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1. Introduction
Erwin Schrödinger won the Nobel prize for physics mainly due to the paper

‘Quantisierung als Eigenwertproblem’ which appeared in 1926 in four parts
in the first of which, the Schrödinger equation is announced. In the third
part, [S, p. 481] , he investigates spectra using his wave mechanics and in
particular is led to consider a determinant which he writes as∣∣∣∣∣∣∣∣∣∣∣∣∣

−ε εm+1,m

εm+1,m −ε εm+2,m

εm+2,m −ε . . .
. . . . . . . . .

. . . −ε εl−1,m

εl−1,m −ε

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

defining εn,m = −6lg
√

(l2−n2)(n2−m2)
4n2−1 , see [S, p. 480]. Here g is a constant and

l,m, n are positive integers, so that the matrix is (l − m) × (l − m) and n
may assume the values m,m+ 1, ..., l − 1; m the values 1, ..., l − 1.

Schrödinger then says: ‘If one divides each term by the common factor 6lg
of the εnm and views k∗ = − ε

6lg as unknown, then the equation [determi-

nant=0] has the roots k∗ = ±(l−m−1),±(l−m−3),±(l−m−5), ... which
series stops with ±1 or with 0 (inclusively) depending on whether the degree
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I thank professor Eef van Beveren from the Department of Physics for questions on tridiagonal

matrices; and making Schrödinger’s paper available.
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2 A. KOVACEC

l−m is even or odd. The proof of this, unfortunately, you do not find in the
mathematical appendix, since I did not succeed in finding it ...’ (author’s
translation; emphasis by Schrödinger).

The 1991 paper [TT, p. 342] claims that Schrödinger unwittingly consid-
ered in his famous paper determinants known as Sylvester Kac determinants.
This claim is from time to time repeated; see e.g. [BR, p.408]. The Sylvester
Kac determinant is given as

SKn(x) =

∣∣∣∣∣∣∣∣∣∣∣

x 1
n− 1 x 2

n− 2 . . . . . .
. . . x n− 1

1 x

∣∣∣∣∣∣∣∣∣∣∣
= (−n+ 1 + x)(−n+ 3 + x) · · · (n− 3 + x)(n− 1 + x).

According to the history reported in Taussky and Todd [TT], this formula
was first stated without proof by Sylvester in 1854 in a half page long paper
reprinted in [TT], but a proof was provided only in 1866 by F. Mazza; in
1947 Mark Kac [K] and in 1957 P. Rósza [R] independently, not knowing
about the earlier results found other proofs; all these are reviewed in [TT] .
But perhaps the best proof this author knows of can be found in Edelman
and Kostlan’s paper [EK, p.18]. Note that depending on whether n is odd or
even, 0 is or is not a root; that is an eigenvalue of the underlying zero-axial
matrix.

It seems not at all obvious how to deduce from the results known about the
Sylvester Kac matrix the value of the Schrödinger determinant and in spite
of a thorough search through the literature on tridiagonal matrices we have
not found any paper that would have Schrödinger’s conjecture as a topic of
investigation. The claim in [TT] seems due to a confusion not free of pe-
culiarities: At about the same time Schrödinger wrote his famous series of
papers, he also published together with F. Kohlrausch a short paper [KS] on
Boltzmann’s H-theorem which the present author had the possibility to see∗

and in that paper indeed stumbled in the second section over a linear system
whose matrix (never written down) would be essentially that of the Sylvester
Kac matrix. Now the 1968 appendix of Mark Kac’s Chauvenet prize-winning

∗Thanks to magnificent libraries Coimbra University possesses.
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paper [K],[A], on Brownian motion to which [TT] refers, contains in its ref-
erences [KS] but not [S], while [TT] has in its references [S] but not [KS].
Furthermore, as we saw, for the n × n Schrödinger determinants the values
of the n× n Sylvester Kac determinant are predicted. For example, we have
after substituting −ε by x and putting

εnm =

√
(l2 − n2)(n2 −m2)

4n2 − 1

for (l,m) = (10, 5) and (l,m) = (11, 6), respectively, the values εm+1,m =

8/
√

13 and εm+1,m = 2
√

6/5 and get the determinants∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 8√
13

8√
13

x 2
√

102
65

2
√

102
65 x 6

√
13
85

6
√

13
85 x 2

√
14
17

2
√

14
17 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

respectively. Both these determinants are equal to the 5 × 5 Sylvester Kac
determinant which is∣∣∣∣∣∣∣∣∣∣

x 1
4 x 2

3 x 3
2 x 4

1 x

∣∣∣∣∣∣∣∣∣∣
= (−4 + x)(−2 + x)(x)(2 + x)(4 + x).

Is this so in general?
If we define n = l −m, then we have l2 − (m + i)2 = (n− i)(2m + n + i),

and Schrödinger’s n× n determinants can be written

Schn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ε1,2

ε1,2 x ε2,3

ε2,3 x . . .
. . . . . . . . .

. . . x εn−1,n

εn−1,n x

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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where i = 1, 2, ..., n − 1 , m ∈ Z, is a free parameter which we mostly will
suppress in notation and the εi,1+i = εi,1+i(m) ≥ 0 are defined by

ε2
i,1+i =

i(n− i)(2m+ i)(2m+ n+ i)

(2m+ 2i− 1)(2m+ 2i+ 1)
.

From this formula and an argument in Section 2 it is clear that

as m→∞, we have εi,1+i → i(n− i)

and so whatever the Schrödinger determinant is, it converges to the Sylvester
Kac determinant of the same size. Schrödinger’s conjecture Schn(x) = SKn(x)
says of course much more: namely that the polynomial in x, Schn(x), has
coefficients that do not depend on m. From observations on partial fraction
decomposition it will follow in Section 3 that the coefficients of the polyno-
mial Schn(x) must be Q-linear combinations of the fractions

1/(2m+ 2i− 1), i = 1, 2, ..., n− 1.

Hence we shall have to show that the coefficients of these fractions are all
0. To prove this is the topic of sections 4 and 6. Section 5 proves some
special cases, partly to cover limiting cases not transparently covered by the
arguments for the typical case, partly to prepare the reader’s mind for the
somewhat technical section that follows.

Since any of the underlying zero axial Schrödinger matrices of given size n
has the same n distinct eigenvalues that the zero axial Sylvester Kac matrix
of size n has, these matrices are similar to each other. The author has
not worked on the problem to find parametrized similarity transforms that
diagonalize the Schrödinger matrices of given size in dependence of m or that
transforms them into Sylvester Kac matrices. It might be hard to find such
transforms but at the other hand they might yield a more elegant proof. A
deeper understanding of Schrödinger’s determinant might also come from the
relation existing between orthogonal polynomials and tridiagonal matrices
via Favard’s theorem; see e.g. [Ch]. We should also note that a number of
generalizations of Sylvester Kac determinants are known (see e.g. [MM] or
papers on Cayley continuants and others relating to Favard’s theorem) but
as yet this author was not able to use them in a productive way to tackle
Schrödinger’s conjecture.
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2. Translation to a conjecture for coefficients
Chapter XIII of the famous treatise by Muir enlarged by Metzler, [MM],

is completely dedicated to ‘continuants’, nowadays better known as determi-
nants of tridiagonal matrices. [MM] defines the compact notation

K

 b1 b1 · · · bn−1

a1 a2 · · · an−1 an
c1 c2 · · · cn−1

 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1

c1 a2 b2

c2 a3 b3

c3
. . . . . .
. . . . . . bn−1

cn−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which if context allows [MM] abbreviates to K(1, n).
After some combinatorial reasoning [MM, §545] concludes that the deter-

minant K(1, n) can be formed from a1a2...an by replacing in all possible ways
0,1,2, or more pairs of consecutive as by the signed product of bs and c that
have the same index as the first of the consecutive as. In other words for
each pair ara1+r replaced we have to write −brcr.

Thus for example

K

 b1 b2 b3 b4

a1 a2 a3 a4 a5

c1 c2 c3 c4

 =


a1a2a3a4a5 + (−b1c1)a3a4a5 + a1(−b2c2)a4a5 +
a1a2(−b3c3)a5 + a1a2a3(−b4c4) +
(−b1c1)(−b3c3)a5 + (−b1c1)a3(−b4c4) +
a1(−b2c2)(−b4c4).

An important obvious consequence is

Lemma 2.1. Assume b1, c1, ..., bn−1, cn−1 and b′1, c
′
1, ..., b

′
n−1, c

′
n−1 are complex

numbers such that for i = 1, ..., n− 1 there holds bici = b′ic
′
i. Then

K

 b1 b2 · · · bn−1

a1 a2 · · · an−1 an
c1 c2 · · · cn−1

 = K

 b′1 b
′
2 · · · b′n−1

a1 a2 · · · an−1 an
c′1 c

′
2 · · · c′n−1

 .

We write from now on

ei = ε2
i,1+i and ci = i(n− i).

By the previous lemma, the n× n Schrödinger determinant then is

Schn(x) = K

 e1 e2 ... en−1

x x x
1 1 ... 1

 ,
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while the n× n Sylvester Kac determinant is

SKn(x) = K

 c1 c2 ... cn−1

x x x
1 1 ... 1

 .

According to the previous arguments, a tridiagonal n×n matrix whose di-
agonal consists entirely of xes must have as determinant a monic polynomial
in x of degree n with coefficients of xn−1, xn−3, ... equal to 0. Hence we have
for certain reals coefν and coef ′ν developments

Schn(x) =

bn/2c∑
i=0

coefn−2i x
n−2i and SKn(x) =

bn/2c∑
i=0

coef ′n−2i x
n−2i.

From this it follows that for n odd, x|Schn(x) so that 0 is an eigenvalue of
the underlying zero axial matrix. To keep notation simple, the Muir’s rule
suggests to define a ≺ b to say that b − a ≥ 2. With this we can write the
nonzero coefficients of Schn(x) and of SKn(x) as follows.

coefn = 1
coefn−2 = −

∑
1≤i≤n−1

ei

coefn−4 = +
∑

1≤i≺j≤n−1

eiej

...
...

...
coefn−2µ = (−1)µ

∑
1≤i1≺i2...≺iµ≤n−1

ei1ei2 · · · eiµ
...

...
...

coef ′n = 1
coef ′n−2 = −

∑
1≤i≤n−1

ci

coef ′n−4 = +
∑

1≤i≺j≤n−1

cicj

...
...

...
coef ′n−2µ = (−1)µ

∑
1≤i1≺i2...≺iµ≤n−1

ci1ci2 · · · ciµ
...

...
....

Thus the conjecture is equivalent to:

Conjecture 2.2. For all µ = 0, 1, 2, ..., bn/2c there holds coefn−2µ = coef ′n−2µ,
that is, ∑

1≤i1≺i2...≺iµ≤n−1

ei1ei2 · · · eiµ =
∑

1≤i1≺i2...≺iµ≤n−1

ci1ci2 · · · ciµ.

After skimming over Proposition 3.1 below, the reader will have no dif-
ficulty to follow the proofs of some of these equalities, namely the cases
µ = 0, 1, and n even ,µ = bn/2c , given in Section 5.
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3. Notation and auxiliary results
Our proof of Schrödinger’s conjecture unfortunately makes necessary a

number of abbreviations in order to obtain manageable expressions. Also,
we avoid repetitions giving certain letters a fixed meaning.

Throughout the rest of the paper, the letters n, T, µ, E have the following
meanings.
n is a fixed integer ≥ 3; it indicates the size of the determinant.
µ is a fixed integer ∈ {0, 1, ..., bn/2c}; it refers to the µ in Corollary 2.2.
T is a fixed integer ∈ {1, ..., n}. Its significance is explained below.
x will replace 2m as the parameter in ei. (x is not used anymore in the
previous sense.)

The symbols ci, di, ti, ei, ei1i2...iµ and E are defined as follows:

ci := i(−i+ n) i ∈ Z
di := 1/(x+ 2i− 1) i = 1, ..., n
ti := −2−1c−1+icidi i = 1, ..., n

ei := ci
(x+ i)(x+ n+ i)

(x+ 2i− 1)(x+ 2i+ 1)
i = 1, ..., n− 1

ei1i2...iµ := ei1ei2 · · · eiµ
E :=

∑
1≤i1≺i2...≺iµ≤n−1

ei1ei2 · · · eiµ

Proposition 3.1. Among the ci, di, ti, and ei there hold the following rela-
tions

ei = ci + ti − t1+i

didj = 2−1(j − i)−1(di − dj) i 6= j
ditj = −2−2(j − i)−1c−1+jcj(di − dj) i 6= j
titj = 2−3(j − i)−1c−1+icic−1+jcj(di − dj) i 6= j

0 = c−2+i − 2ci + c2+i + 8 i ∈ Z
and for i 6= j, j + 1 :

diej = 2−2cj(4di − c−1+j(j − i)−1(di − dj) + c1+j(1 + j − i)−1(di − d1+j)).

Proof : The identities claimed can all be verified by direct computation. For
example, the computation

ci + ti − t1+i = ci − 2−1c−1+icidi + 2−1cic1+id1+i

= ci(1− 2−1c−1+idi + 2−1c1+id1+i)

= ci(1− 2−1(−1+i)(1−i+n)
x+2i−1 + 2−1(1+i)(−1−i+n)

x+2i+1 )

= ci
(x+i)(x+n+i)

(x+2i−1)(x+2i+1)
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proves the identity given for ei.

Of particular importance in these formulas is that didj (for i 6= j) is a
linear combination of di and dj obtained by partial fraction decomposition.
The fractions 1, d1, ...., dn are as elements of the rational function field Q(x)
evidently linearly independent over Q. Since the ti are rational multiples of
the di we have by iterative use of the multiplication formulae for didj the
following important fact.

Corollary 3.2. Every polynomial in Q[d1, ...., dn, t1, ..., tn] in which the di
and ti occur in degrees 0 or 1 only and in a product never with the same
indices can be written uniquely as a Q-linear combination of 1, d1, ...., dn.

Example. 3d1d3 − 2d1d2d3 = 1
2d1 + 1

2d2 − d3, that is

3

(x+ 1)(x+ 5)
− 2

(x+ 1)(x+ 3)(x+ 5)
=

1

2(x+ 1)
+

1

2(x+ 3)
− 1

(x+ 5)
.

Consequently if p ∈ Q[d1, ...., dn, t1, ..., tn] is such a square free polynomial,
then we can define cf(p) as the rational coefficient of dT in the presentation
of p as a Q−linear combination of the 1, d1, d2, ..., dn. Also, by speaking of
‘the coefficient of dT in p’ or ‘the cf of p’, we shall mean cf(p). Thus if p is
the polynomial of the example and T = 2, then cf(p) = 1/2; if T = 3, then
cf(p) = −1.

It is easy to see that E ∈ Q[t1, ..., tn] is a square free polynomial in the said
sense.

Corollary 3.3. If T 6= j, j + 1, then

cf(dTej) = 2−2cj(4− c−1+j(j − T )−1 + c1+j(1 + j − T )−1).

Proof : This follows from the formula found for diej putting i = T and ex-
tracting the coefficient of dT .

Lemma 3.4. Assume p, q are polynomials in d1, ..., dn, in which each di has
degree at most 1 and q is dT -free, i.e. does not have tT or dT as a variable,
Then cf(pq) = cf(p)cf(dT q).

Proof : After developing p into a linear combination of the di, we can write
p = cf(p)dT + r, where r is dT -free. Then cf(qp) = cf(q cf(p)dT + qr) =
cf(q cf(p)dT ) + cf(qr) = cf(p)cf(qdT ) + 0.
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Convention. Whenever we write a sum of the form
∑
el1,...,lµ, where the li

can be partially fixed (by context), it will always be assumed that

1 ≤ l1 ≺ ... ≺ lµ ≤ −1 + n.

Furthermore we allow notations of the form
∑
{si : i ∈ I} instead of

∑
i∈I si,

whenever the description of the index set over which summations have to be
done is complicated.

Indeed, later we have to consider sums of the form∑
{ei1,...,is,it,...,iµ :

1≤i1≺...≺is−i≺is≤a,
b≤it≺i1+t≺...≺iµ≤−1+n }

which will often be abbreviated to∑
{ei1,...,is,it,...,iµ : is≤a

b≤it } or even to
∑
{ is≤ab≤it }.

Example. Assume, say, n = 15, T = 4. Then the sum∑
{ei1,T,i3,i4,i5 : i3≤8

11≤i4 }

consists of the 2×3×3 = 18 summands associated to the 5-uples i1, 4, i3, i4, i5
for which i1 ∈ {1, 2}, i3 ∈ {6, 7, 8}, (i4, i5) ∈ {(11, 13), (11, 14), (12, 14)}.

Sums whose conditions are unsatisfiable, are of course to be considered 0.
Thus if in the example above e.g. T = 2, then the sum would be 0.

4. Definition of Ered

If we recall that ei = ci + ti − t1+i, then it is obvious that the polynomial
at the left hand side of Conjecture 2.2, when expanded, has as the subsum
of its t...-free terms the right hand side. Thus we need to prove that for an
arbitrary T ∈ {1, 2, ..., n}, the coefficient of dT in E is 0. Given that we
consider T fixed we have to show simply that cf(E) = 0. But E in expanded
form has many terms that cannot contribute to the coefficient of dT . So we
begin by focusing on the important ones. The summation conventions made
in Section 3 are full in place.
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Proposition 4.1. Assume µ ≥ 2. Define the polynomial Ered, by the follow-
ing sum of 1 + 2(µ− 2) + 1 = 2µ− 2 sums :

Ered =
∑
e−1+T,1+T,i3,...,iµ +∑

ei1,−1+T,1+T,i4,...,iµ +
∑
e−2+T,T,i3,...,iµ∑

ei1,i2,−1+T,1+T,i5,...,iµ +
∑
ei1,−2+T,T,i4,...,iµ∑

ei1,i2,i3,−1+T,1+T,i6,...,iµ +
∑
ei1,i2,−2+T,T,i5,...,iµ

...∑
ei1,i2,...,iµ−2,−1+T,1+T +

∑
ei1,i2,...,iµ−3,−2+T,T,iµ

+
∑
ei1,i2,...,iµ−3,iµ−2,−2+T,T ,

Then
cf(Ered) = cf(E).

Proof : Evidently a necessary condition for ei1,i2,...,iµ to contribute terms in
which occurs dT , is that tT occurs in ei1,i2,...,iµ. Since by definition ei1i2...iµ =∏µ

ν=1(ciν + tiν − t1+iν), for the occurrence it is necessary that T ∈ {i1, 1 +
i1, ..., iµ, 1 + iµ}. By the definition of ‘≺’ , it can happen only for at most one
ν ∈ {1, 2, ..., µ}, that T ∈ {iν, 1 + iν}. Hence cf(E) equals the cf of∑

e−1+T,i2,...,iµ +
∑

eT,i2,...,iµ +
∑

ei1,−1+T,i3,...,iµ +
∑

ei1,T,i3,...,iµ

+ · · ·+
∑

ei1,i2,i3,...,iµ−1,−1+T +
∑

ei1,i2,i3,...,iµ−1,T .

We shrink this sum further. We look first at the case T ∈ {i1, 1 + i1} and
compare

e−1+T,i2,...,iµ = (c−1+T + t−1+T − tT )
µ∏
ν=2

(ciν + tiν − t1+iν)

with

eT,i2,...,iµ = (cT + tT − t1+T )
µ∏
ν=2

(ciν + tiν − t1+iν).

Note that, whenever T ≺ i2 then also −1 + T ≺ i2 and then the cfs of
e−1+T,i2,...,iµ and eT,i2,...,iµ are simply the cfs of −tT

∏µ
ν=2(ciν + tiν − t1+iν) and

tT
∏µ

ν=2(ciν +tiν−t1+iν), respectively , and hence cancel each other. Therefore
the coefficient of dT in

∑
e−1+T,i2,...,iµ +

∑
eT,i2,...,iµ equals this coefficient in

the surviving terms containing tT and these pertain to the i2i3....iµ for which
i2 = 1 + T. So the coefficient of dT of the sum of the two sums equals
cf(
∑
e−1+T,1+T,i3,...,iµ).

Next we compare, supposing 2 ≤ l ≤ µ− 1,
ei1,...,il−1,−1+T,il+1,...,iµ = (c−1+T + t−1+T − tT ) ·

∏
ν 6=l

(ciν + tiν − t1+iν)
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with
ei1,...,il−1,T,il+1,...,iµ = (cT + tT − t1+T ) ·

∏
ν 6=l

(ciν + tiν − t1+iν).

Whenever il−1 ≺ −1 + T and T ≺ i1+l, then both of above es occur in the
sum E but the coefficients of their respective dT are opposed and so cancel.
The strings of indices subordinated to es that do not cancel are those with
il−1 = −2 + T and those with il+1 = 1 + T. So we see that the coefficient of
dT in

∑
ei1,...,il−1,−1+T,il+1,...,iµ +

∑
ei1,...,il−1,T,il+1,...,iµ equals the coefficient

of dT in
∑
ei1,...,il−2,−2+T,T,il+1,...,iµ +

∑
ei1,...,il−1,−1+T,1+T,il+1,...,iµ.

Finally we look at the coefficient of dT in
∑
ei1,...,iµ−1,−1+T +

∑
ei1,...,iµ−1,T .

If iµ−1 ≺ −1 + T, then iµ−1 ≺ T. By analogous reasoning as in the cases
before, it follows that the coefficient of dT of the present sum is that of∑
ei1,...,iµ−2,−2+T,T . This proves the proposition.

Lemma 4.2. There hold the following equalities, by which we also define
nonzero reals C∗.
a. cf(dTe−1−i+T ) = cf(dTei+T ) =: Ci ( i 6= −1, 0)
b. cf(e−1+T,1+T ) = −cf(e−2+T,T ) = −2−4c−2+T c−1+T cT c1+T =: −C0

Proof : a. We have by Corollary 3.3 the equalities

cf(dTe−1−i+T ) = c−1−i+T (1 + 2−2(1 + i)−1c−2−i+T − 2−2i−1c−i+T )
cf(dTei+T ) = ci+T (1− 2−2i−1c−1+i+T + 2−2(1 + i)−1c1+i+T ).

One now proves by a lengthy but straightforward computation that the
quantities at the right hand side are equal.

b. Since e1+T has tT not as a variable, we find by Lemma 3.4 that

cf(e−1+Te1+T ) = cf(e−1+T )cf(dTe1+T ).

Now cf(e−1+T ) = 2−1c−1+T cT , while by Corollary 3.2 and Proposition 3.1,
cf(dTe1+T ) = 2−3c1+T (8 − 2cT + c2+T ) = −2−3c−2+T c1+T . Hence follows part
of the claim. The other part follows by very similar computations.

Corollary 4.3. Assume µ ≥ 2. With the definitions

C0 := 2−4c−2+T c−1+T cT c1+T ,

I(ν) :=
∑{

ei1,...,iν−1,iν+2,...,iµ : iν−1≤−3+T
3+T≤iν+2

}
(ν = 1, ...,−1 + µ)

II(ν) :=
∑{

ei1,...,iν−1,iν+2,...,iµ : iν−1≤−4+T
2+T≤iν+2

}
(ν = 1, ...,−1 + µ)
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there holds

cf(Ered) = C0

−1+µ∑
ν=1

cf(dT (−I(ν) + II(ν))).

Observation. In the cases ν = 1, ν = −1 + µ occur in I(ν), II(ν) formally
conditions involving i0 or i1+µ. These should be discarded.

Proof : Recall that a typical sum occurring in the left column in the definition
of Ered in Proposition 4.1 has the implicit requirement iν−1 ≺ −1 + T ≺
1 + T ≺ iν+2. This is taken care of via the specifications introduced in the
definition of I(ν). A similar remark holds for the sums of the right column
in Ered and II(ν). By the multiplicative definition of e... we can put in the
left column of the proposition the products e−1+T,1+T into evidence and in
the right column the products e−2+T,T . So we get

Ered =

−1+µ∑
ν=1

e−1+T,1+T I(ν) +

−1+µ∑
ν=1

e−2+T,T II(ν).

Using that I(ν), II(ν) are dT -free polynomials, lemmas 3.4 and 4.2 yield

cf(Ered) =
−1+µ∑
ν=1

cf(e−1+T,1+T I(ν)) +
−1+µ∑
ν=1

cf(e−2+T,T II(ν)),

=
−1+µ∑
ν=1

cf(e−1+T,1+T )cf(dT I(ν)) +
−1+µ∑
ν=1

cf(e−2+T,T )cf(dT II(ν))

=
−1+µ∑
ν=1
−C0cf(dT I(ν)) +

−1+µ∑
ν=1

C0(cf(dT II(ν))

= C0

−1+µ∑
ν=1

cf(dT (−I(ν) + II(ν)).

This analysis refers to the ‘typical’ case that 2 ≤ ν ≤ −2 + µ holds. The
general formulation bears the vestiges of this case. If ν = 1 the natural
translation for Ered given in Proposition 4.1 to the formula for Ered given
above requires evidently the interpretation I(1) :=

∑{
ei3,...,iµ : 3 + T ≤ i3

}
.

So either one discards the condition i0 ≤ −3 + T or, equivalently, assumes it
automatically satisfied. Similar remarks hold of course for I(1 + µ). See also
the treatment of the case µ = 5 in the next section.
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5. The equation of Conjecture 2.2 for µ = 0, 1, 2, 3, 5, n/2
We prove the equation of conjecture 2.2 for the cases µ = 1 and n even,

µ = n/2 in a direct manner using for these simple proofs very little from
the general developments above. The cases µ = 2, 3, 5 are also treated here.
Their study will ease the digestion of the proof for general µ in the next
section since they rely on showing cf(Ered) = 0.
Case µ = 0. The equation of conjecture 2.2 says for µ = 0 the triviality

that the leading term of Schn(x) as well as that of SKn(x) is xn.

Case µ = 1. Then we have to prove∑
1≤i≤−1+n

ei =
∑

1≤i≤−1+n

ci.

Since ei = ci + ti − ti+1, the sum at the left yields∑
1≤i≤−1+n

ci +
∑

1≤i≤−1+n

(ti − ti+1) =
∑

1≤i≤µ
ci + (t1 − tn),

by telescoping. But t1 = −2−1c0c1d1 and tn = −2−1c−1+ncndn and c0 = cn =
0. Done.

Case µ = 2. Then

E =
∑

1≤i≺j≤−1+n

eij and Ered = e−1+T,1+T + e−2+T,T .

Thus cf(Ered) = cf(e−1+T,1+T ) + cf(e−2+T,T ) = 0 by Lemma 4.2b.

Case µ = 3. Then

E =
∑

1≤i≺j≺k≤−1+n

eijk,

and

Ered =
∑
e−1+T,1+T,k +

∑
e−2+T,T,k +

∑
ei,−1+T,1+T +

∑
ei,−2+T,T

= e−1+T,1+T (
∑
{ek : 3 + T ≤ k}+

∑
{ei : i ≤ −3 + T})

+e−2+T,T (
∑
{ek : 2 + T ≤ k}+

∑
{ei : i ≤ −4 + T})

= e−1+T,1+T (I(1) + I(2)) + e−2+T,T (II(1) + II(2)).

Again by Lemma 4.2b, we have that cf(e−1+T,1+T ) = −C0, while cf(e−2+T,T ) =
C0. Expressions I(.) and II(.) are dT -free polynomials. Also note that the
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set of k for which 3 + T ≤ k differs from the set of k for which 2 + T ≤ k by
the single element 2 + T. Hence

−I(1) + II(1) = −
∑
{ek : 3 + T ≤ k}+

∑
{ek : 2 + T ≤ k} = e2+T .

Similar considerations can be made for −I(2) + II(2) and are underlying
many of the equations we later write down. Therefore by the lemmas 3.4
and 4.2a, putting there i = 2, we find

cf(Ered) = −C0cf(dT (I(1) + I(2)) + C0cf(dT (II(1) + II(2))

= C0cf(dT (−I(1) + II(1)) + C0cf(dT (−I(2) + II(2)).

= C0cf(dT e2+T ) + C0cf(dT · −e−3+T )

= C0C2 − C0C2

= 0

We now jump to the case µ = 5 since here the phenomena relevant in the
general case can be better seen than in case µ = 4.
Case µ = 5. Here

E =
∑
{eijklm : 1 ≤ i ≺ j ≺ k ≺ l ≺ m ≤ n− 1}

and hence

Ered =
∑
e−1+T,1+T,k,l,m +

∑
e−2+T,T,k,l,m +

∑
ei,−1+T,1+T,l,m +

∑
ei,−2+T,T,l,m

+
∑
ei,j,−1+T,1+T,m +

∑
ei,j,−2+T,T,m +

∑
ei,j,k,−1+T,1+T +

∑
ei,j,k,−2+T,T

= e−1+T,1+T (I(1) + I(2) + I(3) + I(4))+

+e−2+T,T (II(1) + II(2) + II(3) + II(4));

and so, for similar reasons as in case explained before,

cf(Ered) = C0cf(dT (−I(1)+II(1)−I(2)+II(2)−I(3)+II(3)−I(4)+II(4)).
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Hence we can write

cf(Ered)
∗1= C0cf(dT×

(−
∑
{eklm : 3+T≤k } +

∑
{eklm : 2+T≤k }

−
∑{

eilm : i≤−3+T
3+T≤l

}
+
∑{

eilm : i≤−4+T
2+T≤l

}
−
∑{

eijm : j≤−3+T
3+T≤m

}
+
∑{

eijm : j≤−4+T
2+T≤m

}
−
∑
{eijk : k≤−3+T } +

∑
{eijk : k≤−4+T }))

∗2= C0cf(dT×
( e2+T

∑
{elm : 4 + T ≤ l}

−e−3+T

∑
{elm : 3 + T ≤ l} + e2+T

∑{
eim : i≤−4+T

4+T≤m
}

−e−3+T

∑{
eim : i≤−5+T

3+T≤m
}

+ e2+T

∑
{eij : j ≤ −4 + T }

−e−3+T

∑
{eij : j ≤ −5 + T} ))

∗3= C0C2cf(dT×
(
∑
{elm : 4 + T ≤ l} −

∑
{elm : 3 + T ≤ l}

+
∑{

eim : i≤−4+T
4+T≤m

}
−
∑{

eim : i≤−5+T
3+T≤m

}
+
∑
{eij : j≤−4+T } −

∑
{eij : j ≤ −5 + T}))

∗4= C0C2cf(dT×
(−e3+T

∑
{em : 5+T≤m }

−e3+T

∑
{ei : i≤−5+T } + e−4+T

∑
{em : 4+T≤m }

e−4+T

∑
{ei : i≤−6+T }))

∗5= C0C2C3cf(dT×
(−
∑
{em : 5+T≤m } +

∑
{em : 4+T≤m }

−
∑
{ei : i≤−5+T } +

∑
{ei : i≤−6+T }))

∗6= C0C2C3cf(dT×
( e4+T

−e−5+T ))

∗7= C0C2C3(C4 − C4))
= 0.
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Here in ‘
∗1=’ we used the definitions of I(ν), II(ν) for the case µ = 5 and

transcribed them to the notation ijklm in place of i1i2i3i4i5. In ‘
∗2=’ we carried

through line for line the additions of the lines of the previous block. Consider
for example

−I(2) + II(2) = −
∑{

eilm : i≤−3+T
3+T≤l

}
+
∑{

eilm : i≤−4+T
2+T≤l

}
Whenever ilm is so that i ≤ −4 + T&3 + T ≤ l (supposing as always
i ≺ l ≺ m) then eilm will occur in both sums and hence cancel. There remain
thus the triples ilm with i = −3+T in the left sum and those with l = 2+T
in the right sum. Putting them into evidence the net result for −I(2)+II(2)
is given as indicated by the second line of the second block as

−e−3+T

∑
{elm : 3 + T ≤ l}+ e2+T

∑{
eim : i≤−4+T

4+T≤m
}
.

To obtain ‘
∗3=’ note that the block after the ‘×’ in ‘

∗2=’ represents a dT -free
polynomial which comes as a sum in the form−e−3+T q1+e2+T q2 (with evident
q1, q2). So, using Lemma 3.4 with the pairs (p, q) = (dT · −e−3+T , q1) and
(dT · e2+T , q2) and Lemma 4.2a we get

cf(dT (−e−3+T q1 + e2+T q2)) = cf(dT − e−3+T )cf(dT q1) + cf(dTe2+T )cf(dT q2)

= C2cf(dT q2)− C2cf(dT q1) = C2(cf(dT (q2 − q1)).

This yields the block introduced by ∗3. The block ∗4 is obtained from block
∗3 similarly as block ∗2 is obtained from ∗1. Block ∗5 from block ∗4 similarly
as ∗3 from ∗2 using that cf(dTe3+T ) = cf(dTe−4+T ) = C3. Block ∗6 comes
from block ∗5 just as block ∗4 is obtained from block ∗3 . Finally block ∗7

comes from ∗6 using cf(dTe4+T ) = cf(dTe−5+T ) = C4.

Remark. Note that in case it happens that one of the Ci = 0, then the
desired fact cf(Ered) = 0 follows at an earlier instance in this arguments;
that is in this case one needs not the full reasoning here presented.
Case n even and µ = n/2. In this case the equation boils down to the claim

e1e3 · · · en−3en−1 = c1c3 · · · cn−1. Now working directly with the definitions of
the ei we find

e1e3 · · · en−3en−1 = c1c3 · · · cn−3cn−1 ·
−1+n∏
i = 1
i ≡2 1

(x+ i)(x+ n+ i)

(x+ 2i− 1)(x+ 2i+ 1)



SCHRÖDINGER’S TRIDIAGONAL MATRIX 17

Evidently the first of the products at the right is independent of x. The
second product can be rewritten by substituting the admitted product index
i by 2i+ 1 and ranging with i from 0 to n

2 − 1. We then get that this second
product equals

(n/2)−1∏
i=0

(x+ 2i+ 1)(x+ n+ 2i+ 1)

(x+ 4i+ 1)(x+ 4i+ 3)
.

The product of the first factors in the numerator equals

(x+ 1)(x+ 3) · · · (x+ n− 1)

while the product of the second factors equals

(x+ n+ 1)(x+ n+ 3) · · · (x+ 2n− 1).

The product of these products is easily seen to be the product of the denom-

inators. So the product
(n/2)−1∏
i=0

... = 1.

6. Proof of Conjecture 2.2
We start from the equation for cf(Ered) found in Corollary 4.3:

cf(Ered) = C0

−1+µ∑
ν=1

cf(dT (−I(ν) + II(ν))).

We have

−I(ν) + II(ν)

= −
∑{

ei1,...,iν−1,iν+2,...,iµ : iν−1≤−3+T
3+T≤iν+2

}
+
∑{

ei1,...,iν−1,iν+2,...,iµ : iν−1≤−4+T
2+T≤iν+2

}
= −e−3+T

∑
{ iν−2≤−5+T

3+T≤iν+2
}+ e2+T

∑
{ iν−1≤−4+T

4+T≤iν+3
}.

The explanation is a generalisation of one given in Section 5, for the case
µ = 5. Whenever i1, ..., iν−1, iν+2, ..., iµ is an uple so that iν−1 ≤ −4 +T & 3 +
T ≤ iν+2 holds, then ei1,...,iν−1,iν+2,...,iµ occurs in both the sums of the first line
but with opposite signs and therefore cancels. Noting

Z≤−3+T = {−3 + T} ] Z≤−4+T and Z≤3+T ] {2 + T} = Z≤2+T ,

one sees that the signed ei1,...,iν−1,iν+2,...,iµ which do not cancel are those of
the form −ei1,...,iν−2,−3+T,,iν+2,...,iµ and those of the form ei1,...,iν−1,2+T,iν+3...,iµ.
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Putting e−3+T and e2+T into evidence, this and the abbreviation conventions
introduced earlier explain the second equation above.

Now by Lemma 4.2 we find cf(dTe−3+T ) = cf(dTe2+T ) = C2, and by Lemma
3.4 and using that the inner sums in ∗1 below are dT -free, we find cf(Ered) = 0
iff the following holds:

∗1 : cf(dT (

−1+µ∑
ν=1

(−
∑
{ iν−2≤−5+T

3+T≤iν+2
}+

∑
{ iν−1≤−4+T

4+T≤iν+3
}))) = 0.

This is the beginning of an inductive procedure in which the sum outer sum∑...
ν=1 extends over less and less summands till it vanishes. We define more

generally the claim ∗l as follows and and show how to deduce ∗1+l:

∗l : cf(dT

−l+µ∑
ν=1

(−1)l
∑
{ iν−2≤−4−l+T

2+l+T≤iν+l+1
}︸ ︷︷ ︸

qν

+(−1)1+l
∑
{ iν−1≤−3−l+T

3+l+T≤iν+l+2
}︸ ︷︷ ︸

q′ν

) = 0,

The first step is to write
∑−l+µ

ν=1 ... as

−l+µ∑
ν=1

(−lqν +−1+lq′ν) = −lq1 +

−1−l+µ∑
ν=1

(−1+lq′ν +−lq1+ν) +−1+lq′−l+µ

= −l
−1−l+µ∑
ν=1

(−q′ν + q1+ν),

where we used q1 = 0 for it involves an undefined i−1 in its conditions, and
q′−l+µ = 0, since it involves iµ+2 in its conditions.

Now

−q′ν + q1+ν = −
∑
{ei1...iν−1,iν+l+2...iµ : iν−1≤−l−3+T

3+l+T≤iν+l+2
}+

+
∑
{ei1...iν−1,iν+l+2...iµ : iν−1≤−4−l+T

2+l+T≤iν+l+2
}

= −
∑
{ei1...iν−2,−3−l+T,iν+l+2...iµ : iν−1≤−l−5+T

3+l+T≤iν+l+2
}+

+
∑
{ei1...iν−1,2+l+T,iν+l+2...iµ : iν−1≤−l−4+T

4+l+T≤iν+l+2
}

= −e−3−l+T
∑
{ iν−2≤−l−5+T

3+l+T≤iν+l+2
}︸ ︷︷ ︸

q̃′ν

+e2+l+T

∑
{ iν−1≤−l−4+T

4+l+T≤iν+l+2
}︸ ︷︷ ︸

q̃1+ν

.
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Here we used that the e’s with indices i1...iν−1, iν+l+2...iµ for which

(iν−1 ≤ −l − 4 + T ) & (3 + l + T ≤ iν+l+2)

hold occur in the two sums with opposite signs and thus cancel. The e’s that
do not cancel are those with iν−1 = −3 − l + T in the left hand sum and
those with iν+l+2 = 2 + l + T in the right hand sum. Thus the sum of the
two sums can be rewritten as in the second equality.

So the left hand side of claim ∗l can be processed as follows:

lhs(∗l) = cf(dT · −l
−1−l+µ∑
ν=1

(−q′ν + q1+ν))

= −l
−1−l+µ∑
ν=1

cf(dT (−e−3−l+T · q̃′ν + e2+l+T · q̃1+ν))

= −l
−1−l+µ∑
ν=1

(cf(dT · −e−3−l+T )cf(dT q̃
′
ν) + cf(dTe2+l+T )cf(dT q̃1+ν))

= −l
−1−l+µ∑
ν=1

(−C2+l)cf(dT q̃
′
ν) + C2+lcf(dT q̃1+ν))

= C2+l

−1−l+µ∑
ν=1

(−1+lcf(dT q̃
′
ν) +−lcf(dT q̃1+ν))

= C2+lcf(dT ·
−1−l+µ∑
ν=1

(−1+lq̃′ν +−lq̃1+ν)).

Therefore if C2+l 6= 0, then by the definitions of q̃′ν, q̃ν we can conclude

cf(dT (

−1−l+µ∑
ν=1

(−1+l
∑
{ iν−2≤−l−5+T

3+l+T≤iν+l+2
}+−l

∑
{ iν−1≤−l−4+T

4+l+T≤iν+l+2
}))) = 0.

In other words we have proved that if C2+l 6= 0, then ∗l is equivalent to ∗1+l.
That C2+l 6= 0 can be assumed will follow at the end by a similar argument
as the one given in the final remark for the case µ = 5 in the previous section.

We finally infer the truth of these claims by verifying claim ∗µ−3. Indeed
for l = µ− 3 the sum

−1−l+µ∑
ν=1

(−q′ν + q1+ν)



20 A. KOVACEC

is
2∑

ν=1

(−q′ν + q1+ν) = −q′1 + q2 − q′2 + q3

= −
∑
{ i0≤−µ+T

µ+T≤iµ }+
∑
{ i0≤−1−µ+T
−1+µ+T≤iµ }−

−
∑
{ i1≤−µ+T
µ+T≤iµ+1

}+
∑
{ i1≤−1−µ+T

1+µ+T≤iµ+1
}

= −
∑
{eiµ : µ+T≤iµ}+

∑
{eiµ : −1+µ+T≤iµ }−

−
∑
{ei1 : i1≤−µ+T}+

∑
{ei1 : i1≤−1−µ+T}

= e−1+µ+T − e−µ+T .

Since

cf(dTe−1+µ+T ) = cf(dTe−µ+T )

claim ∗µ−3 follows and Schrödinger’s conjecture is proved.
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