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ACCURACY OF A COUPLED MIXED AND GALERKIN
FINITE ELEMENT APPROXIMATION FOR

POROELASTICITY

SÍLVIA BARBEIRO

Abstract: In this paper, we consider a coupling mixed finite element and continu-
ous Galerkin finite element formulation for a coupled flow and geomechanics model.
We use the lowest order Raviart-Thomas space for the spatial approximation of the
flow variables and continuous piecewise linear finite elements for the deformation
variable while we consider the backward Euler method for the time discretization.
This numerical scheme appears to be one common approach applied to existing
reservoir engineering simulators. Theoretical convergence error estimates are de-
rived in a discrete-in-time setting. Previous a priori error estimates described in
the literature e.g. [2][19], which are optimal, show first order convergency with
respect to the L2-norm for the pressure and for the average fluid velocity approxi-
mation errors and with respect to the H1-norm for the displacement approximation
error. Here we prove one extra order of convergence for the displacement approx-
imation with respect to the L2-norm. We also demonstrate that, by including a
post-processing step in the scheme, the order of convergence for the approximation
of pressure can be improved. Even though this result is critical for deriving the L2-
norm error estimates for the approximation of the deformation variable, surprisingly
the corresponding gain of one convergence order holds independently of including
or not the post-processing step in the method.

Keywords: Maxwell’s equations, leap-frog DG method, stability and convergence.

1. Introduction

Poroelasticity theory is used to model the interaction of fluid flow and the
mechanical response in fluid-saturated porous media. The deformation of the
medium influences the flow of fluid and vice versa. The development of the
necessity coupled geomechanics and flow models emerged in the context soil
mechanics, in particular with the seminal work of Karl von Terzaghi [24] and
the theory proposed by Maurice Anthony Biot [4][5], known as Biot Theory.
Poroelasticity models are widely used in geomechanics and reservoir en-

gineering, and they have relevance in diverse other fields as, for example,
biomechanics and environmental engineering. Due to high interest of applica-
tions there is an ever-growing demand for reliable models and numerical tools.
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Applications range from reservoir simulation [9][20][22][23], modelling carbon
sequestration [12], the study the mechanical behaviour of fluid-saturated liv-
ing bone tissue [11], among others as highlighted in [18].
As a prototype of the geomechanical coupling between the single-phase flow

of pore fluids and the deformation of the solid skeleton, in this paper we con-
sider the linear poroelastic Biot Theory. The flow (pressures and fluxes) and
deformations (displacements) in the poroelastic medium are modeled based
on the Darcy’s law and the momentum and mass conservation principles.
The momentum equation is similar to linear elasticity, with a fluid pressure
term acting as a force.
We summarize the governing equations below. Let Ω ⊂ R

d, d = 2 or 3,
denote the domain of interest. The coupled balance equations are written as
follow: find (u, p) such that

−(λ+ µ)∇(∇ · u)− µ∇2u+ α∇p = f in Ω× (0, T ]
∂
∂t
(cop + α∇ · u)− 1

µf
∇ ·K(∇p− ρfg) = sf in Ω× (0, T ]

p = pD on Γp × (0, T ]
− 1

µf
K(∇p− ρfg) · η = q on Γf × (0, T ]

u = uD on Γ0 × (0, T ]
σ̃η = rN on ΓN × (0, T ]

p(0) = p0 in Ω,

(1)

where ∂Ω = Γp ∪ Γf and ∂Ω = Γ0 ∪ ΓN , with meas(Γ0) > 0. The symbol
η represents the outward normal vector on ∂Ω. The primary variables are
the pressure p and the deformation u. The physical parameters of the model
are: λ, µ, the Lamé constants, co, the constrained specific storage coefficient,
α, the Biot-Willis constant, µf , the fluid viscosity, ρf , the fluid mass density
and g, the body force per unit of mass. The effective stress σ, is the standard
stress tensor from elasticity,

σ(u) = 2µǫ(u) + λtr(ǫ(u))I,

where

ǫ(u) =
1

2

(

gradu+ (gradu)t
)

,

and I is the identity matrix in R
d × R

d, and the total stress, σ̃, is given by

σ̃(u, p) = σ(u)− αpI.

The Biot-Willis constant has the range of values 0 < α ≤ 1. K denotes the
symmetric permeability tensor. We require the existence of the inverse of
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the operator K and we assume that K−1 is uniformly bounded and positive
definite, that is, there exists a positive constant ζ such that, for all s ∈
(L2(Ω))d,

(K−1(x, t)s, s) ≥ ζ‖s‖L2(Ω), ∀x ∈ Ω, t ∈ [0, T ], (2)

and we assume the storage coefficient to be strictly positive and uniformly
bounded,

0 < γc ≤ co(x) ≤ Lc, ∀x ∈ Ω. (3)

In practice, if the initial condition p0 is unknown, then p0 can be found by
considering ∇p(0) = ρfg and then use the first equation of (1) to find u(0).
The complete system (1) can be solved either simultaneously, in a fully

coupled approach, or sequentially, in a loosely coupled scheme. The analysis
of the fully coupled numerical method, combining a mixed method and a
continuous or discontinuous Galerkin method, was considered e.g. in [2], [13]
and [19]. The iteratively coupled solution methods were considered e.g. in
[14], [16] and [27].
In this paper we focus on the fully coupled method which combines lowest

order Raviart-Thomas mixed finite elements for the Darcy flow and Galerkin
piecewise linear finite elements for elasticity. We analyze the effect on conver-
gence of considering a post-processing step in the scheme and we prove second
order of convergence in space for the pressure approximation. Moreover we
derive L2-error estimates for the approximation of the deformation and we
also obtain second order of convergence in space. Both results, which are here
proved considering the fully coupled approach, are also useful to analyse the
iteratively coupled schemes which converge to fully coupled schemes [27].

2. The coupled variational formulation

In order to introduce the mixed formulation for the flow [17] [21], we con-
sider the variable for the flux z = − 1

µf
K(∇p− ρfg).

For the mixed variational formulation of the problem (1), the function
space for pressure is L2(Ω). The space used for the flux variable is

H(div) := {s ∈ (L2(Ω))d : ∇ · s ∈ L2(Ω)}
and we define its subset

S0 := {s ∈ H(div) : s · η|Γf
= 0}.

The function space for the deformation is

V0 := {v ∈ H1((Ω))d : v|Γ0
= 0}.
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Associated to this space we define the bilinear form au(., .) by

au(u,v) :=

∫

Ω

σ(u) : ǫ(v) dx,

or equivalently

au(u,v) =

∫

Ω

(2µ(ǫ(u) : ǫ(v)) + λ(∇ · u)(∇ · u)) dx.

The bilinear form is continuous and coercive in V0 ×V0 ([7]); therefore, for
some positive real number Ccont and Ccoer holds

au(u,v) ≤ Ccont‖u‖H1‖v‖H1, ∀u,v ∈ V0, (4)

au(v,v) ≥ Ccoer‖v‖2H1, ∀v ∈ V0.

We define the linear functional

ℓ1(v) =

∫

Ω

f · v +

∫

ΓN

rN · v, v ∈ V0,

ℓ2(w) =

∫

Ω

sfw, w ∈ L2(Ω),

ℓ3(s) = −
∫

Γp

pDs · η +
∫

Ω

ρfg · s, s ∈ S0.

Since the boundary conditions are allowed to be inhomogeneous, we need to
select, for each t ∈ [0, T ], a function ud(., t) ∈ (H1(Ω))d such that ud(., t)|Γ0

=
uD(., t) and a function zd(., t) ∈ H(div) such that zd(., t)|Γf

· η = q(., t).
The variational problem becomes: find u ∈ ud + H1([0, T ];V0), p ∈

H1([0, T ]; L2(Ω)) and z ∈ zd + L2([0, T ];S0) such that

au(u,v)− α(∇ · v, p) = ℓ1(v), (5)
(

co
∂p

∂t
, w

)

+ α
( ∂

∂t
∇ · u, w

)

+ (∇ · z, w) = ℓ2(w), (6)

µf(K
−1z, s)− (p,∇ · s) = ℓ3(s) (7)

holds for all (v, w, s) ∈ (V0, L
2(Ω),S0) and t ∈ [0, T ].
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We also make the following smoothness assumptions, in order the above
variational formulation makes sense:

f ∈ C1([0, T ]; (H−1(Ω))d),
sf ∈ C([0, T ];L2(Ω)),
pD ∈ C([0, T ];L2(Γp)),
q ∈ C([0, T ]; TrS), T rS = {s · η|Γf : s ∈ H(div)},
uD ∈ C1([0, T ]; (H1/2(Γ0))

d),
rN ∈ C1([0, T ]; (H−1/2(ΓN)

d)),
g ∈ C([0, T ]; (L2(Ω))d),
u0 ∈ (H1(Ω))d,
p0 ∈ L2(Ω).

In order to approximate the variational problem (5)-(7) with a finite ele-
ment scheme we need to provide some definitions.
Let Eh and EH be two nondegenerate partitions of the polyhedral domain

Ω, with maximal element diameter h and H, respectively. The elements of
Eh and EH are triangles, if d = 2, and tetrahedra, if d = 3.
Let (Wh,Sh) ⊂ (L2(Ω) ×H(div)) denote a standard mixed finite element

space on Eh, called lowest order Raviart-Thomas approximating space (RT0)
(e.g. [8], [21]) and

Sh,0 := {s ∈ Sh : s · η |Γf = 0}.

We consider the linear operators Πh : H(div) → Sh and Ih : L
2 → Wh which

satisfy the following properties:

(∇ · (s− Πhs), w) = 0, ∀w ∈ Wh,

‖s− Πhs‖L2(Ω) ≤ Ch‖s‖H1(Ω),

∇ ·Πh = Ih∇·,
(∇ · sh, p− Ihp) = 0, ∀sh ∈ Sh,

‖p− Ihp‖L2(Ω) ≤ Ch‖p‖H1(Ω).

LetVH be the space of continuous piecewise polynomials of degree 1 defined
on EH and

VH,0 := {v ∈ VH : v|Γ0
= 0}.

The elliptic projector EH : (H1(Ω))d → VH is defined by

au(u− EHu,vH) = 0, ∀vH ∈ VH , (8)
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and satisfies (see [7])

‖u− EHu‖au ≤ CH‖u‖(H2(Ω))d. (9)

Let udH(x, t) = EHud(x, t) and zdh(x, t) = Πhzd(x, t). We define ∆t =
T/N , where N denotes the number of time steps and tn = n∆t and we will
use the following notation gn = g(., tn).
The fully discrete method is derived by discretizing the time derivatives.

Here we considered the backward Euler method.
The complete numerical formulation becomes: find un

H ∈ un
dH + VH,0,

pnh ∈ Wh, z
n
h ∈ zndh + Sh,0 such that

au(u
n
H ,v)− α(pnh,∇ · v) = ℓn1(v), (10)

(

co
pnh − pn−1

h

∆t
, w

)

+ α
(

∇ · u
n
H − un−1

H

∆t
, w

)

+ (∇ · znh, w) = ℓn2(w), (11)

µf ((K
n)−1znh, s)− (pnh,∇ · s) = ℓ33(s), (12)

for all (v, w, s) ∈ (VH,0,Wh,Sh,0). Here (σm)
n
H is defined locally in EH by

(σm)
n
H =

1

d
tr(σ(un

H)).

Additionally, we consider the initial conditions u0
H ∈ u0

dH +VH,0, p
0
h ∈ Wh,

such that

au(uH ,v)|t=0
= au(u

0,v), ∀v ∈ VH ,

(ph, w)|t=0
= (p0, w), ∀w ∈ Wh.

The fully coupled scheme involves calculating un
H , p

n
h and znh simultaneously.

The convergence result in the next theorem can be found in [2], [19].

Theorem 1. Let (u, p, z) be the solution of (5)–(7) and (uH , ph, zh) be the
solution of (10)–(12). Then, for ∆t small enough, there exists C > 0 such
that

‖u− uH‖L∞(H1) + ‖p− ph‖L∞(L2) + ‖z− zh‖L2(L2) ≤ C(H + h) +O(∆t),
(13)

where C depends on the model parameters, and on the true solution but is
not dependent on H, h and ∆t.
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3. Post-processing step for pressure

The objective of this section is to obtain a higher order approximation for
pressure. To improve accuracy, a post-processing step can be included in the
numerical scheme, following the idea by Arbogast and Wheeler in [1].
We start by defining the space W̃h consisting of functions that are discon-

tinuous and piecewise linear over the grid Eh. We locally post-process the
pressure by finding p̃h ∈ W̃h such that on each element of R ∈ Eh,

(co(p̃
n
h − pnh), w)R = 0 ∀w ∈ Wh, (14)

(Kn∇p̃nh + znh,∇w)R = 0 ∀w ∈ W̃h. (15)

We will demonstrate that this post-processing technique improves the ap-
proximation pnh so that the L2-error between p̃nh and p(tn) is of second order
in space.
In the error analysis we will compare the post-processed finite element

solution to an elliptic projection of the solution of (5)-(7). We define the
projection (Ph,Zh) ∈ Wh × Sh of (p, z) [1] [26], by

(co(Ph − p), w) + (∇ · (Zh − z), w) = 0 ∀w ∈ Wh, (16)

µf

(

K−1(Zh − z), s
)

= (Ph − p,∇ · s) ∀s ∈ Sh, (17)

and on each element R ∈ Eh we define P̃h ∈ W̃h by
(

co(P̃h − Ph), w
)

R
= 0 ∀w ∈ Wh, (18)

(

K∇P̃h + Zh,∇w
)

R
= 0 ∀w ∈ W̃h. (19)

For convenience, we now introduce some additional notation, in particular
for auxiliary and projection errors:

ξn = pnh − P n
h ∈ Wh, ξ̃n = p̃nh − P̃ n

h ∈ W̃h, ζn = znh − Zn
h ∈ Sh,

and

ηn = P n
h − pn, η̃n = P̃ n

h − pn.

To simplify the notation in we use ‖.‖0, ‖.‖∞ and ‖.‖1, respectively, for the
L2, L∞ and H1 norms.

Lemma 1. The following inequalities hold

‖
√
coξ

n‖0 ≤ ‖
√
coξ̃

n‖0, (20)
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(

co(ξ̃
n − ξn), ξ̃n

)

≤ Q‖(Kn)−1/2ζ
n‖20h2, (21)

where Q depends on the positive upper and lower bounds for co and Kn.

Proof : For any element R ∈ Eh, by (14), (15), (18) and (19) we note that
(

co(ξ̃
n − ξn), 1

)

R
= 0, (22)

(Kn∇ξn + ζn,∇w)R = 0, w ∈ W̃h. (23)

Since ξn is constant on R, from (22) we have

(coξ
n, ξn)R =

(

co(ξ
n − ξ̃n), ξn

)

R
+
(

coξ̃
n, ξn

)

R
,

and (20) follows.
For a good choice of the constant C, we get
(

co(ξ̃
n − ξn), ξ̃n − ξn

)

R
=

(

co(ξ̃
n − ξn), ξ̃n

)

R
=

(

co(ξ̃
n − ξn), ξ̃n − C

)

R

≤ Q‖
√
co(ξ̃

n − ξn)‖0,R‖∇ξ̃n‖0,R h

and then

‖
√
co(ξ̃

n − ξn)‖0,R ≤ Q‖∇ξ̃n‖0,R h.

Taking w = ξ̃n in (23) results

‖(Kn)1/2∇ξ̃n‖0,R ≤ ‖(Kn)−1/2ζ
n‖0,R,

and we obtain (21).

The detailed arguments that proof of the next lemma can be found in the
demonstration of Theorem 2 of [1].

Lemma 2. Assume sufficient regularity of data and of the true solution of
(5)-(7). For each t ∈ (0, T ] and for h sufficiently small, holds

‖η‖0 = ‖Ph − p‖0 ≤ C‖z‖1h, (24)

‖η̃‖0 = ‖P̃h − p‖0 ≤ C (‖z‖1 + ‖∇ · z‖1)h2, (25)

‖(η̃)t‖0 = ‖(P̃h − p)t‖0 ≤ C (‖z‖1 + ‖∇ · z‖1 + ‖(z)t‖1 + ‖∇ · zt‖1)h2, (26)

where C is independent of t, p, h and ∆t.

The next result will be central in the convergence analysis.
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Lemma 3. Let EH be defined by (8). The following estimate holds

‖∇ · EHu−∇ · uH‖0 ≤
α

λ
‖p− ph‖0. (27)

Proof : For any element R ∈ EH we have

λ‖∇ · (EHu− uH)‖20,R ≤ au(EHu− uH , EHu− uH)

= α (p− ph,∇ · (EHu− uH))R
= α (p− p̃h,∇ · (EHu− uH))R
≤ α‖p− p̃h‖0,R‖∇ · (EHu− uH)‖0,R.

The convergence result for the post-processed numerical solution for pres-
sure is given in the next theorem.

Theorem 2. Consider that Eh and EH coincide or Eh to be a refinement of
EH . Assume sufficient regularity of the true solution and that the initializa-
tion error satisfy

‖p̃0h − p0‖0 ≤ C0(p0)h
2,

for some constant C0 depending on p0. Let ∆t satisfy ∆t
µf

2
> Qh2 and

∆t = c′H2 for some positive constant c′. If α2

λ < 1
4γc, then for h and H

sufficiently small,

max
n

‖pn − p̃nh‖0 ≤ C(p)(h2 +H2), (28)

where C(p) depends on p but not on h, H or ∆t.

Proof : For convenience, we use the notation

ℓ4(u, w) = α
( ∂

∂t
∇ · u, w

)

,

ℓ̄4(u
n
H , w) = α

(

∇ · u
n
H − un−1

H

∆t
, w

)

.

Combining (6), (11) and (14), we obtain, for all w ∈ Wh,

(co(p̃
n
h − pn), w)−

(

co(p̃
n−1
h − pn−1), w

)

+∆t(∇ · znh, w)

−
∫ tn

tn−1

(∇ · z, w) dt

= ∆t
(

ℓ2(w)− ℓ̄4(u
n
H , w)

)

−
∫ tn

tn−1

(ℓ2(w)− ℓ4(u, w)) dt.
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Then
(

co(ξ̃
n + η̃n), w

)

−
(

co(ξ̃
n−1 + η̃n−1), w

)

+∆t(∇ · ζn, w)

+∆t(∇ · Zn
h, w)−

∫ tn

tn−1

(∇ · z, w) dt

= ∆t
(

ℓ2(w)− ℓ̄4(u
n
H , w)

)

−
∫ tn

tn−1

(ℓ2(w)− ℓ4(u, w)) dt,

and by (16) we get
(

co(ξ̃
n + η̃n), w

)

−
(

co(ξ̃
n−1 + η̃n−1), w

)

+∆t(∇ · ζn, w)

+

∫ tn

tn−1

(ℓ2(w)− ℓ4(u, w)) dt

= ∆t
(

ℓ2(w)− ℓ̄4(u
n
H , w)

)

+

∫ tn

tn−1

(∇ · z, w) dt−∆t(∇ · zn, w)

+ ∆t (coη
n, w) . (29)

Combining (7), (12) and (17), we have

µf

(

K−1ζn, s
)

= (pnh,∇ · s) + (ℓ3, s)− µf

(

K−1(Zn
h − zn), s

)

− µf

(

(Kn)−1zn, s
)

= (pnh,∇ · s) + (ℓ3, s)− (P n
h ,∇ · s)− µf

(

(Kn)−1zn, s
)

+ (pn,∇ · s)
= (ξn,∇ · s). (30)

Taking in (29) and (30) w = ξn and s = ζn, respectively, we obtain
(

co(ξ̃
n + η̃n), ξn

)

−
(

co(ξ̃
n−1 + η̃n−1), ξn

)

+∆t(∇ · ζn, ξn)

+

∫ tn

tn−1

(ℓ2(ξ
n)− ℓ4(u, ξ

n)) dt

= ∆t
(

ℓ2(ξ
n)− ℓ̄4(u

n
H , ξ

n)
)

+

∫ tn

tn−1

(∇ · z, ξn) dt−∆t(∇ · zn, ξn)

+∆t(coη
n, ξn)

and

µf

(

K−1ζn, ζn
)

= (ξn,∇ · ζn). (31)
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Using (18) we get
(

coξ̃
n, ξn

)

−
(

coξ̃
n−1, ξn

)

+∆tµf

(

K−1ζn, ζn
)

=

∫ tn

tn−1

(∇ · z−∇ · zn, ξn) dt+
∫ tn

tn−1

ℓ4(u, ξ
n) dt−∆tℓ̄4(u

n
H , ξ

n)

−(1−∆t)(coη̃
n, ξn) + (coη̃

n−1, ξn). (32)

Since
(

coξ̃
n−1, ξn

)

≤ 1

2

(

coξ̃
n−1, ξ̃n−1

)

+
1

2
(coξ

n, ξn)

then
(

coξ̃
n, ξn

)

−
(

coξ̃
n−1, ξn

)

≥
(

coξ̃
n, ξn

)

− 1

2

(

coξ̃
n−1, ξ̃n−1

)

− 1

2
(coξ

n, ξn) .

From (14) and (18) we obtain
(

coξ̃
n, ξn

)

= (coξ
n, ξn) and consequently,

(

coξ̃
n, ξn

)

−
(

coξ̃
n−1, ξn

)

≥ 1

2

(

coξ̃
n, ξn

)

− 1

2

(

coξ̃
n−1, ξ̃n−1

)

=
1

2

(

coξ̃
n, ξ̃n

)

− 1

2

(

coξ̃
n−1, ξ̃n−1

)

− 1

2

(

co(ξ̃
n − ξn), ξ̃n

)

. (33)

We will now analyze the right-hand side of (32). Bramble-Hilbert Lemma
(e.g. [10]) implies that

‖
∫ tn

tn−1

∇ · z−∇ · zn dt‖0 ≤ C(∆t)3/2‖
∫ tn

tn−1

(∇ · z)t dt‖0,

where C is independent of t, z, h and ∆t. Hence,
∫ tn

tn−1

(∇ · z−∇ · zn, ξn) dt ≤ C

(

‖ξn‖20∆t+

∫ tn

tn−1

‖(∇ · z)t‖20 dt(∆t)2
)

. (34)

Summing and subtracting (EHu)
n, where EH is the elliptic projector defined

by (9), we have that

∫ tn

tn−1

ℓ4(u, ξ
n) dt−∆tℓ̄4(u

n
H , ξ

n) =

∫ tn

tn−1

ℓ4(u− EHu, ξ
n) dt

+∆tℓ̄4((EHu)
n − un

H , ξ
n). (35)
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Let us now consider the first term of the right-hand side of (35). For any
ǫ > 0, holds

∫ tn

tn−1

ℓ4(u− EHu, ξ
n) dt ≤ C∆tH‖ut‖L∞(H2)‖ξn‖0

≤ C

4ǫ
∆tH4‖ut‖2L∞(H2) + ǫ∆tH−2‖ξn‖20. (36)

For the other term, we use Lemma 3 and (25) to obtain the estimate

∆tℓ̄4(EHu− un
H , ξ

n) ≤ α2

λ
(‖pn − p̃nh‖0 + ‖pn−1 − p̃n−1

h ‖0)‖ξn‖0

≤ α2

λ
(‖η̃n‖0 + ‖η̃n−1‖0 + ‖ξ̃n‖0 + ‖ξ̃n−1‖0)‖ξn‖0

≤ C
(

‖z‖L∞(H1) + ‖∇ · z‖L∞(H1)

)

h2‖ξ̃n‖0

+
3

2

α2

λ
‖ξ̃n‖20 +

1

2

α2

λ
‖ξ̃n−1‖20. (37)

It remains to analyze the last term of the right hand-side of (32). Using
Lemma 2 we deduce that

− (coη̃
n, ξn) + (coη̃

n−1, ξn) = −
∫ tn

tn−1

((coη̃)t, ξ
n) dt

≤ C

(
∫ tn

tn−1

‖η̃‖20 dt+ ‖ξn‖20∆t

)

≤ C

(

h4

∫ tn

tn−1

‖z‖21 + ‖∇ · z‖21 + ‖(z)t‖21 + ‖∇ · zt‖21 dt+ ‖ξn‖20∆t

)

, (38)

and

∆t(coη̃
n, ξn) ≤ Ch2∆t

(

‖zn‖21 + ‖∇ · zn‖21
)

+ ‖ξn‖20∆t. (39)
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Combining (32) with (33) and using (21), (34), (36), (37), (38) and (39)
we obtain

1

2

((

coξ̃
n, ξ̃n

)

−
(

coξ̃
n−1, ξ̃n−1

))

+
(

(Kn)−1ζn, ζn
)

(∆tµf −
1

2
Qh2)

≤ C

(

‖ξ̃n‖20 +
∫ tn

tn−1

‖(∇ · z)t‖20dt∆t

)

∆t

+
C

4ǫ
∆tH4‖ut‖2L∞((tn−1,tn),H2) + ǫ∆tH−2‖ξn‖20 +

3

2

α2

λ
‖ξ̃n‖20 +

1

2

α2

λ
‖ξ̃n−1‖20

+ C

(

h4

∫ tn

tn−1

‖z‖21 + ‖∇ · z‖21 + ‖(z)t‖21 + ‖∇ · zt‖21 dt
)

+ Ch4∆t
(

‖zn‖21 + ‖∇ · zn‖21
)

. (40)

A summation on n, and an application of Gronwall’s inequality yield to

max
n

‖ξ̃n‖20 ≤ C

(

‖ξ̃0‖20 + h4

∫ T

0

‖z‖21 + ‖∇ · z‖21 + ‖(z)t‖21 + ‖∇ · zt‖21 dt

+ h4
(

‖z‖2L∞((0,T ),H1) + ‖∇ · z‖2L∞((0,T ),H1)

)

+H4‖ut‖2L∞((0,T ),H2)

)

.

(41)

Remark 1. It is interesting to observe that equation (10) remains unaltered
if we replace p̃nh by pnh, under the assumption that Eh and EH coincide or that
Eh is a refinement of EH . In fact, for any test function v ∈ VH,0 we have that
∇ · v is constant in every element R ∈ Eh and consequently (pnh,∇ · v)R =
(p̃nh,∇ · v)R.

4. The L2 estimates for deformation

The objective of this section is to derive the convergence order for the
displacement approximation error with respect to the L2-norm. The estimate
we will derive is based on duality techniques.
Let enH = un−un

H . We will restrict our study to the case eH ∈ V0, which is
satisfied for example when the Dirichlet condition for u in Γ0 is homogeneous.
If the general case of inhomogeneous Dirichlet data for u in Γ0, the analysis
required is more involving. We refer the paper [3] for some insight in this
question, even though therein the study is restricted to the Laplace equation.
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Consider the dual problem: find φ ∈ V0, such that

au(φ,v) = (enH ,v), ∀v ∈ V0. (42)

For the derivation of L2 error estimates we assume that the problem (42) is
H2-regular, that is, φ ∈ H2(Ω) and

‖φ‖H2 ≤ Creg‖enH‖0, (43)

where Creg is a positive constant which depends on the domain Ω. A sufficient
condition for the H2 regularity estimate (43) to hold is that the domain Ω
is a convex polygonal domain in R

2 and that (42) is a pure displacement
problem (Γ0 = ∂Ω) [6]. Other conditions which guarantee (43) to be true are
discussed for instance in [15] and [25].
In the next theorem we present the L2-estimates.

Theorem 3. Under the foregoing assumptions of Section 4 and the same
conditions as in Theorem 2, the following estimate holds:

‖u− uH‖L∞(L2) ≤ C(H2 + h2). (44)

Proof : Let IHφ ∈ VH,0 be the nodal interpolation of φ. It is well known that

‖φ− IHφ‖1 ≤ CinterpH‖φ‖H2. (45)

Since eH ∈ V0 then,

‖enH‖20 = au(φ, e
n
H) = au(e

n
H , φ− IHφ) + au(e

n
H , IHφ)

= au(e
n
H , φ− IHφ) + α(∇ · IHφ, pn − pnh)

= au(e
n
H , φ− IHφ) + α(∇ · (IHφ− φ), pn − pnh) + α(∇ · φ, pn − pnh).

Now, the trick is to sum and subtract the post-processed approximation for
pressure. We get

‖enH‖20 = au(e
n
H , φ− IHφ) + α(∇ · (IHφ− φ), pn − p̃nh) + α(∇ · φ, pn − p̃nh).

Using (4), (43) and (45), we obtain

‖enH‖20 ≤ CcontCinterpCregH‖enH‖1‖enH‖0 + αCcontCinterpCregH‖enH‖0‖pn − p̃nh‖0
+ αCreg‖enH‖0‖pn − p̃nh‖0, (46)

and consequently,

‖enH‖0 ≤ C (H‖enH‖1 +H‖pn − p̃nh‖0 + ‖pn − p̃nh‖0) . (47)
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5. Conclusion

In this paper we have analyzed the convergence of a fully coupled numerical
method for a coupled flow and geomechanics model. The numerical scheme
combines lowest order mixed finite elements and Galerkin piecewise linear
finite elements. We proposed a post-processing procedure to increase the or-
der of convergence of the numerical approximation of pressure. Moreover, we
were able to gain one order of convergence for the numerical approximation
of displacement, estimating the error in the L2-norm when compared to the
error in the H1-norm.
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