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Universidade de Coimbra
Preprint Number 18–18

PURE ROLLING MOTION OF PSEUDO-RIEMANNIAN
MANIFOLDS: AN EXTRINSIC PERSPECTIVE
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Abstract: This paper is devoted to rolling motions of one differentiable manifold
over another of equal dimension, subject to no-slip and no-twist constraints, when
this motion occurs inside an ambient space which is a pseudo-Riemannian mani-
fold. We first introduce a definition of rolling map which generalizes the classical
definition of Sharpe [17], from Euclidean submanifolds to pseudo-Riemannian sub-
manifolds. We also present essential properties of rolling and make the connection
between rolling motions and parallel transport of vectors along curves. After pre-
senting the general framework, we analyse the particular rolling of hyperquadrics in
pseudo-Euclidean spaces. The central theme is the rolling of a pseudo-hyperbolic
space over the affine space associated with the tangent space at a point. Rolling
of a pseudo-hyperbolic space on another and rolling of pseudo-spheres are equally
treated. The kinematic equations of these rolling motions will be presented, as well
as the corresponding explicit solutions for two specific cases.
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1. Introduction
The rolling motion of a rigid body over a surface is a very common situation.

That can be described by rotations and translations, under some restrictions
on velocity and the assumption that the rolling object is always in contact
with the stationary surface. If there are no “slips” or “twists” the rolling is
sometimes referred as “pure rolling”. The most classical example is the rolling
of a sphere on a tangent plane. This case is well studied in the literature, in
part due to diverse applications in the engineering areas, but also due to the
easy visualization of what happens in Euclidean space IR3 (Jurdjevic [7]).

When going to other environmental spaces, it is possible to generalize the
notion of pure rolling keeping the main ideas. Of course, this generalization
is theoretically more challenging and for higher dimensions the geometric
intuition may be lost, but it may also have interesting practical applications
in areas such as robotics and computer vision.
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Theoretical works devoted to the study of rolling manifolds are relatively
recent. After the formal definition of rolling map, introduced by Sharpe
[17] in 1996 for submanifolds of Euclidean spaces, a number of papers have
been devoted to the rolling of certain specific manifolds. For instance, in
Hüper and Leite [4] the kinematics equations for the rolling of the special
orthogonal group SO(n) and Grassmann manifolds, over the affine tangent
space at a point, were deduced. This article also has important properties
of the corresponding rolling maps. In Hüper et al. [5] some of the results
contained in [4] were generalized to submanifolds of an arbitrary Riemannian
manifold. The particular case of the rolling of an ellipsoid, embedded in a
space provided with a metric resulting from a deformation of the Euclidean
metric, appears in Krzysztof and Leite [10].

In the case of non-Riemannian manifolds, the work presented in 2008 by
Jurdjevic and Zimmerman [8] was the first attempt to extend results from
Euclidean space to pseudo-Riemannian manifolds. More recent results in
this regard exist in Korolko and Leite [9] for the Lorentzian sphere, in Mar-
ques and Leite [13] for pseudo-hyperbolic spaces, in Crouch and Leite [2]
for pseudo-orthogonal groups, and in Marques and Leite [14] for symplectic
groups.

The approach used in all the publications so far mentioned is from an
extrinsic point of view, since it is always assumed that the two rolling mani-
folds are embedded in a third environment manifold. However, work has also
emerged where the approach is purely intrinsic, namely Godoy et al. [3] and
Chitour and Kokkonen [1] for Riemannian case, and Markina and Leite [12]
for the pseudo-Riemannian case. Also with this type of approach, the case of
rolling manifolds with different dimensions is studied in Mortada et al. [15].

Among the possible applications of rolling manifolds we can find the gen-
eration of interpolation problems in non-Euclidean spaces. Algorithms that
use rolling motions to produce C2-smooth interpolating curves appear, for
example, in [4]. A demonstration of the practical utility of this type of in-
terpolation is found in the work of Shen et al. [18], about path planning of a
robot.

The present paper focuses on the study of rolling motions occurring within
pseudo-Riemannian manifolds, and involving submanifolds with equal di-
mension. The main goal is to make a theoretical approach to this type of
rolling, but also present some results for the case of an important family of
pseudo-Riemannian hypersurfaces, the hyperquadrics.
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This article is organized in the following way. Aiming to make this work
as self-contained as possible, in Section 2 we compile the main auxiliary
concepts that will be used later and also fix some terminology and notations.

Section 3 begins with the formalization of the concept of rolling motion of
one manifold over another, when both are embedded in a pseudo-Riemannian
manifold, through the definition of rolling map. The particular case in which
the environment manifold is IRn

κ, the pseudo-Euclidean space of dimension
n and index κ, allows to observe at once that this definition of rolling map
generalizes the definition presented in [13], as well as the definition of Sharpe
[17]. We present three basic properties, which are essential for deriving new
rolling motions from others previously known and simpler. We will also anal-
yse the close relationship between rolling without twist and parallel vector
transport.

In Section 4, we discuss the rolling of the hyperquadrics of pseudo-Euclidean
spaces, namely the pseudo-hyperbolic space Hn

κ (r) and the pseudo-sphere
Snκ(r). The central subject is the rolling of Hn

κ (r) over the affine space asso-
ciated with the tangent space at a point. The rolling of a pseudo-hyperbolic
space on another and the rolling of pseudo-spheres will be achieved later us-
ing properties introduced in Section 3. We present the kinematic equations
of these rolling motions, as well as their solutions for some simple cases.

2. Background
We review here the main concepts about pseudo-Riemannian manifolds

that will be used throughout the paper and refer to [16] for more details.
It should be noted that in some literature, in particular in [16], the term
“pseudo” is replaced by “semi”.

2.1. Pseudo-Riemannian Manifolds. Let V be a finite dimensional vector
space. A symmetric bilinear form 〈., .〉 : V × V −→ IR is said nondegenerate
if 〈u, v〉 = 0, for all v ∈ V , implies that u = 0. A scalar product on V
is a nondegenerate symmetric bilinear form. An inner product is a positive
definite scalar product.

Assume that V is equipped with a scalar product 〈., .〉. Then, V is said
to be a scalar product space. The norm of a vector v ∈ V is defined by
‖v‖ =

√
|〈v, v〉|. If {e1, · · · , en} is an (arbitrary) orthonormal basis of V and

εj = 〈ej, ej〉 = ±1, the number κ of negative signs in the list (ε1, · · · , εn) is
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the index of 〈., .〉, also called index of V . Occurs κ = 0 if and only if 〈., .〉 is
an inner product.

Example 2.1. With 0 ≤ κ ≤ n, the following formula

〈(u1, · · · , un), (v1, · · · , vn)〉 = −
κ∑
i=1

uivi +
n∑

i=κ+1

uivi, (1)

defines a scalar product on the vector space V = IRn, having index κ.

A pseudo-Riemannian metric Φ on a differentiable manifold M assigns to
each point p ∈M a scalar product 〈., .〉p on the tangent space TpM , so that:
i) for any smooth vector fields X and Y whose domains have a non-empty
intersection U , the mapping p ∈ U  〈Xp, Yp〉p is smooth; ii) all scalar
products 〈., .〉p have the same index.

A differentiable manifold equipped with a pseudo-Riemannian metric is
called a pseudo-Riemannian manifold. The common value κ of the indices
of the scalar products is called the index of M . We have 0 ≤ κ ≤ dim(M).
If (and only if) κ = 0, that is, when each 〈., .〉p is an inner product on
TpM , the prefix “pseudo” is removed and it is said, therefore, that M is a
Riemannian manifold and that it is equipped with a Riemannian metric.
We write 〈Xp, Yp〉 to designate 〈Xp, Yp〉p.

Since on a pseudo-Riemannian manifold the scalar product on each tangent
space may not be a definite bilinear form, the following classification will be
convenient. A tangent vector v to a pseudo-Riemannian manifold is said to
be: i) spacelike if 〈v, v〉 > 0 or v = 0; ii) lightlike (or null) if 〈v, v〉 = 0 and
v 6= 0; iii) timelike if 〈v, v〉 < 0. The category into which a given tangent
vector falls is called its causal character.

In the context of this article, a specially important case of pseudo-Rieman-
nian manifolds are those that can be built from vector spaces. “Environ-
ments” where the study of rolling motions without slipping or twisting be-
come easier are of this type. Before addressing this case, it is worth remem-
bering that if (U , ϕ = (x1, · · · , xn)) is a coordinate chart on a differentiable
manifold M and p ∈ U , the images by the differential map dϕ−1 (at ϕ(p)) of
the vectors of standard base of Tϕ(p)IR

n constitute a base of TpM . We shall

denote the vectors of this base by
∂

∂xi

∣∣
p
.

We know that any finite dimensional vector space V is a differentiable man-
ifold, in a natural way. If we fix any one ordered base u1, · · · , un in V and we
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take in the corresponding isomorphism ϕ : α1u1 + · · ·+αnun  (α1, · · · , αn),
the open sets of the topology of V are the inverse images by ϕ of the open sets
of IRn (equipped with the Euclidean topology) and the differentiable struc-
ture of V is the maximal atlas which contains the coordinate chart (V, ϕ).
Moreover, there is a natural identification (independent of the fixed base) of
each tangent space TpV with V itself, obtained by

v ∈ V ←→ vp = x1(v)
∂

∂x1

∣∣
p

+ · · ·+ xn(v)
∂

∂xn

∣∣
p
∈ TpV, (2)

where x1, · · · , xn are the coordinates defined by any base of V .
Then, if 〈·, ·〉 is a scalar product on a vector space V , one can equip the

differentiable manifold V with the pseudo-Riemannian metric given on each
Tp(V ) by 〈up, vp〉 := 〈u, v〉, where up ↔ u and vp ↔ v, making V a pseudo-
Riemannian manifold. In the particular case where V = IRn and 〈·, ·〉 is the
scalar product defined in (1), the pseudo-Riemannian manifold so formed is
called a pseudo-Euclidean space (of dimension n and index κ), and will be
denoted by IRn

κ.
To conclude this section, we will now address the concept of isometry,

which is an extension of the usual notion of isometry in Euclidean space.
In this perspective, it corresponds to the “rigid motions”. Let M1 and M2

be two pseudo-Riemannian manifolds with metrics ΦM1
and ΦM2

, respec-
tively. An isometry from M1 to M2 is a diffeomorphism φ : M1 −→ M2

that “preserves the metrics”, i.e., such that φ∗(ΦM2
) = ΦM1

, where φ∗ is
the pullback. Explicitly, φ : M1 −→ M2 is an isometry if and only if
〈dφ(up), dφ(vp)〉 = 〈up, vp〉, ∀up, vp ∈ TpM1 and ∀p ∈ M1. The set of the
isometries of the shape φ : M −→ M is a group, called the isometry group
of M . If we replace the relationship φ∗(ΦM2

) = ΦM1
by φ∗(ΦM2

) = µΦM1
,

with µ ∈ IR \ {0} (constant), we obtain the concept homothety of coefficient
µ. That is, an isometry is just a homothety with µ = 1. Another particular
case that we will also be interested in corresponds to µ = −1, whereby we
now say that φ is an anti-isometry.

2.2. Parallel Transport and Geodesics. Hereafter, M denotes a pseudo-
Riemannian manifold and γ : I −→M a smooth curve.
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The set of all smooth vector fields along γ will be denoted by X(γ). By
convention, the operator

D

dt
: X(γ) −→ X(γ)

V  V ′ =
DV

dt

will indicates the covariant derivative resulting from the Levi-Civita con-
nection of M . Recall that in the particular case in which M = IRn

κ, if
x1, · · · , xn denote the natural coordinates and V (t) =

∑
Vi(t)

∂
∂xi

∣∣
γ(t)

, we have

V ′(t) =
∑
V̇i(t)

∂
∂xi

∣∣
γ(t)

, that is, the covariant derivative coincides (through

the identification (2)) with the usual derivative.
A smooth vector field V along γ is said to be parallel if V ′ = 0. The

fundamental fact about parallel fields is that for any t0 ∈ I and v0 ∈ Tγ(t0)M ,
there is a unique parallel vector field V along γ such that V (t0) = v0. This
field is said the (tangent) parallel transport of v0 along γ.

A curve in Euclidean space is a straight line if and only if its acceleration
is identically zero. It is this characterization that is here taken into account
in the definition of geodesic. The acceleration of γ is the vector field along γ
defined by γ′′ = Dγ′

dt , where γ′ denotes the velocity field. The curve γ is said to
be a geodesic if its acceleration is zero. We also say that a curve is a broken
geodesic if there is a partition of its domain such that the corresponding
restrictions are geodesics.

For each p ∈M and each v ∈ TpM there is a unique geodesic γ : I −→M
whose domain is as large as possible, i.e., it is not a segment of a geodesic with
a greater domain, called maximal geodesic, such that γ(0) = p and γ′(0) = v.
This maximal geodesic is often simply called the geodesic with initial point
p and initial velocity v. A geodesic is said to be spacelike [timelike/lightlike]
when its initial velocity vector (and therefore any other vector in its velocity
field) is spacelike [timelike/lightlike].

Now consider that M is a pseudo-Riemannian submanifold of another man-
ifold M . That is, the metric on M results from applying the scalar product
of TpM to each pair of vectors of TpM , for all p ∈M . Accordingly, we have

TpM = TpM ⊕ (TpM)⊥, (3)
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where (TpM)⊥ =
{
w ∈ TpM : 〈v, w〉 = 0,∀v ∈ TpM

}
. The set (TpM)⊥ is

called the orthogonal complement of TpM , and its vectors are said to be
normal to M .

When V is a smooth vector field (tangent to M) along γ, the Gauss for-

mula states the following: V̇ (t) = V ′(t) ⊕ Π(γ′(t), V (t)), where V̇ = DV
dt is

the covariant derivative in M , V ′ = DV
dt is the covariant derivative in M and

Π is the second fundamental form of M ⊆ M . Thus, by immediate conse-
quence of the previous formula, the covariant derivative DV

dt is, for every t,

the projection in Tγ(t)M of the covariant derivative DV
dt .

Let us now turn to the concept of normal parallel transport. Assume that
W is a smooth vector field along γ always normal to M , that is, such that
W (t) ∈ (Tγ(t)M)⊥ for all t ∈ I. The normal covariant derivative D⊥W

dt is
defined as the (vector field along γ given by the) normal component of the

covariant derivative DW
dt , resulting from the decomposition (3). It is said

that W is normal parallel if D⊥W
dt = 0. Similarly to what was previously

mentioned for tangent vectors, any w0 ∈ (Tγ(t0)M)⊥ may be extended, in a
unique way, to a parallel normal vector field W along the curve γ. This field
W is said to be the normal parallel transport of w0 along γ.

The notions of (tangent) parallel transport and normal parallel transport
can be expanded to the case where the curves are “only” piecewise smooth, as
follow. Let us now consider that γ : [a, b] −→M is a piecewise smooth curve,
that is, let us assume that there is a finite partition a = t0 < t1 < · · · < tr = b
such that each restriction of γ to the subintervals [ti−1, ti] is a smooth curve.

Then, given any vector va ∈ Tγ(a)M [wa ∈ (Tγ(a)M)⊥], there is a unique
continuous field V [W ] defined in [a, b] of tangent [normal] vectors to M
along the curve γ, such that its restriction to each subinterval ]ti−1, ti[ is a
parallel [normal parallel] field and V (a) = va [W (a) = wa]. This vector field
is called the parallel [normal parallel ] transport of va [wa] along the piecewise
smooth curve γ, and consists of the parallel [normal parallel] transport of va
[wa] along the first smooth segment of γ, when a ≤ t ≤ t1, afterwards in the
parallel [normal parallel] transport of V (t1) [W (t1)] along the second smooth
segment of γ, when t1 ≤ t ≤ t2, and so on.

2.3. Orientability. It is said that two ordered bases {b1, b2, · · · , bn} and{
b̂1, b̂2, · · · , b̂n

}
of a vector space V have the same orientation if det(A) > 0,
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where A = (aij) is the (unique) non-singular matrix such that b̂i =
∑n

j=1 aijbj
(i = 1, · · ·n); they have opposite orientation if det(A) < 0. It is easy to
check that “having the same orientation” is an equivalence relation on the
set of all bases of V and that there are exactly two equivalence classes, called
orientations of V . The orientation that contains the base {b1, b2, · · · , bn} will
be represented by [b1, b2, · · · , bn].

Let us consider M as a differentiable manifold. For (U , ϕ = (x1, · · · , xn))

a coordinate chart on M , with p ∈ U , denote λϕ(p) :=

[
∂

∂x1

∣∣
p
, · · · , ∂

∂xn

∣∣
p

]
.

Then, an orientation λ of M is a correspondence that for each point p ∈M
associates an orientation λ(p) of TpM , which is smooth in the sense that for
each point of M there is a coordinate mapping ϕ such that λ = λϕ on some
neighborhood of that point. M is said to be orientable if there exists an
orientation of M . For example, IRn is orientable and a possible orientation is
λϕ where ϕ is the identity mapping (natural coordinates). This is the usual
orientation of IRn. If λ is an orientation of M , then so is −λ, which assigns
to each point p the opposite orientation of TpM . If M is connected then ±λ
are its only two orientations.

When φ : M1 −→ M2 is a local diffeomorphism and p ∈ M1, it is easy to
see that the correspondence φ̂ given by φ̂ ([b1, · · · , bn]) := [dφ(b1), · · · , dφ(bn)]
is a well-defined one-to-one correspondence from the orientations of TpM1

to the orientations of Tφ(p)M2. Under these conditions, if M1 and M2 are
oriented by λM1

and λM2
, respectively, it is said that: i) φ preserves orien-

tation if φ̂(λM1
(p)) = λM2

(φ(p)), for all p ∈ M1; ii) φ reverses orientation

if φ̂(λM1
(p)) = −λM2

(φ(p)), for all p ∈ M1. In the particular case in which
M1 = M2 =: M and it is connected, the fact that φ preserves or reverses
orientation is independent of how M is oriented. Thus, whenever we simply
write that a local diffeomorphism φ : M −→ M , with M orientable and
conntected, preserves [reverses ] orientation, it will mean that φ preserves
[reverses] orientation with respect to either of the two possible orientations
of M .

Basic examples of transformations that preserve orientation are transla-
tions and rotations around one point on the plane M = IR2. Inversely,
reflections on an axis reverse orientation. In the following proposition we
address the case of linear isomorphisms. The proof is quite simple.
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Proposition 2.1. Let φ : IRn −→ IRn be defined by φ(x) = Rx, with R
belonging to the general linear group GL(n). Then, φ preserves orientation
if and only if det(R) > 0.

2.4. Pseudo-Orthogonal Groups. Jκ will designate the diagonal matrix
whose main diagonal entries are ε1 = · · · = εκ = −1 and εκ+1 = · · · = εn = 1,
for 0 ≤ κ ≤ n. Therefore, we have J−1

κ = J>κ = Jκ. Associated with this
matrix, define

Oκ(n) =
{
R ∈ GL(n) : R−1 = JκR

>Jκ
}
.

Oκ(n) is a closed algebraic subgroup ofGL(n) and, hence, is itself a Lie group,
known as pseudo-orthogonal group. Clearly, any matrix of Oκ(n) has deter-
minant equal to ±1 . The Lie subgroup SOκ(n) := {R ∈ Oκ(n) : det(R) = 1}
is called the special pseudo-orthogonal group.

Each isometry of the pseudo-Euclidean space IRn
κ, for 0 ≤ κ ≤ n, has a

unique expression as follows

T(R,s) : IRn
κ −→ IRn

κ

x  Rx+ s
,

with R ∈ Oκ(n) and s ∈ IRn. We also have T(R2,s1) ◦ T(R2,s1) = T(R2R1,R2s1+s2).
For this reason, we identify the isometry group of IRn

κ with the semi-direct
product Oκ(n)oIRn := {(R, s) : R ∈ Oκ(n), s ∈ IRn}, having the group oper-
ation defined by (R2, s2)◦(R1, s1) := (R2R1, R2s1 +s2). We also use the obvi-
ous identification among the subgroup of the linear isometries T(R,0) : x Rx
and the (multiplicative) group Oκ(n). Thus, as an immediate consequence
of Proposition 2.1, the subgroup of linear isometries of IRn

κ which preserve
orientation is SOκ(n).

When κ = 0 or κ = n, the pseudo-orthogonal group Oκ(n) reduces to the
orthogonal group O(n) :=

{
R ∈ GL(n) : R−1 = R>

}
. This group is the dis-

joint union of the special orthogonal group SO(n) := {R ∈ O(n) : det(R) = 1}
with the set {R ∈ O(n) : det(R) = −1}. SO(n) is a connected Lie sub-
group. When 0 < κ < n, considering each matrix of Oκ(n) decomposed

as R =

[
R1 R2

R3 R4

]
, with R1 of order κ and R4 of order n− κ, we have that

Oκ(n) decomposes into the following 4 disjoint sets, indexed to the signs of
the determinants det(R1) and det(R4): O++

κ (n), O+−
κ (n), O−+

κ (n), O−−κ (n).
It can be prove that O++

κ (n) ∪ O−−κ (n) = SOκ(n), and we also have that
O++
κ (n) is a connected set, unlike SOκ(n). From now on, this connected
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component, which contains the identity In, and is a Lie subgroup of Oκ(n),
will be denoted by SOI

κ(n).
Let us now consider 0 ≤ κ ≤ n. We define SOI

0(n) = SOI
n(n) := SO(n).

Since translations in IRn
κ preserve orientation, it results from previous consid-

erations that the maximal connected Lie subgroup of the group of isometries
of IRn

κ which preserve orientation is:

SOI
κ(n) o IRn := {(R, s) : R ∈ Oκ(n), det(R1) > 0, det(R4) > 0, s ∈ IRn} ,

where R =

[
R1 R2

R3 R4

]
, with R1 of order κ and R4 of order n− κ, assuming

R = R4 and R = R1 when κ = 0 and κ = n.
For 0 ≤ κ ≤ n, the Lie algebra oκ(n) of Oκ(n) is the subalgebra of gl(n)

formed by all matrices S such that S> = −JκSJκ. Since they have common
neighborhoods of the identity In, the groups Oκ(n), SOκ(n) and SOI

κ(n) have
the same Lie algebra, i.e., oκ(n) = soκ(n) = soI

κ(n).

3. Rolling Maps for Pseudo-Riemannian Manifolds
3.1. Definition of Rolling Map without Slipping or Twisting. The
definition that we introduce in this section is the main definition of this
article. It formalizes the concept of “pure” rolling motion of a pseudo-
Riemannian manifold (the rolling moving) over another (the stationary man-
ifold) of equal dimension, assuming an extrinsic approach. This definition
generalize that of a rolling map without slipping or twisting for submanifolds
of the Euclidean space found in [17].

We start by fixing some auxiliary notations. Let M be a connected and
orientable pseudo-Riemannian manifold. The isometry group ofM is denoted
by Isom(M) and their subgroup of the isometries that preserve orientation
by Isom+(M). It is well known that Isom(M) has a Lie group structure
and acts smoothly on M . The symbol ∗ will represent the natural action of
Isom(M) on M , i.e., ∗ : Isom(M) ×M −→ M is defined by f ∗ p := f(p).
With p ∈M fixed, the corresponding orbital mapping will be denoted by ζp,
i.e., ζp : Isom(M) −→M is defined by ζp(f) := f ∗ p.

Definition 3.1. Let M1 and M2 be two pseudo-Riemannian submanifolds of
M , having equal dimension and index. A rolling map without slipping or
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twisting of M1 over M2 is a piecewise smooth curve

g : [0, τ ] −→ G

t  g(t),
(4)

where G is a connected subgroup of Isom+(M), satisfying the following prop-
erties 1, 2 and 3.

(1) Rolling condition. There is a piecewise smooth curve α : [0, τ ] −→M1,
smooth at all times t where g is smooth, such that for every t ∈ [0, τ ]:
(a) αdev(t) := g(t) ∗ α(t) ∈M2,
(b) Tαdev(t)(g(t) ∗M1) = Tαdev(t)M2.

(2) No-slip condition. There is a partition 0 = t0 < t1 < · · · < tr = τ
such that g is smooth in all subintervals ]ti−1, ti[ and for each value t
of these subintervals we have:

(ζα(t) ◦ g)′(t) = (σ  g(σ) ∗ α(t))′(t) = 0. (5)

(3) No-twist condition. There is a partition 0 = t0 < t1 < · · · < tr = τ
such that g is smooth in all subintervals ]ti−1, ti[ and the following
items (a) and (b) are verified. For each v ∈ Tαdev(t)M , Xv denotes the

vector field along curve σ ∈ [0, τ ] g(σ) ∗ α(t) ∈M defined by

Xv(σ) := d
(
g(σ) ◦ g(t)−1

)
(v). (6)

Then, ∀t ∈ ∪ri=1 ]ti−1, ti[, we have:

(a) (tangential part) ∀v ∈ Tαdev(t)M2, Ẋ
v(t) ∈ (Tαdev(t)M2)

⊥; (7)

(b) (normal part) ∀v ∈
(
Tαdev(t)M2

)⊥
, Ẋv(t) ∈ Tαdev(t)M2, (8)

where Ẋv(t) =
DXv

dσ
(t) denotes the covariant derivative on M , deter-

mined by the respective Levi-Civita connection.

The curve α is called the rolling curve, while the curve αdev : [0, τ ] −→M2

defined by αdev(t) := g(t) ∗ α(t) is said to be the development of α in M2.
∗

The following remark will be useful.

∗Whenever t g(t) ∈ Isom(M) and t α(t) ∈M are smooth, t (g(t), α(t)) ∈ Isom(M)×M
is smooth. Therefore, the curve t  αdev(t) = g(t) ∗ α(t) is smooth on the intervals where g is
smooth.
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Remark 3.1. Since g(t) : M −→M is an isometry, for all t ∈ [0, τ ], we have

d g(t)(Tα(t)M1) = Tg(t)∗α(t)g(t)∗M1, d g(t)
(
(Tα(t)M1)

⊥) =
(
Tg(t)∗α(t)g(t) ∗M1

)⊥
.

Therefore, from the rolling condition results the following:

(1) d g(t)(Tα(t)M1) = Tαdev(t)M2

(2) d g(t)
((
Tα(t)M1

)⊥)
= (Tαdev(t)M2)

⊥.

The next proposition introduces a reformulation of the no-slip condition,
stating that it is equivalent to saying that the differential of g(t), at point
α(t), for almost all t, transforms the velocity vector α′(t) of the rolling curve
into the velocity vector α′dev(t) of the development curve.

Proposition 3.1. Under the conditions of Definition 3.1,

(5) ⇐⇒ α′dev(t) = d g(t)(α′(t)).

Proof : Let us consider the curve γ : [0, τ ] −→ Isom(M) × M defined by
γ(t) = (g(t), α(t)). Since γ is a curve in a product of differentiable manifolds,
at any instant t we have

γ′(t) = (σ  (g(σ), α(t)))′ (t) + (σ  (g(t), α(σ)))′ (t).

Thus, the properties of the differential mapping allow us to write the following
equalities:

α′dev(t) = (∗ ◦ γ)′(t)

= d ∗ (γ′(t))

= d ∗
(
(σ  (g(σ), α(t)))′ (t)

)
+ d ∗

(
(σ  (g(t), α(σ)))′ (t)

)
= (σ  g(σ) ∗ α(t))′ (t) + (σ  g(t) ∗ α(σ))′ (t)

= (σ  g(σ) ∗ α(t))′ (t) + d g(t) (α′(t)) .

Therefore, (σ  g(σ) ∗ α(t))′ (t) = 0 if and only if α′dev(t) = d g(t)(α′(t)).

3.2. Interpretation of the Definition of Rolling Map in M = IRn. In
order to explain the conditions of Definition 3.1, we will follow the reasoning
used in [17]. The rolling map g associates an isometry with each value t ∈
[0, τ ]. So, with “successive” transformations g(t) we can conceive that each
point makes a certain “movement” in IRn, describing a continuous trajectory
with the positions held over the course of time t. Specifically, under the
“effect” of the mapping g, each “mobile point” travels along its trajectory
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from the corresponding initial position g(0)∗p to the end position g(τ)∗p, so
that at the instant t it “passes” into position g(t)∗p with velocity (ζp ◦g)′(t),
if g is smooth at that instant. Thus,

(1) the rolling condition says that M1 moves so as to be tangent to M2,
at each instant t, at point the αdev(t);

(2) when item (a) of the rolling condition is verified, the no-slip condition
says that for almost all t, that is, except for when at most a finite num-
ber of values t, the mobile point which at the initial instant occupies
the position corresponding to α(t) ∈M1 describes a movement with a
stop (“smooth”), at instant t, when it reaches position αdev(t) ∈ M2.
That is, this condition means that the linear velocity at the point of
contact is zero. (See Figure 1).

Figure 1. Velocity vector of a mobile point in no-slip rolling.

Assuming the rolling condition, for each v ∈ Tαdev(t)M2 [(Tαdev(t)M2)
⊥], the

vector d g(t)−1(v) belongs to Tα(t)M1 [(Tα(t)M1)
⊥] and the vector field Xv

expresses the “transport” of this vector by rolling, describing it as “stuck”
to the manifold in motion and taking it to coincide with v at instant t.

Furthermore, in IRn the covariant derivative Ẋv(t) = DXv

dσ (t) is the usual
derivative. So, in this context,

(3) the tangential [normal] part of no-twist condition says that, for almost
all t, the transport velocity of each tangent [normal] vector to M1 at
α(t) has no component in the tangential [normal] direction at instant
t. (See Figure 2.)

3.3. Rolling Maps in M = IRn
κ. In the particular case of M = IRn

κ, for
0 ≤ κ ≤ n, we know that G = SOI

κ(n) o IRn is a connected Lie subgroup
of the group of isometries of M that preserve orientation. Thus, a piecewise
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Figure 2. No-twist condition (tangential part) in rolling of the
bidimensional sphere.

smooth curve

g : [0, τ ] −→ SOI
κ(n) o IRn

t  (R(t), s(t)),
(9)

is a rolling map if the corresponding properties 1, 2 and 3 of Definition 3.1
are satisfied, with the natural action ∗ of the isometries given by

(R, s) ∗ p = Rp+ s, ∀(R, s) ∈ Oκ(n) o IRn, ∀p ∈ IRn
κ.

Next we rewrite the relationships (5) - (8), adapting them to this particular
case. Let t g(t) = (R(t), s(t)) be a piecewise smooth curve in SOI

κ(n)oIRn

and v a tangent vector to IRn
κ, arbitrary. Then, with the usual identification

of each TpIR
n with IRn, we can easily verify that: i) in open intervals where

g is smooth, (ζp ◦ g)′(t) = Ṙ(t)p + ṡ(t); ii) d g(σ) : IRn −→ IRn is defined
by d g(σ)(η) = R(σ)η and, consequently, Xv(σ) = R(σ)R−1(t)v.

Thus, in this situation, equation (5) of the no-slip condition is reduced to:

Ṙ(t)α(t) + ṡ(t) = 0; (10)

and, since in IRn
κ the covariant derivative coincides with the usual derivative,

relationships (7) and (8) of the no-twist condition are reduced to:

(tangencial part) ∀v ∈ Tαdev(t)M2, Ṙ(t)R−1(t)v ∈ (Tαdev(t)M2)
⊥; (11)

(normal part) ∀v ∈
(
Tαdev(t)M2

)⊥
, Ṙ(t)R−1(t)v ∈ Tαdev(t)M2. (12)

3.4. Properties of Rolling Motions. In this section we present three basic
properties of rolling motions without slipping or twisting. The first two are
limited to cases where the manifold environment M results from a scalar
product space.
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Let us begin by introducing an auxiliary result, needed for some proofs of
later results.

Lemma 3.1. Let us suppose that M is (a pseudo-Riemannian manifold con-
structed from) a scalar product space, and that the curves σ ∈ I  α(σ) ∈M
and σ ∈ I  g(σ) ∈ Isom(M) are smooth. If V : I −→ TM is a smooth
vector field such that V (σ) ∈ Tg(σ)∗α(σ)M , ∀σ ∈ I, and Y : I −→ TM is

the corresponding vector field defined by Y (σ) := d g(σ)−1(V (σ)) ∈ Tα(σ)M ,
then, for every t fixed in I, we have

DV

dσ
(t) =

D

dσ

(
d g(σ)

(
Y (t)

))
(t) + d g(t)

(DY
dσ

(t)
)
. (13)

(See Figure 3, where M = IR3
κ is considered.)

Figure 3. Auxiliary property of the covariant derivative.

Proof : Assume that M results from a scalar product space with dimension
n and index κ. Therefore, M is isometric to IRn

κ (See [16], p. 59). Let
ϕ : M −→ IRn

κ be the existing isometry, and let us consider that σ ∈ I  
ϕ ◦ g(σ) ◦ϕ−1 ∈ Isom(IRn

κ) verifies
(
ϕ ◦ g(σ) ◦ ϕ−1

)
(x) = R(σ)x+ s(σ), with

R(σ) ∈ Oκ(n) and s(σ) ∈ IRn.
The following equalities result from the fact that any isometry preserves

the covariant derivative, as well as the fact that d
(
ϕ ◦ g(σ) ◦ ϕ−1

)
(η) =

R(σ)η, ∀η ∈ Tp(IR
n). The “dot” denotes the covariant derivative in IRn

κ,
which, through the natural identification of each TpIR

n with IRn, is the usual
derivative in IRn.
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Effectively, we have:

DV

dσ
(t) = dϕ−1

(
(dϕ(V ))· (t)

)
= dϕ−1

((
d
(
ϕ ◦ g(σ) ◦ ϕ−1

)
(dϕ(Y ))

)·
(t)
)

= dϕ−1
(

(R(σ) dϕ(Y ))· (t)
)

= dϕ−1
(

(R(σ) dϕ(Y (t)))· (t) + (R(t) dϕ(Y ))· (t)
)

= dϕ−1
(

(dϕ (d g(σ)(Y (t)))))· (t)
)

+ dϕ−1
(

(dϕ (d g(t)(Y )))· (t)
)

=
D

dσ

(
d g(σ)

(
Y (t)

))
(t) +

D

dσ

(
d g(t)

(
Y
))

(t)

=
D

dσ

(
d g(σ)

(
Y (t)

))
(t) + d g(t)

(DY
dσ

(t)
)

The first property of rolling motions, described in the next proposition,
concerns the “composition” of simultaneous rolling motions.

Proposition 3.2. ( Transitivity of rolling motions) Let M1, M2 and M3 be
pseudo-Riemannian submanifolds of M , a manifold constructed from a scalar
product space. Suppose that the following hold:

(i) g1 : [0, τ ] −→ G is a rolling map of M1 over M2, with rolling curve α1

and development curve α2.
(ii) g2 : [0, τ ] −→ G is a rolling map of M2 over M3, having α2 as rolling

curve and development curve α3.

Then, g2 ◦ g1 : [0, τ ] −→ G, defined by (g2 ◦ g1)(t) = g2(t) ◦ g1(t), is a rolling
map of M1 over M3, having α1 as rolling curve and α3 as development curve.

Proof : The proof consists in confirming the veracity of conditions (1), (2)
and (3) of Definition 3.1. The no-slip and no-twist conditions are verified at
the intervals obtained by “overlapping” the partitions guaranteed for g1 and
g2. We have the following:
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(1) Verifying the rolling condition. Let t ∈ [0, τ ] be arbitrary. From the
hypothesis, we get (g2 ◦ g1)(t) ∗ α1(t) = α3(t) ∈M3 and

Tα3(t)(g2 ◦ g1)(t) ∗M1 = d g2(t)
(
Tα2(t)g1(t) ∗M1

)
= d g2(t)

(
Tα2(t)M2

)
= Tα3(t)g2(t) ∗M2

= Tα3(t)M3.

(2) Verifying the no-slip condition. From hypotheses i) and ii), we have
α′2(t) = d g1(t)(α

′
1(t)) and α′3(t) = d g2(t)(α

′
2(t)). Therefore

d (g2(t) ◦ g1(t)) (α′1(t)) = d g2(t) (d g1(t)(α
′
1(t)))

= d g2(t) (α′2(t))

= α′3(t).

(3) Verifying the no-twist condition. We only address the tangential part
of this condition, since the proof of the normal part is similar.

With j = 1, 2, the assumptions assure us that, ∀v ∈ Tαj+1(t)Mj+1,

Ẋv
j (t) ∈ (Tαj+1(t)Mj+1)

⊥, where Xv
j (σ) := d

(
gj(σ) ◦ gj(t)−1

)
(v). We

need now to show that, ∀v ∈ Tα3(t)M3, Ẋ
v(t) ∈ (Tα3(t)M3)

⊥, where

Xv(σ) := d
(

(g2(σ) ◦ g1(σ)) ◦ (g2(t) ◦ g1(t))
−1
)

(v)

=
(
d g2(σ) ◦ d g1(σ) ◦ d g1(t)

−1 ◦ d g2(t)
−1
)

(v)

= d g2(σ)
(
X

d g2(t)−1(v)
1 (σ)

)
.

However, fixing any v ∈ Tα3(t)M , if from Lemma 3.1 we consider
the particular case in which α(σ) = g1(σ) ∗ α1(t), g(σ) = g2(σ) and
V (σ) = Xv(σ), equality (13) is reduced to

Ẋv(t) = Ẋv
2 (t) + d g2(t)

(
Ẋ

d g2(t)−1(v)
1 (t)

)
. (14)

Hence, Ẋv(t) ∈
(
(Tα3(t)M3)

⊥ + d g2(t)
(
(Tα2(t)M2)

⊥)) = (Tα3(t)M3)
⊥,

∀v ∈ Tα3(t)M3.

(See Figure 4.)

The “reciprocity” of the rolling motions is addressed in the following propo-
sition.
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Figure 4. Transitivity of rolling motions.

Proposition 3.3. ( Symmetry of rolling motions) Consider that M1 and M2

are pseudo-Riemannian submanifolds of M , a manifold constructed from a
scalar product space. Let g : [0, τ ] −→ G be a rolling map of M1 over M2,
with a rolling curve α1 and a development curve α2. Then, g−1 : [0, τ ] −→ G,
defined by g−1(t) = g(t)−1, is a rolling map of M2 over M1, having α2 as
rolling curve and α1 as development curve.

Proof : Confirmation of the no-slip and no-twist conditions is naturally car-
ried out with the same partition of the interval [0, τ ] that the hypothesis
guarantees regarding g. We have the following:

(1) Verifying the rolling condition. g−1(t) ∗ α2(t) = α1(t) ∈ M1, obvi-
ously. The hypothesis assures the equality Tα2(t)g(t) ∗M1 = Tα2(t)M2,
therefore

Tg−1(t)∗α2(t)g
−1(t) ∗M2 = d g−1(t)

(
Tα2(t)M2

)
= d g−1(t)

(
Tα2(t)g(t) ∗M1

)
= Tg−1(t)∗α2(t)M1.

(2) Verifying of the no-slip condition. From α′2(t) = d g(t) (α′1(t)), verified
by hypothesis, we can immediately write d g−1(t) (α′2(t)) = α′1(t).

(3) Verifying the no-twist condition. With regards to the tangential part,
we need to show that, ∀v ∈ Tα1(t)M1 , Ẋv

−1(t) ∈ (Tα1(t)M1)
⊥, with

Xv
−1(σ) := d

(
g(σ)−1 ◦ g(t)

)
(v). The hypothesis assures that, ∀v ∈
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Tα2(t)M2, Ẋ
v(t) ∈ (Tα2(t)M2)

⊥, being Xv(σ) as in (6). Furthermore,

fixing any v ∈ Tα1(t)M , if in Lemma 3.1 we consider α(σ) = g(σ)∗α1(t),
g(σ) = g(σ)−1 and V (σ) = v, equality (13) allows us to conclude the
following

Ẋv
−1(t) = − d g(t)−1

(
Ẋd g(t)(v)(t)

)
. (15)

Therefore, we have Ẋv
−1(t) ∈

(
− d g(t)−1

(
(Tα2(t)M2)

⊥)) = (Tα1(t)M1)
⊥,

∀v ∈ Tα1(t)M1.
The proof regarding the normal part is carried out with the obvious

adaptations.

Remark 3.2. The above propositions enable us, in particular, to decrease the
study of the rolling motions between submanifolds of IRn

κ, under the condition
that they have equal dimension and index and are tangent to each other, to
the case in which one of the two is the affine tangent space to the other
manifold at a point (arbitrary), which is defined for any M and p ∈M by

T aff
p M := {p+ v : v ∈ TpM} .

Indeed, considering M1 and M2 tangent at a point p0, that is, such that
T aff
p0
M1 = T aff

p0
M2 =: N , if we know how to roll M1 and M2 over N , by

symmetry we will also know how to roll N over M2; therefore, the rolling
of M1 over M2 may then be obtained by transitivity. The importance of this
reasoning is due to the fact that rolling motions over an affine tangent space
are, from the outset, easier to describe.

From any known rolling motion, we can deduce a rolling motion between
the corresponding manifolds transformed by homothety. This is what we will
show below.

Proposition 3.4. Let M 1 and M 2 be pseudo-Riemannian manifolds, which
are connected, orientable and with equal dimension. Assume that:

(i) M1 and M2 are two pseudo-Riemannian submanifolds of M 1;
(ii) g : [0, τ ] −→ G1 is a rolling map of M1 over M2, with rolling curve α1

and development curve α2;
(iii) φ : M 1 −→M 2 is a (fixed) homothety.

Then φ ◦ g ◦ φ−1 : [0, τ ] −→ G2 = {φ ◦ f ◦ φ−1 : f ∈ G1}, defined by
(φ◦ g ◦φ−1)(t) = φ◦ g(t)◦φ−1, is a rolling map of φ(M1) over φ(M2), having
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φ◦α1 : t φ(α1(t)) as rolling curve and φ◦α2 : t φ(α2(t)) as development
curve.

Proof : We note first that each mapping φ ◦ f ◦ φ−1 ∈ G2 is an isometry on
M 2 and that it preserves orientation. In fact, since if φ has coefficient µ then
φ−1 is a homothety with coefficient µ−1, we can write the following: ∀p ∈M2,
∀up, vp ∈ TpM2,

〈d(φ◦f ◦φ−1)(up), d(φ◦f ◦φ−1)(vp)〉 = 〈dφ(df(dφ−1(up))), dφ(df(dφ−1(vp)))〉
= µ〈df(dφ−1(up)), df(dφ−1(vp))〉
= µ〈dφ−1(up), dφ

−1(vp)〉
= 〈up, vp〉.

In addition, with oriented connected manifolds, we can prove that a diffeo-
morphism preserves orientation if and only if its inverse mapping preserves
orientation, and also that the composition of two diffeomorphisms reverses
orientation if and only if one preserves and the other reverses orientation.
Therefore, we immediately conclude that φ ◦ f ◦ φ−1 preserves orientation.

We will now confirm the rolling, no-slip and no-twist conditions. With
regards the last two, we take the partition of [0, τ ] that the hypothesis assures
for g. We have the following:

(1) Verifying the rolling condition. The hypothesis allow us to write
clearly (φ ◦ g ◦ φ−1)(t) ∗ (φ ◦ α1)(t) = (φ ◦ α2)(t) ∈ φ(M2), and

T(φ◦α2)(t)(φ ◦ g ◦ φ−1)(t) ∗ (φ(M1)) = T(φ◦α2)(t)(φ ◦ g(t))(M1)

= dφ
(
Tα2(t)g(t) ∗M1

)
= dφ

(
Tα2(t)M2

)
= T(φ◦α2)(t)φ(M2).

(2) Verifying the no-slip condition. The hypothesis assures the equality

(ζα(t) ◦g)′(t) = 0. We need to show that
(
ζφ(α(t)) ◦ φ ◦ g ◦ φ−1

)′
(t) = 0.

But, this immediately results from the following(
ζφ(α(t)) ◦ φ ◦ g ◦ φ−1

)′
(t) =

(
σ  (φ ◦ g ◦ φ−1)(σ) ∗ φ(α(t))

)′
(t)

= (σ  (φ ◦ g(σ))(α(t)))′ (t)

= dφ
(
(σ  g(σ) ∗ α(t))′ (t)

)
= dφ

(
(ζα(t) ◦ g)′(t)

)
.
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(3) Verifying the no-twist condition. We once again only present the proof
regarding the tangential part, for the same reason as before.

By the hypothesis, we have ∀v ∈ Tα2(t)M2, Ẋ
v(t) ∈ (Tα2(t)M2)

⊥, be-
ing Xv(σ) as in (6). We now need to assure that, ∀v ∈ T(φ◦α2)(t)φ(M2),

Ẋv
φ(t) ∈ (T(φ◦α2)(t)φ(M2))

⊥, where

Xv
φ(σ) = d

(
(φ ◦ g(σ) ◦ φ−1) ◦ (φ ◦ g(t) ◦ φ−1)−1

)
(v)

= d
(
φ ◦ g(σ) ◦ g(t)−1 ◦ φ−1

)
(v)

= dφ
(
d (g(σ) ◦ g(t)−1)(dφ−1(v)

)
= dφ

(
Xdφ−1(v)(σ)

)
.

Let us arbitrarily take v ∈ T(φ◦α2)(t)φ(M2). Because φ is a homothety
we have

Ẋv
φ(σ) = dφ

(
Ẋdφ−1(v)(σ)

)
.† (16)

Therefore, since dφ−1(v) ∈ Tα2(t)M2, the hypothesis allow us to con-

clude that Ẋv
φ(t) ∈ dφ

((
Tα2(t)M2

)⊥)
= (T(φ◦α2)(t)φ(M2))

⊥, as in-

tended.

Remark 3.3. The reason for Propositions 3.2 and 3.3 being limited to rolling
motions wherein the environment manifold M results from a scalar product
space is related to the fact that only in these manifolds can we prove equalities
(14) and (15), which we presented as corollaries of Lemma 3.1. The anal-
ogous equality to these shown in the proof of Proposition 3.4, equality (16),
is easily established for general manifolds. Only this allows us to release the
last proposition from the limitation of the first propositions.

3.5. Rolling versus Parallel Transport. Here we address the close re-
lationship between the concept of rolling motion without twisting and the
concept of parallel vector field along a curve. The results from this section are
restricted to situations where the environment manifold M originates from
a scalar product space, such as IRn

κ. The reason for this limitation relates
(only) to the fact that we will employ Lemma 3.1. The main result is as
follows:
†Homotheties preserve Levi-Civita connections, so they preserve the induced covariant derivative

on a curve.
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Proposition 3.5. When M is (a pseudo-Riemannian manifold constructed
from) a scalar product space, if the rolling condition is satisfied, the points
(a) and (b) of the no-twist condition in Definition 3.1 are equivalent to the
following:

(a’) (tangential part) At each interval ]ti−1, ti[, a vector field Y is parallel
along the curve α if and only if V (σ) = d g(σ)

(
Y (σ)

)
defines a parallel

vector field along αdev.‡

(b’) (normal part) At each interval ]ti−1, ti[, a vector field Y is normal
parallel along the curve α if and only if V (σ) = d g(σ)

(
Y (σ)

)
defines

a normal parallel vector field along αdev.

Proof : We only present the proof of the equivalence (a) ⇐⇒ (a’), due to the
fact that the proof for the normal part is entirely similar.

((a) =⇒ (a’))
Let us suppose that (a) is satisfied. We arbitrarily take an instant (fixed)

t ∈ ]ti−1, ti[, a smooth field Y of vectors tangent to M1 along α and the
corresponding field V , defined by V (σ) = d g(σ)

(
Y (σ)

)
.

Firstly, from (a) results

D

dσ

(
d g(σ)

(
Y (t)

))
(t)
[

=
DXV (t)

dσ
(t)
]
∈
(
Tαdev(t)M2

)⊥
.

Therefore, Lemma 3.1 allows us to write

d g(t)
(DY
dσ

(t)
)
∈
(
Tαdev(t)M2

)⊥
iff

DV

dσ
(t) ∈

(
Tαdev(t)M2

)⊥
. (17)

On the other hand, we know that d g(t)
( (
Tα(t)M1

)⊥ )
=
(
Tαdev(t)M2

)⊥
.

Hence, because d g(t) : Tα(t)M −→ Tαdev(t)M is an isomorphism, we also have

d g(t)
(DY
dσ

(t)
)
∈
(
Tαdev(t)M2

)⊥
iff

DY

dσ
(t) ∈

(
Tα(t)M1

)⊥
. (18)

Finally, from (17) and (18) we now immediately deduce, by transitivity,
the following:

DY

dσ
(t) ∈

(
Tα(t)M1

)⊥
iff

DV

dσ
(t) ∈

(
Tαdev(t)M2

)⊥
,

so we may conclude the equivalence stated in (a’).

‡It is understood that Y is parallel as a vector field on M1 and that V is parallel as a vector
field on M2.
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((a) ⇐= (a’))
Let us suppose that (a’) is satisfied, and we arbitrarily take an instant t

(fixed) in any subinterval ]ti−1, ti[ and a vector v ∈ Tαdev(t)M2.
Let V be the parallel transport of v along the restriction of αdev at the

interval ]ti−1, ti[, satisfying V (t) = v. Then, we have DV
dσ (t) ∈ (Tαdev(t)M2)

⊥.

On the other hand, from (a’) we can conclude that Y (σ) = d g(σ)−1
(
V (σ)

)
defines a parallel vector field along the restriction of α at the interval ]ti−1, ti[.

Therefore, DYdσ (t) ∈ (Tα(t)M1)
⊥. Consequently, d g(t)

(
DY
dσ (t)

)
∈ (Tαdev(t)M2)

⊥.

Thus, if we consider Xv defined as in (6), from (13) one obtains DXv

dσ (t) ∈(
Tαdev(t)M2

)⊥
, that is, condition (a) is satisfied.

This reformulation of the no-twist condition also appears in [12] (Propo-
sition 1, p. 5), for rolling motions in IRn

κ. However, the argument made by
the authors is substantially different, since the definition of rolling map with-
out slipping or twisting that they used, although equivalent, is enunciated
differently from what is presented in this article.

Remark 3.4. Within the context in which the above proposition can be ap-
plied, a particular consequence of the no-twist condition is as follows: Y is
the parallel [normal parallel ] transport of Y0 = Y (0) ∈ Tα(0)M1 [(Tα(0)M1)

⊥]

along α if and only if V (σ) = d g(σ)
(
Y (σ)

)
defines the parallel [normal par-

allel ] transport of V0 = V (0) ∈ Tαdev(0)M2 [(Tαdev(0)M2)
⊥] along αdev.

We also note that in the particular case where M = IRn
κ and g(0) = (In, 0),

we find the explicit formula Y (σ) = R−1(σ)V (σ) to express the parallel
transport Y of a vector along the rolling curve, due to the parallel transport
V of that vector along the development curve. This may be of special interest
when the parallel transport along the development curve is seen as simpler
to describe than the parallel transport along the rolling curve, such as for
example in the rolling motion of a spherical surface on a plane

The affinity of the no-twist condition with parallel vector fields along
curves, also allows us to relate geodesic unions between the two rolling man-
ifolds.

Proposition 3.6. Let us consider that g, as defined in (4), is a rolling map
without slipping or twisting of M1 over M2, with M (a pseudo-Riemannian
manifold constructed from) a scalar product space. Then, the rolling curve
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α is a broken geodesic in M1 if and only if the corresponding development
curve αdev is a broken geodesic in M2.

Proof : Evidently, a geodesic can be characterized as a smooth curve whose
velocity field is parallel. We also know that no-slip condition (5) is equivalent
to having α′dev(t) = d g(t)(α′(t)).

Let α be a broken geodesic and let 0 = t0 < t1 < · · · < tr = τ be a partition
of the interval [0, τ ], which meets the requirements of no-slip and no-twist
conditions, such that each restriction of α to the subintervals [ti−1, ti] is a
geodesic. Then, in each of these intervals, the field defined by Y (σ) = α′(σ)
is parallel along α. Consequently, the field given by V (σ) = α′dev(σ) is parallel
along αdev in the same intervals, therefore αdev is also a broken geodesic.

With the same reasoning we could also show that α is a geodesic broken
whenever αdev is; hence, the demonstration is complete.

Remark 3.5. Several of the results of Section 3 are limited to the case where
the environment manifold is obtained from a vector space, just because we use
an auxiliary result, the Lemma 3.1, whose demonstration, for the moment, we
can only present in this particular case. If it is possible to extend the Lemma
3.1 to other manifolds, then all the results of this section will automatically
be valid in those environment manifolds.

4. Rolling Hyperquadratics in a Pseudo-Euclidean Space
In this section we will study rolling motions without slipping or twisting

of an important family of pseudo-Riemannian hypersurfaces, embedded in
pseudo-Euclidean spaces. This family consists of the pseudo-hyperbolic space
Hn
κ (r) and the pseudo-sphere Snκ(r), which will be defined in (19) and (20)

below. Our main concern is the rolling motion of Hn
κ (r) over its affine tangent

space at a point p0, that is, over the affine space associated with Tp0H
n
κ (r),

defined by

T aff
p0
Hn
κ (r) := {p0 + v : v ∈ Tp0Hn

κ (r)} .
Knowledge of this rolling motion will then allow us to deduce some others
rolling motions, at the expense of properties previously introduced. Rolling
motions with the pseudo-sphere Snκ(r) will only be addressed at the end, by
means of a convenient homothety that imports the information obtained for
the case of Hn

κ (r).
For the sake of completeness we include here some results already presented

in [13].
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4.1. Hyperquadratics. Let q : IRn+1
κ −→ IR be defined by q(u) = 〈u, u〉.

For r > 0 and ε = ±1, it is known that Q = q−1(εr2) is a pseudo-Riemannian
hypersurface of IRn+1

κ , having index κ or κ− 1 according to whether ε is 1 or
−1, respectively. These hypersurfaces Q are called the hyperquadratics (with
a centre) of IRn+1

κ . Depending on the value ε that is considered, the following
definition assigns a specific name to the corresponding hyperquadratic.

Definition 4.1. Let n ≥ 1 and 0 ≤ κ ≤ n. Then:

(1) the pseudo-hyperbolic space of radius r > 0 in IRn+1
κ+1 is

Hn
κ (r) :=

{
p ∈ IRn+1

κ+1 : 〈p, p〉 = −r2
}

; (19)

(2) the pseudo-sphere of radius r > 0 in IRn+1
κ is

Snκ(r) :=
{
p ∈ IRn+1

κ : 〈p, p〉 = r2
}
. (20)

(See the appendix, which contains the surfaces for n = 2 and κ = 0, 1, 2.)

Remark 4.1. Snκ(r) and Hn
κ (r) both have dimension n and index κ. Note,

nevertheless, that Snκ(r) ⊂ IRn+1
κ and Hn

κ (r) ⊂ IRn+1
κ+1. In addition, Sn0 (r) and

Hn
0 (r) are Riemannianan manifolds, since they have a zero index.

Hn
κ (r) is connected whenever κ ≥ 1, but when κ = 0 this hyperquadratic

consists of two connected components: the upper sheet, which contains the
point (r, 0, · · · , 0), and the lower sheet, which contains (−r, 0, · · · , 0). How-
ever, these two components can be identified projectively and we will only
deal with one of them. Thus, hereafter we will assume that Hn

0 (r) desig-
nates the corresponding upper sheet. A similar situation happens with the
pseudo-sphere Snκ(r), and we will assume that Snn(r) is the connected com-
ponent which contains (0, 0, · · · , r).

The hyperquadratics defined in (19) and (20) are “centred” at the origin.
However, these definitions can be trivially adapted so that the centre becomes
any other point c, replacing 〈p, p〉 with 〈p − c, p − c〉. Evidently, the result-
ing regions are also pseudo-Riemannian hypersurfaces of the corresponding
pseudo-Euclidean space.

Given that the analysis of rolling motions of pseudo-spheres will be per-
formed based on the study of rolling motions with pseudo-hyperbolic spaces,
the preliminary results that we present below focus only on Hn

κ (r).
We first note that Hn

κ (r) and T aff
p0
Hn
κ (r) are both immersed in the pseudo-

Riemannian manifold IRn+1
κ+1. As usual, we will make use of the identifi-

cations that enable us to alternate freely between points of the manifold
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IRn+1
κ+1, tangent vectors of each Tp(IR

n+1
κ+1) and vectors of the vector space

IRn+1 equipped with the scalar product defined by 〈u, v〉 = u>Jκ+1v, where
Jκ+1 = diag(−Iκ+1, In−κ).

The proof of part of the following proposition is in [13]. The remnants are
quite simple.

Proposition 4.1. ∀ 0 ≤ κ ≤ n, ∀p0 ∈ Hn
κ (r), we have:

(1) Tp0H
n
κ (r) =

{
v ∈ IRn+1 : v = Ωp0, Ω ∈ soκ+1(n+ 1)

}
;

(2) (Tp0H
n
κ (r))⊥ = IRp0;

(3) T aff
p0
Hn
κ (r) =

{
p ∈ IRn+1

κ+1 : p = p0 + Ωp0, Ω ∈ soκ+1(n+ 1)
}

;

(4) T aff
p0
Hn
κ (r) ∩Hn

κ (r) = {p0 + Ωp0 : Ω ∈ soκ+1(n+ 1), 〈Ωp0,Ωp0〉 = 0};
(5) ∀v ∈ Tp0IRn+1

κ+1, v ∈ Tp0Hn
κ (r)⇔ 〈v, p0〉 = 0;

(6) ∀q ∈ T aff
p0
Hn
κ (r), Tq

(
T aff
p0
Hn
κ (r)

)
= Tp0H

n
κ (r).

(See Figure 5).

Figure 5. Affine tangent space and orthogonal complement.

We remark that p0 is the unique point of the intersection of T aff
p0
Hn
κ (r) and

Hn
κ (r) if and only if κ = 0 or κ = n. Thus, contrary to classic rolling motion

of an Euclidean sphere on a plane, for 0 < κ < n there are many points of
contact between Hn

κ (r) and T aff
p0
Hn
κ (r).

We also note that, ∀R ∈ SOI
κ+1(n+1), we have {Rp : p ∈ Hn

κ (r)} = Hn
κ (r).

Therefore, the “rotational parte” of a rolling map maintains Hn
κ (r) invariant,

while a set of points. However, the points move “inside” the hypersurface.
The rolling motions that this article best describe correspond to the case

where the rolling curve is a geodesic in Hn
κ (r). These geodesics can be written
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explicitly. In the next proposition the equations of the three possible types
of geodesics in Hn

κ (r) will be presented.

Proposition 4.2. (See [13].) Let p0 ∈ Hn
κ (r) and v ∈ Tp0Hn

κ (r). We have
the following:

(1) If v is spacelike and ‖v‖ = r, then t  γ(t) = p0 cosh(t) + v sinh(t)
defines the unique spacelike geodesic in Hn

κ (r) which starts at p0 with
velocity v;

(2) If v is timelike and ‖v‖ = r, then t γ(t) = p0 cos(t)+v sin(t) defines
the unique timelike geodesic in Hn

κ (r) which starts at p0 with velocity
v;

(3) If v is lightlike, then t  γ(t) = p0 + vt defines the unique lightlike
geodesic in Hn

κ (r) which starts at p0 with velocity v.

4.2. Rolling Hn
κ (r) over T aff

p0
Hn
κ (r). The following theorem shows the equa-

tions that describe the “translational” and “rotational” velocities, deter-
mined by a “control”, of the rolling motion of Hn

κ (r) over T aff
p0
Hn
κ (r), where p0

is an arbitrary point. Therefore, equations (21) are the kinematic equations
for this rolling motion.

Theorem 4.1. (See [13].) Let p0 be a point of Hn
κ (r) and t ∈ [0, τ ] u(t) ∈

IRn+1
κ+1 a piecewise smooth mapping such that 〈u(t), p0〉 = 0.§ If t ∈ [0, τ ]  

(R(t), s(t)) ∈ SOI
κ+1(n + 1) o IRn+1 is the piecewise smooth curve which in

each open interval where u is smooth verifies the following system{
ṡ(t) = r2u(t)

Ṙ(t) = R(t)
(
−u(t)p>0 + p0u

>(t)
)
Jκ+1

(21)

and satisfies a given initial condition (R(0), s(0)) = (R0, s0), with s0 be-
longing to Tp0H

n
κ (r), then g(t) = (R−1(t), s(t)) defines a rolling map of

Hn
κ (r) over T aff

p0
Hn
κ (r) without slipping or twisting, with the rolling curve

t α(t) = R(t)p0 and the development curve t αdev(t) = p0 + s(t).

Remark 4.2. In the particular case where p0 = (r, 0, · · · , 0), we must have

u(t) =
[

0 u2(t) · · · un+1(t)
]>

and the second equation in (21) reduces to

Ṙ(t) = R(t)

(
κ+1∑
i=2

rui(t)(Ei1 − E1i) +
n+1∑
i=κ+2

rui(t)(Ei1 + E1i)

)
,

§u is a piecewise smooth mapping if there is a partition 0 = t0 < t1 < · · · < tr = τ such that
each restriction u|]ti−1,ti[ can be extended by a smooth curve defined in [ti−1, ti].
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where Eij is the matrix of order n+ 1 with the (i, j)-entry equal to 1 and the
others all zero.

Figure 6. Rolling H2
0(r) over T aff

p0
H2

0(r), with p0 = (r, 0, 0).

The kinematic equations (21) can be solved explicitly, in two special cases,
which follow. This allows us to get explicitly the corresponding rolling map,
the rolling curve and its development.

Case I: In this situation the mapping u is constant and p0 is an arbitrary
point.

Proposition 4.3. When u(t) = u ∈ IRn+1
κ+1 is a constant vector satisfying

〈u, p0〉 = 0, the solution of the kinematic equations (21), with the initial
condition (R(0), s(0)) = (R0, s0), is given by

R(t) = R0e
tA, s(t) = s0 + r2ut,

with A =
(
−up>0 + p0u

>) Jκ+1.
Moreover, the rolling curve α and its development αdev are geodesics in

Hn
κ (r) and T aff

p0
Hn
κ (r), respectively, having the same causal character as the

vector u.

The proof of the above proposition is in [13]. We remark that this proof
allows to know the three possible equations of the rolling curve, correspond-
ing to the causal character of u, which are shown in the table below. The
development curve is always given by αdev(t) = p0 + s0 + r2ut. (See Table 1.)

Case II: The idea of choosing the mapping u which we will consider in
this second case was obtained from [6], where the author showed that when
the (Euclidean) sphere S2 rolls over the plane tangent to its south pole, the
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causal character of u rolling curve

spacelike α(t) = R0p0 cosh(r‖u‖t) + rR0u
‖u‖ sinh(r‖u‖t)

timelike α(t) = R0p0 cos(r‖u‖t) + rR0u
‖u‖ sin(r‖u‖t)

lightlike α(t) = R0p0 + r2R0ut
Table 1. Equation of the rolling curve, in case I.

kinematic equations can be solved explicitly if the development curve is a
circle.

Let us consider that p0 = (r, 0, · · · , 0) ∈ IRn+1. Consequently, we have
u(t) = (0, u2(t), · · · , un+1(t)) ∈ IRn+1 and s(t) = (s1, s2(t), · · · , sn+1(t)) ∈
IRn+1, with s1 constant. However, for convenience, we will identify u(t) with
(u2(t), · · · , un+1(t)) ∈ IRn and s(t) with (s2(t), · · · , sn+1(t)) ∈ IRn.

Proposition 4.4. Under the above conventions, when u(t) = e−tBBc with
B ∈ soκ(n) and c ∈ IRn, the solution of the kinematic equations (21) with
initial condition (R(0), s(0)) = (R0, s0), where s0 = (s1, s0) ∈ IR × IRn, is
given by

R(t) = R0e
tÃQ(t), s(t) = r2(In − e−tB)c+ s0,

where Ã =

[
0 (rBc)>

−rBc 0

]
Jκ+1 −

[
0 0

0 B

]
and Q(t) =

[
1 0

0 etB

]
.

Proof : The expression of s(t) readily results from the first kinematic equation
and the initial condition.

In order to solve the second kinematic equation, Ṙ(t) = R(t)A(t), we will

consider the change of variable R  R̃ defined by R(t) = R̃(t)Q(t). After
substitution we obtain

˙̃
R(t) = R̃(t)

(
Q(t)A(t)Q−1(t)− Q̇(t)Q−1(t)

)
. (22)

But

Q̇(t)Q−1(t) =

[
0 0

0 BetB

][
1 0

0 e−tB

]
=

[
0 0

0 B

]
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and

Q(t)A(t)Q−1(t)=

[
1 0

0 etB

][
0 (re−tBBc)>

−re−tBBc 0

]
Jκ+1

[
1 0

0 Jκ(e
tB)>Jκ

]

=

[
0 r(Bc)>(e−tB)>

−rBc 0

]
Jκ+1Jκ+1

[
1 0

0 (etB)>

]
Jκ+1

=

[
0 (rBc)>

−rBc 0

]
Jκ+1,

therefore, equation (22) is reduced to
˙̃
R(t) = R̃(t)Ã. As this equation is a

differential equation on SOκ+1(n+ 1) with Ã constant and belonging to Lie

algebra soκ+1(n+1), its solution satisfying R̃(0) = R0 is R̃(t) = R0e
tÃ. Thus,

we can conclude that R(t) = R0e
tÃQ(t).

Remark 4.3. We have 〈s(t)− (r2c+ s0), s(t)− (r2c+ s0)〉 = r4〈c, c〉, where
〈·, ·〉 is the scalar product of IRn

κ. Consequently, with c 6= 0, the following
holds:

(1) If c is spacelike, then s(t) belongs to the pseudo-sphere of IRn
κ with

centre at point r2c+ s0 and radius ‖r2c‖.
(2) If c is timelike, then s(t) belongs to the pseudo-hyperbolic space of IRn

κ

with centre at point r2c+ s0 and radius ‖r2c‖.
(3) If c is lightlike, then s(t) belongs to the pseudo-cone of IRn

κ with centre
at point r2c+ s0.¶

From the above remark, it follows, in particular, that H2
0(r) (upper sheet of

the two-sheet hyperboloid) and H2
2(r) (spherical surface) roll over a circum-

ference, while H2
1(r) (hyperboloid of one sheet) rolls either over a straight

line or over a hyperbola. (See Table 2 and Figure 7.)

4.3. Rolling a Pseudo-Hyperbolic Space not Centred on Origin. In
the previous section we dealt with the rolling motion of Hn

κ (r), which is a
hyperquadratic “centred” at the origin, over an affine tangent space. We now
want to extend this rolling motion to the more general situation in which the
centre can be any other point.

¶The pseudo-cone in IRnκ with centre c is defined by Cnκ (c) := {p ∈ IRnκ : 〈p− c, p− c〉 = 0}.
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hyperquadratic curve t s(t), when r = 1, c = (c1, c2), s0 = 0

H2
0(r) (x2 − c1)

2 + (x3 − c2)
2 = c2

1 + c2
2

H2
1(r)

x3 = ±x2 + (c2 ∓ c1) if c1 = c2 or c1 = −c2

(x2 − c1)
2 − (x3 − c2)

2 = c2
1 − c2

2 if c1 6= ±c2

H2
2(r) (x2 − c1)

2 + (x3 − c2)
2 = c2

1 + c2
2

Table 2. Equations of the curves which contain s(t), on plane x2ox3.

Figure 7. Rolling of H2
0(r), H2

1(r) and H2
2(r), in case II.

The pseudo-hyperbolic space of radius r > 0 and center c in IRn+1
κ+1 is the

pseudo-Riemannian submanifold of dimension n and index κ defined by

Hn
κ (r, c) :=

{
p ∈ IRn+1

κ+1 : 〈p− c, p− c〉 = −r2
}
.

As was done for Hn
0 (r), we shall assume that Hn

0 (r, c) is the corresponding
upper sheet.

Since Hn
κ (r, c) = Hn

κ (r) + c, that is, Hn
κ (r, c) is a translation of Hn

κ (r),
the analysis of the rolling motion of Hn

κ (r, c) over any its affine tangent space
can be easily carried out from Theorem 4.1, through Proposition 3.4. Indeed,
taking φ = (In+1, c), Proposition 3.4 ensures that if g(t) = (R−1(t), s(t)) is a
rolling map of Hn

κ (r) over T aff
p0
Hn
κ (r), with rolling curve α and development

curve αdev, then

g̃(t) =
(
R̃−1(t), s̃(t)

)
:= φ ◦ g(t) ◦ φ−1

=
(
R−1(t),−R−1(t)c+ s(t) + c

)
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is a rolling map of Hn
κ (r, c) over φ

(
T aff
p0
Hn
κ (r)

)
= T aff

p0+cH
n
κ (r, c), with rolling

curve α̃(t) = α(t) + c and development curve α̃dev(t) = αdev(t) + c.
Thus, if we fix a point p0 ∈ Hn

κ (r), a mapping t  u(t) ∈ IRn+1
κ+1 such

that 〈u(t), p0〉 = 0 (“control function”) and a certain initial condition, then,

by application of Theorem 4.1, a rolling map t  g̃(t) =
(
R̃−1(t), s̃(t)

)
of Hn

κ (r, c) over T aff
p0+cH

n
κ (r, c) is also determined. The kinematic equations

corresponding to this rolling motion are immediately deduced from equations
(21) and can be written in the following form:{ ˙̃s(t) =

(
−u(t)p>0 + p0u

>(t)
)
Jκ+1R̃

−1(t)c+ r2u(t)

˙̃
R(t) = R̃(t)

(
−u(t)p>0 + p0u

>(t)
)
Jκ+1.

Furthermore, α̃(t) = R̃(t)p0 + c and α̃dev(t) = p0 + s̃(t) + R̃−1(t)c.

4.4. Rolling a Pseudo-Hyperbolic Space over Another. Our goal in
this section is to describe the rolling motion, in M = IRn+1

κ+1, of a pseudo-
hyperbolic space (centred at the origin) over another pseudo-hyperbolic space
(not centred at the origin), tangent to the first. We will use a similar ar-
gument to the one appearing in [11] for the rolling motion of an Euclidean
sphere over another, implementing the reasoning mentioned in Remark 3.2.
That is, we will reach our goal at the expense of the kinematic equations for
the rolling motion of such submanifolds over an affine tangent space, along
with the properties of symmetry and transitivity contained in Section 3.4.

With r1, r2 ∈ IR+, consider p0 = (r1, 0, · · · , 0), q0 = (r2, 0, · · · , 0) ∈ IRn+1
κ+1

and let η = p0 − q0. Let us denote M1 = Hn
κ (r1), N = T aff

p0
Hn
κ (r1) and

M2 = Hn
κ (r2, η). Since Tp0H

n
κ (r2, η) = Tq0H

n
κ (r2) = Tp0H

n
κ (r1), the affine

tangent space to M2 at p0 obviously coincides with N .
We know explicitly how to roll M1 and M2 over N . Consequently, by

symmetry (Proposition 3.3), we also know how to roll N over M2. Therefore,
by transitivity (Proposition 3.2), we will be able to describe the rolling motion
of M1 over M2.

With regard to rolling motion of M1 over N , we know that after fixing a
piecewise smooth mapping t u(t) ∈ IRn+1

κ+1 such that 〈u(t), p0〉 = 0, if R1(t)
and s1(t) constitute the solution-curve of the problem{

ṡ1(t) = r2
1u(t)

Ṙ1(t) = R1(t)
(
−u(t)p>0 + p0u

>(t)
)
Jκ+1

; R1(0) = In+1, s1(0) = 0,
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then g1(t) = (R−1
1 (t), s1(t)) defines a rolling map, with rolling curve given by

α1(t) = R1(t)p0 and development curve given by α1dev(t) = p0 + s1(t).
With regard to rolling motion of M2 over N , we know that after fixing a

piecewise smooth mapping t û(t) ∈ IRn+1
κ+1 such that 〈û(t), q0〉 = 0, if R2(t)

and s2(t) form the solution-curve of the problem{
ṡ2(t) =

(
−û(t)q>0 + q0û

>(t)
)
Jκ+1R

−1
2 (t)η + r2

2û(t)

Ṙ2(t) = R2(t)
(
−û(t)q>0 + q0û

>(t)
)
Jκ+1

;R2(0)=In+1, s2(0)=0,

then g2(t) = (R−1
2 (t), s2(t)) defines a rolling map, having rolling curve given

by α2(t) = R2(t)q0 +η and its development by α2dev(t) = q0 +s2(t)+R−1
2 (t)η.

Hence, Proposition 3.3 ensures that g−1
2 (t) = (R2(t),−R2(t)s2(t)) is a rolling

map of N over M2, with rolling curve α2dev and development curve α2.
Thus, under the condition of u and û being such that α1dev = α2dev, with

the previous rolling maps g1 and g2, Proposition 3.2 allows us to conclude
that

g3(t) = g−1
2 (t) ◦ g1(t)

=
(
R2(t)R

−1
1 (t), R2(t)(s1(t)− s2(t))

)
defines a rolling map of M1 over M2, with rolling curve α1 and development
curve α2. In order to be able to establish the kinematic equations for this
rolling motion, we still need to see the relationship that must be fulfilled
between u(t) and û(t) so that α1dev(t) = α2dev(t). But, with direct calculations
on the assumed conditions, we can deduce the following equivalences:

α1dev(t) = α2dev(t)

⇔s2(t)− s1(t) = η −R−1
2 (t)η

⇔ ṡ2(t)− ṡ1(t) = R−1
2 (t)Ṙ2(t)R

−1
2 (t)η

⇔ r2
2û(t) = r2

1u(t).

In conclusion, taking into account the particular structure of p0 and the fact

that q0 =
r2

r1
p0, we can establish the following result.

Theorem 4.2. Consider r1, r2 ∈ IR+, p0 = (r1, 0, · · · , 0), q0 = (r2, 0, · · · , 0)
and η = p0 − q0. Let t ∈ [0, τ ]  u(t) = (0, u2(t), · · · , un+1(t)) ∈ IRn+1 be a
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piecewise smooth mapping and let us define

U(t) =
κ+1∑
i=2

ui(t)(Ei1 − E1i) +
n+1∑
i=κ+2

ui(t)(Ei1 + E1i),

where Eij denotes the matrix of order n+1 with the entry (i, j) equal to 1 and
the others all zero. If (R1(t), R2(t), s1(t), s2(t)) constitutes the solution-curve
of the system 

ṡ1(t) = r2
1u(t)

ṡ2(t) =
r2

1

r2
U(t)R−1

2 (t)η + r2
1u(t)

Ṙ1(t) = r1R1(t)U(t)

Ṙ2(t) =
r2

1

r2
R2(t)U(t)

(23)

with initial condition (R1(0), R2(0), s1(0), s2(0)) = (In+1, In+1, 0, 0), then t 
g(t) =

(
R2(t)R

−1
1 (t), R2(t)(s1(t)− s2(t))

)
∈ SOI

κ+1(n+ 1)o IRn+1 is a rolling
map of Hn

κ (r1) over Hn
κ (r2, η), without slipping or twisting, with rolling curve

given by α(t) = R1(t)p0 and development curve given by αdev(t) = R2(t)q0+η.
(See Figure 8).

Figure 8. Rolling Hn
κ (r1) over Hn

κ (r2, η), with n = 1 and κ = 0.
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4.5. Rolling a Pseudo-Sphere Snκ(r). In what follows we will address
the rolling motion of pseudo-spheres, using the knowledge available for the
rolling motion of pseudo-hyperbolic spaces. The fundamental idea is the in-
troduction of an anti-isometric transformation which will make a connection
between the rolling motions of the two hyperquadratics.

Throughout this section φ : IRn+1
n−κ+1 −→ IRn+1

κ will designate the mapping
defined by

φ(x) = Qx, with Q =

[
0 Iκ

In−κ+1 0

]
. (24)

Explicitly, φ(x1, · · · , xn+1) = (xn−κ+2, · · · , xn+1, x1 · · · , xn−κ+1). Therefore,
considering the scalar product defined by 〈u, v〉J = u>Jv, confirmation of
the following equality is immediate,

〈φ(x), φ(x)〉Jκ = −
n+1∑

i=n−κ+2

x2
i +

n−κ+1∑
i=1

x2
i = −〈x, x〉Jn−κ+1

.

As a consequence of this formula, we have that φ is an anti-isometry and
φ (Hn

n−κ(r)) = Snκ(r). That is, φ transforms the pseudo-hyperbolic space
Hn
n−κ(r) anti-isometrically into the pseudo-sphere Snκ(r).
The transformation φ is a path that, roughly speaking, allows us to transfer

much of our geometric knowledge about pseudo-hyperbolic spaces to the
corresponding study with pseudo-spheres. This results from the fact that φ
is a homothety. In fact, since homotheties preserve Levi-Civita connections,
they preserve all geometric notions that depend solely on the Levi-Civita
connection, such as geodesics and parallel transport. Nevertheless, as φ is a
homothety with negative coefficient, the causal caracter is reversed, that is:
v is timelike ⇒ dφ (v) is spacelike; v is spacelike ⇒ dφ (v) is timelike (also
finding: v is lightlike ⇒ dφ (v) is lightlike).

In particular, the equations of the geodesics in Snκ(r), with an initial point
and an initial velocity vector previously established, can be readily written
from Proposition 4.2. Just exchange the words spacelike and timelike with
each other, keeping the equations.

As in the case of pseudo-hyperbolic space, in addition to the rolling motion
of Snκ(r) over the affine tangent space at a point, the rolling with a pseudo-
sphere not centred at the origin and the rolling of a pseudo-sphere over
another naturally also makes sense. However, here we will only worry about
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the first rolling motion, since the others can clearly be obtained from this
with the exposed reasoning for Hn

κ (r).
Arbitrarily taking a point q0 ∈ Hn

n−κ(r) and a piecewise smooth mapping
t ũ(t) ∈ IRn+1

n−κ+1 such that 〈ũ(t), q0〉 = 0, from Theorem 4.1 we know that

if R̃(t) and s̃(t) form the solution-curve to the problem{ ˙̃s(t) = r2ũ(t)

˙̃
R(t) = R̃(t)

(
−ũ(t)q>0 + q0ũ

>(t)
)
Jn−κ+1

; R̃(0) = R̃0, s̃(0) = s̃0, (25)

where R̃0 ∈ SOI
n−κ+1(n + 1) and s̃0 ∈ Tq0Hn

n−κ(r), then g̃(t) = (R̃−1(t), s̃(t))
defines a rolling map of Hn

n−κ(r) over T aff
q0
Hn
n−κ(r), with rolling and devel-

opment curves given by α̃(t) = R̃(t)q0 and α̃dev(t) = q0 + s̃(t). Therefore,
Proposition 3.4 allows us to conclude that

g(t) =
(
R−1(t), s(t)

)
:=
(
QR̃−1(t)Q−1, Qs̃(t)

)
(26)

defines a rolling map of Snκ(r) over φ
(
T aff
q0
Hn
n−κ(r)

)
= T aff

Qq0
Snκ(r), verifying

R(0) = QR̃0Q
−1 ∈ SOI

κ(n+ 1) and s(0) = Qs̃0 ∈ TQq0Snκ(r), with the rolling
curve given by α(t) = Qα̃(t) = R(t)Qq0 and the development curve given by
αdev(t) = Qα̃dev(t) = Qq0 + s(t).

In which regards the kinematic equations of this rolling motion, starting
from (25) and (26) we obtain:

ṡ(t) = Q ˙̃s(t) = r2Qũ(t)

and

Ṙ(t) = Q
˙̃
R(t)Q−1

= R(t)Q
(
−ũ(t)q>0 + q0ũ

>(t)
)
Jn−κ+1Q

−1

= R(t)
(
−Qũ(t)q>0 Q

−1 +Qq0ũ
>(t)Q−1

)
QJn−κ+1Q

−1

= R(t)
(
−Qũ(t)(Qq0)

> +Qq0(Qũ(t))>
)

(−Jκ) .

Therefore, if we define p0 = Qq0 and u(t) = Qũ(t), the expressions of the
velocities of s and R may be written as shown in system (27) below.

We also observe that 〈ũ(t), q0〉 = 0 in IRn+1
n−κ+1 if and only if 〈u(t), p0〉 = 0

in IRn+1
κ , because 〈u(t), p0〉Jκ = 〈φ(ũ(t)), φ(q0)〉Jκ = −〈ũ(t), q0〉Jn−κ+1

In short, we have the following:
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Theorem 4.3. Let p0 be a point of Snκ(r) and t ∈ [0, τ ]  u(t) ∈ IRn+1
κ

a piecewise smooth mapping such that 〈u(t), p0〉 = 0. If t ∈ [0, τ ]  
(R(t), s(t)) ∈ SOI

κ(n + 1) o IRn+1 is the piecewise smooth curve which, in
each open interval where u is smooth, verifies the following system{

ṡ(t) = r2u(t)

Ṙ(t) = R(t)
(
u(t)p>0 − p0u

>(t)
)
Jκ

(27)

and satisfies a given initial condition (R(0), s(0)) = (R0, s0), with s0 belong-
ing to Tp0S

n
κ(r), then g(t) = (R−1(t), s(t)) defines a rolling map of Snκ(r)

over T aff
p0
Snκ(r), without slipping or twisting, with the rolling curve given by

α(t) = R(t)p0 and the development curve given by αdev(t) = p0 + s(t).

This theorem is in accordance with Theorem 4.1 in [9], where the rolling
motion of the Lorentzian sphere Sn1 (1) was presented.
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Appendix

Hn
κ (r) ⊂ IRn+1

κ+1 Snκ(r) ⊂ IRn+1
κ

n = 2
κ = 0

n = 2
κ = 1

n = 2
κ = 2

Table 3. Hyperquadrics
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