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REGULARITY OF THE VANISHING IDEAL
OVER A BIPARTITE NESTED EAR DECOMPOSITION
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Abstract: We study the Castelnuovo–Mumford regularity of the vanishing ideal
over a bipartite graph endowed with a decomposition of its edge set. We prove
that, under certain conditions, the regularity of the vanishing ideal over a bipartite
graph obtained from a graph by attaching a path of length ` increases by b `2c(q−2),
where q is the order of the field of coefficients. We use this result to show that the
regularity of the vanishing ideal over a bipartite graph, G, endowed with a weak
nested ear decomposition is equal to

|VG|+ε−3
2 (q − 2),

where ε is the number of even length ears and pendant edges of the decomposition.
As a corollary, we show that for bipartite graph the number of even length ears in
a nested ear decomposition starting from a vertex is constant.
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1. Introduction
Given G, a simple graph, and K, a finite field, K[EG] denotes the poly-

nomial ring with coefficients in K, the variables of which are in one-to-one
correspondence with the edges of the graph. The vanishing ideal over G is a
binomial ideal of K[EG], denoted here by Iq(G), given as the vanishing ideal
of the projective toric subset parameterized by EG. They were defined by
Renteria, Simis and Villarreal in [16], with a view towards applications to
the theory of linear codes and hence the presence of a finite field. The aim
of this work is to continue the study of the Castelnuovo–Mumford regularity
of these ideals. Originally this invariant is related to the error-correcting
performance of the linear codes involved, however, here, we wish to regard it
strictly from the point of view of the link between commutative algebra and
graph theory provided by this construction.
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2 J. NEVES

This idea has been used for other classes of ideals, that one can associate to
a graph, and the existing results point to interesting combinatorial invariants.
For instance, the Castelnuovo–Mumford regularity of the edge ideal of graph
is bounded below by the induced matching number and above by the co-
chordal cover number (cf. [7], [8, Lemma 2.2] and [19]). There are also
partial results for the toric ideal of a graph (cf. [18, 1]) and for the binomial
edge ideal of a graph (cf. [2, 9, 12]).

The fact that, for the vanishing ideal over a graph, the quotient of K[EG]
by Iq(G) is a Cohen–Macaulay graded ring of dimension one explains why
we know relatively more about this invariant in this case than in the cases
of edge, toric or binomial edge ideals. The Castelnuovo–Mumford regularity
of the vanishing ideal over a graph has been computed for many classes of
graphs, including trees, cycles (cf. [14]), complete graphs (cf. [6]), complete
bipartite graphs (cf. [4]), complete multipartite graphs (cf. [13]) and, more
recently, parallel compositions of paths (cf. [11]). Additionally we know that,
in the bipartite case, the regularities of the vanishing ideals over the members
of the block decomposition of a graph completely determine the regularity of
the vanishing ideal over the graph (see Proposition 2.10, below).

In this work we establish a formula for the Castelnuovo–Mumford regularity
of the vanishing ideals over graphs in the class of bipartite graphs endowed
with certain decomposition of its edge set into paths. The simplest case of
a such a decomposition, a so-called ear decomposition, is a partition of the
edge set of G into subgraphs P0,P1, . . . ,Pr such that P0 is a vertex and, for
all 1 ≤ i ≤ r, the path has its end-vertices in P0 ∪ · · · ∪ Pi−1 and none of
its inner vertices in this union. Ear decompositions play a central role in
graph connectivity as, by Whitney’s theorem, a graph is 2-vertex-connected
if and only if it is endowed with an open ear decomposition (one in which
every Pi with i > 1 has distinct end-vertices). In [3], Eppstein introduces
the notion of nested ear decomposition, a special case of ear decomposition
in which, firstly, the paths Pi are forced to have end-vertices in a (same) Pj,
for some j < i, and, secondly, a nesting condition is to be satisfied for two
paths having their end-vertices in a same Pj (see Definition 4.1).

By Theorem 4.4, below, it follows that the Castelnuovo–Mumford of the
quotient of K[EG] by Iq(G), when G is endowed with a nested ear decompo-
sition, is given by:

|VG|+ε−3
2 (q − 2) (1)
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where ε is the number of paths of even length in the decomposition and q
is the order of the field K. As a corollary, we deduce that the number of
even length paths in any nested ear decomposition of a bipartite graph, that
starts from a vertex, is constant (cf. Corollary 4.5).

This article is organized as follows. In the next section we set up the
notation used throughout and define the vanishing ideal over a graph. We
recall several characterizations of this ideal which allow a direct definition
without mentioning the projective toric subset parameterized by the edges
of the graph. We also recall the Artinian reduction technique, which is the
main tool in the computation of the regularity (cf. Proposition 2.5). After
reviewing some known values of the regularity (cf. Table 1) we go through the
existing results bounding the regularity in terms of combinatorial data on the
graph, among these, the bound from the independence number of the graph
(cf. Proposition 2.6). Other results reviewed in this section include the upper
bounds obtained from a spanning subgraph and from an edge cover and two
other results, one relating the regularity with the block decomposition and
another relating it with the leaves of the graph. Sections 3 and 4 contain the
main results of this work. In Section 3, we investigate the contribution to the
regularity of the vanishing ideal over a graph obtained from another graph
by attaching to it a path by its end-vertices. Theorem 3.4 states that, under
some conditions, the regularity increases by b `2c(q− 2), where ` is the length
of the path attached and q the cardinality of K. In Section 4, we use the
previous result to establish the regularity of a bipartite graph endowed with
a weak nested ear decomposition. This notion is a slight generalization of the
notion of nested ear decomposition and arises naturally in the context of the
proof of Theorem 4.4. Its distinctive feature is that one allows the existence
of pendant edges in the decomposition. Theorem 4.4 expresses the regularity
of a bipartite graph endowed with a weak nested ear decomposition by the
formula (1), where, now, ε is the number of even length paths and pendant
edges. Corollary 4.5, stating that the number of even length paths in a nested
ear decomposition of a graph is constant, is then a direct consequence of this
formula. As an application of Theorem 4.4 we finish by producing a family
of graphs with regularities arbitrarily larger than the lower bound given by
their independence numbers.
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2. Preliminaries
The graphs considered in this work are assumed to be simple graphs (fi-

nite, undirected, loopless and without multiple edges). Additionally, we will
assume throughout that no isolated vertices occur. To simplify the notation,
we assume that the vertex set, VG, is a subset of N.

2.1. The vanishing ideal over a graph. We will denote by K a finite
field of order q > 2. Given a graph G, we consider a polynomial ring with
coefficients in K the variables of which are in bijection with the edges of G
and denote it by K[EG]. A variable in K[EG] corresponding to and edge
{i, j} ∈ EG will be denoted by tij, which is the abbreviated form of t{i,j}.

Given a non-negative integer valued function on the edge set, α ∈ NEG, the
monomial tα ∈ K[EG] is, by definition,

tα =
∏

{i,j}∈EG

t
α{i,j}
ij .

We say that tα is supported on the edges of a subgraph H ⊂ G if

α {i, j} 6= 0 ⇐⇒ {i, j} ∈ EH .

Consider P|EG|−1, the projective space over K with coordinate ring K[EG]
and let P|VG|−1, be the projective space with coordinate ring K[xi : i ∈ VG].
The ring homomorphism ϕ : K[EG]→ K[xi : i ∈ VG] given by:

tij 7→ xixj (2)

defines a rational map ϕ] : P|VG|−1 → P|EG|−1, the restriction of which to the
projective torus, T|VG|−1, the subset of projective space of points with every
coordinate a nonzero scalar, is a regular map.

Definition 2.1. The projective toric subset parameterized by G is the subset
of P|EG|−1 defined by:

X = ϕ](T|VG|−1) ⊂ P|EG|−1.

The vanishing ideal of X is denoted by Iq(G) ⊂ K[EG].

We note that Iq(G) can be defined directly from G, without reference to
X, as the ideal generated by the homogeneous polynomials f ∈ K[EG] which
vanish after substitution of each variable tij by aiaj, for all ai ∈ K∗, with
i ∈ VG. For this reason we refer to Iq(G) as the vanishing ideal over G.
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The ideal Iq(G) was defined in [16]. Being a vanishing ideal, it is auto-
matically a radical, graded ideal. We also know that Iq(G) has a binomial
generating set. The fact that Iq(G) contains the vanishing ideal of the torus
over the finite field K, which is given by

Iq =
(
tq−1
ij − t

q−1
kl : {i,j},{k,l} ∈ EG

)
, (3)

implies that the height of Iq(G) is |EG|−1 and hence the quotientK[EG]/Iq(G)
is a one-dimensional graded ring. Additionally, since any monomial in K[EG]
is a regular element in this quotient (since no variable vanishes on the torus),
we deduce that K[EG]/Iq(G) is Cohen–Macaulay. We refer the reader to [16,
Theorem 2.1] for complete proofs of these statements.

The ideal Iq(G) can be related to the toric ideal of G, i.e., the ideal
PG ⊂ K[EG] given by PG = kerϕ, where ϕ : K[EG] → K[xi : i ∈ VG] is
the map defined by (2). It can be shown (see [16, Theorem 2.5]) that

Iq(G) = (PG + Iq) : (t∗)∞, (4)

where Iq is the vanishing ideal of the torus, given in (3), and by t∗ we denote
the product of all variables of the polynomial ring K[EG],

t∗ =
∏

{i,j}∈EG

tij.

The relation with the toric ideal (4) reinforces the idea, already expressed
above, that Iq(G) can be defined without any reference to the projective toric
subset X parameterized by EG. Yet another way to do this is by a character-
ization of the set homogeneous binomials of Iq(G), achieved by the following
proposition. The proof of this result can be found in [13, Lemma 2.3].

Proposition 2.2. Let tν − tµ ∈ K[EG] be a homogeneous binomial. Then
tν − tµ belongs to Iq(G) if and only if, for all i ∈ VG,∑

k∈NG(i)

ν{i,k} ≡
∑

k∈NG(i)

µ{i,k} (mod q − 1), (5)

where NG(·) denotes the set of neighbors of a vertex.

With this characterization of Iq(G) by means of a generating set of homo-
geneous binomials satisfying (5), the following relation between the ideal
Iq(G) and the vanishing ideal over a subgraph of G is easy to prove.

Corollary 2.3. Let H be a subgraph of G. Then, under the inclusion of
polynomial rings K[EH ] ⊂ K[EG], we have Iq(H) = Iq(G) ∩K[EH ].
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Despite the multiple characterizations of Iq(G), a complete classification of
the subgraphs of G that support binomials of a minimal binomial generating
set of Iq(G) is still lacking, for general G; in contrast with the case of the toric
ideal PG in which the binomials in a minimal generating set are in one-to-one
correspondence with the closed even walks on the graph.

2.2. Castelnuovo–Mumford regularity. Recall that if S is a polynomial
ring and M is any graded S-module, the Castelnuovo–Mumford regularity of
M is, by definition,

regM = max
i,j
{j − i : βij 6= 0} ,

where βij are the graded Betti numbers of M . The Castelnuovo–Mumford
regularity of K[EG]/Iq(G) is thus an integer we can associate to any simple
graph without isolated vertices.

Definition 2.4. Let G be a simple graph without isolated vertices and K
a finite field. We define the Castelnuovo–Mumford regularity of G over the
field K to be the regularity of the quotient K[EG]/Iq(G) and we denote it
by regG.

Since K[EG]/Iq(G) is a Cohen–Macaulay one-dimensional graded ring, its
regularity coincides with its index of regularity, i.e., the least integer from
which the value of the Hilbert function equals the value of the Hilbert Poly-
nomial (cf. [18, Proposition 4.2.3]). Additionally, given that any monomial
tδ ∈ K[EG] is a regular element of K[EG]/Iq(G) and the quotient of K[EG]
by the extended ideal, (Iq(G), tδ), is a zero-dimensional graded ring with
index of regularity equal to regG+ deg tδ, we get:

regG = min
{
i : dimK

(
K[EG]/(Iq(G), tδ)

)
i

= 0
}
− deg tδ.

The idea of taking the Artinian quotient K[EG]/(Iq(G), tδ) to compute
regG is the main ingredient in the proof of the next proposition, which will
be used several times in this article. See [11, Propositions 2.2 and 2.3] for a
proof.

Proposition 2.5. Let G be a graph, tδ ∈ K[EG] a monomial and d a positive
integer. Then regG ≤ d − deg(tδ) if and only if for every monomial tν of
degree d there exists tµ, of degree d, such that tδ | tµ and tν − tµ ∈ Iq(G).
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2.3. Graph invariants and the regularity. Table 1 contains the values
of the Castelnuovo–Mumford regularity of several families of graphs. The
simplest cases are those of a tree and an odd cycle. These are the simplest

Graph regG

Tree (|VG| − 2)(q − 2)

Odd cycle (|VG| − 1)(q − 2)

Even cycle |VG|−2
2 (q − 2)

Complete graph Kn, n ≥ 4 d(n− 1)(q − 2)/2e

Complete bipartite graph Ka,b (max {a, b} − 1)(q − 2)

Table 1.

cases because, in both, X, the projective toric subset parameterized by EG,
coincides with the torus (cf. [16, Corollary 3.8]) and therefore the ideal Iq(G)
is equal to the vanishing ideal of the torus, Iq, given in (3). The fact that
Iq is a complete intersection enables the straightforward computation of the
regularity. In [14] the case of an even cycle was dealt with. The cases of the
complete graph and of the complete bipartite graph were studied in [6] and
[4], respectively.

By now, there are many ways to produce estimates for the Castelnuovo–
Mumford regularity of a particular graph using combinatorial invariants of
the graph. We begin by mentioning the lower bound obtained from the vertex
independence number of the graph.

Proposition 2.6 ([11, Proposition 2.7]). If V ⊂ VG is a set of r independent
vertices, such that the edge set of G−V is not empty, then regG ≥ r(q − 2).

Since G has no isolated vertices, it follows from this result that

regG ≥ (α(G)− 1)(q − 2), (6)



8 J. NEVES

where α(G) is the vertex independence number of G. However, as can be
easily seen by the values of the regularity of Table 1, this bound is not
sharp if G is non-bipartite or, even for a bipartite graph, if it fails to be 2-
connected. As an application of Theorem 4.4, we shall give an infinite family
of 2-connected bipartite graphs for which the bound (6) is not sharp. (See
Example 4.6.)

The operation of vertex identification also yields lower bounds for the
Castelnuovo–Mumford regularity of G. The next result was proved in [11,
Proposition 2.5].

Proposition 2.7. Let v1 and v2 be two nonadjacent vertices of G and let H
be the simple graph obtained after identifying v1 with v2. Then regG ≥ regH.

Note that the identification of two vertices can create multiple edges. By
simple graph, in the statement, we refer to the graph obtained after the
removal of all multiple edges created.

Bounds for the Castelnuovo–Mumford regularity of a graph can also be
obtained from its subgraphs. The next result follows from [17, Lemma 2.13].

Proposition 2.8. Let H be a spanning subgraph of G which is non-bipartite
if G is non-bipartite. Then regG ≤ regH.

Reversing the roles of G and H, this result can also be used to produce lower
bounds of the regularity. For instance, if G is bipartite and spans a Ka,b then

regG ≥ (max {a, b} − 1)(q − 2)

and if G is non-bipartite with |VG| ≥ 4, then

regG ≥ regK|VG| =
⌈ (|VG|−1)(q−2)

2

⌉
.

Another way to obtain upper bounds for the regularity of a graph is by
using a decomposition of G into two subgraphs with, at least, one edge in
common.

Proposition 2.9 ([11, Proposition 2.6]). If H1 and H2 are two subgraphs of
G with a common edge and G = H1 ∪H2 then

regG ≤ regH1 + regH2.

A graph is said 2-vertex-connected (or, simply, 2-connected) if |VG| ≥ 3 and
G−v is connected for every v ∈ VG. Any graph can be decomposed into a set
of edge disjoint subgraphs consisting of either isolated vertices, single edges
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(called bridges) or maximal 2-connected subgraphs. This decomposition is
called the block decomposition of the graph. In [15] the relation between
the regularity of a bipartite graph and the regularities of the members of its
block decomposition was described.

Proposition 2.10 ([15, Theorem 7.4]). Let G be a simple bipartite graph
without isolated vertices and let G = H1∪· · ·∪Hm be the block decomposition
of G, then

regG =
∑m

k=1 regHi + (m− 1)(q − 2). (7)

The previous result does not hold if we drop the bipartite assumption.
The graph in Figure 1 is a counterexample. We used Macaulay2, [10], to
compute its Castelnuovo–Mumford for some values of the order of the ground
field. For q ∈ {3, 4, 5, 7, 8, 9, 11, 13, 16}, the regularity is given by the formula
d5(q − 2)/2e. On the other hand, its block decomposition has three blocks;
two triangles, of regularity 2(q−2), and a cut-edge, of regularity zero. Using
this in formula (7) yields 6(q − 2).

Figure 1.

The next proposition gives an additive formula for the regularity of G with
respect to its leaves which holds for both bipartite and non-bipartite graphs.

Proposition 2.11 ([11, Proposition 2.4]). If v1, . . . , vr are vertices of degree
one and G[ is the graph defined by G[ = G− {v1, . . . , vr} then

regG = regG[ + r(q − 2).

Proposition 2.10 motivates the study of the regularity of a general 2-
connected bipartite graph. In view of Whitney’s structure theorem for 2-
connected graphs (see Section 4) one is naturally drawn to the problem of
assessing the change produced in the regularity when we attach a path to a
graph. We will explore this idea in the next two sections.
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3. Ears and Regularity
The aim of this section is to provide a relation between the Castelnuovo–

Mumford regularities of a graph and of the graph obtained by attaching a
path by its end-vertices. The main theorem of this section, Theorem 3.4,
states that the addition of such a path increases the regularity by b `2

⌋
(q−2),

where ` is the length of the path. In this result, we assume that G is bipartite
and that the end-vertices of the path are identified with two vertices of the
graph which, in turn, are connected in the graph by a path the inner vertices
of which have degree two. Both assumptions are necessary (see Examples 3.5
and 3.6). Proposition 3.2 addresses a special case in which we can afford to
drop the bipartite assumption.

By a path, P ⊂ G, we mean a subgraph of G endowed with an order
of its vertices, v0, v1, . . . , v`, where ` > 0, such that v1, . . . , v` are ` distinct
vertices and EP consists of the ` distinct edges {vi, vi+1}, i = 0, . . . , `− 1. If
v0 = v`, P is also called a cycle. However, since we are assuming that the
edges {vi, vi+1} are distinct, the case ` = 2 and v0 = v2 is not allowed. The
inner vertices of P are v1, . . . , v`−1 and the end-vertices of P are v0 and v`.
The set of inner vertices of P will be denoted by P◦ ⊂ VG. The number of
edges in P is called the length of P and will be denoted by `(P).

Definition 3.1. A path P ⊂ G is called an ear of G if all inner vertices of
P have degree two in G. If the end-vertices of P are distinct, P is called an
open ear if they coincide, P is called a pending cycle.

Proposition 3.2. Let P ⊂ G be an ear of G, of length ` > 1. Assume either:

(i) ` is odd and the end-vertices of P are distinct and adjacent in G or
(ii) ` is even and the end-vertices of P coincide.

Denote the graph G−P◦ by G[ and assume that G[ has no isolated vertices.
Then

regG = reg(G[) +
⌊
`
2

⌋
(q − 2). (8)

Proof : Note that since ` > 1 and, when ` is even ` ≥ 4, we get ` ≥ 3.
Without loss of generality, we may assume that P is the path in G given
by (1, . . . , ` + 1), if ` is odd or (1, . . . , `, 1) if ` is even. (See Figure 2.) In
both cases, it follows that G contains an even cycle the vertex set of which
coincides with VP . Since the generators of PG, the toric ideal of G, are given
by the closed even walks on G, using the relation between PG and Iq(G),
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Figure 2.

expressed in (4), it follows that t12t34 · · · t`(`+1) − t23t45 · · · t(`+1)1 ∈ Iq(G), if ` is odd, or

t12t34 · · · t(`−1)` − t23t45 · · · t`1 ∈ Iq(G), if ` is even.
(9)

Let us start by showing that

regG ≥ regG[ +
⌊
`
2

⌋
(q − 2)

Fix tkl ∈ EG[. By Proposition 2.5, applied to the graph G[, we deduce
that there exists tα ∈ K[EG[], of degree reg(G[), for which no monomial
tβ ∈ K[EG[] divisible by tkl is such that tα − tβ ∈ Iq(G[).

Let tν ∈ K[EG] be the monomial of degree reg(G[) +
⌊
`
2

⌋
(q − 2) given by: tν = tα(t23t45 · · · t(`−1)`)

q−2, if ` is odd, or

tν = tα(t23t45 · · · t`1)q−2, if ` is even.

Suppose there exists tµ ∈ K[EG], with µ{k,l} > 0, such that

tν − tµ ∈ Iq(G). (10)

Modifying appropriately, with the use of tq−1
ij − t

q−1
kl ∈ Iq(G), we may assume

that 0 ≤ µ{i,i+1} ≤ q− 2, for all i = 1, . . . , `− 1, and 0 ≤ µ{`,`+1} ≤ q− 2, if `
is odd, or 0 ≤ µ{1,`} ≤ q − 2, if ` is even. In other words, we may assume that
the variables along the path P appear in tµ raised to powers not greater than
q − 2. Then, evaluating the congruences of Proposition 2.2 at the vertices
2, . . . , `, we get, if ` is odd,

µ{i−1,i}+ µ{i,i+1} ≡ q − 2, ∀i∈{2,...,`}
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or, if ` is even,

µ{i−1,i}+ µ{i,i+1} ≡ q − 2, ∀i∈{2,...,`−1}, and µ{`−1,`}+ µ{`,1} ≡ q − 2,

where all congruences are modulo q − 1. We deduce that there exist

a, b ∈ {0, . . . , q − 2} ,

with a+ b ≡ q − 2 such that, if ` is odd,{
µ{1,2} = µ{3,4} = · · · = µ{`,`+1} = a

µ{2,3} = µ{4,5} = · · · = µ{`−1,`} = b

or, if ` is even, {
µ{1,2} = µ{3,4} = · · · = µ{`−1,`} = a

µ{2,3} = µ{4,5} = · · · = µ{`,1} = b.

Let tδ ∈ K[EG[] be the monomial supported on G[, given by tµ = (t12t34 · · · t`(`+1))
a(t23t45 · · · t(`−1)`)

b tδ, if ` is odd, or

tµ = (t12t34 · · · t(`−1)`)
a(t23t45 · · · t`1)b tδ, if ` is even.

In view of (9), we deduce that there exists tβ ∈ K[EG[] such that

β{k,l} ≥ µ{k,l} > 0

and  tµ − (t23t45 · · · t(`−1)`)
q−2 tβ ∈ Iq(G), if ` is odd, or

tµ − (t23t45 · · · t`1)q−2 tβ ∈ Iq(G), if ` is even.
(11)

Note that if a+ b > q − 2 then, using tq−1
ij − t

q−1
kl ∈ Iq(G), the powers of the

variables t23, t45, . . . , t(`−1)` can be reduced to q−2. Combining (10) and (11)
we obtain tα(t23t45 · · · t(`−1)`)

q−2 − (t23t45 · · · t(`−1)`)
q−2 tβ ∈ Iq(G), if ` is odd, or

tα(t23t45 · · · t`1)q−2 − (t23t45 · · · t`1)q−2 tβ ∈ Iq(G), if ` is even.

Since any product of variables is regular in K[EG]/Iq(G), we get

tα − tβ ∈ Iq(G),
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where, recall β{k,l} > 0. But this binomial, being supported on G[, also
belongs to Iq(G

[). This contradicts the assumptions on tα. Therefore, by
Proposition 2.5,

regG ≥ deg(tν) = reg(G[) +
⌊
`
2

⌋
(q − 2).

To prove the opposite inequality we will use Proposition 2.9. If ` is odd
(see Figure 2a), consider the decomposition of G given by P ∪{1, `+ 1} and
G[. Then

regG ≤ regG[ + reg(P ∪ {1, `+ 1}) = regG[ +
⌊
`
2

⌋
(q − 2).

If ` is even (see Figure 2b), we consider the decomposition of G into the
subgraph H = G[ ∪ {1, 2} and the cycle P . Using Propositions 2.9 and 2.11,
we get

regG ≤ regG[ + (q − 2) + regP = regG[ + `
2(q − 2).

Definition 3.3. Let G be a bipartite graph and I ⊂ G an open ear of G.
A bipartite ear modification of G along I is the simple graph obtained by
either: (i) replacing I by another open ear P , with the same end-vertices
and length of the same parity as `(I), or (ii), if `(I) is even, by identifying
the end-vertices of I in G − I◦. We say that G satisfies the bipartite ear
modification hypothesis on I if, whenever G′ is a bipartite ear modification
of G along I, we have

regG′ = regG+ |VG′ |−|VG|
2 (q − 2). (12)

Notice that, since G is assumed to be bipartite, if `(I) is even, then its
end-vertices are not adjacent and in the bipartite ear modification described
in (ii), no loop is created. However, in both cases, to obtain a simple graph
it may be necessary to remove the multiple edges created.

It is easy to see that an even cycle satisfies the bipartite ear modification
assumption on any of its open ears. Given that the regularity of a tree on n
vertices is (n− 2)(q − 2), it is clear that trees do not.

Theorem 3.4. Let G be a bipartite graph and I and P be two open ears of G
sharing the same end-vertices. Let G[ denote the graph G−P◦, if `(P) > 1,
or G\EP , if `(P) = 1. Assume that G[ satisfies the bipartite ear modification
hypothesis on I. Then

regG = regG[ +
⌊`(P)

2

⌋
(q − 2).
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Proof : Note that, since G is bipartite, the lengths of I and P have the
same parity. We may assume, without loss of generality, that P is the path
(1, . . . , `1 + 1), where `1 = `(P) and I is the path (`1 + 1, . . . , `2, 1), where
`2 = `(P) + `(I), as illustrated in Figure 3.

1 `1+1

2

3

`1

P

I
`2

Figure 3.

If the vertices 1 and `1 + 1 are neighbors in G[ then, by Proposition 3.2,
the result holds. Assume `(P) = 1 and `(I) > 1. Then the graph G− I◦ is
isomorphic to a bipartite ear modification of G[ and, accordingly,

reg(G− I◦) = regG[ − b`(I)
2

⌋
(q − 2).

On the other hand, using again Proposition 3.2 we get

regG = reg(G− I◦) + b`(I)
2

⌋
(q − 2) = regG[.

Thus, from now on, we may assume that the vertices 1 and `1 + 1 are not
neighbors in G[ and `(I), `(P) > 1. We will split the proof into two cases
according to the parity of `(I).

We start by assuming that `(I) is odd. Consider the graph G] obtained by
adding the edge E = {1, `1 + 1} to G. Then, as G is a spanning subgraph of
G], we have regG ≥ regG]. Denote the graph (G[ − I◦) ∪ E by (G[)′. (See
Figure 4.)
Since (G[)′ is a bipartite ear modification of G[ along I,

reg(G[)′ = regG[ −
⌊`(I)

2

⌋
(q − 2).

On the other hand, using Proposition 3.2,

regG] = reg(G[)′ +
(⌊`(P)

2

⌋
+ b`(I)

2

⌋)
(q − 2)

and therefore,

regG ≥ regG] = regG[ +
⌊`(P)

2

⌋
(q − 2).
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1

22

3

`1

1 `1+1`2

Figure 4. The graph (G[)′.

Let us now prove the opposite inequality. We will use induction on `(P)+`(I)
2 .

Consider the following monomials in K[EG]:

tδ1 = t23t45 · · · t(`1−1)`1,

tε1 = t12t34 · · · t`1(`1+1),

tδ2 = t(`1+2)(`1+3) · · · t(`2−1)`2,

tε2 = t(`1+1)(`1+2) · · · t`21.

(13)

The monomial tδ1 is the monomial given by the multiplication of the variables
associated to every other edge of P starting from the second. The monomial
tε1 is the monomial given by the multiplication of the other edges of P .
The monomials tδ2 and tε2 are described similarly with respect to I. (See
Figure 5.)

tδ1

2

3

`1

1 `1+1

`2
tε1

2

3

`1

1 `1+1

`2

tδ2

2

3

`1

1 `1+1

`2
tε2

2

3

`1

1 `1+1

`2

Figure 5. Edges in the support of tδ1, tε1, tδ2 and tε2.
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Notice that

deg(tδ1) =
⌊`(P)

2

⌋
, deg(tε1) =

⌊`(P)
2

⌋
+ 1,

deg(tδ2) =
⌊`(I)

2

⌋
, deg(tε2) =

⌊`(I)
2

⌋
+ 1.

Also, since tε1tδ2 − tδ1tε2 is a generator of the toric ideal of the even cycle
P ∪ I,

tε1tδ2 − tδ1tε2 ∈ Iq(P ∪ I) ⊂ Iq(G). (14)

By Proposition 2.5, to show that

regG ≤ regG[ +
⌊`(P)

2

⌋
(q − 2) (15)

it suffices to prove that for any monomial tν ∈ K[EG] of degree

regG[ +
⌊`(P)

2

⌋
(q − 2) +

⌊`(P)
2

⌋
+
⌊`(I)

2

⌋
there exists tµ ∈ K[EG], of the same degree as tν, divisible by tδ1tδ2, such that
tν − tµ belongs to Iq(G). Set tν = tαtβtγ for some α, β, γ ∈ NEG satisfying
tα ∈ K[EP ], tβ ∈ K[EI ], tγ ∈ K[EG[−I◦]. Then

deg(tα) + deg(tβ) + deg(tγ) = regG[ +
⌊`(P)

2

⌋
(q − 1) +

⌊`(I)
2

⌋
. (16)

Suppose that

deg(tα) ≥
⌊`(P)

2

⌋
(q − 1) and deg(tβ) ≥

⌊`(I)
2

⌋
(q − 1). (17)

Then tαtβ, which is supported on the cycle P ∪ I, is such that

deg(tαtβ) ≥ reg(P ∪ I) + b`(P)
2

⌋
+ b`(I)

2

⌋
and then, by Proposition 2.5, applied to P ∪ I, there exists tµ ∈ K[EP∪I ],
divisible by tδ1tδ2 such that tαtβ ∈ Iq(P ∪ I) ⊂ Iq(G). We deduce that

tαtβtγ − tµtγ ∈ Iq(G),

as desired. Assume now that (17) does not hold. Now, directly from (16),

deg(tα) <
⌊`(P)

2

⌋
(q − 1) ⇐⇒ deg(tβtγ) ≥ regG[ +

⌊`(I)
2

⌋
+ 1.

On the other hand, since G − I◦ is a bipartite ear modification of G[ along
I, and therefore by our assumptions,

reg(G− I◦) = regG[ +
⌊`(P)

2

⌋
(q − 2)−

⌊`(I)
2

⌋
(q − 2),

we get from (16):

deg(tβ) <
⌊`(I)

2

⌋
(q − 1) ⇐⇒ deg(tαtγ) ≥ reg(G− I◦) +

⌊`(P)
2

⌋
+ 1.
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Hence, by symmetry, we may assume that

deg(tα) <
⌊`(P)

2

⌋
(q − 1) ⇐⇒ deg(tβtγ) ≥ regG[ +

⌊`(I)
2

⌋
+ 1. (18)

Then, by Proposition 2.5, there exists tµ ∈ K[EG[], of degree equal to
deg(tβtγ), divisible by tδ2, such that

tβtγ − tµ ∈ Iq(G[) ⊂ Iq(G),

which implies that

tαtβtγ − tαtµ ∈ Iq(G).

If tδ1 divides tα we have finished. Assume tδ1 does not divide tα. If tε1 divides
tα, then, since

tαtµ = (tαt−ε1)(tε1tδ2)(t−δ2tµ)

and tε1tδ2 − tδ1tε2 ∈ Iq(G), we get:

tαtβtγ − (tαt−ε1tδ1)(tε2t−δ2tµ) ∈ Iq(G), (19)

where,

deg(tε2t−δ2tµ) = deg(tβtγ) + 1 ≥ regG[ +
⌊`(I)

2

⌋
+ 2.

Hence, by Proposition 2.5, there exists tρ ∈ K[EG[] divisible by tδ2 such that

tε2t−δ2tµ − tρ ∈ Iq(G[) ⊂ Iq(G). (20)

From (19) and (20), we deduce that

tαtβtγ − (tαt−ε1tδ1)tρ ∈ Iq(G)

where (tαt−ε1tδ1)tρ is divisible by tδ1tδ2, as required.

We may assume from now on that tα is divisible by neither tε1 nor tδ1. Since
showing that there exists a monomial tµ ∈ K[EG] of degree equal to the
degree of tν = tαtβtγ, divisible by tδ1tδ2 such that tν − tµ ∈ Iq(G) is, by [11,
Lemma 2.1], equivalent to showing that the same holds for the monomial
obtained by permuting the variables of the support of tδ1 and permuting the
variables of the support of tε1, we may assume that neither t12 nor t23 divides
tν.

Consider the graph H obtained from G by removing the edges {1, 2} and
{2, 3}, and identifying the vertices 1 and 3, as illustrated in Figure 6. Denote
the ear obtained from P after this operation by Q. By induction:

regH = reg(H −Q◦) +
⌊`(Q)

2

⌋
(q − 2) = regG[ +

⌊`(P)
2

⌋
(q − 2)− (q − 2).
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1 `1+1

2

3

`1

`2
G

3=1 `1+1

4 `1

`2
H

Figure 6.

Let d = ν{3,4} and let tν ∈ K[EH ] be given by:

tν = tνt−d34 t
d
14.

Then, since

deg(tν) = deg(tν) = regH +
⌊`(P)

2

⌋
+
⌊`(I)

2

⌋
+ (q − 2)

and tδ1t−1
23 tδ2tq−1

1`2
∈ K[EH ] is such that

deg(tδ1t−1
23 tδ2tq−1

1`2
) =

⌊`(P)
2

⌋
+
⌊`(I)

2

⌋
+ (q − 2),

by Proposition 2.5 applied to the graph H, there exists tµ ∈ K[EH ] such that
tδ1t−1

23 tδ2tq−1
1`2

divides tµ and tν−tµ ∈ Iq(H). Let c = µ{1,4} and let tµ ∈ K[EG]
be given by:

tµ = tµt−c14 t
c
34.

By Proposition 2.2, the binomial tν−tµ satisfies a set of congruences modulo
q − 1, one for each vertex of H. In particular, at 1 ∈ VH , we have:

d+
∑

k∈NG(1)

ν{1,k} =
∑

k∈NH(1)

ν{1,k} ≡
∑

k∈NH(1)

µ{1,k} = c+
∑

k∈NG(1)

µ{1,k} . (21)

Let a ∈ {1, . . . , q − 1} be such that a ≡ d− c and let b = (q − 1)− a. Then,
as tδ1t−1

23 tδ2tq−1
1`2

divides tµ and hence it divides tµ, the binomial

tν − tµt
−(q−1)
1`2

tb12t
a
23 (22)
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is a homogeneous binomial of the ring K[EG]. Moreover, since a ≥ 1, we
deduce that tδ1tδ2 divides the monomial on the right side of (22).

Let us prove that the binomial (22) belongs to Iq(G). It suffices to check that
the corresponding congruences at vertices 1, 2 and 3 of G are satisfied, since
at any other vertex the corresponding congruence is identical to the one in
H. At the vertices 2 and 3, we get, respectively,

0 ≡ a+ b and d ≡ c+ a ⇐⇒ d− c ≡ a

which hold, by the definitions of b and a. At the vertex 1, we get:∑
k∈NG(1)

ν{1,k} ≡ b− (q − 1) +
∑

k∈NG(1)

µ{1,k} = c− d+
∑

k∈NG(1)

µ{1,k} ,

which holds by (21). Hence (22) belongs to Iq(G). This concludes the proof,
by induction, of the inequality (15) in the case of `(I) odd.

Let us now consider the case of `(I) and `(P) even. We start by proving
that

regG ≥ regG[ + `(P)
2 (q − 2). (23)

Consider the simple graph H obtained from G by identifying the vertices 1
and `1 + 1 and denote by H ′ be the subgraph of H obtained from G[ − I◦
under the same identification. (See Figure 7.) Since H ′ is a bipartite ear

1=`1+1

2

3

`1

`2

Figure 7.

modification of G[,

regH ′ = regG[ − `(I)
2 (q − 2).
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On the other hand, using Propositions 2.7 and 3.2, or, in the case of `(P) = 2
or `(I) = 2, Proposition 2.11,

regG ≥ regH = regH ′ + `(P)
2 (q − 2) + `(I)

2 (q − 2) = regG[ + `(P)
2 (q − 2),

which proves (23). To prove that

regG ≤ regG[ + `(P)
2 (q − 2), (24)

by Proposition 2.5, it suffices to show that for every tν ∈ K[EG] with

deg(tν) = regG[ + `(P)
2 (q − 2) + 1, (25)

there exists tµ, divisible by t12, such that tν − tµ ∈ Iq(G). Consider the
following graphs:

(G[)∗ = G[ ∪ {1, 2} , C = P ∪ I and G− I◦.

(See Figure 8.) By Proposition 2.11, reg(G[)∗ = regG[ + (q − 2). Since C is

1

2

(G[)∗

1

2

C

1

2

G− I◦

Figure 8.

an even cycle,

reg C = `(P)
2 (q − 2) + `(I)

2 (q − 2)− (q − 2).
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Finally, since G[ satisfies the bipartite ear modification hypothesis,

reg(G− I◦) = regG[ − `(I)
2 (q − 2) + `(P)

2 (q − 2).

Let us write tν = tαtβtγ for some α, β, γ ∈ NEG satisfying

tα ∈ K[EP ], tβ ∈ K[EI ] and tγ ∈ K[EG[−I◦].

Suppose that 
deg(tα) + deg(tβ) ≤ reg C

deg(tβ) + deg(tγ) ≤ reg(G[)∗

deg(tα) + deg(tγ) ≤ reg(G− I◦)

(26)

Then

deg(tν) ≤ 1
2

[
reg C + reg(G[)∗ + reg(G− I◦)

]
= regG[ + `(P)

2 (q − 2),

which is in contradiction with (25). Hence the opposite inequality of one of
the inequalities in (26) must hold. For instance if it is the opposite of the
first inequality, then, by Proposition 2.5, there exists tµ ∈ K[EC], divisible
by t12, such that

tαtβ − tµ ∈ Iq(C) ⊂ Iq(G)

which implies that

tν − tµtγ ∈ Iq(G),

as desired. We argue similarly for the other two cases. This proves (24) and
concludes the proof of the theorem.

The next two examples show that the assumptions of Theorem 3.4 are
strictly necessary.

Example 3.5. Let G[ be the graph of Figure 9. This graph decomposes
into a cycle of length six and two cycles of length four. By Proposition 2.9,
regG[ ≤ 4(q − 2). On the other hand, the set V = {2, 4, 6, 8} is an indepen-
dent set for which G−V has a nonempty edge set. Hence, by Proposition 2.6,
regG[ ≥ 4(q − 2). We conclude that regG[ = 4(q − 2). Let G be the graph
obtained by adding the edge {2, 8} to G[. Unlike G[, the graph G has now
spanning cycle (of length 8). By Proposition 2.8, we get regG ≤ 3(q − 2).
By a similar argument as above, one can show that indeed regG = 3(q− 2).
Thus the conclusion of Theorem 3.4, which in this case would state that
regG[ = regG, does not hold. This is because the hypothesis that, besides



22 J. NEVES

2

15

8

7 3

6 4

Figure 9.

the edge {2, 8}, there should be another ear in G with end-vertices 2 and 8,
is not satisfied.

Example 3.6. Consider the graph, G, illustrated in Figure 10. G is a non-
bipartite parallel composition of paths; two of length two and a path of length
three. According to [11, Theorem 1.2], regG = 4(q−2). Consider G[ ⊂ G the

Figure 10.

subgraph given by the parallel composition of one of the paths of length two
and the path of length three. Then G[ is a cycle of length 5 and, accordingly,
regG[ = 4(q − 2). If we take G[ to be the parallel composition of the two
paths of length two. Then regG[ = q − 2. In both cases, the conclusion of
Theorem 3.4 does not hold.

4. Nested Ear Decompositions
The goal of this section is to give a formula for the Castelnuovo–Mumford

regularity of a graph endowed with a special decomposition into paths.

An ear decomposition of a graph consists of a collection of r > 0 subgraphs

P0,P1, . . . ,Pr,
the edge sets of which form a partition of EG, such that P0 is a vertex and,
for all 1 ≤ i ≤ r, Pi is a path with end-vertices in P0 ∪ · · · ∪ Pi−1 while
none of its inner vertices belong to P0 ∪ · · · ∪ Pi−1. The paths P1, . . . ,Pr
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are called ears of the decomposition of G. We note that Pi is not necessarily
an ear of G, according to Definition 3.1, as its inner vertices may become
end-vertices of the following ears. An ear decomposition is called open if
all of paths P2, . . . ,Pr have distinct end-vertices. It is well known that a
graph is 2-vertex-connected if and only if it has an open ear decomposition
(Whitney’s Theorem). More generally, a graph is 2-edge-connected if and
only if it has an ear decomposition.

Definition 4.1. Let P0, P1, . . . ,Pr be an ear decomposition of a graph, G.
If a path Pi has both its end-vertices in Pj we say that Pi is nested in Pj and
we define the corresponding nest interval to be the subpath of Pj determined
by the end-vertices of Pi, if they are distinct, or, if they coincide, to be that
single end-vertex. An ear decomposition of G is nested if, for all 1 ≤ i ≤ r,
the path Pi is nested in a previous subgraph of the decomposition, Pj, with
j < i, and, in addition, if two paths Pi and Pl are nested in Pj, with j < i, l,
then either the corresponding nest intervals in Pj have disjoint edge sets or
one edge set is contained in the other.

Nested ear decompositions were introduced by Eppstein in [3]. In the
original definition P0 is allowed to be a path and thus the graphs considered
in [3] are not necessarily 2-edge-connected.

The main result of this section is Theorem 4.4, which gives a formula for
the Castelnuovo–Mumford regularity of a bipartite graph endowed with a
nested ear decomposition. In the proof of this result we will need to show
that a graph endowed with a nested ear decomposition satisfies the bipartite
ear modification hypothesis along a certain ear. However, an instance of a
bipartite ear modification, namely the one involving removing the ear and
identifying its end-vertices can modify the ear decomposition structure by in-
troducing pendant edges and, thus, producing a graph G′ which may well not
be 2-edge connected. We remedy this by working on a wider class of graphs,
that of graphs endowed with a weaker form of nested ear decompositions.

Definition 4.2. A weak nested ear decomposition of a graph is a collection
of subgraphs P0, . . . ,Pr, with r > 0, the edge sets of which form a partition
of EG, such that P0 is a vertex and, for every 1 ≤ i ≤ r, Pi is a path with
either

(i) both end-vertices in some Pj, with j < i and none of its inner vertices
in P0 ∪ · · · ∪ Pi−1, or



24 J. NEVES

(ii) if `(Pi) = 1, only one end-vertex in P0 ∪ · · · ∪ Pi−1.

If Pi has both its end-vertices in Pj, the nest interval of Pi in Pj is defined
as before. If `(Pi) = 1 and only one end-vertex belongs to Pj then the nest
interval is defined to be this vertex. The nesting condition is the same as the
one of Definition 4.1.

If both end-vertices of Pi belong to a previous Pj, then Pi will be referred
to as an ear of the decomposition, otherwise, if `(Pi) = 1 and Pi has only one
end-vertex in a previous Pj, then Pi will referred to as a pendant edge of the
decomposition. An ear with coinciding end-vertices will also be referred to
as a pending cycle of the decomposition. Notice that when `(Pi) = 1, Pi can
either be an ear (so-called trivial ear) or a pendant edge of the decomposition.

Figure 11 shows a graph that can be endowed with a weak nested ear de-
composition. For instance, P0 = 1, P1 = (1, 2), P2 = (1, 5), P3 = (1, 3, 4, 5),

1

2
3

4
5

6

7 9
8

10

12

11

Figure 11.

P4 = (3, 6, 7, 4), P5 = (7, 8), P6 = (8, 9), P7 = (9, 10, 11, 12, 9). Another weak
nested ear decomposition of this graph can be given by P0 = 1, P1 = (1, 2),
P2 = (1, 3, 4, 5, 1), etc., as in the previous decomposition. We note that the
number of even ears and pendant edges of these decompositions is five, the
same in both.

It is clear that a nested ear decomposition of a graph is a weak nested ear
decomposition. As the example above shows, not all graphs endowed with a
weak nested ear decomposition are 2-edge-connected.

We will prove Theorem 4.4 by induction on the number of ears of the
decomposition. We will need the following lemma.

Lemma 4.3. Let P0,P1, . . . ,Pr be a weak nested ear decomposition of a graph
G. Then there exists i > 0 such that either Pi is a pendant edge of G, or a
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pendant cycle of G, or an ear of G with distinct end-vertices such that for
any Pk containing both end-vertices of Pi, the subpath of Pk induced by them
is an ear of G.

Proof : We argue by induction on r ≥ 1. If r = 1 then it suffices to take
i = 1. If r > 1, consider the graph G[ = P0 ∪ · · · ∪ Pr−1. By induction,
there exist i > 0 and Pi satisfying the conditions in the statement. If Pr is

Pr
Pi

(a)

Pi Pr

(b)

Pi

Il

Pl

Pr

(c)

Figure 12.

pendant edge we may take i = r for G. The same applies if Pr is a pending
cycle. Assume then that Pr has distinct end-vertices. If Pi is a pendant edge
of G[ and it ceases to be so in G, then the end-vertices of Pr must coincide
with the end-vertices of Pi and the only Pk that contain these vertices are
then Pr and Pi which are both ears of G. (See Figure 12a.) In this case, Pr
satisfies the conditions for G. If Pi is a pending cycle of G[ which ceases to
be an ear of G then one of the end-vertices of Pr must be an inner vertex
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of Pi. Then, arguing as before, we see that Pr satisfies the conditions. (See
Figure 12b.) Finally, assume that Pi is an ear of G[ with distinct end-
vertices. Let I1, . . . , Ir−1 be the subpaths induced by the end-vertices of Pi
in the paths P1, . . . ,Pr−1. For ease of notation consider Ij equal to the empty
set if Pj does not contain both end-vertices of Pi. If the end-vertices of Pr do
not coincide with any inner vertex of the paths Ii, . . . , Ir−1 then Pi satisfies
the conditions of the statement for G. Assume that an end-vertex of Pr is
an inner vertex of Il. Then, as Il is an ear of G[, Pr has to be nested in Pl.
Since Pi is also nested in Pl the nest intervals must be nested. This means
that the subpath induced by the end-vertices of Pr in Pl must be contained
in Il. (See Figure 12c.) Then Pr satisfies the conditions of the statement
for G as the only paths that contain the end-vertices of Pr are then Pr and
Pl.

Theorem 4.4. Let P0,P1, . . . ,Pr be a weak nested ear decomposition of a
bipartite graph, G. Let ε denote the number of even ears and pendant edges
of the decomposition. Then

regG = |VG|+ε−3
2 (q − 2). (27)

Proof : We will argue by induction on r ≥ 1. If r = 1 then G is either an even

cycle or a single edge. In both cases ε = 1 and (27) gives regG = |VG|−2
2 (q−2),

in the case of the even cycle and regG = 0, in the case of the edge. Both are
correct. Assume that (27) holds for any bipartite graph endowed with a weak
nested ear decomposition with r paths and consider G a graph endowed with
a weak nested ear decomposition P0, . . . ,Pr+1 with r+ 1 paths. Throughout
the remainder of the proof, denote by ε the number of even ears and pendant
edges of this decomposition. By Lemma 4.3, there exist i > 0, such that Pi is
either a pendant edge, or a pendant cycle, or an ear of G with distinct end-
vertices such that for any Pk containing both end-vertices of Pi, the subpath
of Pk induced by them is an ear of G. It is clear that in any of the cases

G[ = P0 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Pr+1 (28)

is a bipartite graph endowed with a weak nested ear decomposition. If Pi is
a pendant edge of G, then by Proposition 2.11 and induction,

regG = regG[ + (q − 2) = |VG|−1+(ε−1)−3
2 (q − 2) + (q − 2) = |VG|+ε−3

2 (q − 2).
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If Pi is pendant cycle of G, then `(Pi) is even and, by induction and Propo-
sition 3.2,

regG = |VG|−`(Pi)+1+(ε−1)−3
2 (q − 2) + `(Pi)

2 (q − 2) = |VG|+ε−3
2 (q − 2).

Assume that Pi has distinct end-vertices and that for any Pk containing both
end-vertices of Pi, the subpath of Pk induced by them is an ear of G. Denote
the end-vertices of Pi by v and w. If v and w are adjacent in G then `(Pi)
must be odd. Accordingly, by induction and Proposition 3.2,

regG = |VG|−`(Pi)+1+ε−3
2 (q − 2) + `(Pi)−1

2 (q − 2) = |VG|+ε−3
2 (q − 2).

Assume now that v and w are not adjacent in G and let j > 0 be the least
positive integer such that Pi is nested in Pj. By the minimality of j one
of v or w, say v, belongs to P◦j . Denote the nest interval of Pi in Pj by I.
(See top of Figure 13.) To be able to use Theorem 3.4, it will now suffice

Pk

Pi

v wPj I

P ′k

v=w

P ′j

Figure 13.

to show that G[ satisfies the bipartite ear modification hypothesis on I. If
G′ is a bipartite ear modification of G[ along I, which does not involve the
identification of the end-vertices of I, then, as v and w are not adjacent, no
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multiple edges arise and the weak nested ear decomposition of G[ induces
a weak nested ear decomposition of G′ in which the only change is in the
length of Pj, which, nevertheless, remains of the same parity. By induction,
we can use (27) on both G[ and G′. It follows that

regG′ = regG[ +
|V

G[ |−|VG′ |
2 (q − 2),

which is condition (12) of the bipartite ear modification hypothesis.

Suppose now that `(I) is even and that G′ is obtained by identifying the
end-vertices of I in G[ − I◦ and removing the multiple edges created. For
k 6= i, let P ′k ⊂ G′ denote the graph obtained by identifying v with w in
Pk − I◦ and removing the multiple edges created. (See Figure 13.) We note
that since I is an ear of G, for k 6= j, the graph P ′k is obtained by simply
identifying v and w in Pk and removing all multiple edges created. It follows
that Pk is isomorphic to P ′k if one of v or w does not belong to Pk. If both v
and w belong to Pk then, by the minimality of j, we must have j < k. But
then none of v or w can be an inner vertex of Pk. Accordingly, they must
coincide with the end-vertices of Pk. (See top of Figure 13.) Then I ∪Pk is a
cycle of G and, since it must be of even length, we deduce that `(Pk) is also
even. In this situation P ′k is either a pending (even) cycle of G′, if `(Pk) > 2,
or a pending edge, if `(Pk) = 2. (See the bottom of Figure 13.) As for P ′j, it
may be a single edge if `(Pj) − `(I) = 1 or if `(Pj) − `(I) = 2 and Pj has
coinciding end-vertices.

It is clear that

G′ = P0 ∪ P ′1 ∪ · · · ∪ P ′i−1 ∪ P ′i+1 ∪ · · · ∪ P ′r+1, (29)

as any edge in G′ comes from an edge in some path Pk. If (29) does not
induce a partition of the edge set of G′, then there exist a vertex u and two
edges {u, v}, {u,w} belonging to different paths, which become the same
edges after the identification of v with w. Consider the least k for which the
path Pk contains both vertices u, v and the least l for which Pl contains u,w.
We claim that Pj = Pk, and, consequently, that u must belong to Pj.
Assume, to the contrary, that j 6= k. Since v ∈ P◦j we have j < k and then
v is an end-vertex of Pk. If u in an inner vertex of Pk then we must have
k ≤ l. If u is an end-vertex of Pk then, by the minimality of k, Pk has to
be a pending edge and we get the same conclusion, k ≤ l. Assume that
k = l. Then j < k = l implies that Pk = Pl is a path with end-vertices
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v and w, containing u as an interior point. However if {u, v} and {u,w}
belong to different paths then the degree of u is not two, which contradicts
the assumption on v and w, stating that these vertices induce on any path
of the weak decomposition a subpath the inner vertices of which have degree
two. Hence we must have k < l. Then j < k < l implies that Pl is the edge
{u,w}. Since both its end-vertices belong to earlier paths, this contradicts
the minimality of l.

We have proved that Pj = Pk and, in particular, that u ∈ Pj. Resetting
notation, Let now Pk and Pl be any two (distinct) paths containing the
edges {u, v} and {u,w}, respectively. We claim that either Pk is a non-
pending odd path of the weak ear decomposition of G[ and P ′k is an edge or
Pl is a non-pending odd path of the weak ear decomposition of G[ and P ′l is
an edge.

To see this, we start by noting that, since v ∈ P◦j , we have j ≤ k. If j < k,
then as u and v belong to Pj they must be end-vertices of Pk. In this case,
Pk = {u, v}, which is a non-pending odd path and P ′k an edge. If j = k then
there are two sub-cases. Either j = k < l and then Pl = {u,w}, which is a
non-pending odd ear with P ′l an edge (see Figure 14a), or we have l < j = k
and then u and w must be the end-vertices of Pj = Pk. This implies that
`(Pj) = `(I) + 1, which is a odd integer, and that P ′j is an edge. (See
Figure 14b.)

u v w Pj = Pk

Pl

(a)

v

u w

Pk = Pj

Pl
(b)

Figure 14.

We conclude that, for (29) to induce a partition of the edge set of G′ it
suffices to remove appropriately from (29) the paths that consist of a single
repeated edge coming from paths as described above. We note that, in this
situation, the number of even ears and pending edges, after removing all
repeated edges in (29), coincides with the number of even ears and pending
edges of the weak nested decomposition of G[ given by (28).
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Let us now prove that, after the exclusion from (29) of the repeated edges,
we obtain a weak nested ear decomposition of G′. Since I is an ear of G, it is
clear that the end-vertices of P ′k belong to P ′l , for some l < k. An inner vertex
of P ′k always comes from an inner vertex of Pk. If, following the bipartite ear
modification, such vertex is identified with a vertex of a previous P ′l , then
the two vertices in question must v and w. We deduce that Pk = Pj. If w
is also an inner vertex of Pj then v = w in P ′j cannot belong to any earlier
P ′l . If w is an end-vertex of Pj then v = w becomes an end-vertex of P ′j.
As for the nesting condition, let P ′k and P ′l be two paths nested in P ′s, with
s < k, l. We may assume that none of P ′k or P ′l is a pending edge or cycle
for otherwise there will be nothing to show. Let v1 6= v2 be the end-vertices
of P ′k and w1 6= w2 those of P ′l . If the nest intervals of P ′k and P ′l in P ′s have
inner vertices in common and are not nested, then, in the order of vertices
of P ′s, we must have, without loss of generality,

(. . . , v1, . . . , w1, . . . , v2, . . . , w2, . . . ).

This is impossible before the identification of v with w, since we are starting
from a weak nested ear decomposition of G[. Hence both v and w belong
to Ps and one of w1 or v2 must be the vertex obtained by identifying v with
w. Assume, without loss of generality, that this vertex is w1. Then v1, v2

come from Ps unchanged and one of them is an inner vertex of the subpath
induced by v and w in Ps, but this is impossible since, by assumption, v and
w induce on Ps a subpath whose inner vertices have degree two in G.

Having established that, after removing all redundant edges, (29) induces a
weak nested ear decomposition of G′ we can now use induction to compute
its regularity. Accordingly,

regG′ = |VG′ |+(ε−1)−3
2 (q − 2) = regG[ +

|VG′ |−|VG[ |
2 (q − 2),

and therefore, G[ satisfies the bipartite ear modification assumption along I.
This finishes the proof of the theorem.

The number of even length paths in an ear decomposition of a graph is
not necessarily constant, even if we restrict to bipartite graphs. Take, for
example, the graph obtained from the graph in Figure 9 by adding the edge
{2, 8}. As a first ear decomposition, consider the one obtained by starting
from vertex 1 and adding consecutively the paths (1, 2, 3, 7, 8, 5, 1), (1, 4, 3),
(5, 6, 7) and (2, 8). This decomposition has three even length ears. Alterna-
tively, consider the ear decomposition starting from vertex 1, using first the
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Hamiltonian cycle: (1, 2, 8, 5, 6, 7, 3, 4, 1), followed by (1, 5), (7, 8) and (2, 3).
This decomposition has only one even length ear.

The following purely combinatorial result follows easily from Theorem 4.4.

Corollary 4.5. The number of even ears and pendant edges of any weak
nested ear decomposition of a bipartite graph remains constant.

We will finish by giving another application of Theorem 4.4. As mentioned
in Section 2, it follows from Proposition 2.6 that

regG ≥ (α(G)− 1)(q − 2),

where α(G) denotes the independence number of G. This bound is not sharp
if G is not bipartite or 2-connected, but equality does hold if G is an even
cycle, or a complete bipartite graph, or a bipartite parallel composition of
paths (see [11]), among many other examples. This could suggest that for a
bipartite 2-connected graph the Castelnuovo–Mumford regularity of a graph
is closely related with α(G). In the following example we want to show that
this is not the case.

Example 4.6. Fix an even positive integer k. Consider the graph G, in
Figure 15, below, obtained from a cycle of length 3k, by attaching k ears
of length two at the pairs of vertices 3i − 2 and 3i, for each i = 1, . . . , k.
This graph is endowed with a nested ear decomposition with k+ 1 even ears.

5

4

3
2

1

3k

3k−1

3k−2 6

3k+1

3k+24k

Figure 15.
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According to Theorem 4.4,

regG = 4k+k+1−3
2 (q − 2) = (5k

2 − 1)(q − 2).

On the other hand, as any set of independent vertices must have at most
two elements in the k cycles of length 4 created by the addition of the k ears
and the vertex sets of these cycles cover VG, we deduce that α(G) is 2k. In
conclusion, this example shows that, indeed,

regG− (α(G)− 1)(q − 2) = k
2(q − 2)

can be arbitrarily large.
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