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Abstract: In this paper we use the Riemann–Hilbert problem, with jumps sup-
ported on appropriate curves in the complex plane, for matrix biorthogonal poly-
nomials and apply it to find Sylvester systems of differential equations for the or-
thogonal polynomials and its second kind functions as well. For this aim, Sylvester
type differential Pearson equations for the matrix of weights are shown to be in-
strumental. Several applications are given, in order of increasing complexity. First,
a general discussion of non–Abelian Hermite biorthogonal polynomials in the real
line, understood as those whose matrix of weights is a solution of a Sylvester type
Pearson equation with coefficients first order matrix polynomials, is given. All these
is applied to the discussion of possible scenarios leading to eigenvalue problems for
second order linear differential operators with matrix eigenvalues. Nonlinear matrix
difference equations are discussed next. Firstly, for the general Hermite situation
a general non linear relation (non trivial because the non commutativity features
of the setting) for the recursion coefficients is gotten. In the next case of higher
difficulty, degree two polynomials are allowed in the Pearson equation, but the dis-
cussion is simplified by considering only a left Pearson equation. In the case, the
support of the measure is on an appropriate branch of an hyperbola. The recursion
coefficients are shown to fulfill a non–Abelian extension of the alternate discrete
Painlevé I equation. Finally, a discussion is given for the case of degree three poly-
nomials as coefficients in the left Pearson equation characterizing the matrix of
weights. However, for simplicity only odd polynomials are allowed. In this case, a
new and more general matrix extension of the discrete Painlevé I equation is found.
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1. Introduction
Matrix extensions of real orthogonal polynomials where first discussed back

in 1949 by Krein [43, 44] and thereafter were studied sporadically until the
last decade of the XX century, being some relevant papers [11, 38, 53]. Then,
in 1984, Aptekarev and Nikishin, for a kind of discrete Sturm–Liouville op-
erators, solved the corresponding scattering problem in [53], and found that
the polynomials that satisfy a relation of the form

xPk(x) = AkPk+1(x) + BkPk(x) + A∗
k−1Pk−1(x), k = 0, 1, . . . ,

are orthogonal with respect to a positive definite measure; i.e., they derived
a matrix version of Favard’s theorem.
In a period of 20 years, from 1990 to 2010, it was found that matrix orthog-

onal polynomials (MOP) satisfy, in some cases, properties as do the classical
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orthogonal polynomials. Let us mention, for example, that for matrix ver-
sions of Laguerre, Hermite and Jacobi polynomials, i.e., the scalar-type Ro-
drigues’ formula [32, 33] and a second order differential equation [12, 30, 31]
has been discussed. It also has been proven [35] that operators of the form
D=∂2F2(t)+∂1F1(t)+∂0F0 have as eigenfunctions different infinite families
of MOP’s. A new family of MOP’s satisfying second order differential equa-
tions whose coefficients do not behave asymptotically as the identity ma-
trix was found in [12]; see also [14]. We have studied [3, 5] matrix exten-
sions of the generalized polynomials studied in [1, 2]. Recently, in [6], the
Christoffel transformation to m,atrix orthogonal polynomials in the real line
(MOPRL) have extended to obtaining a new matrix Christoffel formula, and
in [7, 8] more general transformations –of Geronimus and Uvarov type– where
also considered.
It was 26 years ago, on 1992, when Fokas, Its and Kitaev, in the context

of 2D quantum gravity, discovered that certain Riemann-Hilbert problem
was solved in terms of orthogonal polynomials in the real line (OPRL), [36].
Namely, it was found that the solution of a 2× 2 Riemann–Hilbert problem
can be expressed in terms of orthogonal polynomials in the real line and its
Cauchy transforms. Later, Deift and Zhou combined these ideas with a non-
linear steepest descent analysis in a series of papers [25, 26, 28, 29] which was
the seed for a large activity in the field. To mention just a few relevant results
let us cite the study of strong asymptotic with applications in random matrix
theory, [25, 27], the analysis of determinantal point processes [22, 23, 45, 46],
orthogonal Laurent polynomials [49, 50] and Painlevé equations [24, 41].
The study of equations for the recursion coefficients for OPRL or orthog-

onal polynomials in the unit circle constitutes a subject of current interest.
The question of how the form of the weight and its properties, for example to
satisfy a Pearson type equation, translates to the recursion coefficients has
been treated in several places, for a review see [57]. In 1976, Freud [37] stud-
ied weights in R of exponential variation w(x) = |x|ρ exp(−|x|m), ρ > −1 and
m > 0. For m = 2, 4, 6 he constructed relations among them as well as deter-
mined its asymptotic behavior. However, Freud did not found the role of the
discrete Painlevé I, that was discovered later by Magnus [48]. For the unit
circle and a weight of the form w(θ) = exp(k cos θ), k ∈ R, Periwal and She-
vitz [54, 55], in the context of matrix models, found the discrete Painlevé II
equation for the recursion relations of the corresponding orthogonal polyno-
mials. This result was rediscovered latter and connected with the Painlevé III
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equation [40]. In [9] the discrete Painlevé II was found using the Riemann–
Hilbert problem given in [10], see also [56]. For a nice account of the relation
of these discrete Painlevé equations and integrable systems see [21], and for a
survey on the subject of differential and discrete Painlevé equations cf. [18].
We also mention the recent paper [20] where a discussion on the relationship
between the recurrence coefficients of orthogonal polynomials with respect to
a semiclassical Laguerre weight and classical solutions of the fourth Painlevé
equation can be found. Also, in [19] the solution of the discrete alternate
Painlevé equations is presented in terms of the Airy function.
In [15] the Riemann–Hilbert problem for this matrix situation and the

appearance of non–Abelian discrete versions of Painlevé I were explored,
showing singularity confinement [16]. The singularity analysis for a matrix
discrete version of the Painlevé I equation was performed. It was found
that the singularity confinement holds generically, i.e. in the whole space
of parameters except possibly for algebraic subvarieties. The situation was
considered in [17] for the matrix extension of the Szegő polynomials in the
unit circle and corresponding non–Abelian versions discrete Painlevé II equa-
tions For an alternative discussion of the use of Riemann–Hilbert problem
for MOPRL see [39].
Let us mention that in [51, 52] and [13] the MOP are expressed in terms of

Schur complements that play the role of determinants in the standard scalar
case. In [13] an study of matrix Szegő polynomials and the relation with
a non–Abelian Ablowitz–Ladik lattice is carried out, and in [4] the CMV
ordering is applied to study orthogonal Laurent polynomials in the circle.
In this work we obtain Sylvester systems of differential equations for the or-

thogonal polynomials and its second kind functions, directly from a Riemann–
Hilbert problem, with jumps supported on appropriate curves in the complex
plane. The differential properties for the weight function are fundamental.
In this case we consider a Sylvester type differential Pearson equation for
the matrix of weights. We also study whenever the orthogonal polynomials
and its second kind functions are solutions of a second order linear differ-
ential operators with matrix eigenvalues. This is done by stating an ap-
propriate boundary value problem for the matrix of weights. In particular,
special attention is paid to non–Abelian Hermite biorthogonal polynomials
in the real line, understood as those whose matrix of weights is a solution of
a Sylvester type Pearson equation with given first order matrix polynomials
coefficients.
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Several applications are given, in order of increasing complexity, as well.
First, we return to the non–Abelian Hermite biorthogonal polynomials in
the real line, and give nonlinear matrix difference equations for the recurrent
coefficients of the non–Abelian Hermite biorthogonal polynomials. Next, we
consider the orthogonal polynomials and functions of second kind associated
with matrix of weights, that satisfy a differential matrix Person equation
with degree two polynomials as coefficients. To simplify the discussion, only
a left Pearson equation is considered. In this case, the support of the measure
belongs to an appropriate branch of an hyperbola, and the recursion coef-
ficients are shown to fulfill a non–Abelian extension of the scalar alternate
discrete Painlevé I equation. Finally, a discussion is given for the case of
degree three polynomials as coefficients in the left Pearson equation charac-
terizing the matrix of weights. However, for simplicity only odd polynomials
are allowed. In this case, a new and more general matrix extension of the
discrete Painlevé equation is found. To end this study we present a compar-
ison with the results already obtained by several authors in the scalar and
matrix cases.
The layout of the paper is as follows. In § 2 we introduce the basic objects

and results fundamental to the rest of the work. Then, § 3 is devoted to
study the interplay between fundamental matrices with constant jump and
structure formulas. In § 4 and 5 we characterize sequences of orthogonal poly-
nomials whose matrix weight satisfy a Pearson–Sylvester matrix differential
equation by means of a Sylvester matrix differential system and a second
order differential operator. Finally, in § 6 we show how to derive Painlevé
equations for the matrix recurrence coefficients of orthogonal polynomial se-
quences associated with matrix weight functions of “exponential” type.

2. Riemann–Hilbert problem for Matrix Biorthogonal
Polynomials

2.1. Matrix biorthogonal polynomials. Let

W =



W (1,1) · · · W (1,N)

...
. . .

...
W (N,1) · · · W (N,N)


 ∈ C

N×N

be a N × N matrix of weights with support on a smooth oriented non self-
intersecting curve γ in the complex plane C, i.e. W (j,k) is, for each j, k ∈
{1, . . . , N}, a complex weight with support on γ. We define the moment of
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order n associated with W as

Wn =
1

2π i

∫

γ

znW (z) d z, n ∈ N := {0, 1, 2, . . .}.

We say thatW is regular if det
[
Wj+k

]
j,k=0,...n

6= 0, n ∈ N. In this way, we de-

fine a sequence of matrix monic polynomials,
{
P L

n (z)
}
n∈N

, left orthogonal and

right orthogonal,
{
PR

n (z)
}
n∈N

with respect to a regular matrix measure W ,
by the conditions,

1

2π i

∫

γ

P L

n (z)W (z)zk d z = δn,kC
−1
n , (1)

1

2π i

∫

γ

zkW (z)PR

n (z) d z = δn,kC
−1
n , (2)

for k = 0, 1, . . . , n and n ∈ N, where Cn is an nonsingular matrix.
Notice that neither the matrix of weights is requested to be Hermitian nor

the curve γ to be the real line, i.e., we are dealing, in principle with nonstan-
dard orthogonality and, consequently, with biorthogonal matrix polynomials
instead of orthogonal matrix polynomials.
The matrix of weights induce a sesquilinear form in the set of matrix poly-

nomials CN×N [z] given by

〈P,Q〉W :=
1

2π i

∫

γ

P (z)W (z)Q(z) d z. (3)

Moreover, we say that
{
P L

n (z)
}
n∈N

and
{
PR

n (z)
}
n∈N

are biorthogonal with
respect to a matrix weight functions W if

〈
P L

n , P
R

m

〉
W

= δn,mC
−1
n , n,m ∈ N. (4)

As the polynomials are chosen to be monic, we can write

P L

n (z) = Izn + p1
L,nz

n−1 + p2
L,nz

n−2 + · · ·+ pn
L,n,

PR

n (z) = Izn + p1
R,nz

n−1 + p2
R,nz

n−2 + · · ·+ pn
R,n,

with matrix coefficients pk
L,n, p

k
R,n ∈ CN×N , k = 0, . . . , n and n ∈ N (imposing

that p0
L,n = p0

R,n = I, n ∈ N). Here I ∈ CN×N denotes the identity matrix.
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2.2. Three term relations. From (1) we deduce that the Fourier coeffi-
cients of the expansion

zP L

n (z) =

n+1∑

k=0

ℓn
L,kP

L

k (z),

are given by ℓn
L,k = 0N , k = 0, 1, . . . , n−2 (here we denote the zero matrix by

0N), ℓ
n
L,n−1 = C−1

n Cn−1 (is a direct consequence of orthogonality conditions),

ℓn
L,n+1 = I (as P L

n (z) are monic polynomials) and ℓn
L,n = p1

L,n − p1
L,n+1 =: βL

n

(by comparison of the coefficients, assuming C0 = I).
Hence, assuming the orthogonality relations (1), we conclude that the se-

quence of monic polynomials
{
P L

n (z)
}
n∈N

is defined by the three term recur-
rence relations

zP L

n (z) = P L

n+1(z) + βL

nP
L

n (z) + γL

nP
L

n−1(z), n ∈ N, (5)

with recursion coefficients

βL

n := p1
L,n − p1

L,n+1, γL

n := C−1
n Cn−1,

with initial conditions, P L

−1 = 0N and P L

0 = I.
Any sequence of monic matrix polynomials,

{
PR

n (z)
}
n∈N

, with degPR

n =

n, biorthogonal with respect to
{
P L

n (z)
}
n∈N

and W (z), i.e. (4) is fulfilled,
also satisfies a three term relation. To prove this we compute the Fourier
coefficients of zPR

m(z) in the expansion

zPR

n (z) =
n+1∑

k=0

PR

k (z)ℓ
n
R,k, ℓn

R,k =
1

2π i

∫

γ

zP L

k (z)W (z)PR

n (z) d z.

From (1) we have ℓn
R,n+1 = I, ℓn

R,n = Cnβ
L

nC
−1
n , ℓn

R,n−1 = Cn−1C
−1
n , and ℓn

R,k =

0N , k = 0, . . . , n − 2, i.e. the sequence of monic polynomials
{
PR

n (z)
}
n∈N

satisfies

zPR

n (z) = PR

n+1(z) + PR

n (z)β
R

n + PR

n−1(z)γ
R

n , n ∈ N, (6)

where

βR

n := Cnβ
L

nC
−1
n , γR

n := Cnγ
L

nC
−1
n = Cn−1C

−1
n ,

with initial conditions PR

−1 = 0N , PR

0 = I, and the orthogonality condi-
tions (2) are satisfied.
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2.3. Second kind functions. We define the sequence of second kind matrix
functions by

QL

n(z) :=
1

2π i

∫

γ

P L

n (z
′)

z′ − z
W (z′) d z′, (7)

QR

n(z) :=
1

2π i

∫

γ

W (z′)
PR

n (z
′)

z′ − z
d z′, (8)

for n ∈ N. From the orthogonality conditions (1) and (2) we have, for all
n ∈ N, the following asymptotic expansion near infinity for the sequence of
functions of the second kind

QL

n(z) = −C−1
n

(
Iz−n−1 + q1

L,nz
−n−2 + · · ·

)
, (9)

QR

n(z) = −
(
Iz−n−1 + q1

R,nz
−n−2 + · · ·

)
C−1

n . (10)

Assuming that the measures W (j,k), j, k ∈ {1, . . . , N} are Hölder continuous
we obtain, by the Plemelj’s formula applied to (7) and (8), the following
fundamental jump identities

(
QL

n(z)
)
+
−
(
Qn(z)

L
)
−
= P L

n (z)W (z), (11)
(
QR

n(z)
)
+
−
(
QR

n(z)
)
−
= W (z)PR

n (z), (12)

z ∈ γ, where,
(
f(z)

)
±

= lim
ǫ→0±

f(z + iǫ); here ± indicates the the posi-

tive/negative region according to the orientation of the curve γ.
Now, multiplying this equation on the right by W and integrating we get,

using the definition (7) of
{
QL

n(z)
}
n∈N

, that

1

2π i

∫

γ

z′P L

n (z
′)

z′ − z
W (z′) d z′ = QL

n+1(z) + βL

nQ
L

n(z) + C−1
n Cn−1Q

L

n−1(z).

As z′

z′−z
= 1 + z

z′−z
, from the orthogonality conditons (1) we conclude that

zQL

n(z) = QL

n+1(z) + βL

nQ
L

n(z) + C−1
n Cn−1Q

L

n−1(z), n ∈ N,

with initial conditions QL

−1(z) = QR

−1(z) = −C−1
−1 and QL

0(z) = QR

0 (z) =

SW (z) := 1
2π i

∫
γ

W (z′)
z′−z

d z′, where SW (z) is the Stieltjes–Markov transforma-
tion of the matrix of weightsW , which is a complex measure of orthogonality
for
{
P L

n (z)
}
n∈N

–direct consequence of Fubini theorem and Cauchy integral
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formula. It can be seen that

P L

n (z)Q0(z) = −
1

2π i

∫
P L

n (z
′)− P L

n (z)

z′ − z
W (z′) d z′ +

1

2π i

∫
P L

n (z
′)

z′ − z
W (z′) d z′,

i.e. we have the Hermite–Padé formula for the left orthogonal polynomials,

P L

n (z)SW (z) + P
L,(1)
n−1 (z) = QL

n(z), n ∈ N,

where

P
L,(1)
n−1 (z) =

1

2π i

∫
P L

n (z
′)− P L

n (z)

z′ − z
W (z′) dw, n ∈ N,

is a polynomial of degree at most n − 1 said to be the first kind associated
polynomial with respect to

{
P L
n (z)

}
n∈N

and W (z). Similarly, for the right
situation we have the associated

PR,(1)
n (z) =

1

2πi

∫

γ

W (z′)
PR

n+1(z
′)− PR

n+1(z)

z′ − z
dw, n ∈ N,

and the corresponding Hermite–Padé formula for the right orthogonal poly-
nomials,

SW (z)PR

n (z) + P
R,(1)
n−1 (z) = QR

n(z) n ∈ N.

2.4. Reductions: from biorthogonality to orthogonality. We consider
two possible reductions for the matrix of weights, the symmetric reduction
and the Hermitian reduction.

i) A matrix of weightsW (z) with support on γ is said to be symmetric if

(W (z))⊤ = W (z), z ∈ γ.

ii) A matrix of weightsW (x) with support on R is said to be Hermitian if

(W (x))† = W (x), x ∈ R.

These two reductions leads to orthogonal polynomials, as the two biorthog-
onal families are identified; i.e., for the symmetric case

PR

n (z) =
(
P L

n (z)
)⊤

, QR

n(z) =
(
QL

n(z)
)⊤

, z ∈ C,

and for the Hermitian case, with γ = R,

PR

n (z) =
(
P L

n (z̄)
)†
, QR

n(z) =
(
QL

n(z̄)
)†
, z ∈ C.
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In both cases biorthogonality collapses into orthogonality, that for the sym-
metric case reads as

1

2π i

∫

γ

Pn(z)W (z)
(
Pm(z)

)⊤
d z = δn,mC

−1
n , n,m ∈ N,

while for the Hermitian case can be written as follows
1

2π i

∫

R

Pn(x)W (x)
(
Pm(x)

)†
d x = δn,mC

−1
n , n,m ∈ N,

where Pn = P L

n .

2.5. Fundamental and transfer matrices vs Riemann–Hilbert prob-
lems. We can summarize the left three term relation as follows[

P L

n+1(z) QL

n+1(z)

−CnP
L

n (z) −CnQ
L

n(z)

]
=

[
zI − βL

n C−1
n

−Cn 0N

] [
P L

n (z) QL

n(z)

−Cn−1P
L

n−1(z) −Cn−1Q
L

n−1(z)

]

and [
P

L,(1)
n (z)

−CnP
L,(1)
n−1 (z)

]
=

[
zI − βL

n C−1
n

−Cn 0N

] [
P

L,(1)
n−1 (z)

−Cn−1P
L,(1)
n−2 (z)

]
.

In terms of the left fundamental matrix Y L

n (z) and the left transfer ma-
trix T L

n (z),

Y L

n (z) :=

[
P L

n (z) QL

n(z)

−Cn−1P
L

n−1(z) −Cn−1Q
L

n−1(z)

]
, T L

n (z) :=

[
zI − βL

n C−1
n

−Cn 0N

]
,

we rewrite the above identities as follows

Y L

n+1(z) = T L

n (z)Y
L

n (z), n ∈ N.

From these we see that detY L

n (z) = detY L

0 (z) = 1, as det T L

n = 1, n ∈ N.
For the right orthogonality, we similarly obtain from (6) that
[
PR

n+1(z) −PR

n (z)Cn

QR

n+1(z) −QR

n(z)Cn

]
=

[
PR

n (z) −PR

n−1(z)Cn−1

QR

n(z) −QR

n−1(z)Cn−1

] [
zI − βR

n −Cn

C−1
n 0N

]

and also
[
P

R,(1)
n (z) −P

R,(1)
n−1 (z)Cn

]
=
[
P

R,(1)
n−1 (z) −P

R,(1)
n−2 (z)Cn

] [zI − βR

n −Cn

C−1
n 0N

]

as we have the Hermite-Padé formula for the right orthogonal polynomials,

QR

0 (z)P
R

m(z) + P
R,(1)
m−1 (z) = QR

m(z) .
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Taking the right versions of fundamental matrix Y R

n (z) and transfer ma-
trix T R

n (z),

Y R

n (z) :=

[
PR

n (z) −PR

n−1(z)Cn−1

QR
n(z) −QR

n−1(z)Cn−1

]
, T R

m(z) :=

[
zI − βR

n −Cn

C−1
n 0N

]
,

we see that detY R

n (z) = det Y R

0 (z) = 1, because detT R

n = 1, n ∈ N.
Note that,

T R

n (z) =

[
Cn 0N
0N −C−1

n

]
T L

n (z)

[
Cn 0N
0N −C−1

n

]−1

, n ∈ N.

As a conclusion we arrive to the following left Riemann–Hilbert problem.

Theorem 1. The matrix function Y L

n (z) is, for each n ∈ N, the unique
solution of the Riemann–Hilbert problem; which consists in the determination
of a 2N × 2N complex matrix function such that:
(RH1): Y L

n (z) is holomorphic in C \ γ;
(RH2): has the following asymptotic behavior near infinity,

Y L

n (z) =
(
I +O(z−1)

) [Izn 0N
0N Iz−n

]
;

(RH3): satisfies the jump condition

(
Y L

n (z)
)
+
=
(
Y L

n (z)
)
−

[
I W (z)
0N I

]
, z ∈ γ.

As well as its right version.

Theorem 2. The matrix function Y R

n (z) is, for each n ∈ N, the unique
solution of the Riemann–Hilbert problem; which consists in the determination
of a 2N × 2N complex matrix function such that:
(RH1): Y R

n (z) is holomorphic in C \ γ;
(RH2): has the following asymptotic behavior near infinity,

Y R

n (z) =

[
Izn 0N
0N Iz−n

] (
I +O(z−1)

)
;

(RH3): satisfies the jump condition

(
Y R

n (z)
)
+
=

[
I 0N

W (z) I

] (
Y R

n (z)
)
−
, z ∈ γ.
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Remark 1. Conditions (RH2) and (RH3) are direct consequences of the
representation of the second kind functions (9), (10) and the inverse formu-
las (11), (12), respectively.

Remark 2. For the symmetric and Hermitian reductions these two
Riemann–Hilbert problems are the same and for the fundamental matrices we

have Y R

n (z) =
(
Y L

n (z)
)⊤

, symmetric case, Y R

n (z) =
(
Y L

n (z̄)
)†
, Hermitian case.

In both cases, we will use the notation Yn(z) := Y L

n (z).

We define the family of normalized left fundamental matrices
{
SL

n(z)
}
n∈N

associated with
{
Y L

n (z)
}
n∈N

by means of

SL

n(z) := Y L

n (z)

[
Iz−n 0N
0N Izn

]
, n ∈ N.

Taking into account the representation of
{
P L

n (z)
}
n∈N

and
{
QL

n(z)
}
n∈N

in (5),
we arrive to the asymptotic representation for the normalized fundamental
matrices

SL

n(z) = I +

[
p1
L,n −C−1

n

−Cn−1 q1
L,n−1

]
z−1 +

[
p2
L,n −C−1

n q1
L,n

−Cn−1p
1
L,n−1 q2

L,n−1

]
z−2 + O(z−3),

for |z| → ∞, where

p1
L,n − p1

L,n+1 = βL

n,

p2
L,n − p2

L,n+1 = βL

np
1
L,n + C−1

n Cn−1,

p3
L,n − p3

L,n+1 = βL

np
2
L,n + C−1

n Cn−1p
1
L,n−1,

and

q1
L,n − q1

L,n−1 = βR

n ,

q2
L,n − q2

L,n−1 = βR

nq
1
L,n + CnC

−1
n+1.

Observe that we will also have the following asymptotics for |z| → ∞,

(
SL

n(z)
)−1

= I −

[
p1
L,n −C−1

n

−Cn−1 q1
L,n−1

]
z−1

+

([
p1
L,n −C−1

n

−Cn−1 q1
L,n−1

]2
−

[
p2
L,n −C−1

n q1
L,n

−Cn−1p
1
L,n−1 q2

L,n−1

])
z−2 + O(z−3).
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For the right version we have normalized right fundamental matrices,{
SR

n (z)
}
n∈N

, associated with
{
Y R

n (z)
}
n∈N

SR

n (z) =

[
I z−n 0N
0N I zn

]
Y R

m(z),

with asymptotic behavior at infinity given by

SR

n (z) = I +

[
p1
R,n −Cn−1

−C−1
n q1

R,n−1

]
z−1 +

[
p2
R,n −p1

R,n−1Cn−1

−q1
R,nC

−1
n q2

R,n−1

]
z−2 + O(z−3),

for |z| → ∞, and the asymptotics for the inverse matrix is

(
SR

n (z)
)−1

= I −

[
p1
R,n −Cn−1

−C−1
n q1

R,n−1

]
z−1

+

([
p1
R,n −Cn−1

−C−1
n q1

R,n−1

]2
−

[
p2
R,n −p1

R,n−1Cn−1

−q1
R,nC

−1
n q2

R,n−1

])
z−2 + O(z−3).

Here

p1
R,n − p1

L,n+1 = βR

n ,

p2
R,n − p2

L,n+1 = p1
L,nβ

R

n + Cn−1C
−1
n ,

p3
R,n − p3

R,n+1 = p2
L,nβ

R

n + p1
L,n−1Cn−1C

−1
n ,

and

q1
R,n − q1

L,n−1 = βL

n,

q2
R,n − q2

L,n−1 = q1
L,nβ

L

n + C−1
n+1Cn.

Theorem 3. Let Y L

n and Y R

n be, for each n ∈ N, the unique solutions of the
Riemann-Hilbert problems in Theorems 1 and 2, respectively; then

(Y L

n (z))
−1 =

[
0 I
−I 0

]
Y R

n (z)

[
0 −I
I 0

]
, n ∈ N. (13)

Proof : Let us remember that
{
P L
n

}
n∈N

satisfy (5), i.e.

zP L

n (z) = P L

n+1(z) + βL

nP
L

n (z) + C−1
n Cn−1P

L

n−1(z), n ∈ N,

with initial conditions P L

−1 = 0N and P L

0 = I; and
{
PR

n

}
n∈N

satisfies (6), i.e.

tPR

n (t) = PR

n+1(t) + PR

n (t)Cnβ
L

nC
−1
n + PR

n−1(t)Cn−1C
−1
n , n ∈ N,
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with initial conditions PR

−1 = 0N and PR

0 = I. Multiplying the first equation
on the left by PR

n (t)Cn and the second one on the right by CnP
L

n (z) and
summing up, we arrive after applying telescoping rule

(z − t)

n∑

k=0

PR

k (t)CkP
L

k (z) = PR

n (t)CnP
L

n+1(z)− PR

n+1(t)CnP
L

n (z), (14)

n ∈ N, hence for t = z,

PR

n (z)CnP
L

n+1(z) = PR

n+1(z)CnP
L

n (z), n ∈ N; (15)

As
{
QL

n

}
n∈N

(respectively,
{
QR

n

}
n∈N

) satisfy (5) (respectively, (6)), with ini-

tial conditions QL

−1 = QR

−1 = −C−1
−1 , Q

L

0 = QR

0 = SW (z), proceeding in the
same way with

{
QL

n

}
n∈N

and
{
QR

n

}
n∈N

in place of
{
P L

n}n∈N and
{
PR

n

}
n∈N

,
respectively, we arrive to

(z − t)

n∑

k=0

QR

k (t)CkQ
L

k(z) = QR

n(t)CnQ
L

n+1(z)−QR

n+1(t)CnQ
L

n(z), (16)

n ∈ N, hence for t = z,

QR

n(z)CnQ
L

n+1(z) = QR

n+1(z)CnQ
L

n(z), n ∈ N. (17)

Applying the same procedure mixing the P ’s and theQ’s we get, for all n ∈ N,

(z − t)
n∑

k=0

QR

k (t)CkP
L

k (z) = QR

n(t)CnP
L

n+1(z)−QR

n+1(t)CnP
L

n (z) + I, (18)

(z − t)
n∑

k=0

PR

k (t)CkQ
L

k(z) = PR

n (t)CnQ
L

n+1(z)− PR

n+1(t)CnQ
L

n(z)− I, (19)

and when t = z we arrive to, for all n ∈ N,

QR

n+1(z)CnP
L

n (z)−QR

n(z)CnP
L

n+1(z) = I, (20)

PR

n (z)CnQ
L

n+1(z)− PR

n+1(z)CnQ
L

n(z) = I. (21)

Equations (14), (16), (18) and (19) are known in the literature as Christoffel-
Darboux formulas. Now, from (15), (17), (20) and (21) we conclude that

[
−QR

n−1(z)Cn−1 −QR
n(z)

PR

n−1(z)Cn−1 PR

n (z)

]
Y L

n (z) = I, n ∈ N,
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and as[
−QR

n−1(z)Cn−1 −QR

n(z)
PR

n−1(z)Cn−1 PR

n (z)

]
=

[
0 I
−I 0

]
Y R

n (z)

[
0 −I
I 0

]
, n ∈ N,

we get the desired result.

Corollary 1. In the conditions of theorem 3 we have that for all n ∈ N,

QL

n(z)P
R

n−1(z)− P L

n (z)Q
R

n−1(z) = C−1
n−1, (22)

P L

n−1(z)Q
R

n(z)−QL

n−1(z)P
R

n (z) = C−1
n−1, (23)

QL

n(z)P
R

n (z)− P L

n (z)Q
R

n(z) = 0. (24)

Proof : As we have already prove the matrix
[
−QR

n−1(z)Cn−1 −QR

n(z)
PR

n−1(z)Cn−1 PR

n (z)

]
,

is the inverse of Y L

n (z), i.e.

Y L

n (z)

[
−QR

n−1(z)Cn−1 −QR

n(z)
PR

n−1(z)Cn−1 PR

n (z)

]
= I;

and multiplying the two matrices we get the result.

Corollary 2. In the conditions of theorem 3 we have that for all n ∈ N,

(SL

n(z))
−1 = I +

[
q1
R,n−1 C−1

n

Cn−1 p1
R,n

]
z−1 +

[
q2
R,n−1 q1

R,nC
−1
n

p2
R,n−1Cn−1 p2

R,n

]
z−2 + · · · ,

(SR

n (z))
−1 = I +

[
q1
L,n−1 Cn−1

C−1
n p1

L,n

]
z−1 +

[
q2
L,n−1 Cn−1p

1
L,n−1

C−1
n p2

L,n−1 p2
L,n

]
z−2 + · · · .

3. Constant jump on the support, structure matrices
and zero curvature
So far we have discuss the connection between biorthogonal families of

matrix polynomials for a given matrix of weights W and a specific Riemann–
Hilbert problem. Now, to derive difference and/or differential equations sat-
isfied by these families of matrix polynomials we will we move to a simpler
setting and we will assume that the following holds:
i) The matrix of weights factors out as W (z) = W L(z)W R(z), z ∈ γ.
ii) The factors W L and W R are the restriction to the curve γ of matrices
of entire functions W L(z) and W R(z), z ∈ C.
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iii) The right logarithmic derivative hL(z) :=
(
W L(z)

)′(
W L(z)

)−1
and the

left logarithmic derivative hL(z) :=
(
W R(z)

)−1(
W R(z)

)′
are also entire

functions.
We underline that for a given matrix of weights W (z) we will have many

possible factorization W (z) = W L(z)W R(z). Indeed, if we define an equiva-

lence relation (W L,W R) ∼ (W̃ L, W̃ R) if and only if W LW R = W̃ LW̃ R, then
each matrix of weights W can be though as a class of equivalence, and can
be described the orbit
{
(W Lφ, φ−1W R), φ(z) is a nonsingular matrix of entire functions

}
.

3.1. Constant jump on the support. Given assumptions i) and ii), for
each factorizationW = W LW R, we introduce the constant jump fundamental
matrices which will be instrumental in what follows

ZL

n(z) := Y L

n (z)

[
W L(z) 0N
0N (W R(z))−1

]
, (25)

ZR

n (z) :=

[
W R(z) 0N
0N (W L(z))−1

]
Y R

n (z), n ∈ N. (26)

Taking inverse on (25) and applying (13) we see that ZR

n given in (26) admits
the representation

ZR

n (z) =

[
0 −I
I 0

]
(ZL

n(z))
−1

[
0 I
−I 0

]
, n ∈ N. (27)

Proposition 1. For each factorization W = W LW R, the constant jump fun-
damental matrices ZL

n(z) and ZR

n (z) are, for each n ∈ N, characterized by the
following properties:
i) They are holomorphic on C \ γ.
ii) We have the following asymptotic behaviors

ZL

n(z) =
(
I +O(z−1)

) [znW L(z) 0N
0N Iz−n(W R(z))−1

]
,

ZR

n (z) =

[
znW R(z) 0N

0N (W R(z))−1z−n

] (
I +O(z−1)

)
,

for |z| → ∞.
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iii) They present the following constant jump condition on γ

(
ZL

n(z)
)
+
=
(
ZL

n(z)
)
−

[
I I
0N I

]
,

(
ZR

n (z)
)
+
=

[
I 0N
I I

] (
ZR

n (z)
)
−
,

for all z ∈ γ in the support on the matrix of weights.

Proof : We only give the proofs for the left case because their right ones
follows from (27).
i) As the W L(z) and W R(z) are matrices of entire functions the holomor-
phity properties of ZL

n is inherit from that of the fundamental matri-
ces Y L

n .
ii) It follows from the asymptotic of the fundamental matrices.
iii) From the definition of ZL

n(z) we have

(
ZL

n(z)
)
+
=
(
Y L

n (z)
)
+

[
W L(z) 0N
0N (W R(z))−1

]
,

and taking into account Theorem 1 we arrive to

(
ZL

n(z)
)
+
=
(
Y L

n (z)
)
−

[
I W L(z)W R(z)
0N I

] [
W L(z) 0N
0N (W R(z))−1

]
;

now, as
[
I W L(z)W R(z)
0N I

] [
W L(z) 0N
0N (W R(z))−1

]
=

[
W L(z) 0N
0N (W R(z))−1

] [
I I
0N I

]
,

we get the desired constant jump condition for ZL

n(z).

Remark 3. For the symmetric and Hermitian reductions we respectively have

W L(z) = ρ(z), W R(z) = (ρ(z))⊤, W (z) = ρ(z)
(
ρ(z)

)⊤
,ZR(z) =

(
ZL(z)

)⊤
,

W L(z) = ρ(z), W R(z) = (ρ(z̄))†, W = ρ(z)
(
ρ(z̄)

)†
,ZR(z) =

(
ZL(z̄)

)†
.

In both cases, we will use the notation Zn(z) := ZL

n(z).

3.2. Structure matrices. In parallel to the matrices ZL

n(z) and ZR

n (z),
for each factorization W = W LW R, we introduce what we call structure
matrices given in terms of the right derivative and left derivative (logarithmic
derivatives), respectively,

ML

n(z) :=
(
ZL

n(z)
)′(

ZL

n(z)
)−1

, MR

n (z) :=
(
ZR

n (z)
)−1(

ZR

n (z)
)′
.
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It is not difficult to prove that

MR

n (z) = −

[
0 −I
I 0

]
ML

n(z)

[
0 I
−I 0

]
, n ∈ N.

Proposition 2. The following properties hold:
i) The structure matrices ML

n(z) and MR

n (z) are, for each n ∈ N, matrices
of entire functions in the complex plane.

ii) The transfer matrix satisfies

T L

n (z)Z
L

n(z) = ZL

n+1(z), ZR

n (z)T
R

n (z) = ZR

n+1(z), n ∈ N.

iii) The zero curvature formulas are fulfilled for all n ∈ N.
[
I 0N
0N 0N

]
= ML

n+1(z)T
L

n (z)− T L

n (z)M
L

n(z), (28)

[
I 0N
0N 0N

]
= T R

n (z)M
R

n+1(z)−MR

n (z)T
R

n (z). (29)

iv) The second order zero curvature formulas are satisfied for all n ∈ N.
[
I 0N
0N 0N

]
ML

n(z) +ML

n+1(z)

[
I 0N
0N 0N

]

=
(
ML

n+1(z)
)2
T L

n (z)− T L

n (z)
(
ML

n(z)
)2
, (30)

[
I 0N
0N 0N

]
MR

n+1(z) +MR

n (z)

[
I 0N
0N 0N

]

= T R

n (z)
(
MR

n+1(z)
)2

−
(
MR

n (z)
)2
T R

n (z). (31)

Proof : Again we only give the proofs for the left case. We begin to prove that
the sequence of matrix functions

{
ML

n(z)
}
n∈N

is a sequence of matrices with

coefficients given by entire functions. In fact,
(
ML

n

)
+
=
((

ZL

n

)′)
+

((
ZL

n

)−1
)
+
,

and applying the constant jump condition we get

(
ML

n(z)
)
+
=
((

ZL

n

)′)
−

[
I I
0N I

]−1 [
I I
0N I

]((
ZL

n

)−1
)
−
=
(
ML

n(z)
)
−
.

It follows from the definition of ZL
n that

T L

n (z) = Y L

n+1(z)
(
Y L

n (z)
)−1

= ZL

n+1(z)
(
ZL

n(z)
)−1

.

Taking derivatives with respect to z on Tn(z) we get, for all n ∈ N,
(
T L

n (z)
)′
=
(
ZL

n+1(z)
)′(

ZL

n(z)
)−1

− ZL

n+1(z)
(
ZL

n(z)
)−1(

ZL

n(z)
)′(

ZL

n(z)
)−1

,
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and so, taking into account that

(
ZL

n+1(z)
)′(

ZL

n(z)
)−1

=
(
ZL

n+1(z)
)′(

ZL

n+1(z)
)−1

ZL

n+1(z)
(
ZL

n(z)
)−1

= T L

n+1M
L

n ,

we get (28). Using the same ideas we derive (29). Now, for (30) just replace
the expressions for the derivative of the transfer matrix in (28). Multiply-
ing (28) on the left by ML

n+1 we get

ML

n+1

[
I 0N
0N 0N

]
=
(
ML

n+1(z)
)2
T L

n (z)−
(
ML

n+1T
L

n (z)
)
ML

n(z),

and again by (28) applied to the term ML

n+1T
L

n (z) we get (30).

Higher order transfer matrices

T L

n,ℓ(z) := T L

n+ℓ(z) · · ·T
L

n (z), T R

n,ℓ(z) := T R

n (z) · · ·T
L

n+ℓ(z),

satisfy

Y L

n+ℓ(z) = T L

n,ℓ(z)Y
L

n (z), Y R

n+ℓ(z) = Y R

n (z)T
R

n,ℓ(z).

Proposition 3. The following zero-curvature conditions hold, for all n, ℓ ∈ N

(
T L

n,ℓ(z)
)′
= ML

n+ℓ+1(z)T
L

n (z)− T L

n (z)M
L

n(z),(
T R

n,ℓ(z)
)′
= T R

n (z)M
R

n+ℓ+1(z)−MR

n (z)T
R

n (z).

Proof : As before we only give a discussion for the left situation. It is done
by induction, assuming that it holds for ℓ we prove it for ℓ+ 1:
(
T L

n,ℓ+1(z)
)′
=
(
T L

n+ℓ+1(z)T
L

n,ℓ(z)
)′
=
(
T L

n+ℓ+1(z)
)′
T L

n,ℓ(z) + T L

n+ℓ+1(z)
(
T L

n,ℓ(z)
)′

=

(
ML

n+ℓ+2(z)T
L

n+ℓ+1(z)− T L

n+ℓ+1(z)M
L

n+ℓ+1(z)
)
T L

n,ℓ(z)

+ T L

n+ℓ+1(z)
(
ML

n+ℓ+1(z)T
L

n,ℓ(z)− T L

n,ℓ(z)M
L

n(z)
)
,

= ML

n+ℓ+2(z)T
L

n+ℓ+1(z)T
L

n,ℓ(z)− T L

n+ℓ+1(z)T
L

n,ℓ(z)M
L

n(z),

and the result is proven; recalling that for ℓ = 0 it is just the already proven
zero-curvature condition.

Proposition 4 (Computing the structure matrices). If the subindex +++ indi-
cates that only the positive powers of the asymptotic expansion are kept, for
each factorization W = W LW R, we have for all n ∈ N, the following power
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expansions for the structure matrices

ML

n(z) =

(
SL

n(z)

[ (
W L(z)

)′(
W L(z)

)−1

0N

0N −
(
WR(z)

)−1(
WR(z)

)′
]
(
SL

n(z)
)−1

)

+++

, (32)

MR

n (z) =

(
(
SR

n (z)
)−1

[ (
WR(z)

)−1(
WR(z)

)′
0N

0N −
(
W L(z)

)′(
W L(z)

)−1

]
SR

n (z)

)

+++

. (33)

Proof : Using assumption i) in Proposition 2, we find the expressions for the
left structure matrix, ML

n(z), in terms of SL

n(z) and W (z) = W L(z)W R(z).
For doing so we require the use of the definition of SL

n(z), i.e.

ZL

n(z) = SL

n(z)

[
znW L(z) 0N

0N z−n
(
W R(z)

)−1

]
,

and consequently, we find

ML

n(z) =
(
SL

n(z)
)′(

SL

n(z)
)−1

+ SL

n(z)

[ (
W L(z)

)′(
W L(z)

)−1

+nz−1 0N

0N −
(
WR(z)

)−1(
WR(z)

)′
−nz−1

]
(
SL

n(z)
)−1

.

Given assumption iii) in the begining of this section, on the entire charac-

ter of the right derivative,
(
W L(z)

)′(
W L(z)

)−1
, and of the left derivative,(

W R(z)
)−1(

W R(z)
)′
, and since

(
SL
n(z)

)′(
SL
n(z)

)−1
have only negative powers

of z in its Laurent expansion, and given that the structure matrix ML(z) has
entire coefficients, the asymptotic expansion of ML

n(z) about ∞ must be a
power expansion.
A similar approach holds for the right context, and we can determineMR

n (z)
in terms of SR

n (z) and W (z). Indeed, from

ZR

n (z) =

[
W R(z)zn 0N

0N (W L(z))−1z−n

]
SR

n (z),

we get

MR

n (z) =
(
SR

n (z)
)−1(

SR

n (z)
)′

+
(
SR

n (z)
)−1

[ (
WR(z)

)−1(
WR(z)

)′
+nz−1 0N

0N −
(
W L(z)

)′(
W L(z)

)−1

−nz−1

]
SR

n (z),

and reasoning as for the left case we derive the desired result.
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Notice that given the matrices of entire functions hL(z) and hR(z) the
structure matrices, using (32), can explicitly determined in terms of the
coefficients in SL

n(z) and SR

n (z). Moreover, when hL(z), hR(z) ∈ CN×N [z]
are matrix polynomials, only the first elements, as much as the degree of
the corresponding polynomial, in the asymptotic expansions of SL

n(z) and
SR

n (z) are involved, and we will have that ML

n(z),M
R

n (z) ∈ C
2N×2N [z] are

also polynomials with degree degML

n(z), degM
L

n(z) = max(hL

n(z), h
R

n(z)).

Remark 4. For the reductions we have

MR

n (z) =
(
ML

n(z)
)⊤

, symmetric,

MR

n (z) =
(
ML

n(z̄)
)†
, Hermitian.

In both cases, we will use the notation Mn(z) := ML

n(z).

4.Matrix Pearson equations and Differential equations
4.1. Matrix Pearson equations. As we have seen, the left and right
logarithmic derivatives,

hL(z) =
(
W L(z)

)′(
W L(z)

)−1
, and hR(z) =

(
W R(z)

)−1(
W R(z)

)′
,

play an important role in the discussion of the structure matrices. This
motivates us to adopt the following strategy: assume that instead of a given
matrix of weights we are provided with two matrices, say hL(z) and hR(z),
of entire functions such that the following two matrix Pearson equations
are satisfied

dW L

d z
= hL(z)W L(z), (34)

dW R

d z
= W R(z)hR(z); (35)

and given solutions to them we construct the corresponding matrix of weights
W = W LW R. Moreover, this matrix of weights is also characterized by a
Pearson equation.

Proposition 5 (Pearson Sylvester differential equation). Given two matrices
of entire functions hL(z) and hR(z), any solution of the Sylvester type matrix
differential equation, which we call Pearson equation for the weight,

dW

d z
= hL(z)W (z) +W (z)hR(z) (36)
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is of the form W = W LW R where the factor matrices W L and W R are solu-
tions of (34) and (35), respectively.

Proof : Given solutions W L and W R of (34) and (35), respectively, it follows
intermediately, just using the Leibniz law for derivatives, that W = W LW R

fulfills (36). Moreover, given a solution W of (36) we pick a solution W L

of (34), then it is easy to see that (W L)−1W satisfies (35).

Remark 5. The matrix of weights W does not uniquely determine the left
and right factors; indeed if W = W LW R, with factors solving (34) and (35),

respectively, then W̃ L = W LC and W̃ R = C−1W R for C a nonsingular matrix,

gives also another possible factorization W = W̃ LW̃ R, with factors solving
the partial Pearson equations (34) and (35). This indeterminacy disappears
when one considers the right and left derivatives of the factors.

Remark 6. Given two matrices of entire functions hL(z) and hR(z) and
a matrix of weights W characterized by the matrix Pearson equation (36)
we have the left and right fundamental matrices Y L

n (z) and Y R

n (z) satisfying
corresponding Riemann–Hilbert problems. The associated structure matrices
are from (32) and (33) given by,

ML

n(z) =

(
SL

n(z)

[
hL(z) 0N
0N −hR(z)

] (
SL

n(z)
)−1

)

+++

, (37)

MR

n (z) =

(
(
SR

n (z)
)−1
[
hR(z) 0N
0N −hL(z)

]
SR

n (z)

)

+++

. (38)

Remark 7. For the symmetric and Hermitian reductions, we have

hR(z) =
(
hL(z)

)⊤
, symmetric,

hR(z) =
(
hL(z̄)

)†
, Hermitian,

and (34) and (35) collapses into a single equation
d ρ

d z
= h(z)ρ(z), where

h(z) := hL(z), and the Pearson equation (36) reads

dW

d z
= h(z)W (z) +W (z)(h(z))⊤, symmetric,

dW

d z
= h(z)W (z) +W (z)(h(z̄))†, Hermitian.

(39)
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4.2. Sylvester differential equations for the fundamental matrices.
Following the standard use in Soliton Theory, given a matrix of holomorphic
functions A(z) we define its Miura transform by

M(A) = A′(z) + (A(z))2.

Observe that when A is a right (left) logarithmic derivative A = w′w−1

(A = w−1w′) we have M(A) = w′′w−1 (M(A) = w−1w′′).

Proposition 6 (Sylvester differential linear systems). In the conditions of
Proposition 5, the left fundamental matrix Y L

n (z) and the right fundamental
matrix Y R

n (z) satisfy, for each n ∈ N, the following Sylvester matrix differ-
ential equations,

(
Y L

n (z)
)′
= ML

n(z)Y
L

n (z)− Y L

n (z)

[
hL(z) 0N
0N −hR(z)

]
, (40)

(
Y R

n (z)
)′
= Y R

n (z)M
R

n (z)−

[
hR(z) 0N
0N −hL(z)

]
Y R

n (z), (41)

respectively.

Proof : As ML
n(z) =

(
ZL
n(z)

)′(
ZL
n(z)

)−1
is the right derivative of the constant

jump structure matrix from (25) we get (40); (41) is proven analogously.

We write

ML

n(z) =

[
ML

1,1,n(z) ML

1,2,n(z)

ML
2,1,n(z) ML

2,2,n(z)

]
, MR

n (z) =

[
MR

1,1,n(z) MR

1,2,n(z)

MR
2,1,n(z) MR

2,2,n(z)

]
,

to express the previous results in the following manner.

Corollary 3. The Sylvester matrix differential equations (40) and (41) split
into the following Sylvester differential systems




(
P L

n (z)
)′
+ P L

n (z)h
L(z) = ML

1,1,n(z)P
L

n (z)−ML

1,2,n(z)Cn−1P
L

n−1(z),(
P L

n−1(z)
)′
+ P L

n−1(z)h
L(z) = −C−1

n−1M
L

2,1,n(z)P
L

n (z)

+ C−1
n−1M

L

2,2,n(z)Cn−1P
L

n−1(z),

(42)





(
QL

n(z)
)′
+QL

n(z)h
R(z) = ML

1,1,nQ
L

n(z)−ML

1,2,n(z)Cn−1Q
L

n−1(z),(
QL

n−1(z)
)′
+QL

n−1(z)h
R(z) = −C−1

n−1M
L

2,1,n(z)Q
L

n(z)

+ C−1
n−1M

L

2,2,n(z)Cn−1Q
L

n−1(z),

(43)
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



(
PR

n (z)
)′
+ hR(z)PR

n (z) = PR

n (z)M
R

1,1,n(z)− PR

n−1(z)Cn−1M
R

2,1,n(z),(
PR

n−1(z)
)′
+ hR(z)PR

n−1(z) = −PR

n (z)M
R

1,2,n(z)C
−1
n−1

+ PR

n−1(z)Cn−1M
R

2,2,n(z)C
−1
n−1,




(
QR

n(z)
)′
+ hL(z)QR

n(z) = QR

n(z)M
R

1,1,n(z)−QR

n−1(z)Cn−1M
R

2,1,n(z),(
QR

n−1(z)
)′
+ hL(z)QR

n−1(z) = −QR

n(z)M
R

1,2,n(z)C
−1
n−1

+QR

n−1(z)Cn−1M
R

2,2,n(z)C
−1
n−1,

We first observe from the linear differential systems (42) and (43) satisfied
by the left and right matrix orthogonal polynomials, respectively, we will be
able to extract in some scenarios, see next section on applications, a matrix
eigenvalue problem for a second order matrix differential operator, with ma-
trix eigenvalues. The differential systems (42) and (43) for the left and right
second kind functions also provide interesting information, and we will use
them discover nonlinear equations satisfied by the recursion coefficients.

Remark 8. For the reductions we have

(
Yn(z)

)′
= Mn(z)Yn(z)− Yn(z)

[
h(z) 0N
0N −(h(z))⊤

]
, symmetric,

(
Yn(z)

)′
= Mn(z)Yn(z)− Yn(z)

[
h(z) 0N
0N −(h(z̄))†.

]
, Hermitian.

5. Second order differential operators
We firstly derive, as a consequence of the Sylvester differential linear sys-

tems, second order differential equations fulfilled by the fundamental matri-
ces, and therefore by the matrix biorthogonal polynomials and also by the
corresponding second kind functions.

Proposition 7 (Second order linear differential equations). In the condi-
tions of Proposition 5, the sequence of fundamental matrices,

{
Y L

n

}
n∈N

and{
Y R

n

}
n∈N

, satisfy

(
Y L

n (z)
)′′

+ 2
(
Y L

n (z)
)′
[
hL(z) 0N
0N −hR(z)

]

+ Y L

n (z)

[
M
(
hL(z)

)
0N

0N M
(
− hR(z)

)
]
= M

(
ML

n(z)
)
Y L

n (z), (44)



MATRIX BIORTHOGONALITY: FROM HERMITE TO PAINLEVÉ 25

(
Y R

n (z)
)′′

+ 2

[
hR(z) 0N
0N −hL(z)

] (
Y R

n (z)
)′

+

[
M
(
hR(z)

)
0N

0N M
(
− hL(z)

)
]
Y L

n (z) = Y R

n (z)M
(
MR

n (z)
)
. (45)

Proof : We prove (44). First, let us take a derivative of (40) to get

(
Y L

n (z)
)′′

+
(
Y L

n (z)
)′
[
hL(z) 0N
0N −hR(z)

]
+ Y L

n (z)

[(
hL(z)

)′
0N

0N −
(
hR(z)

)′
]

=
(
ML

n(z)
)′
Y L

n (z) +ML

n(z)
(
Y L

n (z)
)′

but again by (40)

ML

n(z)
(
Y L

n (z)
)′
=
(
ML

n(z)
)2
Y L

n (z)−ML

n(z)Y
L

n (z)

[
hL(z) 0N
0N −hR(z)

]

and if we substitute

ML

n(z)Y
L

n (z) =
(
Y L

n (z)
)′
+ Y L

n (z)

[
hL(z) 0N
0N −hR(z)

]

we finally get

ML

n(z)
(
Y L

n (z)
)′
=
(
ML

n(z)
)2
Y L

n (z)−
(
Y L

n (z)
)′
[
hL(z) 0N
0N −hR(z)

]

− Y L

n (z)

[
hL(z) 0N
0N −hR(z)

]2
,

and the result follows.

Definition 1. For the next corollary we need to introduce the following
C2N×2N valued functions in terms of the difference of two Miura maps

H
L

n(z) =
[
H

L

1,1,n(z) H
L

1,2,n(z)

H
L
2,1,n(z) H

L
2,2,n(z)

]
:= M(ML

n(z))−M
([

hL(z) 0N
0N −hR(z)

])
, (46)

H
R

n(z) =
[
H

R
1,1,n(z) H

R
1,2,n(z)

H
R

2,1,n(z) H
R

2,2,n(z)

]
= M(MR

n (z))−M
([

hR(z) 0N
0N −hL(z)

])
. (47)

Corollary 4. The second order matrix differential equations (44) and (45)
split in the following differential relations

(
P L

n

)′′
(z) + 2

(
P L

n

)′
(z)hL(z) + P L

n (z)M(hL(z))

=
(
M(hL(z)) + H

L

1,1,n(z)
)
P L

n (z)− H
L

1,2,n(z)P
L

n−1(z) , (48)
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(
QL

n

)′′
(z)− 2

(
QL

n

)′
(z)hR(z) +QL

n(z)M(−hR(z))

=
(
M(hL(z)) + H

L

1,1,n(z)
)
QL

n(z)− H
L

1,2,n(z)Q
L

n−1(z) , (49)
(
PR

n

)′′
(z) + 2hR(z)

(
PR

n (z)
)′
(z) +M(hR(z))PR

n (z)

= PR

n (z)
(
M(hR(z)) + H

R

1,1,n(z)
)
− PR

n−1(z)H
R

2,1,n(z) , (50)
(
QR

n

)′′
(z)− 2hL(z)

(
QR

n

)′
(z) +M(−hL(z))QR

n(z)

= QR

n(z)
(
M(hR(z)) + H

R

1,1,n(z)
)
−QR

n−1(z)H
R

2,1,n(z). (51)

Proof : Is a direct consequence of Proposition 7.

5.1. Adjoint operators. We now elaborate around the idea of adjoint
operators in this matrix scenario.

Definition 2. Given linear operator L ∈ L(CN×N [z]) and a matrix of weights
W (z), its adjoint operator L∗ is an operator such that

〈L(P ), P̃ 〉W = 〈P, L∗(P̃ )〉W , P (z), P̃ (z) ∈ C
N×N [z],

in terms of the sesquiliner form introduced in (3).

Care must be taken at this point because in this definition of adjoint of a
matrix differential operator we are not taken the transpose or the Hermitian
conjugate of the matrix coefficients as was done in [30].

Definition 3. Motivated by (48) and (50) we introduce two linear operators
ℓℓℓL and ℓℓℓR, acting on the linear space of polynomials CN×N [z] as follows

ℓℓℓL(P ) := P ′′ + 2P ′hL + PM(hL), ℓℓℓR(P ) := P ′′ + 2hRP ′ +M(hR)P.

Lemma 1. Let us assume that the matrix of weights W (z) do satisfy the
following boundary conditions

W |∂γ = 0N ,
(
W ′ − 2hLW

)∣∣
∂γ

= 0N ,
(
W ′ − 2WhR

)∣∣
∂γ

= 0N , (52)

where ∂γ is the boundary of the curve γ, i.e. its endpoints. Then, W (z)
satisfies a Pearson Sylvester differential equation (36) if, and only if, W (z)
satisfies the following second order matrix differential equations

W ′′ − 2
(
hLW

)′
+M(hL)W = WM(hR) , (53)

W ′′ − 2
(
WhR

)′
+WM(hR) = M(hL)W . (54)
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Proof : Taking derivative on (36), we get

W ′′ = M(hL)W +WM(hR) + 2hLWhR

But, it is easy to see that
(
hLW

)′
= M(hL)W + hLWhR,

(
WhR

)′
= WM(hR) + hLWhR,

and so we arrive to (53) and (54).
The reciprocally result is a consequence of adding the equations (53), (54)

and the boundary conditions (52).

Now, we will see that these two operators are adjoint to each other with
respect to the sesquilinear form induced by the weight functions W .

Proposition 8. Whenever W (z) satisfies (36) and the boundary conditions
(52), we have that

ℓℓℓR =
(
ℓℓℓL
)∗
, (55)

or, equivalently,

〈ℓℓℓL(P ), P̃ 〉W = 〈P, ℓℓℓR(P̃ )〉W , P (z), P̃ (z) ∈ C
N×N [z].

Proof : By using the linearity of these operators it is sufficient to prove

〈ℓℓℓL(P L

n ) , P
R

k 〉W = 〈P L

n , ℓℓℓR(PR

k )〉W , n, k ∈ N .

If we omit, for the sake of simplicity, the z dependece of the integrands in
the integrals, we have

〈ℓℓℓL(P L

n ) , P
R

k 〉W =

∫

γ

(P L

n )
′′W PR

k d z

+ 2

∫

γ

(P L

n )
′ (hLW )PR

k d z +

∫

γ

P L

n M(hL)W PR

k d z ,

and, using integration by parts, we find

〈ℓℓℓL(P L

n ), P
R

k 〉W =
(
(P L

n )
′WPR

k

)∣∣
∂γ

−

∫

γ

(P L

n )
′
((

WPR

k

)′
− 2hLW

)
PR

k d z

+

∫

γ

P L

nM(hL)WPR

k d z
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and so

〈ℓℓℓL(P L

n ), P
R

k 〉W =
(
(P L

n )
′WPR

k

)∣∣
∂γ

−
(
P L

n

((
WPR

k

)′
− 2hLW

)
PR

k

)∣∣∣
∂γ

+

∫

γ

P L

n

(
(W PR

k )
′′ − 2 (hLW PR

k )
′ +M(hL)W PR

k

)
d z.

Now, considering the boundary conditions (52) and taking into account that

(W PR

k )
′′ = W ′′ PR

k + 2W ′ (PR

k )
′ +W (PR

k )
′′ ,

(hLW PR

k )
′ = (hLW )′ PR

k + (hLW ) (PR

k )
′ ,

we arrive to

〈ℓℓℓL(P L

n ) , P
R

k 〉W =

∫

γ

P L

n

(
W ′′ − 2(hLW )′ +M(hL)W

)
PR

k d z

+ 2

∫

γ

P L

n

(
W ′ − hLW

)
(PR

k )
′ d z +

∫

γ

P L

nW (PR

k )
′′ d z;

and so, for all n, k ∈ N,

〈ℓℓℓL(P L

n ) , P
R

k 〉W =

∫

γ

P L

nW
(
(PR

k )
′′ + 2 hR(PR

k )
′ +M(hR)PR

k

)
d z,

or, equivalently,

〈ℓℓℓL(P L

n ) , P
R

k 〉W = 〈P L

n , ℓℓℓR(PR

k )〉W ,

which completes the proof.

Remark 9. For the symmetric or Hermitian reductions we find that

ℓℓℓR(P ) =
(
ℓℓℓL(P⊤)

)⊤
, symmetric,

ℓℓℓR(P ) =
(
ℓℓℓL(P †)

)†
, Hermitian,

where in the last case we take x ∈ R. Relation (55) reads in this case as fol-
lows

ℓℓℓ∗(P ) = (ℓℓℓ(P⊤))⊤, symmetric,

ℓℓℓ∗(P ) = (ℓℓℓ(P †))†, Hermitian;

for P any matrix polynomial and ℓℓℓ := ℓℓℓL.
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Definition 4. Let αL and αR be two N×N matrices and define the following
linear operators acting on the space of matrix polynomials CN×N [z] as follows

LL(P ) := P ′′ + 2P ′hL + PαL, LR(P ) := P ′′ + 2hRP ′ + αRP.

Observe that

LL(P ) = ℓℓℓL(P )− P M(hL) + PαL, LR(P ) = ℓℓℓR(P −M(hR)P + αRP.

We have the following characterization.

Theorem 4. The following conditions are equivalent:
i) LR =

(
LL
)∗

with respect to the matrix of weights W (z).
ii) The matrix of weights W (z) satisfies the matrix Pearson equation (36)
with the boundary conditions (52) as well as fulfills the constraint

(
αL − M(hL)

)
W = W

(
αR − M(hR)

)
. (56)

iii) The matrix of weights W (z) satisfies the boundary conditions (52) as
well as

W ′′ − 2
(
hLW

)′
+ αLW = WαR, (57)

W ′′ − 2
(
WhR

)′
+WαR = αLW. (58)

Proof : Following the ideas in the proof of Proposition 8

〈LL(P ), P̃ 〉W = 〈P,LR(P̃ )〉W

if and only if

〈−P M(hL) + PαL, P̃ 〉W = 〈P,−M(hR)P̃ + αRP̃ 〉W

that is (56) takes place, and so i) is equivalent to ii).
To prove that i) is equivalent to iii) observe that, adding (57) and (58), the

following holds

W ′′ =
(
hLW

)′
+
(
WhR

)′
,

which transforms (36) if we integrate requesting boundary conditions (52).
Moreover, if we subtract (57) and (58) we arrive directly to (56).

Remark 10. For the symmetric or Hermitian reductions we find that

LR(P ) =
(
LL(P⊤)

)⊤
, symmetric,

LR(P ) =
(
LL(P †)

)†
, Hermitian,
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where in the last case we take x ∈ R.
Moreover, the following are equivalent conditions

i) Equations

L∗(P ) = (L(P⊤))⊤, symmetric,

L∗(P ) = (L(P †))†, Hermitian;
(59)

are satisfied by any matrix polynomial P , where L := LL.
ii) The matrix of weights W (z) satisfies the matrix Pearson equation (39)

with the boundary conditions

W |∂γ = 0N ,
(
W ′ − 2hW

)∣∣
∂γ

= 0N , (60)

as well as fulfills the constraint
(
α− M(h)

)
W = W

(
α⊤ −M(h⊤)

)
, symmetric,

(
α− M(h)

)
W = W

(
α† −M((h(z̄))†)

)
, Hermitian,

iii) The matrix of weights W (z) satisfies the boundary conditions (60) as
well as

W ′′ − 2
(
hW

)′
+ αW = Wα⊤, symmetric,

W ′′ − 2
(
hW

)′
+ αW = Wα†, Hermitian.

(61)

5.2. Eigenvalue problems. Now we discuss a result that links our results
based on the Riemann–Hilbert problem with previous seminal results by
Grünbaum and Durán [30, 31, 33, 34]. The next theorem shows when the
polynomials and associated functions of second kind are eigenfunctions of a
second order operator.

Theorem 5 (Eigenvalue problems for Hermite matrix orthogonal polynomi-
als). Let hL(z) and hR(z) be of degree one matrix polynomials, i.e.

hL(z) = ALz +BL, hR(z) = ARz +BR, AL, AR, BL, BR ∈ C
N×N ,

with AL, AR definite negative, and W (z) a matrix of weights a solution of (57)
and (58) subject to the boundary conditions (52). Then, the following condi-
tions are equivalent:
i) The operators LL and LR are adjoint operators with respect to the matrix
of weights W (z), i.e. LR =

(
LL
)∗
.
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ii) The biorthogonal polynomial sequences with respect to W (z), say{
P L

n (z)
}
n∈N

,
{
PR

n (z)
}
n∈N

, are eigenfunctions of LL and LR, i.e. there

exists N ×N matrices, λL

n, λ
R

n such that

LL(P L

n ) = λL

nP
L

n , LR(PR

n ) = PR

n λ
R

n, (62)

with λL

nC
−1
n = C−1

n λR

n, n ∈ N.
iii) The functions of second kind,

{
QL

n(z)
}
n∈N

and
{
QR

n(z)
}
n∈N

, associated

with the biorthogonal polynomials,
{
P L

n (z)
}
n∈N

and
{
PR

n (z)
}
n∈N

, fulfill
the second order differential equations,
(
QL

n

)′′
(z)− 2

(
QL

n

)′
(z) hR(z) +QL

n(z) (α
R − 2AR) = λL

nQ
L

n(z), (63)
(
QR

n

)′′
(z)− 2hL(z)

(
QR

n

)′
(z) + (αL − 2AL)QR

n(z) = QR

n λ
R

n. (64)

Proof : ii) implies i). If n 6= m

〈LL(P L

n (z)) , P
R

m(z)〉W = λL

n〈P
L

n (z) , P
R

m(z)〉W = 0N ,

〈P L

n (z) , L
R(PR

m(z))〉W = 〈P L

n (z) , P
R

m(z)〉WλR

m = 0N ;

and for n = m

〈LL(P L

n (z)) , P
R

n (z)〉W = λL

nC
−1
n , 〈P L

n (z) , L
R(PR

n (z))〉W = C−1
n λR

n , n ∈ N,

which implies that 〈LL(P L

n (z)) , P
R

m(z)〉W = 〈P L

n (z) , L
R(PR

m(z))〉W , n,m ∈ N.
i) implies ii). Let us note that the space of matrix polynomials of a given

degree is invariant under the action of the operators LL and LR; hence

LL(P L

n ) =
n∑

k=0

λL

n,kP
L

k .

Now, taking into account the biorthogonality of the sequences P L

n and PR

n

with respect to W and using that the operators LL and LR are adjoint oper-
ators we have

λL

n,kC
−1
k = 〈LL(P L

n ), P
R

k 〉W = 〈P L

n ,L
R(PR

k )〉W = C−1
n λR

n,kδn,k, n,m ∈ N,

so it holds that LL(P L

n ) = λL

nP
L

k and also LR(PR

n ) = λR

nP
R

k where λL

nC
−1
n =

C−1
n λR

n.
ii) implies iii) We return back to equations (48) and (62) and see that
[
M(hL(z′)), P L

n (z
′)
]
+ H

L

1,1,n(z
′)P L

n (z
′)− H

L

1,2,n(z
′)P L

n−1(z
′)

= −P L

n (z
′)αL + λL

n P
L

n (z
′) .
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Now, multiplying this equation on the right by W (z′)/(z−z′) and integrating
along γ, taking into account the boundary conditions, we get

M(hL(z))QL

n(z)−QL

n(z)M(−hR(z)) + H
L

1,1,n(z)Q
L

n(z)− H
L

1,2,n(z)Q
L

n−1(z)

= QL

n(z) (2A
R − αR) + λL

nQ
L

n(z) .

Now, from (49) we get (63). We have proved that if
{
P L

n

}
n∈N

satisfies a
second order linear differential equation the associated functions of second
kind also does.
We have that
∫

γ

M(hL)(z′)

z′ − z
P L

n (z
′)W (z′) d z′

=

∫

γ

(AL)2(z′)2 + {AL, BL}z′ + AL + (BL)2

z′ − z
P L

n (z
′)W (z′) d z′,

with the anticommutator notation {A,B} = AB + BA. Now, as
∫

γ

(z′)2

z′ − z
P L

n (z
′)W (z′) d z′ =

∫

γ

(z′)2 − z2

z′ − z
P L

n (z
′)W (z′) d z′ + z2QL

n(z)

=

∫

γ

(z′ + z)P L

n (z
′)W (z′) d z′ + z2QL

n(z) ,

and, in the same way,
∫

γ

z′

z′ − z
P L

n (z
′)W (z′) d z′ =

∫

γ

z′ − z

z′ − z
P L

n (z
′)W (z′) d z′ + zQL

n(z)

=

∫

γ

P L

n (z
′)W (z′) d z′ + zQL

n(z) ,

we finally obtain
∫

γ

M(hL)(z′)

z′ − z
P L

n (z
′)W (z′) d z′ = M(hL)QL

n(z), n ≥ 2,

where we have used the orthogonality conditions for
{
P L

n

}
n∈N

. We also have
∫

γ

P L

n (z
′)
M(hL)(z′)− αL

z′ − z
W (z′) d z′ =

∫

γ

P L

n (z
′)W (z′)

M(hR)(z′)− αR

z′ − z
d z′

= QL

n(z) (M(hR)(z)− αR), n ≥ 2.
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Using the same ideas we prove that for all n ≥ 1, j = 1, 2,
∫

γ

H
L

1,j,n(z
′)

z′ − z
P L

n−j+1(z
′)W (z′) d z′ = H

L

1,j,n(z)Q
L

n−j+1(z). (65)

In fact, by definition (46) we know that the matrix polynomials HL

1,j,n(z
′) are

of degree at most one, i.e.

H
L

1,j,n(z
′) = H

L,0
1,j,nz

′ + H
L,1
1,j,n , H

L,0
1,j,n,H

L,1
1,j,n ∈ C

N×N .

Summing and subtracting in (65) HL

1,j,n(z) we get in the left hand side

∫

γ

H
L

1,j,n(z
′)

z′ − z
P L

n−j+1(z
′)W (z′) d z′

=

∫

γ

H
L

1,j,n(z
′)− H

L

1,j,n(z)

z′ − z
P L

n−j+1(z
′)W (z′) d z′ + H

L

1,j,n(z)Q
L

n−j+1(z) ;

hence, as

H
L

1,j,n(z
′)− H

L

1,j,n(z)

z′ − z
= H

L,0
1,j,n ,

we arrive to
∫

γ

H
L

1,j,n(z
′)

z′ − z
P L

n−j+1(z
′)W (z′) d z′

= H
L,0
1,j,n

∫

γ

P L

n−j+1(z
′)W (z′) d z′ + H

L

1,j,n(z)Q
L

n−j+1(z) ,

and by the orthogonality of
{
P L

n−j+1(z)
}
n∈N

with respect to W (z) we get for
j = 1, 2, and for all n = 1, 2, . . ., that (65) holds true.
From (50) and taking into account that LR(PR

n ) = PR

n λR

n we get
[
PR

n (z
′),M(hR)(z′)

]
+ PR

n (z
′)HR

1,1,n(z
′)− PR

n−1(z
′)HR

2,1,n(z
′)

= −αR PR

n (z
′) + PR

n (z
′) λR

n .

Now, multiplying this equation on the left by W (z′)/(z − z′) and integrate
(using the boundary conditions) over γ, we get

QR

n(z)M(hR)(z)−M(−hL)(z)QR

n(z) +QR

n(z)H
R

1,1,n(z)−QR

n−1(z)H
R

2,1,n(z)

= (2AL − αL)QR

n +QR

n λ
R

n ,
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and so, from (51) we arrive to (64).
iii) implies ii). Taking derivatives with respect to z we get, after inte-

gration by parts and using the boundary conditions

(QL

n)
′(z) =

∫

γ

P L

n (z
′)W (z′)

(z′ − z)2
d z′ ,

(QL

n)
′′(z) = 2

∫

γ

P L

n (z
′)W (z′)

(z′ − z)3
d z′ =

∫

γ

(P L

n (z
′)W (z′))′′

z′ − z
d z′.

Moreover,

− 2(QL

n)
′(z)hR(z) = 2

∫

γ

P L

n (z
′)W (z′)

hR(z′)− hR(z)

(z′ − z)2
d z′

−2

∫

γ

P L

n (z
′)W (z′)

hR(z′)

(z′ − z)2
d z′ = 2QL

n(z)A
R−2

∫

γ

(P L
n (z

′)W (z′)hR(z′))′

z′ − z
d z′.

Now, we plug all this information into (63) and deduce that
∫

γ

(P L

n )
′′W + 2(P L

n )
′(W ′ −WhR) + P L

n (W
′′ − 2(WhR)′) +WαR)

z′ − z
d z′

= λL

n

∫

γ

P L

nW

z′ − z
d z′ ;

by the hypothesis over W we get
∫

γ

(P L

n )
′′(z′) + 2(P L

n )
′(z′)hL(z′) + P L

nα
L − λL

nP
L

n

z′ − z
W (z′) d z′ = 0N .

Hence, we get that
{
P L

n

}
n∈N

satisfies (62). Using analogous arguments it

can be proven that the equation (64) for
{
QR

n

}
n∈N

implies that
{
PR

n

}
n∈N

satisfies (62).

The interpretation in terms of adjoint operators, inherits from the Riemann–
Hilbert problem the characterization for the

{
QL

n

}
n∈N

and
{
QR

n

}
n∈N

. More-
over, Theorems 4 we see that W in Theorem 5 can be taken as a solution of
a Pearson Sylvester differential equation like (36) and satisfies (56).

Remark 11. For the symmetric or Hermitian reductions we take h(z) =
Az + B, with A definite negative, and W (z) a matrix of weights a solution
of (61) subject to the boundary conditions (60). Then, the following condi-
tions are equivalent:
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i) Equation (59) is satisfied.
ii) The matrix orthogonal polynomials with respect to W (z) are eigenfunc-
tions of L.

iii) The functions of second kind,
{
Qn(z)

}
n∈N

, associated with the ma-

trix orthogonal polynomials,
{
Pn(z)

}
n∈N

fulfill the second order differen-
tial equations,

(
Qn

)′′
(z)− 2

(
Qn

)′
(z) (h(z))⊤ +Qn(z) (α

⊤ − 2A⊤) = λnQn(z), symmetric,
(
Qn

)′′
(z)− 2

(
Qn

)′
(z) (h(z̄))† +Qn(z) (α

† − 2A†) = λnQn(z), Hermitian.

The equivalences, described in the previous remark, excluding the one for
the second kind functions (which is new), coincide with those of [31]. There-
fore, these results could understood as an extension of those by Durán and
Grünbaum to the non Hermitian orthogonality scenario.

6. Nonlinear difference equations for the recursion coef-
ficients
Using the Riemann–Hilbert approach we will derive in this section non-

linear matrix difference equations fullfilled by the recursion coefficients. We
will consider three different possibilities for the Pearson equations satisfied
by the matrix of weights.

6.1. Nonlinear difference equations for Hermite matrix polynomi-
als. We now explore the most simplest case when max(hL

n(z), h
R

n(z)) = 1 in
full generality. We take

hL(z) = ALz + BL, hR(z) = ARz +BR,

for arbitrary matrices AL, BL, AR, BR ∈ CN×N , with AL, AR definite negative
matrices. Thus, the matrix of weights W (z) is a solution of the following
Pearson equation (a Sylvester linear differential equation)

W ′(z) = (ALz +BL)W (z) +W (z)(ARz + BR).

For simplicity we take γ = R. Hence, the structure matrices have, for all
n ∈ N, cf. (37) and (38), the following form,

ML

n(z) = ALz +KL

n,A
L =

[
AL 0N
0N −AR

]
,KL

n =

[
BL+
[
p1
L,n,A

L

]
C−1

n AR+ALC−1

n

−Cn−1A
L−ARCn−1 −BR−

[
q1
L,n−1

,AR

]
]
. (66)
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The Silvester differential system (40) for the left fundamental matrix is, for
all n ∈ N.

(
Y L

n (z)
)′
+
[
Y L

n (z),
[
ALz+BL 0N

0N −ARz−BR

]]
=

[ [
p1
L,n,A

L

]
C−1

n AR+ALC−1

n

−Cn−1A
L−ARCn−1 −

[
q1
L,n−1

,AR

]
]
Yn(z),

that is, for all n ∈ N,

(P L

n )
′ +
[
P L

n , A
Lz +BL

]
=
[
p1
L,n, A

L
]
P L

n −
(
C−1

n AR + ALC−1
n

)
Cn−1P

L

n−1, (67)

Cn−1(Q
L

n−1)
′ −
[
Cn−1Q

L

n−1, A
Rz + BR

]

=
(
Cn−1A

L + ARCn−1

)
QL

n −
[
q1n−1, A

R
]
Cn−1Q

L

n−1, (68)

Cn−1(P
L

n−1)
′ + Cn−1Pn−1

(
ALz +BL

)
+
(
ARz + BR

)
Cn−1P

L

n−1

=
(
Cn−1A

L + ARCn−1

)
P L

n −
[
q1
L,n−1, A

R
]
Cn−1P

L

n−1, (69)

(QL

n)
′ −QL

n

(
ARz + BR

)
−
(
ALz + BL

)
QL

n

=
[
p1n, A

L
]
QL

n −
(
C−1

n AR +ALC−1
n

)
Cn−1Q

L

n−1. (70)

Taking the (n−1)-th z power of the (67), the −n-th of (68), the −(n−1)-th
of (69) and the −(n+ 1)-th of (70) we get, for all n ∈ N,

nIN +
[
p1
L,n, B

L
]
+
[
p2
L,n, A

L
]
=
[
p1
L,n, A

L
]
p1n −

(
C−1

n AR + ALC−1
n

)
Cn−1,

nIN +
[
q1n−1, B

R
]
+
[
q2
L,n−1, A

R
]

= −
(
Cn−1A

L + ARCn−1

)
C−1

n +
[
q1
L,n−1, A

R
]
q1
L,n−1,

Cn−1B
L +BRCn−1 + Cn−1

[
p1
L,n−1, A

L
]

= −
(
Cn−1A

L + ARCn−1

)
βL

n−1 −
[
q1
L,n−1, A

R
]
Cn−1,

BRCn + CnB
L +

[
q1
L,n, A

R
]
Cn = −Cn

[
p1
L,n, A

L
]
−
(
ARCn + CnA

L
)
βL

n.

After some cleaning we reckon that the system is, for all n ∈ N, equivalent to

I −

[
βL

n, B
L −

[ n−1∑

k=0

βL

k , A
L

]
+ ALβL

n

]

= C−1
n Cn−1A

L − C−1
n+1A

RCn − ALC−1
n+1Cn + C−1

n ARCn−1,
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and

Cn−1B
L + BRCn−1 − Cn−1

[ n−2∑

k=0

βL

k , A
L

]

= −
(
Cn−1A

L +ARCn−1

)
βL

n−1 −
[ n−1∑

k=0

Ckβ
L

k(Ck)
−1, AR

]
Cn−1.

6.2. A matrix extension of the alt-dPI. We now discuss the case
max(hL

n(z), h
R
n(z)) = 2, but we perform a strong simplification as we take

hR = 0N and hL = λ+ µz + νz2, with λ, µ, ν ∈ CN×N arbitrary matrices but
for ν being negative definite nonsingular matrix. Thus, the Pearson equation
will be

W ′(z) = (λ+ µz + νz2)W (z). (71)

We obviously drop off the notation that distinguish left and right polynomials
and only describe the results for the left case. The integrals are taken along
γ, a smooth curve for which we have a simple Riemann–Hilbert problem as
depicted in the following diagram:

Branch of hiperbola 3x2 − y2 = 3
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The structure matrix, cf. (37), is a second order polynomialMn(z) = M0
nz

2+
M1

nz +M2
n with

M0
n =

[
ν 0N
0N 0N

]
, M1

n =

[
µ−

[
ν, p1n

]
νC−1

n

−Cn−1ν 0

]
,

and

M2
n =

[
λ−
[
β,p1n

]
−
[
ν,p2n

]
+ν

(
p1n

)2
−p1nν p

1

n+νC−1

n Cn−1

(
µ−
[
ν,p1n

]
+γβn

)
C−1

n

−Cn−1

(
µ+p1n−1

ν−νp1n

)
−Cn−1ν C

−1

n

]
.

Proposition 9 (Matrix alt-dPI system). The recursion coefficients βn, γn of
the matrix orthogonal polynomials with matrix of weights a solution of the
Pearson equation (71) are subject to the following system of equation,

(
µ+

[
ν,

n−1∑

k=0

βk

]
+ γ(βn + βn+1)

)
γn+1 = −(n+ 1)I, (72)

λ+ γ
(
γn + γn+1 + β2

n

)
− µβn +

[
µ,

n−1∑

k=0

βk

](
IN + βn

)

+
[
ν,

n−1∑

m=1

γm −
∑

0≤k<m≤n−1

βmβk

]
+
[
ν,

n−1∑

k=0

βk

] n−1∑

k=0

βk = 0N , n ∈ N. (73)

Proof : Given the asymptotics about ∞,

−CnQn(z) = INz
−n−1 + q1nz

−n−2 + · · · ,

we read the coefficient of z−n−1 coming from

Cn−1Q
′
n−1(z) = −Mn

2,1(z)Qn(z) +Mn
2,2(z)Cn−1Qn−1(z) ,

with Mn
2,1 = −Cn−1νz − Cn−1

(
µ + p1n−1ν − νp1n

)
, Mn

2,2 = −Cn−1νC
−1
n , we

get (72); and from

Q′
n(z) = Mn

1,1Qn(z)−Mn
1,2(z)Cn−1Qn−1(z) ,

with

Mn
1,1 = νz2

+
(
µ−

[
ν, p1n

])
z +

(
λ−

[
µ, p1n

]
−
[
ν, p2n

]
+ ν
(
p1n
)2

+ νC−1
n Cn−1 − p1nν p

1
n

)

Mn
1,2 = νC−1

n z +
(
µ−

[
ν, p1n

]
+ νβn

)
C−1

n ;

we deduce (73) from the z−n−1-coefficient.
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Another form of writing this result is

Proposition 10 (Matrix alt-dPI system). Given matrix orthogonal polyno-
mials with matrix of weights W (z) supported on γ, a solution of the Pearson
equation (71), the recursion coefficients γn can be expressed directly in terms
of the recursion coefficients βn, for all n ∈ N,

γn+1 = −(n+ 1)
(
β +

[
γ,

n−1∑

k=0

βk

]
+ γ(βn + βn+1)

)−1

.

The coefficients βn fulfill, for all n ∈ N, the following non–Abelian alt-dPI,

λ+ ν
(
γn + γn+1 + β2

n

)
− µβn +

[
β,

n−1∑

k=0

βk

](
IN + βn

)

+
[
ν,

n−1∑

m=1

γm −
∑

0≤k<m≤n−1

βmβk
]
+
[
ν,

n−1∑

k=0

βk

] n−1∑

k=0

βk = 0N .

Proof : From (72) we get the γn in terms of βn, plugged this relation into the
second one gives the following nonlinear equation for the matrices βn.

If we assume that ν = −I as expected strong simplifications occur. In the
first place we find that

γn+1 = −(n+ 1)(µ− βn − βn+1)
−1,

and, secondly, we derive the following simplified version of a non–Abelian
alt-dPI equation

λ− β2
n + n(β − βn−1 + βn)

−1 + (n+ 1)(µ− βn − βn+1)
−1 − µβn

= −
[
µ,

n−1∑

k=0

βk

](
IN + βn

)
.

Moreover, when we choose ν = −I and µ = 0N the non local terms disappear
and the equation simplifies further to

−n(βn−1 + βn)
−1 − (n+ 1)(βn + βn+1)

−1 + β2
n = λ.

Let us remind the reader how the alt-dPI equation appeared for the first time.
Going back to the scalar context, in Magnus’ work [47], associated with the
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weight functions solution of the Pearson equation W ′(z) =
(
z2 + t

)
W (z), we

can find the following scalar alternate discrete Painlevé I system

γn + γn+1 + β2
n + t = 0,

n+ γn
(
βn + βn−1

)
= 0,

which can be written as

−
n

βn + βn−1
−

n+ 1

βn + βn+1
+ β2

n + t = 0.

6.3. The matrix dPI system. We now increase further the degree of
the polynomials appearing in the Pearson equations. We consider the case
with max(hL

n(z), h
R

n(z)) = 3, but we perform a strong simplification we take
hR = 0N and hL = µz + νz3, with µ, ν ∈ C

N×N arbitrary matrices but
for ν being negative definite nonsingular matrix. Now we take γ = R. Ob-
serve that we have non taken the more general possible polynomial of degree
three, but an odd one, with well defined parity on z, this simplifies widely
the computations.
The associated Pearson type equation for a matrix of weights of Freud type:

W ′(z) = (µz + νz3)W (z) (74)

The struture matrix, cf. (37), is a third order polynomial, that we write
as follows

Mn(z) = M0
nz

3 +M1
nz

2 +M2
nz +M3

n

with

M0
n =

[
ν 0N
0N 0N

]
, M2

n =

[
ν + [p2n, ν] + µC−1

n Cn−1 0N
0N −Cn−1νC

−1
n

]
,

M1
n =

[
0N µC−1

n

−Cn−1µ 0N

]
, M3

n =

[
0N ξnC

−1
n

−Cn−1ξn−1 0N

]
,

where ξn = µ+ [p2n, ν] + ν(C−1
n Cn−1 + C−1

n+1Cn), n ∈ N.
With this at hand we find.

Proposition 11 (Matrix dPI equation). The recursion coefficients γn of the
matrix orthogonal polynomials with matrix of weights satisfying the Pearson
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equation (74) fulfill the following non–Abelian dPI equation

(
µ+ ν(γn+2 + γn+1 + γn) +

[
ν,

n−1∑

k=1

γk
])

γn+1 = −(n+ 1)I, n ∈ N.

Proof : Compare the coefficients of z−n−1 in the ODE for the second kind
functions we get directly (without additional computations) the MdPI equa-
tions for the three term relation coefficients of

{
Pn(z)

}
n∈N0

.

Notice the appearance again of non local terms, that disappear if we take
ν = −I and the matrix dPI reads

γn+2 = nγ−1
n − γn − γn−1 − µ, n ∈ N,

which was derived in the matrix context for the first time in [15] and the con-
finement of singularities for this relation was proven in [16, 15], see also [39].
In 1995, Alphonse P. Magnus [47] for the Freud weight satisfying the Pearson
equation W ′(z) = −

(
z3 + 2tz

)
W (z) presented the following scalar discrete

Painlevé I equation

γn
(
γn−1 + γn + γn+1

)
+ 2tγn = n.
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Journal of Physics A: Mathematical & General 32 (1999) 655-669. 4
[22] E. Daems and A. B. J. Kuijlaars, Multiple orthogonal polynomials of mixed type and non-

intersecting Brownian motions, Journal of Approximation Theory 146 (2007) 91–114. 3
[23] E. Daems, A. B. J. Kuijlaars, and W. Veys, Asymptotics of non-intersecting Brownian motions

and a 4×4 Riemann–Hilbert problem, Journal of Approximation Theory 153 (2008) 225–256.
3
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