in applications.

2.1. General algebraic structures. This subsection introduces the basics
of Universal Algebra. The reader is referred to [45] for further details.
By an algebraic signature we mean a set σ, of operation symbols, together

with an arity function ν : σ → N into the set of non-negative integers. We
denote ν−1(n) by σn. A σ-algebra consists of a nonempty set S together with
an interpretation function assigning to each operation symbol f ∈ σ a ν(f)-
ary operation fS : Sν(f) → S. The operations on S of this form are called the
basic operations. Usually, the interpretation function is understood and we
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talk about the algebra S. Moreover, unless explicit mention of the signature
σ is required, which is usually understood from the context, we will omit
reference to it. An algebra S is trivial if S is a singleton.
From hereon, whenever we talk about algebras and their classes, unless

otherwise stated, we always assume that the same signature is involved.
A homomorphism is a mapping ϕ : S → T between two algebras such

that, for every arity n and f ∈ σn, and for all s1, . . . , sn ∈ S, the equal-
ity ϕ

(

fS(s1, . . . , sn)
)

= fT
(

ϕ(s1), . . . , ϕ(sn)
)

holds. For an algebra T , a
nonempty subset S closed under the interpretation in T of the operation
symbols is an algebra under the induced operations; we then say that S is a
subalgebra of T . For a family (Si)i∈I of algebras, their direct product

∏

i∈I Si
is the Cartesian product with operation symbols interpreted component-wise.
Note that, if I = ∅, then

∏

i∈I Si is a trivial algebra.
A congruence on an algebra S is an equivalence relation θ on S such

that θ is a subalgebra of S × S. For a congruence θ on S, we may in-
terpret each operation symbol f ∈ σn, on the quotient set S/θ by putting
fS/θ(s1/θ, . . . , sn/θ) = fS(s1, . . . , sn)/θ, whenever s1, . . . , sn ∈ S, where s/θ
denotes the θ-class of s; this is called the quotient algebra of S by θ. The cho-
sen structure of S/θ is the unique way of defining the quotient algebra so that
the natural mapping S → S/θ, which sends s to s/θ, is a homomorphism.
Given an algebra S and a nonempty family (θi)i∈I of congruences on S,

there is a natural injective homomorphism S/(
⋂

i∈I θi) →
∏

i∈I S/θi. For a
class of algebras C containing trivial algebras, and an algebra S, we denote by
θC the intersection of the family of all congruences θ on S such that S/θ ∈ C.
We say that S is residually in C if θC is the equality relation ∆S on the set S.
A variety is a class V of algebras which is closed under taking homomorphic

images, subalgebras and arbitrary direct products. Since the intersection
of a nonempty family of varieties is again a variety, we may consider the
variety generated by any class C of algebras, denoted V(C). By a well-known
theorem of Birkhoff [43], for every nonempty set A and every variety V , there
is a V-free algebra on A, that is an algebra FAV together with a mapping
ι : A → FAV such that, for every mapping ϕ : A → S into an algebra S
from V , there is a unique homomorphism ϕ̂ : FAV → S such that ϕ̂ ◦ ι = ϕ.
By the usual ‘abstract nonsense’, such an algebra is unique up to isomorphism
and depends only on the variety V and the cardinality of the set A. In case
A is a finite set of cardinality n, we may write FnV instead of FAV . A similar
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convention applies for other notations for free algebras that are used in this
chapter.
In particular, the class of all σ-algebras is a variety. The corresponding free

algebra on A is the algebra T
(σ)
A of formal (σ-)terms , constructed recursively

from the elements of A by formally applying the operation symbols, which
also defines their interpretation:

• for each a ∈ A, we have a ∈ TA;
• if each t1, . . . , tn is in TA and f ∈ σn, then f(t1, . . . , tn) is also in TA;
• all elements of TA are obtained by applying the preceding rules.

In fact the algebra FAV is naturally constructed as the quotient algebra TA/θV .
For a variety V , each element w of FAV determines a function wS : SA → S

on each algebra S from V by letting wS(ϕ) = ϕ̂(w) for a function ϕ : A→ S.
In case A = {a1, . . . , an}, one may prefer to view wS as a function from Sn

to S, by putting wS(s1, . . . , sn) = ϕ̂(w), where ϕ : A → S maps ai to si
(i = 1, . . . , n).
An identity is a formal equality u = v with u, v ∈ TA for some set A. We

say that an algebra S satisfies the identity u = v if uS = vS. For a set Σ of
identities, the class [Σ] consisting of all algebras that satisfy all the identities
from Σ is easily seen to be a variety. Birkhoff’s variety theorem [43] states
that every variety is of this form.
A pseudovariety is a nonempty class V of finite algebras that is closed

under taking homomorphic images, subalgebras and finite direct products.
The pseudovariety generated by a class C of finite algebras, denoted V(C),
is the intersection of all pseudovarieties that contain C. A class of finite
algebras closed under taking isomorphic algebras, subalgebras, and finite
direct products is called a pseudoquasivariety .

Example 2.1. (1) For the signature consisting of a single binary operation,
the class S of all semigroups is a variety, defined by the identity x(yz) =
(xy)z. Its free algebra FAS is the semigroup of words A+. The class S of all
finite semigroups is a pseudovariety. The classesM, of all monoids, and G,
of all groups, are not varieties: they are not closed under taking subalgebras.
The class G of all finite groups is a pseudovariety, but the class M of all finite
monoids is not a pseudovariety.
(2) For the signature consisting of a binary and a nullary operation (or

constant), the classM is a variety and the class M is a pseudovariety.
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(3) For the signature consisting of a binary operation, a unary operation
and a nullary operation, the class G of all groups is a variety.
(4) For the signature of (1), consider the class of all finite semigroups such

that, if an element s generates a subsemigroup whose subgroups are trivial,
then s2 = s. This is a pseudoquasivariety but not a pseudovariety (for
instance, the 3-element semigroup with presentation 〈a : a4 = a2〉 belongs to
the class but its quotient 〈a : a3 = a2〉 does not).

Given an algebra S and a subset L of S, the syntactic congruence of L
on S is the largest congruence ∼L such that L is a union of ∼L-classes. It
is characterized by the following property: for s, s′ ∈ S, the relation s ∼L s′

holds if and only if, for all n ≥ 1, t ∈ Tn, and s2, . . . , sn ∈ S, we have
tS(s, s2, . . . , sn) ∈ L if and only if tS(s

′, s2, . . . , sn) ∈ L. For some varieties,
such as of semigroups, monoids, groups, or rings, and for any finitely gener-
ated variety of lattices, it turns out that, rather than considering all terms
in the preceding equivalence, it suffices to consider a finite number of them.
For instance, for the variety of monoids, it suffices to consider the single term
t = (xy)z, as in the usual definition of the syntactic congruence for monoids.
See Clark et al. [46] for alternative characterizations of varieties with such a
finiteness property.
For an algebra S, we say that a subset L of S is recognized by a homomor-

phism ϕ : S → T if L = ϕ−1ϕL. In other words, L is a union of classes of the
kernel congruence kerϕ = (ϕ×ϕ)−1∆S or, equivalently, kerϕ is contained in
∼L. For a class C of algebras, we say that a subset L of S is C-recognizable if
L is recognized by a homomorphism ϕ : S → T into some algebra T from C.
In particular L is recognizable by some finite algebra if and only if ∼L has
finite index, in which case we also say simply that L is recognizable.

2.2. Pseudometric and uniform spaces. A pseudometric on a set X is
a function d from X × X to the non-negative reals such that the following
conditions hold:

i. d(x, x) = 0 for every x ∈ X;
ii. d(x, y) = d(y, x) for all x, y ∈ X;
iii. (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

In case, additionally, d(x, y) = 0 implies x = y, then we say that d is a metric
on X. If, instead of the triangle inequality, we impose the stronger
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iv. (ultrametric inequality) d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈
X,

then we refer respectively to a pseudo-ultrametric and an ultrametric. For
each of these types of “something” metrics, a “something” metric space is a
set endowed with a “same thing”metric.
The remainder of this section is dedicated to recalling the notion of a

uniform space. We build up here on the approach of [32]. The reader may
prefer to consult a book on general topology such as [109].

Definition 2.1. A uniformity on a set X is a set U of reflexive binary
relations on X such that the following conditions hold:

(1) if R1 ∈ U and R1 ⊆ R2, then R2 ∈ U ;
(2) if R1, R2 ∈ U , then there exists R3 ∈ U such that R3 ⊆ R1 ∩R2;
(3) if R ∈ U , then there exists R′ ∈ U such that R′ ◦R′ ⊆ R;
(4) if R ∈ U , then R−1 ∈ U .

An element of a uniformity is called an entourage. A uniform space is a set
endowed with a uniformity, which is usually understood and not mentioned
explicitly.
A uniformity basis on a set X is a set U of reflexive binary relations on X

satisfying the above conditions (2)–(4). The uniformity generated by U

consists of all binary relations on X that contain some member of U .
A uniformity U is transitive if it admits a basis consisting of transitive

relations.

The notion of a uniform space generalizes that of a pseudometric space.
In this respect, the following notation is suggestive of the intuition behind
the generalization. For an entourage R and elements x, y ∈ X, we write
d(x, y) < R to indicate that (x, y) ∈ R. Indeed, given a metric d on X, if we
let Rǫ denote the set of pairs (x, y) ∈ X ×X such that d(x, y) < ǫ, then the
set Ud of all Rǫ, with ǫ > 0, is a uniformity basis on X such that d(x, y) < Rǫ

if and only if d(x, y) < ǫ. The uniformity Ud is said to be defined by d.
The topology of a uniform space X (or induced by its uniformity) has

neighborhood basis for each x ∈ X consisting of all sets of the form BR(x) =
{y ∈ X : d(x, y) < R}. Not every topology is induced by a uniformity [109,
Theorem 38.2].
Note that the topology induced by a uniformity U on X is Hausdorff if

and only if the intersection
⋂

U is the diagonal (equality) relation ∆X . In
general, it follows from the definition of uniformity that

⋂

U is an equivalence
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relation on X. The quotient set X/
⋂

U is then naturally endowed with
the quotient uniformity , whose entourages are the relations R/

⋂

U , with
R ∈ U . Of course, the quotient space X/

⋂

U is Hausdorff and we call it
the Hausdorffization of X while the natural mapping X → X/

⋂

U is called
the natural Hausdorffization mapping . Given a uniformity U on a set X and
a subset Y , the relative uniformity on Y consists of the entourages of the
form R ∩ (Y × Y ) with R ∈ U . Endowed with this uniformity, Y is said to
be a uniform subspace of X.
Recall that a net in a set X is a function f : I → X, where I is a directed

set, meaning a set endowed with a partial order ≤ such that, for all i, j ∈ I,
there is some k ∈ I with i ≤ k and j ≤ k. A subnet of such a net is a net
g : J → X for which there is an order-preserving function λ : J → I such
that g = f ◦λ and, for every i ∈ I, there is some j ∈ J with i ≤ λ(j), that is,
λ has cofinal image in I. Usually, the net f is represented by (xi)i∈I, where
xi = f(i). The subnet g is then represented by (xij)j∈J , where ij = λ(j). In
case X is a topological space, we say that the net (xi)i∈I converges to x ∈ X
if, for every neighborhood N of x, there is some i ∈ I such that xj ∈ N
whenever j ≥ i.
A net (xi)i∈I in a uniform space X is said to be a Cauchy net if, for every

entourage R, there is some i ∈ I such that d(xj, xk) < R whenever j, k ≥ i.
A uniform space is said to be complete if every Cauchy net converges.
A Hausdorff topological spaceX is said to be compact if every open covering

of X contains a finite covering. Equivalently, every net in X has a convergent
subnet. A topological space is said to be zero-dimensional if it admits a basis
consisting of clopen sets, that is sets that are both closed and open. It is well
known that a compact space is zero-dimensional if and only if it is totally
disconnected , meaning that all its connected components are singleton sets.
One can also show that a compact space has a unique uniformity that induces
its topology [109, Theorem 36.19].
A uniform space X is totally bounded if, for every entourage R, there is a

finite cover X = U1 ∪ · · · ∪ Un such that
⋃n
k=1Uk ×Uk ⊆ R. It is well known

that a Hausdorff uniform space is compact if and only if it is complete and
totally bounded [109, Theorem 39.9].
A function ϕ : X → Y between two uniform spaces is uniformly con-

tinuous if, for every entourage R of Y , there is some entourage R′ of X
such that d(x1, x2) < R′ implies d(ϕ(x1), ϕ(x2)) < R. Equivalently, ϕ maps
Cauchy nets to Cauchy nets. We say that ϕ is a uniform isomorphism if it
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is a uniformly continuous bijection whose inverse is also uniformly continu-
ous. The function ϕ is a uniform embedding if ϕ is a uniform isomorphism
of X with a subspace of Y . Note that, if ϕ : X → Y is a uniformly con-
tinuous function, then ϕ induces a unique uniformly continuous function
ψ : X/

⋂

UX → Y/
⋂

UY between the corresponding Hausdorffizations such
that ψ ◦ πX = πY ◦ ϕ, where πX and πY are the natural Hausdorffization
mappings. We call ψ the Hausdorffization of ϕ.
One can show [109, Theorem 38.3] that a uniformity is defined by some

pseudometric (respectively by a pseudo-ultrametric) if and only if it has a
countable basis (and, respectively, it is transitive). In the Hausdorff case, one
can remove the prefix “pseudo”. Moreover, every uniform space can be uni-
formly embedded in a product of pseudometric spaces [109, Theorem 39.11].

For every uniform space X there is a complete uniform space X̂ such that
X embeds uniformly in X̂ as a dense subspace. This can be done by first uni-
formly embedding X in a product of pseudometric spaces and then complet-
ing each factor by diagonally embedding it in the space of equivalence classes
of Cauchy sequences under the relation (xn)n ≈ (yn)n if lim d(xn, yn) = 0
(cf. [109, Theorems 39.12 and 24.4]).

Such a space X̂ is unique in the sense that, given any other complete uni-
form space Y in which X embeds uniformly as a dense subspace, there is a
unique uniform isomorphism X̂ → Y leaving X pointwise fixed. The uni-
form space X̂ is called the completion of X. It is easy to verify that the
Hausdorffization of the completion of X is the completion of the Hausdorf-
fization of X; it is known as the Hausdorff completion of X. Moreover, the
Hausdorff completion of X is compact if and only if X is totally bounded.
The following is a key property of completions.

Proposition 2.1. Let X and Y be uniform spaces and let ϕ : X → Y be a
uniformly continuous function. Then there is a unique extension of ϕ to a
uniformly continuous function ϕ̂ : X̂ → Ŷ .

Let I be a nonempty set. If Ui is a uniformity on a set Xi for each i ∈ I,
then the Cartesian product

∏

i∈I Xi may be endowed with the product uni-
formity , with basis consisting of all sets of the form p−1i1 (R1)∩ · · · ∩ p

−1
in
(Rn),

where each Rj ∈ Uij and each pi : X×X → Xi×Xi is the natural projection
on each component. From the fact that a nonempty product of complete
uniform spaces is complete [109, Theorem 39.6], it follows that completion
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and product commute. One can also easily show that Hausdorffization and
product commute.

2.3. Profinite uniformities and metrics. By a topological algebra we
mean an algebra endowed with a topology with respect to which each basic
operation is continuous. A compact algebra is a topological algebra whose
topology is compact. We view finite algebras as topological algebras with
respect to the discrete topology. When we write that two topological algebras
are isomorphic we mean that there is an algebraic isomorphism between them
which is also a homeomorphism. A subset X of a topological algebra S is
said to generate S if it generates a dense subalgebra of S.
Similarly, a uniform algebra is an algebra endowed with a uniformity such

that the basic operations are uniformly continuous. Note that a uniform al-
gebra is also a topological algebra for the topology induced by the uniformity
and that, in case the topology is compact, the basic operations are continu-
ous if and only if they are uniformly continuous (for the unique uniformity
inducing the topology). Consistently with the choice of the discrete topology
for finite algebras, we endow them with the discrete uniformity , in which
every reflexive relation is an entourage.
Let F be a class of finite algebras. A subset L of a topological (respec-

tively uniform) algebra S is said to be F-recognizable if there is a continuous
(resp. uniformly continuous) homomorphism ϕ : S → P into some P ∈ F
such that L = ϕ−1ϕL. In case F consists of all finite algebras, we say simply
that L is recognizable to mean that it is F -recognizable.
Let T be a class of topological algebras. A topological algebra S is said

to be residually in T if, for every pair of distinct points s, t ∈ S, there
exists a continuous homomorphism ϕ : S → P , into some P ∈ T , such that
ϕ(s) 6= ϕ(t).
Suppose that S is a topological algebra and Q is a pseudoquasivariety. The

case that will interest us the most is when Q is a pseudovariety and S is a
discrete algebra. The pro-Q uniformity on S, denoted UQ, is generated by
the basis consisting of all congruences θ such that S/θ ∈ Q and the natural
mapping S → S/θ is continuous. Note that UQ is indeed a uniformity on S,
which is transitive. In case Q consists of all finite algebras, we also call the
pro-Q uniformity the profinite uniformity . The pro-Q uniformity on S is
Hausdorff if and only if S is residually in Q as a topological algebra. More
precisely, the Hausdorffization of S is given by the pro-Q uniform structure
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of S/θQ, under the quotient topology. The topology induced by the pro-Q
uniformity of the algebra S is also called its pro-Q topology . Sets that are
open in this topology are also said to be Q-open and a similar terminology is
adopted for closed and clopen sets. Similar notions can be defined if we start
with a uniform algebra instead of a topological algebra, replacing continuity
by uniform continuity, but we will have no use for them here.
Note that the pro-Q uniformity UQ is totally bounded for a pseudoquasiva-

riety Q. Given a subset L of an algebra S, we denote by EL the equivalence
relation whose classes are L and its complement S \ L. Note that, for a
congruence θ on S, we have θ =

⋂

LEL, where the intersection runs over all
θ-classes. The following is now immediate.

Proposition 2.2. Suppose that Q is a pseudoquasivariety and S is a topo-
logical algebra.

(1) The Hausdorff completion of S under UQ is compact.
(2) A subset L of S is Q-recognizable if and only if EL belongs to UQ. In

case Q is a pseudovariety, a further equivalent condition is that the
syntactic congruence ∼L belong to UQ.

(3) The Q-recognizable subsets of S are Q-clopen and constitute a basis
of the pro-Q topology of S. In particular, the pro-Q topology of S is
zero-dimensional and a subset L of S is Q-open if and only if L is a
union of Q-recognizable sets.

In contrast, not every Q-clopen subset of an algebra S needs to be Q-
recognizable. For instance, for the pseudovariety N, of all finite nilpotent
semigroups, one may easily show that the pro-N topology on the (discrete)
free semigroup A+ over a finite alphabet A is discrete, and so every subset is
clopen, while it is well-known that the N-recognizable subsets of A+ are the
finite and cofinite languages.
For a pseudoquasivariety Q and a topological algebra S, we define two

functions on S × S as follows. For s, t ∈ S, rQ(s, t) is the minimum of
the cardinalities of algebras P from Q for which there is some continuous
homomorphism ϕ : S → P such that ϕ(s) 6= ϕ(t), where we set min ∅ = ∞.
We then put dQ(s, t) = 2−rQ(s,t) with the convention that 2−∞ = 0. One can
easily check that dQ is a pseudo-ultrametric on S, which is called the pro-Q
pseudo-ultrametric on S.
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The following result is an immediate generalization of [86, Section 3], where
the hypothesis that the signature is finite serves to guarantee that there are
at most countably many isomorphism classes of finite σ-algebras.

Proposition 2.3. Suppose that σ is a finite signature. For a pseudoquasiva-
riety Q and a topological algebra S, the following conditions are equivalent:

(1) the pro-Q uniformity on S is defined by the pro-Q pseudo-ultrametric
on S;

(2) the pro-Q uniformity on S is defined by some pseudo-ultrametric on S;
(3) there are at most countably many Q-recognizable subsets of S;
(4) for every P ∈ Q, there are at most countably many homomorphisms

S → P .

In particular, all these conditions hold in case S is finitely generated. More-
over, if Q contains nontrivial algebras then, for the discrete free algebra FAQ
over the variety generated by Q, the pro-Q uniformity is defined by the pro-Q
pseudo-ultrametric if and only if A is finite.

The next result gives a different way of looking into pro-Q topologies and
uniformities.

Proposition 2.4. Let S be a topological algebra and Q a pseudoquasivariety.

(1) The pro-Q uniformity of S is the smallest uniformity U on S for
which all continuous homomorphisms from S into members of Q are
uniformly continuous.

(2) The pro-Q topology of S is the smallest topology T on S for which
all continuous homomorphisms from S into members of Q remain
continuous.

(3) The algebra S is a uniform algebra with respect to its pro-Q uniformity.
In particular, it is a topological algebra for its pro-Q topology.

Following [86], we say that a function ϕ : S → T between two topological
algebras is (Q,R)-uniformly continuous if it is uniformly continuous with
respect to the uniformities UQ, on S, and UR, on T . Similarly, we say that
ϕ is (Q,R)-continuous if it is continuous with respect to the Q-topology of S
and the R-topology of T .
It is now easy to deduce the following result, which is a straightforward

generalization of [86, Theorem 4.1].

Proposition 2.5. Let Q and R be two pseudoquasivarieties, S and T be two
topological algebras, and ϕ : S → T an arbitrary function.
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(1) The function ϕ is (Q,R)-uniformly continuous if and only if, for every
R-recognizable subset L of T , ϕ−1L is a Q-recognizable subset of S.

(2) The function ϕ is (Q,R)-continuous if and only if, for every R-recogni-
zable subset L of T , ϕ−1L is a union of Q-recognizable subsets of S.

Proposition 2.5 was motivated by the work of Pin and Silva [87] on non-
commutative versions of Mahler’s theorem in p-adic Number Theory, which
states that a function N → Z is uniformly continuous with respect to the
p-adic metric if and only if it can be uniformly approximated by polynomial
functions.

2.4. Profinite algebras. This subsection is mostly based on [10], where the
reader may find further details.
For a class T of topological algebras, a pro-T algebra is a compact algebra

that is residually in T . A profinite algebra is a pro-T algebra where T is the
class of all finite algebras.
An inverse system I = (I, Si, ϕij) of topological algebras consists of a

family (Si)i∈I of such algebras, indexed by a directed set I, together with a
family (ϕij)i,j∈I;i≥j of functions, the connecting homomorphisms, such that
the following conditions hold:

i. each ϕij is a continuous homomorphism Si → Sj;
ii. each ϕii is the identity function on Si;
iii. for all i, j, k ∈ I such that i ≥ j ≥ k, the equality ϕjk ◦ ϕij = ϕik holds.

The inverse limit of an inverse system I = (I, Si, ϕij) is the subspace lim←−I
of

∏

i∈I Si consisting of the families (si)i∈I such that ϕij(si) = sj whenever
i ≥ j. Note that, in case lim←−I is nonempty, it is a subalgebra of

∏

i∈I Si
and, therefore, a topological algebra. The inverse limit may be empty. For
instance, the inverse limit of the inverse system (N, [n,+∞[, ϕnm) is empty,
where the intervals are viewed as semilattices under the usual ordering and
with the inclusion mappings as connecting homomorphisms ϕnm. In contrast,
if all the Si are compact algebras, then so is lim←−I [109, Exercise 29C].
The following is a key property of pro-V algebras for a pseudovariety V.

Proposition 2.6. Let V be a pseudovariety, S a pro-V algebra, and ϕ : S → T
a continuous homomorphism onto a finite algebra. Then T belongs to V.
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More generally, for a pseudoquasivariety Q, the following alternative char-
acterizations of pro-Q algebras are straighforward extensions of the pseudova-
riety case for semigroups, which can be found, for instance, in [10, Proposi-
tion 4.3].

Proposition 2.7. Let Q be a pseudoquasivariety. Then the class Q̄ of all
pro-Q algebras consists of all inverse limits of algebras from Q and it is the
smallest class of topological algebras containing Q that is closed under taking
isomorphic algebras, closed subalgebras, and arbitrary direct products. The
classes Q̄ and Q have the same finite members. In case Q is a pseudovariety,
the class Q̄ is additionally closed under taking profinite continuous homomor-
phic images.

Since every compact metric space is a continuous image of the Cantor
set [109, Theorem 30.7], the profiniteness assumption in the second part of
Proposition 2.7 cannot be dropped.
The nontrivial parts of the next theorem were first observed in [36] to follow

from the arguments in [4], which in turn extend the case of semigroups, due
to Numakura [81], through the approach of Hunter [67]. The key ingredient
is the following lemma, first stated explicitly and proved by Hunter [67,
Lemma 4] for semigroups although, in this case, it can also be extracted
from [81].

Lemma 2.8. Let S be a compact zero-dimensional algebra and let L be a
subset of S for which the syntactic congruence is determined by finitely many
terms. Then L is recognizable if and only if L is clopen.

The reader may wish to compare Lemma 2.8 with Proposition 2.2(3) and
the subsequent comments.

Theorem 2.9. Let S be a compact algebra and consider the following condi-
tions:

(1) S is profinite;
(2) S is an inverse limit of an inverse system of finite algebras;
(3) S is isomorphic to a closed subalgebra of a direct product of finite

algebras;
(4) S is a compact zero-dimensional algebra.

Then the implications (1) ⇔ (2) ⇔ (3) ⇒ (4) always hold, while (4) ⇒ (3)
also holds in case the syntactic congruence of S is determined by a finite
number of terms.
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One can find in [46] explicit proofs of Lemma 2.8 and Theorem 2.9. As men-
tioned in Section 2.1, the same paper provides characterizations of the finite-
ness assumption in Theorem 2.9. In particular, compact zero-dimensional
semigroups, monoids, groups, rings, and lattices in finitely generated vari-
eties of lattices are profinite.
The finitely generated case of the following variant of Lemma 2.8 can be

found in [4]. The essential step for the proof of the general case can be found
in [10, Lemma 4.1].

Proposition 2.10. Let Q be a pseudoquasivariety and let S be a pro-Q al-
gebra. Then a subset L of S is clopen if and only if it is Q-recognizable, if
and only if it is recognizable. In particular, the topology of S is the small-
est topology for which all continuous homomorphisms from S into algebras
from Q (or, alternatively, into finite algebras) are continuous with respect to
it. Hence, a topological algebra is a pro-Q algebra if and only if it is compact
and its topology coincides with its pro-Q topology.

A way of constructing profinite algebras is via the Hausdorff completion
of an arbitrary topological algebra S with respect to its pro-Q uniformity.
We denote this completion by CQ(S). The next result can be easily deduced
from Propositions 2.1, 2.2, and 2.4.

Proposition 2.11. Let S be a topological algebra and Q a pseudoquasivariety.
Then CQ(S) is a pro-Q algebra. Moreover, if S is residually in Q, then the
topology of S coincides with the induced topology as a subspace of CQ(S).

It is important to keep in mind that the topology of a pro-Q algebra S may
not be its pro-Q topology when S is viewed as a discrete algebra. To give an
example, we introduce a pseudovariety which is central in the theory of finite
semigroups: the class A of all finite aperiodic semigroups whose subgroups
are trivial.

Example 2.2. Let N be the discrete additive semigroup of natural numbers
and consider its pro-A completion CA(N), which is obtained by adding one
point, denote it ∞, which is such that n +∞ = ∞ + n = ∞ and limn =
∞. Then the mapping that sends natural numbers to 1 and ∞ to 0 is a
homomorphism into the semilattice {0, 1} which is not continuous for the
topology of CA(N) but which is continuous for the pro-A topology.

In contrast, it is a deep and difficult result that, for every finitely generated
profinite group, its topology coincides with its profinite topology as a discrete
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group [80]. The proof of this result depends on the classification of finite
simple groups.
The Q-recognizable subsets of an algebra S constitute a subalgebra PQ(S)

of the Boolean algebra P(S) of all its subsets. On the other hand, a compact
zero-dimensional space is also known as a Boolean space. The two types of
Boolean structures are linked through Stone duality (cf. [45, Section IV.4]),
whose easily described direction associates with a Boolean space its Boolean
algebra of clopen subsets; every Boolean algebra is obtained in this way. The
following result shows that the Boolean space CQ(S) and the Boolean algebra
PQ(S) are Stone duals. In it, we adopt a convenient abuse of notation: for
the natural mapping ι : S → CQ(S) and a subset K of CQ(S), we writeK∩S
for ι−1K, while, for a subset L of S, we write L for the closure of ιL in CQ(S).

Theorem 2.12. Let Q be a pseudoquasivariety and let S be an arbitrary
topological algebra. Then the following are equivalent for a subset L of S:

(1) the set L is Q-recognizable;
(2) the set L is of the form K ∩ S for some clopen subset K of CQ(S);
(3) the set L is open and L ∩ S = L.

When the pro-Q topology of S is discrete, a further equivalent condition is that
L is open. Moreover, the clopen sets of the form L with L a Q-recognizable
subset of S form a basis of the pro-Q topology of S.

Since CQ(S) has further structure involved besides its topology, which is
the sole to intervene in Stone duality, one may ask what further structure
is reflected in the Boolean algebra. This question has been investigated
in [58, 59], in the context of the theory of semigroups and its connections
with regular languages.
For a topological algebra S, we denote by End(S) the monoid of continuous

endomorphisms of S. It can be viewed as a subspace of the product space SS,
that is with the pointwise convergence topology . A classical alternative is the
compact-open topology , for which a basis consists of all sets of the form (K,U),
which in turn consist of all self maps ϕ of S such that ϕ(K) ⊆ U , where K is
compact and U is open. These two topologies on a space of self maps of S
in general do not coincide. However, for finitely generated profinite algebras
they coincide on End(S). This was first proved by Hunter [66, Proposition 1]
and rediscovered by the first author [12, Theorem 4.14] in the context of
profinite semigroups. Steinberg [105] showed how this is related with the
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classical theorem of Ascoli on function spaces. The proofs extend easily to
an arbitrary algebraic setting.

Theorem 2.13. For a finitely generated profinite algebra S, the pointwise
convergence and compact-open topologies coincide on End(S) and turn it
into a profinite monoid such that the evaluation mapping End(S)× S → S,
sending (ϕ, s) to ϕ(s), is continuous.

A further result from [105] that extends to the general algebraic setting
is that finitely generated profinite algebras are Hopfian in the sense that all
continuous onto endomorphisms are automorphisms.
Denote by Aut(S) the group of units of End(S), consisting of all continuous

automorphisms of S whose inverse is also continuous, the latter restriction
being superfluous in case S is compact. From Theorem 2.13, it follows that,
for a finitely generated profinite algebra S, Aut(S) is a profinite group. In
case S is a profinite group, this result as well as the Hopfian property of S
are well known in group theory [99].

2.5. Relatively free profinite algebras. Let Q be a pseudoquasivariety.
We say that a pro-Q algebra S is free pro-Q over a set A if there is a mapping
ι : A → S satisfying the following universal property: for every function
ϕ : A→ T into a pro-Q algebra, there is a unique continuous homomorphism
ϕ̂ : S → T such that ϕ̂◦ ι = ϕ. The mapping ι is usually not unique and it is
said to be a choice of free generators. The following result is well known [10].

Proposition 2.14. For every pseudoquasivariety Q and every set A, there
exists a free pro-Q algebra over A, namely the inverse limit of all A-generated
algebras from Q, with connecting homomorphisms respecting the choice of
generators. Up to isomorphism respecting the choice of free generators, it is
unique.

We denote the free pro-Q algebra over a set A by ΩAQ. The notation is
justified below.
An alternative way of constructing free pro-Q algebras is through the pro-Q

Hausdorff completion of free algebras.

Proposition 2.15. Let Q be a pseudoquasivariety and let A be a set. Let V
be the variety generated by Q. Then the pro-Q Hausdorff completion of the
free algebra FAV is a free pro-Q algebra over A.
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Note that, by Proposition 2.3, if A is finite, then ΩAQ is metrizable. In
contrast, the argument presented in [32, end of Section 3] for pseudovarieties
of monoids may be extended to every nontrivial pseudoquasivariety Q to
show that, if A is infinite, then ΩAQ is not metrizable.
A topological algebra S is self-free with basis A if A is a generating subset

of S such that every mapping A → S extends uniquely to a continuous
endomorphism of S.

Theorem 2.16. The following conditions are equivalent for a profinite alge-
bra S:

(1) the topological algebra S is self-free with basis A;
(2) there is a pseudoquasivariety Q such that S is isomorphic with ΩAQ;
(3) there is a pseudovariety V such that S is isomorphic with ΩAV.

Proof : The implications (3)⇒ (2)⇒ (1) are obvious, so it remains to prove
that (1) ⇒ (3). Suppose that (1) holds and let V be the pseudovariety
generated by all finite algebras that are continuous homomorphic images
of S. We claim that S is isomorphic with ΩAV.
We first observe that, since S is a profinite algebra, it is an inverse limit of

finite algebras, which may be chosen to be continuous homomorphic images
of S. Hence S is a pro-V algebra and, therefore, there is a unique continuous
homomorphism ϕ : ΩAV → S such that, for a choice of free generators
ι : A → ΩAV, the composite ϕ ◦ ι is the inclusion mapping A →֒ S. Since
S is generated by A as a topological algebra, the function ϕ is surjective. It
suffices to show that it is injective.
Let u, v be distinct points of ΩAV. Since ΩAV is residually in V, there is

some continuous homomorphism ψ : ΩAV→ T , onto some T ∈ V, such that
ψ(u) 6= ψ(v). By the definition of V, there are continuous homomorphisms
ξi : S → Vi (i = 1, . . . , n) onto finite algebras, a subalgebra U of

∏n
i=1 Vi,

and a surjective homomorphism ρ : U → T . Since ρ is surjective, there is
a mapping η : A → U such that ρ ◦ η = ψ ◦ ι. Let πi :

∏n
j=1 Vj → Vi

be the ith component projection. Since ξi is surjective, there is a function
µi : A → S such that ξi ◦ µi = πi ◦ η. By self-freeness of S, with basis A, it
follows that there is a continuous endomorphism µ̂i of S such that µ̂i|A = µi.
Let ζ : S →

∏n
i=1 Vi be the unique continuous homomorphism such that

πi◦ζ = ξi◦µ̂i for i = 1, . . . , n. The following diagram depicts the relationships
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between these mappings.
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Note that πi ◦ ζ|A = ξi ◦ µi = πi ◦ η for i = 1, . . . , n, which shows that
ζ|A = η and so the image of ζ is contained in U and the chain of equalities
ρ ◦ ζ ◦ ϕ ◦ ι = ρ ◦ ζ|A = ρ ◦ η = ψ ◦ ι holds, which yields ρ ◦ ζ ◦ ϕ = ψ. Since
ψ(u) 6= ψ(v), we deduce that ϕ(u) 6= ϕ(v), which establishes the claim that
ϕ is injective.

Theorem 2.16 not only gives a characterization of relatively free profinite
algebras in terms of properties that only involve the algebras themselves, but
also shows that, when talking about such algebras, we may as well deal only
with pseudovarieties.
Yet another description of relatively free profinite algebras is given by al-

gebras of implicit operations, which further provide a useful viewpoint. For
a class C of profinite algebras and a set A, an A-ary implicit operation w
on C is a correspondence associating with each S ∈ C a continuous operation
wS : SA → S such that, for every continuous homomorphism ϕ : S → T
between members of C, the equality wT (ϕ ◦ f) = ϕ(wS(f)) holds for every
f ∈ SA. We call wS the interpretation of w in S.

Proposition 2.17. Let C be a class of finite algebras, let V be the pseudova-
riety it generates, and let A be a set. For w ∈ ΩAV and a pro-V algebra S, let
w̄S : SA → S be defined by w̄S(ϕ) = ϕ̂(w), where ϕ̂ is the unique continuous
homomorphism ΩAV → S such that ϕ̂ ◦ ι = ϕ. Then w̄ is an A-ary implicit
operation on the class of all pro-V algebras and every such operation is of
this form. Moreover, the correspondence associating to w the restriction of
w̄ to C is injective and, therefore, so is the correpondence w 7→ w̄.

Thus, we may as well identify each w ∈ ΩAV with the implicit operation
w̄ that it determines. In terms of implicit operations, the interpretation of
the basic operations is quite transparent: for an n-ary operation symbol f ,
implicit operations w1, . . . , wn ∈ ΩAV, a pro-V algebra S, and a function
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ϕ ∈ SA, we have
(

fΩAV(w1, . . . , wn)
)

S
(ϕ) = fS

(

(w1)S(ϕ), . . . , (wn)S(ϕ)
)

.

In other words, the basic operations are interpreted pointwise.
Among the implicit operations on the class of all profinite algebras, we

have the projections xa. More precisely, for a set A and a ∈ A, the A-
ary projection on the a-component is interpreted in a profinite algebra S
by (xa)S(ϕ) = ϕ(a) for each ϕ ∈ SA. By restriction to pro-V algebras,
we also obtain corresponding implicit operations, which we still denote xa.
The subalgebra of ΩAV generated by the xa with a ∈ A is denoted ΩAV.
Its elements are also known as A-ary explicit operations on pro-V algebras.
From the universal property of ΩAV, it follows immediately that ΩAV is the
free algebra FAV , where V is the variety generated by V. The following result
explains the notation.

Proposition 2.18. Let V be a pseudovariety. Then the algebra ΩAV is dense
in ΩAV.

The operational point of view has the advantage that pro-V algebras are
automatically endowed with a stucture of profinite algebras over any enriched
signature obtained by adding implicit operations on V. This idea is essential
for Subsection 2.6.
A formal equality u = v between members of some ΩAV is said to be

a pseudoidentity for V; the elements of A are called the variables of the
pseudoidentity. It is said to hold in a pro-V algebra S if uS = vS. In case V

is the pseudovariety of all finite algebras, we omit reference to V. For a set
Σ of pseudoidentities for V, the class of all algebras from V that satisfy all
pseudoidentities from Σ is denoted JΣK; this class is said to be defined by Σ
and Σ to be a basis of pseudoidentities for it.

Theorem 2.19 (Reiterman [93]). A subclass of a pseudovariety V is a pseu-
dovariety if and only if it is defined by some set of pseudoidentities for V.

There are many alternative proofs of Reiterman’s theorem, as well as ex-
tensions to various generalizations of the algebras considered in this chapter.
The most relevant in the context of this handbook seems to be the one ob-
tained by Molchanov [78] for “pseudovarieties” of algebras with predicates,
also proved independently by Pin and Weil [89].
The interest in Reiterman’s theorem stems from the fact that it provides a

language to obtain elegant descriptions of pseudovarieties. Moreover, namely
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through the techniques described in the next subsection, they sometimes lead
to decidability results, even if in a somewhat indirect way.

2.6. Decidability and tameness. In the theory of regular word or tree
languages, pseudovarieties serve the purpose of providing an algebraic clas-
sification tool for certain combinatorial properties. The properties that are
amenable to this approach have been identified, first by Eilenberg [56] for
word languages, and later by the first author [5, 6] and Steinby [106] for tree
languages. By considering additional relational structure on the algebras,
further combinatorial properties may be captured (see [84, 92]).
Basically, in such an algebraic approach, one seeks to decide whether a

language has a certain combinatorial property by testing whether its syntac-
tic algebra has the corresponding algebraic property, that is, if this algebra
belongs to a certain pseudovariety. Thus, a property of major interest that
pseudovarieties may have is decidability of the membership problem: given
a finite algebra, decide whether or not it belongs to the pseudovariety. We
then simply say that the pseudovariety is decidable.
One way to establish that a pseudovariety is decidable is to prove that it

has a finite basis of pseudoidentities which are equalities between implicit op-
erations that can be effectively computed, so that the pseudoidentities in the
basis can be effectively checked. In fact, for most commonly encountered im-
plicit operations, the computation can be done in polynomial time, in terms
of the size of the algebra, and so the verification of the basic pseudoidentities
can then be done in polynomial time.
However, many pseudovarieties of interest are not finitely based. For in-

stance, it is easy to see that, if a pseudovariety is generated by a single
algebra, then it is decidable, but it may not be finitely based, an important
example being the pseudovariety generated by the syntactic monoid B1

2 of
the language (ab)∗ over the 2-letter alphabet [82, 100]. Moreover, contrary to
a conjecture proposed by the first author [6], a pseudovariety for which the
membership problem is solvable in polynomial time may not admit a finite
basis of pseudoidentities [107]. Sapir has even shown that there is a finite
semigroup that generates such a pseudovariety [70, Theorem 3.53]. It has
recently been announced by M. Jackson that the membership problem for
V(B1

2) is NP-hard and so, provided P 6= NP, that problem cannot be decided
in polynomial time, which would solve [70, Problem 3.11].
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Pseudovarieties are often described by (infinite) generating sets of algebras.
This comes about by applying some natural operator on other pseudovari-
eties, like the join in the lattice of pseudovarieties. In general, for any con-
struction C(S1, . . . , Sn) of an algebra from given algebras Si, perhaps under
suitable restrictions or additional data (like in the definition of semidirect
product, where an action of one of the factors on the other is required), one
may consider the pseudovariety C(V1, . . . ,Vn) generated by all algebras of
the form C(S1, . . . , Sn) with each Si in a given pseudovariety Vi. The join is
obtained in this way by considering the usual direct product. Another type
of operator of interest is the following: for two pseudovarieties V and W, their
Mal’cev product V©m W is the pseudovariety generated by all algebras S for
which there is a congruence θ such that S/θ belongs to W, and each class
which is a subalgebra belongs to V.
Since most such natural operators in the case of semigroups do not pre-

serve decidability [1, 42], it is of interest to develop methods that, under
suitable additional assumptions on the given pseudovarieties, guarantee that
the operator produces a decidable pseudovariety. The starting point in the
profinite approach is to obtain a basis of pseudoidentities for the resulting
pseudovariety. In the context of semigroups and monoids, bases theorems of
this kind have been established for Mal’cev products [88] and various types
of semidirect products [38]. Unfortunately, there is a gap in the proof of
the latter, so that the results are only known to hold under certain addi-
tional finiteness hypotheses.∗ The bases provided by such theorems for a
binary operator C(V,W) consist of pseudoidentities which are built from
pseudoidentities determined by V by substituting the variables by certain
implicit operations. The implicit operations that should be considered to
test membership in C(V,W) of a given finite A-generated algebra S are the
solutions of certain systems of equations in ΩAW, determined by the operator
C, subject to regular constraints determined by each specific evaluation of
the variables in S which is to be tested. This approach was first introduced
in [8, 7], improved in [30], and later extended in [10] and, independently
and in a much more systematic way, also in [96]. The reader is referred
to [7, 30, 10] for the proofs of the results presented in this section.
We proceed to formalize the above ideas. Consider a set Σ of pseudoiden-

tities, which we view as a system of equations . The sides of the equations

∗See [96] for a discussion and a general basis theorem, which in turn has not led to decidability
results.
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u = v in Σ are implicit operations u, v ∈ ΩXU on a suitable ambient pseu-
dovariety U over a fixed alphabet X, whose letters are called the variables
of the system. We may say that Σ consists of U-equations to emphasize this
condition. Additionally, we impose for each variable x a clopen constraint
Kx ⊆ ΩAU over another fixed alphabet. The constraints are thus recognizable
subsets of ΩAU. We say that the constrained system has a solution γ in an
A-generated pro-U algebra T if γ : X → ΩAU is a function such that the fol-
lowing two conditions hold, where γ̂ : ΩXU→ ΩAU and π : ΩAU→ T are the
unique continuous homomorphisms respectively extending γ and respecting
the choice of generators of T :

(1) for each variable x ∈ X, the constraint γ(x) ∈ Kx is satisfied;
(2) for each equation u = v in Σ, the equality π(γ̂(u)) = π(γ̂(v)) holds.

The following is a simple compactness result which can be found for instance
in [10].

Theorem 2.20. A system of U-equations over a set of variables X with
clopen constraints Kx ⊆ ΩAU (x ∈ X) has a solution in every A-generated
algebra from a given subpseudovariety V of U if and only if it has a solution
in ΩAV.

If the set of variables X is finite, which we assume from hereon, then there
is a continuous homomorphism ϕ : ΩAU → S into a finite algebra S which
recognizes all the given constraints Kx ⊆ ΩAU (x ∈ X). Then the existence
of a solution for the system in an A-generated algebra T ∈ U is equivalent
to the existence of a solution in T for the same system for at least one of a
certain set of constraints of the form K ′x = ϕ−1(s) with s ∈ S. Thus, one
may prefer to give the constraints in the form of a function X → S into an
A-generated finite algebra S.
Another formulation of the above ideas is in terms of relational morphisms,

which is the perspective initially taken in [7] and which prevails in [96]. A
relational morphism between two topological algebras S and T is a closed
subalgebra µ of the direct product S × T whose projection in the first com-
ponent is onto. Note that, if S and T are pro-U algebras then so is µ and if µ
is A-generated, then the induced continuous homomorphisms ϕ : ΩAU → S
and ψ : ΩAU → T are such that µ is obtained by composing the relations
ϕ−1 ⊆ S × ΩAU and ψ ⊆ ΩAU × T . This is called a canonical factorization
of µ.
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An example of such a relational morphism is obtained as follows. Let
ϕ : A → S be a generating mapping for a pro-U algebra S and let V be
a subpseudovariety of U. Consider the unique continuous homomorphisms
ϕ̂ : ΩAU→ S and ψ : ΩAU→ ΩAV respecting the choice of generators. Then
µV,A = ϕ̂−1ψ is a relational morphism from S to ΩAV.
We say that the system of U-equations Σ with constraints given by a func-

tion ξ : X → S into a finite algebra S is inevitable with respect to a relational
morphism µ ⊆ S × T , where T is a profinite algebra, if there is a continuous
homomorphism δ : ΩXU→ T such that the following conditions hold:

(1) for each variable x ∈ X, the constraint (ξ(x), δ(x)) ∈ µ is satisfied;
(2) for each equation u = v in Σ, the equality δ(u) = δ(v) holds.

One can easily check that this property is equivalent to the existence of a
solution of the system subject to the constraints Kx = ϕ̂−1(ξ(x)) ⊆ ΩAU,
where µ = ϕ̂−1ψ is the canonical factorization associated with a finite gener-
ating set A for µ. Theorem 2.20 then yields the following similar compactness
theorem for inevitability.

Theorem 2.21. For a system of U-equations over a finite set X, of variables,
with constraints given by a mapping X → S into a finite algebra S and a
subpseudovariety V of U, the following conditions are equivalent:

(1) the constrained system is inevitable with respect to every relational
morphism µ from S into an arbitrary algebra from V;

(2) the constrained system is inevitable with respect to every relational
morphism µ from S into an arbitrary pro-V algebra;

(3) for some finite generating set A of S, the constrained system is in-
evitable with respect to the relational morphism µV,A;

(4) for every finite generating set A of S, the constrained system is in-
evitable with respect to the relational morphism µV,A.

Let V be a subpseudovariety of U. We say that a constrained system is
V-inevitable if it satisfies the equivalent conditions of Theorem 2.21. The
pseudovariety V is said to be hyperdecidable with respect to a class S of
systems of U-equations with constraints in algebras from U if there is an
algorithm that decides, for each constrained system in S, whether it is V-
inevitable.
An approach to prove hyperdecidability which was devised by Steinberg

and the first author [30, 31], inspired by seminal work of Ash [41], was to
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draw this property from other either more familiar or more conceptual prop-
erties. Assume that the class S consists of finite systems, that it is recursively
enumerable, and that the implicit operations that appear on the sides of the
equations of the systems are computable. Moreover, suppose that V is re-
cursively enumerable. One can then effectively check whether a constrained
system in S is inevitable with respect to a relational morphism from the
constraining algebra into an algebra from V, which gives a semi-algorithm
to enumerate the constrained systems which are not V-inevitable. To decide
whether a constrained system from S has a solution in ΩAV it thus suffices to
add hypotheses to guarantee that there is also a semi-algorithm to enumer-
ate the systems that are V-inevitable. To do so, the idea is to prove that if
the system is V-inevitable, then there is a solution of a special kind, so that
the candidates for such special solutions can be effectively enumerated and
whether such a candidate is indeed a solution can be effectively checked.
To formalize this idea, consider a recursively enumerable set τ of com-

putable implicit operations on U, including the basic operations. We call
such a set τ a computable implicit signature over U. Note that every pro-U
algebra has automatically the structure of a τ -algebra (see Proposition 2.17).
For a subpseudovariety V of U, we denote by Ωτ

AV the τ -subalgebra of ΩAV

generated by A. It follows from the definition of free pro-V algebra that Ωτ
AV

is freely generated by A in the variety of τ -algebras generated by V. The
word problem for Ωτ

AV consists in, given two τ -terms over the alphabet A,
deciding whether they represent the same element of Ωτ

AV. We may now
state the following key definition.

Definition 2.2. Let V be a recursively enumerable subpseudovariety of U
and let S be a class of constrained systems of U-equations. We say that V
is τ -reducible with respect to S if, whenever a constrained system in S has
a solution γ : X → ΩAU in ΩAV, it has a solution γ ′ : X → Ωτ

AU in ΩAV.
†

If, moreover, the word problem for Ωτ
AV is decidable, then we say that V

is τ -tame with respect to S. We say that V is completely τ -tame if it is
τ -tame with respect to the class of all finite constrained systems of equations
of τ -terms.

The following result summarizes the above discussion.

†A topological formulation of the notion of τ -reducibility was recently found in [26]. It simply
states that, for each system from S, forgetting the constraints, the solutions in ΩAV from S taking
values in Ωτ

A
U are dense in the set of all solutions in ΩAV.
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Theorem 2.22. Let U be a recursively enumerable pseudovariety and let τ
be a computable implicit signature over U. Let S be a recursively enumerable
class of constrained systems of equations between τ -terms. Finally, let V

be a subpseudovariety of U. If V is τ -tame with respect to S, then V is
hyperdecidable with respect to S.

Several important examples of tame pseudovarieties are discussed in Sub-
section 3.2. Here, we only present tameness results which hold in the general
algebraic context to which this section is dedicated. Before doing so, we
introduce a weaker version of tameness which is also of interest.
Let S be an A-generated algebra from U and let τ be a computable implicit

signature. The relational morphism µ̄τV,A ⊆ S × Ωτ
AV is obtained by taking

the intersection of µV,A with S × Ωτ
AV. We say that V is weakly τ -reducible

for a class S of constrained systems of U-equations if, for every V-inevitable
constrained system in S, say with constraints in the A-generated algebra
S ∈ U, the system is inevitable with respect to the relational morphism µ̄τV,A.
Replacing τ -reducibility by weak τ -reducibility in the definition of τ -tameness
we speak of weak τ -tameness .
Viewing Ωτ

AV as a discrete algebra, there is another natural relational mor-
phism µτV,A ⊆ S × Ωτ

AV, namely the τ -subalgebra generated by the pairs of
the form (a, a) with a ∈ A. The notation is justified since, as it is easily
proved, the relation µ̄τV,A is the closure of µτV,A in S×Ωτ

AV with respect to the
discrete topology in the first component and the pro-V topology in the second
component. We say that V is τ -full if the two relational morphisms coincide
for every A-generated algebra S from U. Note that a weakly τ -reducible τ -
full pseudovariety is τ -reducible. Conversely, the terminology is justified by
the fact that, if V is τ -reducible with respect to a constrained system Σ of
U-equations, then it is also weakly τ -reducible with respect to Σ.
We say that the pseudovariety V has computable τ -closures if there is an

algorithm such that, given a finite alphabet A, a regular subset L of ΩAV and
an element v ∈ Ωτ

AV, determines whether or not v belongs to the closure of
L in the pro-V topology of Ωτ

AV. The following combines a couple of results
from [30].

Theorem 2.23. Let V be a recursively enumerable subpseudovariety of a
recursively enumerable pseudovariety U, let τ be a computable implicit signa-
ture, and suppose that the word problem for each Ωτ

AV is decidable.

(1) If V is τ -full then V has computable τ -closures.
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(2) If V is weakly τ -reducible for a class S of constrained systems of U-
equations and V has computable τ -closures, then V is hyperdecidable
with respect to S.

We say that a class of algebras is locally finite if all finitely generated alge-
bras in the variety it generates are finite. This is the case, for instance, for a
pseudovariety generated by a single algebra but not every locally finite pseu-
dovariety is of this kind. A well-known example in the realm of semigroups
is provided by the pseudovariety of all finite bands (in which every element
is idempotent).
A decidable locally finite pseudovariety V is said to be order computable

if the function that associates with each positive integer n the cardinality of
the algebra ΩnV is computable. It seems to be an open problem whether
every locally finite pseudovariety is order computable. The following result
is an immediate extension of [30, Theorem 4.18], which is based on the “slice
theorem” of Steinberg [102].

Theorem 2.24. Let V be a τ -tame pseudovariety with respect to a class S of
systems of equations and let W be an order-computable pseudovariety. Then
the join V ∨W is also τ -tame with respect to S.

One of the ingredients behind the proof of Theorem 2.24 is that ΩAW =
Ωτ
AW for every locally finite pseudovariety W and every implicit signature τ .

Under this weaker property for a computable implicit signature τ , tameness
becomes much simpler. The following result is a simple corollary of some of
the above results. We do not know whether the τ -fullness hypothesis can be
dropped.

Proposition 2.25. Let τ be a computable implicit signature and let V be
a recursively enumerable pseudovariety such that the equality ΩAV = Ωτ

AV

holds for every finite set A and V is τ -full. Then V is completely τ -tame if
and only if the word problem for each Ωτ

AV is decidable.

3. The case of semigroups

The motivation to study profinite topologies in finite semigroup theory
comes from automata and language theory: Eilenberg’s correspondence the-
orem [56] shows the relevance of investigating pseudovarieties of semigroups
and monoids.
The results mentioned in this section by no means cover entirely the lit-

erature in the area that is presently available. In particular, we stick to the



28 JORGE ALMEIDA AND ALFREDO COSTA

more classical case of semigroups, while for instance the cases of ordered
semigroups or stamps have come to play a significant role, as can be seen
in Chapter 16. It turns out that in all these cases the same relatively free
profinite semigroups intervene and the results are also often quite similar,
although sometimes their proofs involve additional technical difficulties.

3.1. Computing profinite closures. There are several reasons why profi-
nite topologies are relevant for automata theory and Sections 1 and 2 provide
many of them. We start this subsection by formulating a simple problem
which has a direct translation in terms of profinite topologies.
Let A be a finite alphabet and let L ⊆ A+ be a regular language. Mem-

bership in L of a word w ∈ A+ can be effectively tested by checking whether
the action of w on the initial state of the minimal automaton of L leads to
a final state, or whether the syntactic image of w belongs to that of L. But,
one may be interested in a weaker test such as whether w may be separated
from L by a regular language K of a particular type, for instance a group
language (i.e., a language whose syntactic semigroup is a group): does there
exist a group language K ⊆ A+ such that w ∈ K and K ∩ L = ∅?
Let G denote the pseudovariety of all finite groups. In view of Propo-

sition 2.2(3), the above separation property is equivalent to being able to
separate w from L by some open set in the pro-G topology of A+. Thus, in
terms of the pro-G topology, the above question translates into testing mem-
bership of w in the closure of L in the pro-G topology of A+. More generally,
we have the following result, where we denote by clV(L) the closure of L in
the pro-V topology of A+.

Proposition 3.1. Let A be a finite alphabet and let V be a pseudovariety of
semigroups. For a regular language L ⊆ A+, a word w ∈ A+ can be separated
from L by a V-recognizable language if and only if w /∈ clV(L).

Thus, for a pseudovariety V to have computable τ -closures for the implicit
signature reduced to multiplication (see Subsection 2.6) is a property that
has immediate automata-theoretic relevance.
The special case of separation by group languages has particular historical

importance. It was first considered by Pin and Reutenauer [85], who proposed
the following recursive procedure to compute clG(L), where FG(A) denotes
the group freely generated by A.
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Theorem 3.2 ([85, Theorem 2.4]). Given a regular expression for a lan-
guage L ⊆ A+, replace the operation K 7→ K+ by that of taking the subgroup
of FG(A) generated by the argument K. The resulting expression describes
a subset of FG(A) and clG(L) is its intersection with A+.

The correctness of the algorithm described in Theorem 3.2 was reduced to
the proposed conjecture that the product of finitely many finitely generated
subgroups of a free group is closed in its profinite topology, thus generalizing
M. Hall’s result that finitely generated subgroups of the free group are closed
in the profinite topology [61]. This conjecture was established by Ribes
and Zalesskĭı [97] using profinite group theory. The original motivation for
computing clG(L) comes from the fact that Pin and Reutenauer also showed
that the correctness of their procedure implies that the “type II conjecture”
holds. This other conjecture gives a constructive description of the group
kernel KG(M) of a finite monoid M . More generally, for a pseudovariety H

of groups, the H-kernel KH(M) consists of all m ∈ M such that, for every
relational morphism µ from M to a group in H, (m, 1) belongs to µ. The
type II conjecture states that KG(M) is the smallest submonoid of M that
contains the idempotents and is closed under the operation that sends m to
amb if aba = a or bab = b (weak conjugation). An independent proof of the
type II conjecture was obtained by Ash [41] and is discussed in Subsection 3.2.
The pro-V closure of regular languages in A+ has also been considered for

other pseudovarieties V. For a pseudovariety H of groups, the motivation
comes from the membership problem in the pseudovariety W©m H for a pseu-
dovariety of monoids W. Indeed, it is easy to show that a finite monoid M
belongs to this Mal’cev product if and only if KH(M) belongs to W. On the
other hand, Pin [83] observed that, if ϕ : A∗ →M is an onto homomorphism
and m ∈ M , then m ∈ KH(M) if and only if the empty word 1 belongs to
clH(ϕ

−1(m)). Thus, we have the following result.

Proposition 3.3. Let W be a decidable pseudovariety of monoids and H a
pseudovariety of groups such that one can decide whether, given a regular
language L ⊆ A∗, the empty word belongs to clH(L). Then W©m H is decid-
able.

The problem of computing the pro-H closure in A∗ of a regular language
L ⊆ A∗ has been considered for other pseudovarieties of groups such as
Ab (Abelian groups) [53], Gp (p-groups), Gnil (nilpotent groups), and Gsol

(solvable groups) [98, 76].
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Suppose that H is a pseudovariety of groups such that the free group FG(A)
is residually in H. Then we have natural embeddings A∗ →֒ FG(A) →֒ ΩAH.
The pro-H topology of a subalgebra of ΩAH is its subspace topology by Propo-
sitions 2.11 and 2.15. Thus, an equivalent problem to computing the H-kernel
of a finite monoid is to decide whether 1 belongs to the closure in FG(A) of
a regular language L ⊆ A∗. In case H is closed under extensions (or, equiva-
lently, under semidirect product), Ribes and Zalesskĭı [98, Theorem 5.1] have
shown that, for the pro-H topology, the product of finitely many finitely gen-
erated closed subgroups of FG(A) is also closed. Using the Pin-Reutenauer
techniques, they reduced the computation of the pro-H closure of a regular
language L ⊆ A∗ to the computation of the pro-H closure in FG(A) of a
given finitely generated subgroup. That these results also apply to Gnil has
been recently shown in [27]. Algorithms for the computation of the pro-Gp
and pro-Gnil closures of finitely generated subgroups of a free group can be
found in [98, 76]. The case of Gsol remains open.
For an element s of a profinite semigroup S, sω denotes the unique idem-

potent in the closed subsemigroup T generated by s, and sω−1 the inverse of
sω+1 = ssω in the maximal subgroup of T . Consider the implicit signature
κ consisting of multiplication together with the unary operation x 7→ xω−1.
The free group FG(A) may be then identified with the free algebra Ωκ

AG.
This suggests generalizations of the Pin-Reutenauer procedure for comput-
ing the pro-G closure of a regular language L ⊆ A∗ to other pseudovarieties.
The analog of the procedure is shown in [22] to hold for the pseudovariety A

(and the signature κ).
Another important application of the separation problem has been given

by Place and Zeitoun [90] in the study of the decidability problem for the
Straubing-Thérien hierarchy of star-free languages.

3.2. Tameness. There is a natural way of associating a system of semigroup
equations to a finite digraph that is relevant for the computation of semidirect
products of pseudovarieties of semigroups [7]. Namely, the variables of the

system are the vertices and the arrows, and each arrow u
e
−→ v gives rise

to an equation ue = v which relates the act of following the arrow with
multiplication as in a Cayley graph. The term tameness was introduced
in [31] to refer to tameness with respect to such systems of equations in the
sense of Subsection 2.6. To avoid confusion, we prefer to call it here graph
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tameness . We adopt a similar convention for other properties parametrized
by systems of equations, such as hyperdecidability and reducibility.
For example, for the one-vertex one-loop digraph, the corresponding equa-

tion is xy = x. It is easy to verify that, with constraints given by a func-
tion ξ into a finite monoid M , this equation is G-inevitable if and only if
ξ(y) ∈ KG(M). For the two-vertex digraph with n arrows from one vertex
to the other one, the associated system of equations has the form xyi = z
(i = 1, . . . , n). If ξ is a constraining function into a finite monoid M such
that ξ(x) = 1, then the system is G-inevitable if and only if, for every rela-
tional morphism µ fromM into an arbitraryG ∈ G, there is some g ∈ G such
that ξ({y1, . . . , yn, z})×{g} ⊆ µ. Replacing G by an arbitrary pseudovariety
V of monoids, the latter condition is expressed by saying that the subset
ξ({y1, . . . , yn, z}) of M is V-pointlike.
The first and best known example of a graph tame pseudovariety is that of

the pseudovariety G. This result has been discovered in different disguises,
first by Ash [41], as a means of establishing the type II (see Subsection 3.1
and [69]) and pointlike [63] conjectures. In Ash’s formulation, the arrows of
finite digraphs are labeled with elements of a finite monoidM and the result
is said to be inevitable if, for every relational morphism µ from M into an
arbitrary finite group G, each label can be replaced by a µ-related label in G
such that, for every (not necessarily directed) cycle, the product of the labels
of the arrows, or their inverses for backward arrows, is equal to 1 in G. In
the notation of Subsection 2.6 and also taking into account [30, Lemma 4.8],
Ash’s theorem states that such a labeled digraph is inevitable if and only
if the preceding property holds for the relational morphism µκG,A associated
with any choice of generating set A for M . It then follows easily that Ash’s
theorem translates to the statement that G is graph κ-tame.
Fix a finite relational language. A class R of relational structures is said

to satisfy the finite extension property for partial automorphisms (FEPPA)
if, for every finite structure R in R and every set P of isomorphisms between
substructures of R, if there exists in R an extension S of R in which all
f ∈ P extend to automorphisms of S, then there is such an extension S
which is finite. A homomorphism of relational structures is a function that
preserves the relations in the forward direction. The exclusion of a class R of
relational structures is the class of relational structures S such that there is
no homomorphism R→ S with R ∈ R. Herwig and Lascar [65] showed that,
for a finite class R of finite relational structures, its exclusion class satisfies
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FEPPA. They also gave an equivalent formulation of this result in terms of
a property of free groups, which Delgado and the first author [23, 24] proved
to be equivalent to the graph κ-tameness of G.
On the other hand, it follows from results of Coulbois and Khélif [52] that

the pseudovariety G is not completely κ-tame. It would be of interest to find
a signature τ such that G is completely τ -tame, if any such signature exists.

Theorem 3.4. The pseudovariety G is graph κ-tame but not completely κ-
tame.

Tameness has also been investigated for other pseudovarieties of groups.
The pseudovariety Ab is completely κ-tame [25]. On the other hand, a pseu-
dovariety of Abelian groups is completely hyperdecidable if and only if it is
decidable while it is completely κ-tame if and only if it is locally finite or
Ab [54]. For the pseudovariety Gp, the situation is more complicated. Stein-
berg [101, Theorem 11.12] showed that, for every nontrivial extension-closed
pseudovariety of groups H such that the pro-H closure of a finitely gener-
ated subgroup of a free group is again finitely generated, H is graph weakly
κ-reducible. On the other hand, a graph κ-reducible pseudovariety must ad-
mit a basis of pseudoidentities consisting of κ-identities [30, Proposition 4.2]
which, since free groups are residually in Gp, entails that Gp is not graph
κ-tame. Using symbolic dynamics techniques to generate a suitable infinite
implicit signature, the first author has established the following result [9].

Theorem 3.5. There is a signature τ such that Gp is graph τ -tame.

Building on the approach of [9], Alibabaei has constructed for each decid-
able pseudovariety H of Abelian groups an implicit signature with respect to
which H is completely tame [2] and also an implicit signature with respect to
which Gnil is graph tame [3].
A semigroup is said to be completely regular if every element lies in some

subgroup. The pseudovariety CR consists of all completely regular finite
monoids and OCR is the subpseudovariety consisting of those in which the
idempotents constitute a submonoid. Both these pseudovarieties have been
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shown to be graph κ-tame [34, 33],‡ results which depend heavily on The-
orem 3.4 together with structure theorems for the corresponding relatively
free profinite monoids.
Several aperiodic pseudovarieties have also been investigated. An interest-

ing example is that of the pseudovariety J of all finite J -trivial semigroups,
corresponding to the variety of piecewise testable languages (see [56]). The
first author has shown that, for a finite alphabet A, ΩAJ = Ωκ

AJ and also
solved the word problem for Ωκ

AJ (see [6, Section 8.2]). Since it is an easy
exercise to deduce that J is κ-full, it follows from Proposition 2.25 that J

is completely κ-tame, and therefore graph hyperdecidable. The construc-
tion of a “real algorithm” to decide inevitability turns out to be much more
involved [39].
For the pseudovariety R, consisting of all finite R-trivial semigroups, con-

structing a concrete algorithm to show that R is graph hyperdecidable is
technically complicated, even when only strongly connected digraphs are
considered [29]. Building on seminal ideas of Makanin [75] and taking into
account the structure of free pro-R semigroups [37], Costa, Zeitoun and the
first author [21] have established the following result.

Theorem 3.6. The pseudovariety R is completely κ-tame.

This result has been extended in [13] to pseudovarieties of the form DRH,
consisting of all finite semigroups in which every regular R-class is a group
from the pseudovariety H of groups.
Consider next the pseudovariety LSl of all finite local semilattices, which

corresponds to the variety of locally testable languages (see [56]). The proof
of the following result involves very delicate combinatorics on words [51, 50].

Theorem 3.7. The pseudovariety LSl is completely κ-tame.

J. Rhodes announced in a conference held in 1998 in Lincoln, Nebraska, that
A is graph κ-tame. The only part of the program to establish such a result

‡The conjecture to which the graph tameness of CR is reduced in [34] has been observed by
K. Auinger (private communication) to hold using the methods of [23, 24]. There is also another
difficulty which comes from the fact that free profinite semigroupoids over profinite graphs are
considered. As has been shown in [14], there are some rather delicate aspects in the description
of such structures when the graph has infinitely many vertices, namely the free subsemigroupoid
generated by a dense subgraph of the profinite graph may not be dense, and one needs in general
to transfinitely iterate algebraic and topological closures. However, one can check that for the free
profinite semigroupoid in question, the iteration stops in one step, from which it follows that the
required properties of the suitable free profinite semigroupoid are guaranteed [16].
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that has been published is McCammond’s solution of the word problem for
Ωκ
AA [77]. Another, earlier ingredient in Rhodes’ ideas comes from Henckell’s

computation of the A-pointlike subsets of a given finite semigroup [62]. See
[91] for a different proof. In [64] there is also an alternative proof and the
following generalization.

Theorem 3.8. If π is a recursive set of prime integers, then there is an
algorithm to compute pointlike sets of finite semigroups with respect to the
pseudovariety Gπ, consisting of all finite semigroups whose subgroups are π-
groups.

Once it was discovered that there was a gap in the proof of the basis theorem
(see the discussion in Subsection 2.6), which invalidated the reduction of
the decidability of the Krohn-Rhodes complexity to proving that A is tame
announced in [30], Rhodes withdrew several manuscripts that he claimed
would prove that A is tame. The Krohn-Rhodes complexity pseudovarieties
are defined recursively by C0 = A and Cn+1 = Cn∗G∗A [71], which determines
a complete and strict hierarchy for the pseudovariety of all finite semigroups.
Here, ∗ denotes the semidirect product of pseudovarieties of semigroups as
defined in [6, Section 10.1], which is an associative operation.
It has also been investigated whether tameness is preserved under the op-

erators of join and semidirect product. Since tameness is apparently much
stronger than decidability, if tameness is preserved by semidirect product
then the decidability of the Krohn-Rhodes complexity is indeed reduced to
proving that A is tame. But, so far, only very special cases have been treated.
An example is the following result [19], which improves on [28].

Theorem 3.9. Let V be a graph κ-tame pseudovariety and let W be an order
computable pseudovariety. Then V ∗W is graph κ-tame.

It is also unknown whether tameness is preserved under join. Yet, several
positive results have been obtained. The following theorem combines results
from [30, 20].

Theorem 3.10. Let C be a class of constrained systems of equations.

(1) Let V be an order-computable pseudovariety. If a pseudovariety W is
τ -tame with respect to C, then so is V ∨W.

(2) Let V be a recursively enumerable κ-full subpseudovariety of J such
that the word problem for Ωκ

AV is decidable. If a pseudovariety W is
τ -tame with respect to C, then so is V ∨W.
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(3) Let W be a pseudovariety satisfying some pseudoidentity of the form

x1 · · ·xny
ω+1ztω = x1 · · · xnyzt

ω.

If W is τ -tame with respect to C, then so is R ∨W.

Theorem 3.10 yields for instance that the join J ∨ G is graph κ-tame, a
result which was also proved by Steinberg [102].

4. Relatively free profinite semigroups

Several representation theorems and structural results about relatively free
profinite semigroups have been obtained for various pseudovarieties, such as
J (J -trivial) [6, Section 8.2], R (R-trivial) [37, 40], DA (regular elements are
idempotent) [79], and LSl (local semilattices) [49]. Much remains unknown,
particularly in the case of pseudovarieties containing LSl. However, progress
has been made in this case too. For instance, in [60, 18] faithful represen-
tations of finitely generated free profinite semigroups over A were obtained.
There is a common trend in these faithful representations of free profinite
semigroups over A, R, or DA, and also in the partial faithful representations
obtained in [68, 72] for many other pseudovarieties: it is the fact they consist
in viewing pseudowords as linearly ordered sets whose elements are labeled
with letters, generalizing the fact that words are nothing else than such sets
with a finite cardinal.
In the most general case, that of the pseudovariety S of all finite semigroups,

no meaningful faithful representation is known (albeit we can always get par-
tial information on the elements of ΩAS by looking at their projection on ΩAV,
for some semigroup pseudovariety V, when a suitable representation for ΩAV

is available). This adds motivation for studying the structure of free profi-
nite semigroups over S and other “large” pseudovarieties. In this section we
review some results on this subject, mainly about Green’s relations, with an
emphasis on maximal subgroups. A substantial part of the results originated
in connections with symbolic dynamics, most introduced by the first author,
sometimes in co-authorship. We highlight some of the progress in this front.
Other approaches, for the most part developed by Rhodes and Steinberg,
based on expansions of finite semigroups or on wreath product techniques,
also led to results about structural properties of free profinite semigroups over
many pseudovarieties containing LSl, as is the case in [94, 104, 103, 48]. We
mention in Subsection 4.2 two results where these other approaches played a
key role, namely Theorems 4.9 and 4.10.
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4.1. Connections with symbolic dynamics. For a good reference book
on symbolic dynamics, see [73]. Even though an introduction to symbolic
dynamics appears in Chapter 27, for the convenience of the presentation
we include our own brief introduction. Let A be a finite alphabet. Since
A is compact, the product space AZ is compact. The shift on AZ is the
homeomorphism σ : AZ → AZ sending (xi)i∈Z to (xi+1)i∈Z. A symbolic
dynamical system, also called shift space or subshift , is a nonempty§ closed
subspace X of AZ such that σ(X ) = X , for some finite alphabet A. A shift
space X is minimal , if X does not contain subshifts other than X . A block of
(xi)i∈Z is a word xixi+1 · · · xi+n, with i ∈ Z and n ≥ 0. Denote by B(X ) the
set of all blocks of elements of X . One has X ⊆ Y if and only if B(X ) ⊆ B(Y).
Often, one may define a subshift by an effectively computable amount of

data. This happens for example if B(X ) is a rational language, in which
case we say that X is sofic. Sofic subshifts are considered in Chapter 27.
Another class of examples, extensively studied, comes from subshifts defined
by primitive substitutions [57]. Here, by a substitution over a finite alphabet
A we mean an endomorphism ϕ of A+. A substitution ϕ over A is primitive
if there is n ≥ 1 such that all letters of A are factors of ϕn(a), for every
a ∈ A. For such a primitive substitution, there is a unique minimal subshift
Xϕ such that B(Xϕ) is the set of all factors of words of the form ϕn(a), where
n ≥ 1 and a ∈ A.
A subset L of a semigroup S is irreducible if u, v ∈ L implies uwv ∈ L

for some w ∈ S. A subshift X of AZ is irreducible if B(X ) is an irreducible
language of A+. Minimal subshifts are irreducible. A subshift X is periodic if
X is a finite set of the form {σn(x) : n ∈ Z} for some x ∈ X . An irreducible
subshift is either periodic or infinite.
For the remainder of this subsection, V is a pseudovariety of semigroups

containing all finite nilpotent semigroups. Then A+ is isomorphic with ΩAV

and embeds in ΩAV. The elements of A+ are isolated in ΩAV. Hence L∩A
+ =

L holds for every language L of A+. Therefore B(X ) captures all information
about X . Clearly, B(X ) is closed under taking factors; when V = A©m V, the
topological closure of B(X ) in ΩAV is also closed under taking factors, a fact
that follows from the multiplication being open in ΩAV when V = A©m V,
cf. [14, Lemma 2.3 and Proposition 2.4].

§The empty set is frequently considered a subshift in the literature (e.g., in Chapter 27).
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Using a compactness argument, in case X is irreducible one shows the ex-
istence of a unique ≤J -minimal J -class JV(X ) consisting of factors of B(X ).
If V contains LSl then B(X ) consists of elements of ΩAV whose finite factors
belong to B(X ) [47]. From this one gets the following proposition, which a
particular case of [48, Proposition 3.6].

Proposition 4.1. Let V be a pseudovariety of semigroups containing LSl.
Let X and Y be irreducible subshifts. Then X ⊆ Y if and only if JV(Y) ≤J
JV(X ).

The following result is taken from [11].

Theorem 4.2. If V contains LSl, then the mapping X 7→ JV(X ) is a bijection
from the set of minimal subshifts of AZ onto the set of ≤J -maximal regular
J -classes of ΩAV.

If |A| ≥ 2, then there are 2ℵ0 minimal subshifts of AZ (cf. [74, Chap-
ter 2]), and a chain with 2ℵ0 irreducible subshifts of AZ [108, Section 7.3].
Hence, from Theorem 4.2 and Proposition 4.1 we obtain the following result
(a weaker version appears in [49]).

Theorem 4.3. Let V be a pseudovariety containing LSl and let A be an
alphabet with at least two letters. For the relation <J in ΩAV, there are both
chains and anti-chains with 2ℵ0 regular elements.

For a subshift X of AZ, the real number h(X ) = lim 1
n log2 |B(X ) ∩ A

n|
is its entropy . This fundamental concept is also considered in Chapter 27.
For V containing LSl, and for w ∈ ΩAV, let qw(n) be the number of finite
factors of w of length n. The real number h(w) = lim 1

n
log2 qw(n) exists if

w ∈ ΩAV \ A+; we define h(w) = 0 for w ∈ A+. The number h(w) is also
called the entropy of w and was used in [35] to get structural information
about ΩAV.
Note that h(X ) ≤ log2 |A|. One can also show that h(X ) = log2 |A| if and

only if X = AZ, for every subshift X of AZ. The following is a similar result.

Proposition 4.4 ([35]). Let V be a pseudovariety containing LSl. Suppose
|A| ≥ 2. Let w ∈ ΩAV. Then h(w) ≤ log2 |A|, and equality holds if and only
if w belongs to the minimum ideal of ΩAV.

For each k such that 0 < k ≤ log2 |A|, consider the set Ek of all w ∈ ΩAV

with h(w) < k. In particular, thanks to Proposition 4.4, Elog
2
|A| is the
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complement of the minimum ideal of ΩAV. The following summarizes the
most important results from [35].

Theorem 4.5. Let V be a pseudovariety containing LSl and suppose 0 < k ≤
log2 |A|.

(1) For all u, v ∈ ΩAV, we have h(uv) = max{h(u), h(v)}, and so Ek is a
subsemigroup of ΩAV. In particular, the minimum ideal is prime.

(2) The set Ek is stable under the application of every n-ary implicit op-
eration w such that h(w) < k · log2 |A| · logn |A|.

(3) The set Ek is also stable under the iterated application of a continuous
endomorphism ϕ of ΩAV such that ϕ(A) ⊆ Ek, in the following sense:
if ψ belongs to the closed subsemigroup of End(ΩAV) generated by ϕ,
then ψ(Ek) ⊆ Ek.

If Y is a proper subshift of an irreducible sofic subshift X , then h(Y) <
h(X ), see [73, Corollary 4.4.9]. By a reduction to this result, the following
theorem generalizing some of the above mentioned properties of the minimum
ideal of ΩAV is proved in [48].

Theorem 4.6. Let V be a pseudovariety of semigroups containing LSl and
let X be a sofic subshift of AZ. Suppose that V = A©m V or B(X ) is V-

recognizable. Then h(w) < h(X ) whenever w ∈ B(X ) \ JV(X ). Moreover,
ΩAV \ JV(X ) is a subsemigroup of ΩAV.

4.2. Closed subgroups of relatively free profinite semigroups. Note
that maximal subgroups of profinite semigroups are closed. If a closed sub-
semigroup of a profinite semigroup is a group then, for the induced topology,
it is a profinite group. This subsection presents results on the structure of
closed subgroups of relatively free profinite semigroups, with an emphasis on
maximal subgroups, using symbolic dynamics.
We shall see examples of maximal subgroups that are (relatively) free profi-

nite groups. When A is a finite set and H is a nontrivial pseudovariety of
groups, it is customary to refer to the cardinal of A as being the rank of ΩAH.
A retract of ΩAS is the image of a continuous idempotent endomorphism of

ΩAS. The free profinite subgroups of ΩAS of rank |A| that are retracts of ΩAS

are characterized in [35, Theorem 4.4]. Combining that characterization with
results from [11], leads to the following theorem.



PROFINITE TOPOLOGIES 39

Theorem 4.7. For every finite alphabet A, there are maximal subgroups H
of ΩAS such that H is a retract of ΩAS and a free profinite group of rank |A|.

The maximal subgroups in a J -class of a profinite semigroup are isomorphic
profinite groups (cf. [96, Theorem A.3.9]). When X is an irreducible subshift,
we may consider the (isomorphism class of the) maximal profinite subgroup
of JV(X ), denoted GV(X ). It is invariant under isomorphisms of subshifts, as
long as V = V ∗D and V contains all finite semilattices [47], where D denotes
the pseudovariety of all finite semigroups whose idempotents are right zeros.
Let ϕ : A+ → A+ be a primitive substitution. The substitution ϕ is

called periodic if the associated minimal subshift Xϕ is periodic. If there are
b, c ∈ A such that ϕ(a) starts with b and ends with c for every a ∈ A, then
the substitution is said to be proper . Denote respectively by ϕS and by ϕG

the unique extension of ϕ to a continuous endomorphism of ΩAS and to a
(continuous) endomorphism of ΩAG. The following is a result from [15].

Theorem 4.8. If ϕ is a proper non-periodic primitive substitution over A,
then the retract ϕωS(ΩAS) is a maximal subgroup of JS(Xϕ), which is presented
as a profinite group by the set of generators A subject to the relations of the
form ϕωG(a) = a (a ∈ A).

For the general case where ψ is a primitive (not necessarily proper) non-
periodic substitution, one finds in [55] an algorithm to build a proper prim-
itive substitution ϕ such that Xϕ is isomorphic to Xψ, and so the general
case can be reduced to the proper case via the invariance of the maximal
subgroup under isomorphism of subshifts. An alternative finite presentation
for GS(Xψ) as a profinite group is given in [15]. These results yield that it is
decidable whether a given finite group is a (continuous) homomorphic image
of GS(Xψ).
Note that, if in Theorem 4.8 the extension of ϕ to the free group over A is

invertible, then we immediately get that GS(Xϕ) is a free profinite group of
rank |A|, which is a particular case of [11, Corollary 5.7]. On the other hand,
it was proved in [15] that if τ is the Prouhet-Thue-Morse substitution, that
is, the substitution given by τ(a) = ab and τ(b) = ba, then GS(Xτ) is not a
relatively free profinite group.
In [17], further knowledge on GS(X ) was obtained, when X is minimal,

without requiring that X is defined by a substitution. Namely, it was shown
that GS(X ) is an inverse limit of profinite completions of fundamental groups
of a special family of finite graphs that is naturally associated to X .
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For the sofic case, concerning groups of the form GV(X ), we have first to
introduce a definition which is similar with the definition, given in Section 2,
of a free profinite group over a pseudovariety H of groups (cf. [99, Chapter
3]). A subset X of a profinite group G is said to converge to the identity
if every neighborhood of the identity element of G contains all but finitely
many elements of X. A profinite group F is a free pro-H group with a basis
X converging to the identity if X is a subset of F for which every mapping
ϕ : X → G, with G a pro-H group such that ϕ(X) converges to the identity,
has a unique extension to a continuous group homomorphism ϕ̂ : F → G. All
bases of F converging to the identity have the same cardinality, which is called
the rank of F , and if F and F ′ have bases converging to the identity with
the same cardinal, then F and F ′ are isomorphic as profinite groups. Note
that, if |X| is finite, then F is isomorphic with ΩXH, and so this definition
of rank extends the one given for finitely generated relatively free profinite
groups. A free pro-H group in the former sense is also free pro-H with some
basis converging to one, but the converse is not true; indeed, as follows from
Theorem 4.9, for a nontrivial pseudovariety of groups H, the free pro-H group
of countable rank is metrizable, but ΩAH is not metrizable when A is infinite
(see note following Proposition 2.15).
For a pseudovariety H of groups, denote by H the pseudovariety of all finite

semigroups whose subgroups belong to H. Note that S = G. We are now
able to cite the result from [48] about maximal subgroups of the from GH(X ).
Note that the minimal sofic subshifts are periodic subshifts.

Theorem 4.9. Let H be a nontrivial pseudovariety of groups and X an ir-
reducible sofic subshift. If X is periodic, then GH(X ) is a free pro-H group
of rank 1. If X is non-periodic and B(X ) is H-recognizable then GH(X ) is
a free pro-H group of rank ℵ0, provided H is extension-closed and contains
nontrivial p-groups for infinitely many primes p.

Note that Theorem 4.9 applies to X = AZ, in which case JH(X ) is the
minimum ideal of ΩAH. This case was previously shown in [104]. For further
results on the structure of the minimum ideal of ΩAV, where V may be among
pseudovarieties other than those in Theorem 4.9, see [94, 104]. In contrast
with Theorems 4.8 and 4.9, the H-class of a non-regular element of ΩAS is a
singleton [94, Corollary 13.2].
While not all closed subgroups of ΩAS are free profinite groups, they do

have a property resembling freeness. A profinite group G is projective if,
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for all continuous onto homomorphisms of profinite groups ϕ : G → K
and α : H → K, there is a continuous homomorphism ϕ̂ : G → H such
that α ◦ ϕ̂ = ϕ. It is easy to see that all (finitely generated) projective
profinite groups embed into (finitely generated) free profinite groups [99].
The following converse is much more difficult to prove.

Theorem 4.10 ([95]). Let V be a pseudovariety of semigroups such that
(V∩Ab) ∗V = V. Then every closed subgroup of a free pro-V semigroup is a
projective profinite group.

The definition of projective profinite group can be considered for other
algebras. The projective profinite semigroups embed into free profinite semi-
groups but, in contrast with Theorem 4.10, there are finite subsemigroups of
ΩAS that are not projective. For further details about finite subsemigroups
of ΩAS (and ΩAV for other V), and their interplay with projective profinite
semigroups, see [96, Remark 4.1.34].
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