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Abstract: This paper shows that the group of auto-homeomorphisms of a topo-
logical group can be endowed with a topology so that the resulting topological group
plays, for topological groups, the role of the group of automorphisms of a group: it
represents the internal actions on the given topological group.
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1. Introduction
It is well known that the category Grp of groups is action representative,

with internal actions represented by the group Aut(X) of automorphisms of
X. This means that the functor

Act(−, X) : Grp→ Set,

assigning to each group Y the set of internal actions of Y on X, is represented
by the group Aut(X). As observed in [2], representability of this functor
is equivalent to the existence of split extension classifier for the group X,
meaning that, for each split extension with kernel X

0 // X // A
p
// B

soo // 0

there exists a unique homomorphism ϕ : B → Aut(X) making the following
diagram commute

X
k // A

ϕ1
��

p
// B

soo

ϕ
��

X // Hol(X) // Aut(X),oo
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where Hol(X) is the semidirect product of X and Aut(X), with respect to
the evaluation action (i.e. the classical holomorph of the group X).

In [1] it was investigated whether the category TopGrp of topological
groups has the same property. As shown there, this ends up on investi-
gating whether, for a given topological group X, the set Aut(X) of auto-
homeomorphisms of X, as a subspace of the pseudotopological space
XX × XX , is topological. When X is quasi-locally compact, so that X
is exponentiable in Top, or, equivalently, the pseudotopological space Y X is
topological for every topological space Y , Aut(X) is surely topological, since
XX ×XX is.

In this paper we show that, in fact, Aut(X) is topological for every topo-
logical group X, concluding that the category TopGrp has representable
actions. In order to do that, in Section 2 we revisit the results used in [1], in
Section 3 we reduce the problem to the study of the pseudotopology on the
subspace Iso(X) of XX consisting of homeomorphisms of a Tychonoff space
X, and finally in Section 4 we prove our key result:

Theorem. If X is a Tychonoff space, then Iso(X) is a subspace of Iso(βXβX).
In particular, it is a topological space.

2. Aut(X) as a subspace of XX ×XX

We start by recalling a key result published (without proof) in [3]:

Theorem. If C is a finitely complete Cartesian closed category, then the
category of internal groups in C is action representative.

The proof of this Theorem presented in [1] shows how to build the internal
group that represents the functor Act(−, X), out of the exponential XX .
Here we just detail the construction described in [1] for internal groups in
the category Top of topological spaces. Since Top is not Cartesian closed,
one embeds Top in the (complete and) Cartesian closed category PsTop of
pseudotopological spaces, so that for every pseudotopological space X there
is an adjunction:

PsTop
( )X

//⊥ PsTop
( )×X

oo

The category Top is in fact a bireflective subcategory of PsTop, meaning
that the unit of the adjunction is pointwise both a mono and an epimorphism.
(For more information on PsTop see [4].)
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Given a topological group X, one first considers the pseudotopological
space

XX = {f : X → X | f is continuous},
which is in fact an internal monoid with respect to the composition, then its
subspace – and submonoid –

Hom(X,X) = {f : X → X | f is a continuous homomorphism},
and then one obtains Aut(X) as the pullback

Aut(X) //

��

1

<1X ,1X>
��

Hom(X,X)× Hom(X,X)
µ×µop

// Hom(X,X)× Hom(X,X)

(where µ is the composition and µop the reverse composition); that is, we
identify the internal group

Aut(X) = {f : X → X | f is an auto-homeomorphism}
with the subspace {(f, f−1) | f : X → X is an auto-homeomorphism} of
XX × XX . We point out that, when X is compact and Hausdorff, the
topology in Aut(X) is not the compact-open topology but the product of the
compact-open topology in each factor.

In order to show that the pseudotopology of Aut(X) is in fact a topology
for every topological group X, in the next sections we will show that the
subspace

Iso(X) = {f ∈ XX | f is a homeomorphism}
of XX is a topological space. Then we may conclude that Aut(X), as a
subspace of Iso(X)× Iso(X), is also a topological space.

3. Aut(X) in PsTop
Throughout this section X is a topological space.

Given a directed set Λ, we denote by Λ∞ the set Λ
·
∪ {∞} equipped with

the topology

{A ⊆ Λ∞ |∞ 6∈ A or there exists λ ∈ Λ such that ↑ λ ⊆ A}.

Lemma. Given a net (fλ)λ∈Λ and f in XX, (fλ) converges to f if, and only if,
the map F : Λ∞ ×X → X, defined by F (λ, x) = fλ(x) and F (∞, x) = f(x),
is continuous.
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Proof : Continuity of the map F is equivalent to continuity of the map
F̃ : Λ∞ → XX , with F̃ (λ) = fλ and F̃ (∞) = f , and this is clearly equivalent
to the convergence of (fλ) to f . (Note that in general F̃ is a morphism in
PsTop, not in Top.)

From now on we denote by η = (ηX : X → RX)X∈Top the unit of the
adjunction

Top0 //⊥ Top
Roo

that is ηX is the T0-reflection of X. Note that T0-reflections are both initial
and final maps (see [5]).

Theorem. If Iso(RX) is a topological space, then so is Iso(X).

Proof : Since Top is bireflective in PsTop, it is closed under initial continuous
maps. We will show now that the map ϕ : Iso(X) → Iso(RX), assigning to
each element f of Iso(X) its T0-reflection Rf , is both continuous and initial.
Let (fλ)λ∈Λ and f belong to Iso(X). Observing that the T0-reflection of
Λ∞ ×X is Λ∞ ×RX, we have the following commutative diagram

Λ∞ ×X
ηΛ∞×X//

F
��

Λ∞ ×RX
F
��

X ηX
// RX,

where F (λ, y) = Rfλ(y) and F (∞, y) = Rf(y). Then ϕ is continuous and
initial if, and only if, continuity of F is equivalent to continuity of F . If
(fλ) converges to f in Iso(X), so that F is continuous, then F · ηΛ∞×X is
continuous, from which it follows that F is continuous, due to finality of η.
Conversely, if (Rfλ) converges to Rf in Iso(RX), that is, F is continuous,
then ηX · F is continuous, and initiality of ηX gives the continuity of F .

4. Iso(X) is topological
Throughout this section X is a Tychonoff space, so that we consider its

embedding βX : X → βX into its Stone-Čech compactification.

Theorem. If X is a Tychonoff space, then Iso(X) is a subspace of Iso(βX).
In particular, it is a topological space.
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Proof : First we point out that, since βX is compact and Hausdorff, βXβX

is a topological space, endowed with the compact-open topology. Therefore
its subspace Iso(βX) is also topological.

Consider the map β̃X : Iso(X) → Iso(βX) which assigns to each homeo-

morphism h : X → X the homeomorphism β(h). Then β̃X is injective since
βX is. To conclude that it is an embedding we need to show that, for (hλ)λ∈Λ

and h in Iso(X), (hλ) converges to h if, and only if, (β̃X(hλ)) converges to

β̃X(h). As we have already observed, (hλ) converges to h if, and only if, the

corresponding map H : Λ∞ × X → X is continuous, while (β̃X(hλ)) con-

verges to β̃X(h) exactly when the corresponding map H̃ : Λ∞ × βX → βX
is continuous.

Consider the following commutative diagram

Λ∞ ×X
1Λ∞×βX //

H
��

Λ∞ × βX
H̃
��

X
βX

// βX

If H̃ is continuous, then βX · H is continuous, and so is H since βX is an
embedding. The converse implication is the non-trivial one. In order to
prove it, assume that H is continuous and consider the following commutative
diagram, where g := 1X × βX , Y = Λ∞ ×X and Z = Λ∞ × βX:

Λ∞ ×X
g

//

βX ·H

&&
βY

��

Λ∞ × βX

H̃xx
βZ

��

βX

β(Λ∞ ×X)

βH
88

βg
// β(Λ∞ × βX)

The map βg is dense, since both βZ and g are. As a continuous map between
compact Hausdorff spaces, it is thus surjective, and, moreover, a quotient.
Below we will show that:

∀y, y′ ∈ β(Λ∞ ×X) βg(y) = βg(y′) =⇒ βH(y) = βH(y′). (♦)

From (♦) it follows that βH factors through βg, via a map f : β(Λ∞×βX)→
βX. Since βg is a quotient and f · βg = βH is continuous, f is in fact
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continuous.

Λ∞ ×X
g

//

βX ·H

&&
βY

��

Λ∞ × βX

H̃xx
βZ

��

βX

β(Λ∞ ×X)

βH
88

βg
// β(Λ∞ × βX)
f

ff

Now, from (f ·βZ) · g = βH ·βY = βX ·H = H̃ · g and since, by construction,

H̃ is the unique map such that H̃ · g = βX · H, it follows that H̃ = f · βZ ,
and then it is continuous as claimed.

Therefore to finish our proof we only need to show (♦).

First we prove it for y, y′ ∈ β(
∐

λ̃Xλ) ⊆ β(Λ∞ ×X), where
∐

λ̃Xλ is the

coproduct in Top of (Xλ)λ≤λ̃, with λ̃ ∈ Λ and Xλ = X for every λ ≤ λ̃. Note
that the maps ∐

λ̃Xλ

aλ̃ // Λ∞ ×X,
pλ̃

oo

with aλ̃(x) = (λ, x) for x ∈ Xλ, and pλ̃(µ, x) = x ∈ Xµ if µ ≤ λ̃ and
pλ̃(µ, x) = x ∈ Xλ̃ otherwise, are continuous, and pλ̃ · aλ̃ = 1. Analogously
we define ∐

λ̃(βX)λ
bλ̃ // Λ∞ × βX.
qλ̃

oo

Observing that the following diagram commutes and β(
∐
βX) is an isomor-

phism because the functor β is a left adjoint∐
Xλ

aλ̃

}}

∐
βX //

β
��

∐
(βX)λ

bλ̃

}}

β
��

Λ∞ ×X
pλ̃

==

βY
��

g
// Λ∞ × βX

qλ̃

==

βZ
��

β(
∐
Xλ)

βaλ̃

}}

β(
∐
βX)

// β(
∐

(βX)λ)
βbλ̃

}}

β(Λ∞ ×X)
βpλ̃

==

βg
// β(Λ∞ × βX)

βqλ̃

==
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we conclude that βg ·βaλ̃ = βbλ̃ ·β(
∐
βX) is an embedding. This leads to the

conclusion that βg is injective when restricted to the image of the closure of∐
λ̃Xλ: β(

∐
λ̃Xλ) ⊆ β(

∐
λ̃Xλ) = β(

∐
λ̃Xλ). Now, for each µ̃ ≥ λ̃, we have

a section ιλ̃,µ̃, with retraction πλ̃,µ̃,

∐
λ̃Xλ

ιλ̃,µ̃
// ∐

µ̃Xλ
πλ̃,µ̃

oo

where ιλ̃,µ̃(λ, x) = (λ, x), and πλ̃,µ̃(λ, x) = (λ, x) if λ ≤ λ̃ and πλ̃,µ̃(λ, x) =

(λ̃, x) elsewhere. Therefore, since Λ is directed, this allows us to conclude

that βg is injective when restricted to
⋃
λ̃∈Λ

β(
∐

λ̃Xλ) ↪→ β(Λ∞ ×X).

For the remaining proof it is useful to consider the diagram

β(Λ∞ ×X)

βπ

��

βg
// β(Λ∞ × βX)

βρ

��

Λ∞ ×X

π

��

1×βX //

βY
77

Λ∞ × βX

βZ
66

ρ

��

βX

βι

OO

βX

βγ

OO

X

ι

OO

βX
77

βX

// βX

γ

OO

where π and ρ are projections, ι(x) = (∞, x), and γ(x) = (∞, x). (For
simplicity we will also denote by (∞, x) the image of x ∈ βX under βγ, i.e.
we will identify (∞, x) with βZ(∞, x).)

Let y ∈ Ỹ := β(Λ∞×X)\
⋃
λ̃∈Λ β(

∐
λ̃Xλ). Then y must be the limit point

of a net (yµ = βY (λµ, xµ))µ∈M , in the image of Λ×X via βY , cofinal with Λ,
since Λ×X → Λ∞×X → β(Λ∞×X) is dense. The net (βg(yµ))µ converges
to βg(y), and its image under βρ converges to x := βρ(βg(y)) = βπ(y). Any
neighbourhood of βγ(x) = (∞, x) contains a queue of (βg(yµ))µ, since this
net is cofinal with Λ. We may choose a neighbourhood U of βγ(x) so that
U ∩ (Λ∞×βX) = V ×A, with V = {λ ; λ ≥ λ}∪{∞}, and A an open subset
of βX containing x. Hence in A there is a queue of (βρ(βg(yµ)))µ and then
in U there is a queue of (βg(yµ))µ, which implies that βg(y) = (∞, x). We
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may then conclude that any y′ ∈ Y with βg(y) = βg(y′) belongs necessarily

to Ỹ .
To complete the proof we consider the continuous map K = 〈1, H〉 : Λ∞×

X → Λ∞ ×X defined by K(λ, x) = (λ, hλ(x)) and K(∞, x) = (∞, h(x)), so
that H = π ·K. Note that in the diagram below βg is the (unique) continuous
extension of the top composite, since the vertical maps are dense

Λ×X
��

K // Λ×X1×βX// Λ× βX(X)
(1×βX)−1

// Λ×XK−1
// Λ×X 1×βX// Λ× βX(X)

��

β(Λ∞ ×X)
βg

// β(Λ∞ × βX)

(here we consider (co)restrictions of K and βX although we use the same
notations).

Our next goal is to show that

βg(βK(y)) = βγ(βh(βπ(y))). (O)

By definition of K it is clear that βK(y) ∈ Ỹ . Therefore βg(βK(y)) =
(∞, βπ(βK(y))). To show that (∞, βπ(βK(y)) = (∞, βh(βπ(y))) – that is,
(O) – we use the following diagram

Λ×X K //

��

Λ×X 1×βX //

��

Λ× βX(X)
(1×βX)−1

//

��

Λ×XK−1
// Λ×X1×βX// Λ× βX(X)

��

β(Λ∞ ×X)

βg
��

βK
// β(Λ∞ ×X)

βg
// β(Λ∞ × βX)

βρ��

β(Λ∞ × βX)
βρ��

βX
βι
OO

βh
// βX
βι
OO

βX βX
(βh)−1

// βX βX

Indeed, applying (βh)−1 · βρ to the latter, one gets βπ(y); but the image
of (βh)−1(βρ(βπ(βK(y)))) must be also βπ(y), since βπ(y) = βρ(βg(y)) =
(βh)−1(βρ(βg(βK(y)))), and so (O) holds.

Now we are able to conclude (♦) for y, y′ ∈ Ỹ . From βg(y) = βg(y′)
it follows that βπ(y) = βπ(y′), and then, by equality (O), βg(βK(y)) =

βg(βK(y′)), with βK(y) and βK(y′) in Ỹ . Therefore also βπ(βK(y)) =
βπ(βK(y′)), which means exactly that βH(y) = βH(y′), and this ends the
proof.
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