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Abstract: We present a new proof of Banaschewski’s theorem stating that the
completion lift of a uniform surjection is a surjection. The new procedure allows
to extend the fact (and, similarly, the related theorem on closed uniform sublocales
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Introduction
The present paper originated in our ignorance. Considering a certain sublo-

cale of a complete uniform frame we came across the question whether a
closed sublocale of a complete locale is complete, like in the classical setting;
this then naturally led to the question whether the completion image of a
uniform surjection is a surjection. After a somewhat superficial unsuccessful
search in the literature we found a positive proof and wrote it down. Then
it was pointed out to us by Themba Dube (to whom we are very thankful)
that it was a result of Banaschewski from [1, Section 6]; on the other hand
he kindly indicated that we might consider to publish the proof in some form
anyway, and this is what we present.

Our proof differs from the Banaschewski’s one by being direct in two as-
pects: (1) in [1] the closedness theorem was proved first and then used as a
tool (in our procedure we work immediately with the image; the closedness
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theorem comes as a consequence), and (2) the regularity of the Cauchy maps
adjoint to the completion homomorphism is the immediate feature of the
reasoning.

Furthermore, we present the theorem in the quasi-uniform (not necessarily
symmetric) setting of entourages which is not only a technical difference, but
makes the results more general in the direction to non-symmetry (while, of
course, the Banaschewski proof goes from uniformity in another generalizing
direction, namely to strong nearnesses).

In addition, we also discuss the role played by closedness in extension of
(regular) Cauchy points in the Cauchy completion.

After necessary Preliminaries (for the reader’s convenience, somewhat more
extensive in explaining the entourage technique) we discuss in Section 2 the
complete lifting of uniform embeddings. Section 3 is devoted to the question
of closed uniform sublocales of complete uniform frames. Learning that these
are precisely the complete sublocales we learn that a Cauchy map on a closed
sublocale is necessarily a homomorphism because it is extendable to a Cauchy
map on the bigger space and this being complete makes it a homomorphism.
This naturally leads to a question discussed in the last section: namely, a
Cauchy map is a generalization of a Cauchy point (a Cauchy map into the
two-point Boolean algebra); can a (regular) Cauchy point on a closed uniform
sublocale of a uniform frame L be extended to a (regular) Cauchy point on
the whole of L? The answer is in the affirmative; hence, in consequence,
a closed uniform sublocale of a Cauchy complete uniform frame is Cauchy
complete.

1. Preliminaries
For general background on frames and locales we refer to [6] or [11]. In this

section we list the basic terminology, notions and facts used in the paper.

1.1. Frames and locales. A frame is a complete lattice L satisfying the
distributive law

a ∧ (
∨
B) =

∨
{a ∧ b | b ∈ B} (dist)

for all a ∈ L and all subsets B ⊆ L. A frame homomorphism h : L → M
preserves all joins (including the void one, the bottom 0) and all finite meets
(including the top 1).



ANOTHER PROOF OF BANASCHEWSKI’S SURJECTION THEOREM 3

A typical frame is the lattice Ω(X) of all open sets of a topological space X;
if f : X → Y is a continuous map then Ω(f) = (U 7→ f−1[U ]) : Ω(Y )→ Ω(X)
is a frame homomorphism. Thus one has a contravariant functor Ω: Top→
Frm (where Top is the category of topological spaces and continuous maps
and Frm the category of frames and frame homomorphisms).

Setting Loc = Frmop one has the category of locales. Then Ω becomes a
covariant functor Top→ Loc (restricted to the subcategory of sober spaces
it is a full embedding). It is useful to view Loc as a concrete category with
the arrow opposite to a frame homomorphism h : L→M represented by its
right Galois adjoint f = h∗ : M → L (uniquely determined by the fact that
h preserves all joins). Such f ’s will be referred to as localic maps.

With L a frame and a ∈ L, the map a ∧ (·) : L → L preserves arbitrary
joins and thus has a right adjoint a→ (·) : L→ L determined by c ≤ a→ b
iff a ∧ c ≤ b. Thus, a→ b =

∨
{c ∈ L | a ∧ c ≤ b}.

1.2. Sublocales. Subspaces of locales (viewed as generalized spaces) are
represented by sublocales. A subset S of a frame L is a sublocale of L if,
for any A ⊆ S, x ∈ L and a ∈ S, we have

∧
A ∈ S (in particular, 1 ∈

S) and x → a ∈ S. Sublocales are precisely such subsets for which the
embedding map j : S → L is a (one-to-one) localic map — in fact, extremal
monomorphisms in Loc.

The set S(L) of all sublocales of L, under inclusion, forms a coframe (i.e.,
a complete lattice satisfying the dual of (dist)), in which arbitrary infima
coincide with intersections, {1} is the bottom element and L is the top ele-
ment.

For any a ∈ L, the sets

c(a) = ↑a and o(a) = {a→ b | b ∈ L}

are special sublocales of L (called, respectively closed and open since in
the spatial case they correspond to closed and open subspaces). They are
complements of each other in S(L).

1.3. Density. A frame homomorphism h : L→M is dense if

h(x) = 0 ⇒ x = 0,

and a sublocale S ⊆ L is dense if S = L. Here, of course, the closure S,
the smallest closed sublocale containing S, is ↑(

∧
S) (since

∧
S ∈ S); thus

S = L iff 0 ∈ S.
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Consider the localic map f = h∗ : M → L associated with h. Then, obvi-
ously, h is dense iff f(0) = 0 iff f [M ] is dense in L.

1.4. Quotients of a frame. For a relation R ⊆ L × L on a frame L, call
an s ∈ L saturated (more precisely, R-saturated) if

aRb ⇒ ∀c, a ∧ c ≤ s iff b ∧ c ≤ s.

A meet of saturated elements is saturated, we have a monotone mapping κ =
(x 7→ κ(x)) =

∧
{s | x ≤ s, s saturated} satisfying x ≤ κ(x), κκ(x) = κ(x)

and, moreover, κ(x ∧ y) = κ(x) ∧ κ(y) (the nucleus of R), and if we set

L/R = {x | x = κ(x)}
we obtain a frame homomorphism κ′ = (x 7→ κ(x)) : L → L/R satisfying
(see e.g. [11]):

(1.4.1) xRy ⇒ κ′(x) = κ′(y),
(1.4.2) if for h : L → K in Frm one has xRy ⇒ h(x) = h(y), then there is

precisely one frame homomorphism h : L/R→ K such that h ·κ′ = h;
moreover, for x ∈ L/R, h(x) = h(x).

1.5. Down-set frame. The down-set frame DL of a frame L is the frame
{U ⊆ L | ∅ 6= U = ↓U} (where ↓U = {x | x ≤ a ∈ U}, as usual) with meets
and joins given respectively by intersections and unions. The mapping

λ′ = (a 7→ ↓a) : L→ DL

is a localic map; it is the right adjoint to v = (U 7→
∨
U) : DL→ L.

1.6. Cover uniformities. A cover of a frame L is a subset U ⊆ L such that∨
U = 1. A cover U is a refinement of a cover V (written, U ≤ V ) if

∀u ∈ U ∃v ∈ V such that u ≤ v.

For covers U, V we have the largest common refinement

U ∧ V = {u ∧ v | u ∈ U, v ∈ V }.
If U ⊆ L is a cover and a ∈ L we set Ua =

∨
{u ∈ U | u ∧ a 6= 0} and for

covers U, V define UV = {Uv | v ∈ V }.
Finally, for a set of covers U define the relation

b�U a ≡ there is a U ∈ U such that Ub ≤ a.

U is said to be admissible if

∀a ∈ L, a =
∨
{b | b�U a}.
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A cover-uniformity ([14]) (briefly, c-uniformity) on a frame L is an admis-
sible non-empty system of covers U such that

(U1) if U ∈ U and U ≤ V then V ∈ U ,
(U2) if U, V ∈ U then U ∧ V ∈ U ,
(U3) for every U ∈ U there is a V ∈ U such that V V ≤ U .

A c-uniform frame (or c-uniform locale) is a pair (L,U) where U is a c-
uniformity on L. A frame homomorphism h : L → M is a uniform homo-
morphism (L,U)→ (M,V) if

∀U ∈ U , h[U ] ∈ V .

1.7. Binary frame coproducts. Let L be a frame. Take the Cartesian
product L×L as a poset and consider the frame D(L×L). Call U ∈ D(L×L)
a coproduct ideal (shortly, a cp-ideal) if

(CP1) for any A ⊆ L and b ∈ L, if A× {b} ⊆ U then (
∨
A, b) ∈ U , and

(CP2) for any a ∈ L and B ⊆ L, if {a} ×B ⊆ U then (a,
∨
B) ∈ U .

Intersections of cp-ideals are obviously cp-ideals and thus we have a com-
plete lattice, which is in fact a frame. Note, however, that unions of cp-ideals
are not necessarily cp-ideals and their joins (suprema) in this frame are typ-
ically bigger.

The sets A and B in (CP1)-(CP2) can be void; hence, in particular, each
cp-ideal contains as a subset n = {(0, b), (a, 0) | a, b ∈ L}. It is easy to check
that for each (a, b) ∈ L× L,

a⊕ b = ↓(a, b) ∪ n

is a cp-ideal.
The coproduct L⊕ L in Frm (product in Loc) is just the frame

L⊕ L = {U ∈ D(L× L) | U is a cp-ideal}

with coproduct injections

ι1 = (a 7→ a⊕ 1) : L→ L⊕ L, ι2 = (b 7→ 1⊕ b) : L→ L⊕ L.

Note that for each U ∈ L⊕ L, U =
∨
{a⊕ b | (a, b) ∈ U}.

Using the symbol L×L when speaking of L⊕L as a product in the category
Loc would probably obscure the matter. Therefore, we will keep the notation
L⊕ L also in Loc. We only have to keep in mind that then the injections ι
become projections p1, p2 : L⊕ L→ L.
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By the universal property of coproducts, for each frame homomorphism
h : L→M there is a (unique) frame homomorphism h⊕h : L⊕L→M ⊕M
such that (h⊕ h)ιi = ιih. Clearly,

(h⊕ h)(E) =
∨

(a,b)∈E
(h(a)⊕ h(b)).

Its right adjoint (h⊕ h)∗ in Loc is the unique localic map f × f : M ⊕M →
L⊕ L such that pi(f × f) = fpi for i = 1, 2.

1.8. Entourage uniformities. An entourage of a frame L is an E ∈ L⊕L
such that {a | a⊕ a ≤ E} is a cover of L.

For each x ∈ L and E ∈ L⊕ L, let

Ex =
∨
{a ∈ L | (a, a) ∈ E, a ∧ x 6= 0}.

If E is an entourage then x ≤ Ex.
For entourages E,F of L set

E ◦ F =
∨
{a⊕ c | ∃b 6= 0, a⊕ b ≤ E and b⊕ c ≤ F}.

Further, for an entourage E set

E−1 = {(a, b) | (b, a) ∈ E}

(which is obviously an entourage again).

If E is an entourage (resp. E a set of entourages) write

b CE a if E ◦ (b⊕ b) ≤ a⊕ a, and b CE a if ∃E ∈ E , b CE a.

A set of entourages E is said to be admissible if

∀a ∈ L, a =
∨
{b | b CE a}.

An entourage-uniformity [9, 10] (briefly, e-uniformity) on a frame L is an
admissible set of entourages E such that

(E1) if E ∈ E and E ≤ F then F ∈ E ,
(E2) if E,F ∈ E then E ∩ F ∈ E ,
(E3) for every E ∈ E there is an F ∈ E such that F ◦ F ≤ E, and
(E4) if E ∈ E then E−1 is in E .

An e-uniform frame (or e-uniform locale) is a pair (L, E) where E is an
e-uniformity on L.
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1.9. Non-symmetric uniformities. For a system E of entourages satisfy-
ing (E1), (E2) and (E3) define, first, E as the filter of entourages generated
by E ∪ {E−1 | E ∈ E} (of course, if E is a uniformity, E = E). If E is
admissible we speak of E as of a quasi-uniformity and of (L, E) as of a quasi-
uniform frame ([10]). For any pair of quasi-uniform (resp. uniform) frames
(L, E), (M,F), a frame homomorphism h : L → M is a uniform homomor-
phism (L, E)→ (M,F) if

∀E ∈ E , (h⊕ h)(E) ∈ F .

The two approaches to uniformities (via covers or entourages) are equiv-
alent in the sense that the corresponding categories of uniform frames and
uniform homomorphisms are isomorphic (see e.g. [12]).

2. Completion and surjectivity
2.1. In classical uniformity theory, complete uniform spaces X are charac-
terized by the fact that they are a closed subset in every uniform embedding
X ⊆ Y in an arbitrary uniform space Y . This can be adopted for a definition
of completeness in a point-free context:

A uniform frame (L, E) is said to be complete if in every uniform embedding
j : (L, E) ⊆ (M,F), L is a closed sublocale of M .

Equivalently,

A uniform frame (L, E) is complete iff each dense uniform embedding ho-
momorphism h : (M,F)→ (L, E) is an isomorphism.

(For the concept of uniform embedding and uniform embedding homomor-
phism see 2.1.2 below.)

2.1.1. One also has a counterpart with the behavior of the standard Cauchy
structure.

Recall the Cauchy points from classical completions of uniform spaces
(X, E), that is, filters F in L = Ω(X) such that

F ∩ {a | (a, a) ∈ E} 6= ∅.

Taking their characteristic maps we have Cauchy points represented as bounded
meet semilattice homomorphisms φ : (L, E)→ 2 = {0, 1} such that

(1) for all E ∈ E ,
∨
{φ(a) | a⊕ a ≤ E} = 1, and

(2) for every a ∈ L, φ(a) =
∨
{φ(b) | b�E a}.
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More generally, let M be a frame. A Cauchy map φ : (L, E) → M is a
bounded meet homomorphism φ : L→M such that

(C1) for all E ∈ E ,
∨
{φ(a) | a⊕ a ≤ E} = 1, and

(C2) for each a ∈ L, φ(a) =
∨
{φ(b) | b�E a}.

Thus, Cauchy maps are Cauchy points with a general frame M instead of 2.

Classically, a uniform space X is complete iff each Cauchy point is a neigh-
bourhood system of an x ∈ X. In the pont-free uniformity theory one can
prove that

(L, E) is complete iff each Cauchy map φ : (L, E) → M is a frame homo-
morphism

(see, e.g., [11]).

For more information on the uniform completion in the point-free setting
consult [1, 2, 3, 8].

2.1.2. Let j : L → M be an embedding in Loc with adjoint onto frame ho-
momorphism h = j∗ : M → L. Since regular monomorphisms are preserved
by products, j × j is also one-to-one.

By a uniform embedding j : (L, E)→ (M,F) we mean a one-to-one uniform
map such that

E = {(h⊕ h)(F ) | F ∈ F}.
The adjoint frame homomorphism is referred to as a uniform embedding
homomorphism.

In terms of the covering approach this amounts to saying that E consists
precisely of the h[C]’s with C ∈ F .

2.2. Completion. Consider a quasi-uniform frame (L, E). On the down-set
frame DL consider the relation

RE = {(
⋃
{↓x | x�E y}, ↓y), (

⋃
{↓a | a⊕ a ≤ E}, L) | y ∈ L,E ∈ E},

and the resulting quotient (recall 1.4)

C(L, E) = D(L)/RE .

It is easy to check that the saturated sets constituting this frame (they will
be referred to as Cauchy ideals in (L, E)) are the U ∈ D(L) such that

(R1) if {x | x�E y} ⊆ U then y ∈ U , and

(R2) if for some E ∈ E , E ∧ {x} = {a ∧ x | a⊕ a ≤ E} ⊆ U , then x ∈ U .
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From this it is easy to prove that the restriction of λ′ (from 1.5) to a mapping
L→ C(L, E), denoted by λ(L,E), is a Cauchy map and that it is universal in
the sense that

for every Cauchy map φ : (L, E) → M there is precisely one frame homo-
morpism h : C(L, E)→M such that φ = hλ(L,E). (See [13].)

For us it is important that C(L, E) endowed with the quasi-uniformity (res.
uniformity) induced by E via λ(L,E), that is, the (quasi-)uniformity generated
by all (λ(L,E) × λ(L,E))(E), E ∈ E [13, Prop. 6.2.1], constitutes a completion

λ(L,E) : (L, E)→ C(L, E),

a dense uniform embedding with the adjoint uniform embedding homomor-
phism

v(L,E) = (U 7→
∨
U)

that is, that for every dense uniform embedding j : (L, E) → (M,F) there
is a (dense) uniform embedding k : C(L, E)→ (M,F) such that j = kλ(L,E).
(See, e.g., [13]).

Moreover, the construction C is functorial; indeed, (C, λ) constitutes a re-
flection of the category of quasi-uniform (resp. uniform) frames with uniform
homomorphisms into the corresponding subcategory of complete ones.

2.3. The following fact was proved for the case of (symmetric) uniformities
(indeed for strong nearnesses) by Banaschewski in [1]. We present a proof
using different techniques allowing to extend the result to quasi-uniformities.

2.3.1. Theorem. Let (L, E) be a quasi-uniform frame, let S be a sublocale of
L and let h : (L, E)→ (S,F) be a uniform embedding homomorphism. Then
g = C(h) : C(L, E)→ C(S,F) is a uniform embedding.

Proof : We will write just L for (L, E) and S for (S,F). Consider the diagram

C(L)
g

//

vL

��

C(S)
g∗

oo

vS

��

L

λL

OO

h //
S

j=⊆
oo

λS

OO

where g∗ is the right adjoint of g.
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In the symmetric case we will work with E ,F in the cover representation,
in the non-symmetric case they will be systems of entourages like in 1.9. We
have

vλ = id, λv ≥ id,

hj = id, jh ≥ id, in particular h(x) ≥ x for all x ∈ L,
gg∗ ≤ id and g∗g ≥ id.

We immediately obtain

g(λL(b)) = gλLj(b) = gg∗λS(b) ≤ λS(b). (∗)

(I) Symmetric case. Since λ is a Cauchy map we have

λS(b) =
∨
{λS(x) | x CF b}.

Consider an x CF b and a cover C ∈ F such that Cx ≤ b. Because h is a
uniform embedding, C = h[B] for a B ∈ E and since h(u) ≥ u for all u ∈ L,
C ≥ B and hence C ∈ E . By the first Cauchy property,

∨
{λL(c) | c ∈ C} = 1

so that
∨
{gλL(c) | c ∈ C} = 1. Hence

λS(x) =
∨
{λS(x) ∧ gλL(c) | c ∈ C}.

Let x ∧ c = 0 for a c ∈ C. Then, as C ⊆ S

vS(λS(x) ∧ gλL(c)) = x ∧ vSgλL(c)) = x ∧ hvLλL(c) = x ∧ c = 0

and by density of vS, λS(x) ∧ gλL(c) = 0. Hence, as Cx ≤ b,

λS(x) =
∨
{λS(x) ∧ gλL(c) | c ∈ C, c ∧ x 6= 0} ≤ gλL(b)

and together with (∗) and using the identity b =
∨
{x | x CF b} we obtain

that λS(b) = gλL(b).
Since the elements λS(b) = gλL(b), b ∈ S, join generate C(S,F) we con-

clude that g is onto.

To see that g is a uniform embedding homomorphism, take any basic el-
ement of the uniformity of C(S) of the form λS[C] with C = h[B] ∈ F .
Again, since jh ≥ id, B ≤ C and C ∈ E , and finally g[λL[B]] ≤ λS[C].

(II) Non-symmetric case. Consider an x�F b and an entourage F ∈ F such
that Fx ≤ b. Let F1, F2 ∈ F such that F1 ∩ F−1

2 ⊆ F . Since h is a uniform
embedding, F1 = (h ⊕ h)(E1) and F2 = (h ⊕ h)(E2) for some E1, E2 ∈ E .
Then

F−1
2 = (h⊕ h)(E2)

−1 = (h⊕ h)(E−1
2 ) ([13, §3.6]).
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Therefore

F ⊇ (h⊕ h)(E1) ∩ (h⊕ h)(E−1
2 ) = (h⊕ h)(E)

for E = E1 ∩ E−1
2 ∈ E and thus

F ⊇
∨

(a,b)∈E
(h(a)⊕ h(b)) ⊇ E

since h(u) ≥ u for all u ∈ L. Hence F ∈ E . By the first Cauchy property,
(λL ⊕ λL)(F ) is an entourage so that (gλL ⊕ gλL)(F ) is also an entourage,
that is,

∨
{gλL(c) | (c, c) ∈ F} = 1. Hence

λS(x) =
∨
{λS(x) ∧ gλL(c) | (c, c) ∈ F}. (∗∗)

Let x ∧ c = 0 for some (c, c) ∈ F ∈ S ⊕ S. Then

vS(λS(x) ∧ gλL(c)) = x ∧ vSgλL(c)) = x ∧ hvLλL(c) = x ∧ c = 0

and by density of vS, λS(x) ∧ gλL(c) = 0. Hence, from (∗∗) we get

λS(x) =
∨
{λS(x) ∧ gλL(c) | (c, c) ∈ F, c ∧ x 6= 0} ≤ gλL(b)

as c ≤ b for every such c (since Fx ≤ b). So we have proved that

x�F b ⇒ λS(x) ≤ gλL(b).

Therefore λS(b) =
∨
{λS(x) | x �F b} ≤ gλL(b) and together with (∗) we

obtain that λS(b) = gλL(b).
Again, since the elements λS(b) = gλL(b), b ∈ S, join generate C(S,F) we

conclude that g is onto.

To see that g is a uniform embedding homomorphism, take any basic ele-
ment of the quasi-uniformity of C(S) of the form

(λS × λS)(F )

with F = (h⊕ h)(E) ∈ F for some E ∈ E . Again, since jh ≥ id, E ≤ F and
F ∈ E . Finally,

(g ⊕ g)(λL × λL)(E) ≤ (g ⊕ g)(λL × λL)(F )

and, by [13, Prop. 4.3.1],

(g ⊕ g)(λL × λL)(F ) =
∨

(a,b)∈F
(gλL(a)⊕ gλL(b))

=
∨

(a,b)∈F
(λS(a)⊕ λS(b)) = (λS × λS)(F ).
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3. Completion and closedness

3.1. Theorem. A uniform sublocale of a complete quasi-uniform locale is
complete if and only if it is closed.

Proof : ⇐: Consider the following diagram in which S is a closed uniform
sublocale of L (we omit the symbols for the uniformities). Since L is complete,
λL and vL are mutually inverse isomorphisms.

C(L)
C(h)=g

//

iso vL

��

C(S)
g∗

oo

vS

��

iso α

u7→vLg∗(u)
ww

T = vLg
∗gλL[C(S)]

inclusion

ww
L

λL iso

OO

h //
S

j=inclusion
oo

λS

OO

inclusion

β

gg

We have αλS(x) = vLg
∗λS(x) = vLλLj(x) = x, hence β = αλL is an

inclusion and since λS is dense we have λS(0S) = 0T and T ⊆ S. Since
S = S we conclude that S = S ⊆ T ⊆ S, and S = T .

⇒: Suppose S is a complete uniform sublocale of a complete uniform locale
L. We have uniform embeddings S ⊆ S ⊆ L and since the former is dense
and S is complete, it is an isomorphism, that is, S = S.

3.1.1. Note. For (symmetric) uniformities, indeed for strong nearnesses,
this fact was proved by Banaschewski in [1].

3.2. In a certain analogy with the classical case, what makes a closed sublo-
cale S of a complete (L, E) complete is that a Cauchy map (“generalized
Cauchy point”) on S can be extended to a Cauchy map on (L, E), which
makes it, because of the completeness of the latter, a homomorphism (“gen-
eralized Cauchy point”). The mechanism of the extension, however, is not
really very transparent. In the following Section we will discuss the case of
Cauchy and spectrum points; there the extension will be explicit.
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4. Extending Cauchy filters
In this section we will work with the cover uniformities as in 1.6 above. The

necessary modifications for the non-symmetric case would unduly obscure the
procedures.

Recall that a uniform frame is Cauchy complete if each Cauchy point F is
a (spectrum) point, that is, if

∨
ai ∈ F only if aj ∈ F for some j (complete

primeness, see [4, 11]).

4.1. Consider a uniform frame (L, E) and a closed sublocale S = ↑s of L
endowed with the uniformity making it a uniform sublocale, that is, since
the homomorphism adjoint with the embedding S ⊆ L is given by x 7→ x∨s,

ES = {AS | A ∈ E}, AS = {a ∨ s | a ∈ A}.
4.2. For A ∈ E and u ∈ L set

φ(u,A) =
∨
{a ∈ A | a ∧ u � s}.

4.2.1. Lemma.

(1) ϕ(u,A) ≤ Au.
(2) ϕ(u ∨ s, A) = ϕ(u,A).
(3) If u ≤ v then ϕ(u,A) ≤ ϕ(v, A).
(4) If A ≤ B then ϕ(u,A) ≤ ϕ(u,B).
(5) ϕ(u ∧ v, A ∧B) ≤ ϕ(u,A) ∧ ϕ(v,B).
(6) Aϕ(u,A) ≤ ϕ(u,AA).

Proof : Properties (1)-(5) are trivial.
(6) Let a ∈ A such that a ∧ ϕ(u,A) 6= 0. This means there is some b ∈ A
such that b ∧ a 6= 0 (and thus a ≤ Ab) and b ∧ u � s (and thus Ab ∧ u � s).
Then a ≤ Ab ≤ ϕ(u,AA) since Ab ∈ AA and Ab ∧ u � s.

4.3. Let F be a filter on S. By (4) above, {φ(u,A) | u ∈ F, a ∈ A} is down
directed in L and hence we have a filter

G = {x ∈ L | x ≥ φ(u,A), u ∈ F, a ∈ A}.
4.3.1. Proposition. If F is a weak Cauchy filter on S then G is a Cauchy
filter on L.

Proof : Let A ∈ E and take B ∈ E such that BB ≤ A. By hypothesis,
F ∩ AS 6= ∅, that is, there is some v ∈ B for which v ∨ s ∈ F . Hence
ϕ(v ∨ s, B) ∈ G and, by properties (2) and (1), ϕ(v ∨ s, B) = ϕ(v,B) ≤ Bv
and since Bv refines some u ∈ A, this shows that G ∩ A 6= ∅.
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Let a ∈ G with a ≥ ϕ(u,A) for some u ∈ F and A ∈ E . Take B ∈ E
such that BB ≤ A. By (6) Bϕ(u,B) ≤ ϕ(u,BB) ≤ ϕ(u,A) ≤ a and thus
ϕ(u,B) �E a.

4.3.2. Lemma. For every A ∈ E and u ∈ S, ASu = ϕ(u,A) ∨ s.

Proof : Since ASu =
∨
{a ∨ s | a ∈ A, (a ∨ s) ∧ u 6= s} and (a ∨ s) ∧ u 6= s,

that is, (a ∧ u) ∨ (u ∧ s) 6= s, is clearly equivalent to a ∧ u � s, then
ASu = ϕ(u,A) ∨ s.

4.3.3. Theorem. If F is a Cauchy filter then F = G ∩ S. Thus, every
Cauchy filter on a closed uniform sublocale of L can be extended to a Cauchy
filter on the whole of L.

Proof : Let a ≥ ϕ(u,A) in G∩ S. By the lemma, u ≤ ASu = ϕ(u,A)∨ s ≤ a
and thus a ∈ F .

Conversely, let u ∈ F . By the regularity of F , there is some v ∈ F
such that v �ES u. Take A ∈ E such that ASv ≤ u. Again by the lemma,
u ≥ ϕ(v,A) ∨ s ∈ G ∩ S.

4.3.4. Corollary. A closed uniform sublocale of a Cauchy complete uniform
frame is Cauchy complete.

Proof : We need to proof that each Cauchy point F of S is completely prime.
If

∨
ai ∈ F = G ∩ S then

∨
ai ∈ F = G, hence aj ∈ G for some j, but as

F ⊆ S, aj ∈ F .
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