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FAILURE RATE PROPERTIES OF PARALLEL SYSTEMS

IDIR ARAB, MILTO HADJIKYRIAKOU AND PAULO EDUARDO OLIVEIRA

Abstract: We study failure rate monotonicity and generalized convex transform
stochastic ordering properties of random variables, with a concern on applications.
We are especially interested in the effect of a tail weight iteration procedure to define
distributions, which is equivalent to the characterization of moments of the residual
lifetime at a given instant. For the monotonicity properties, we are mainly concerned
with hereditary properties with respect to the iteration procedure providing counter-
examples showing either that the hereditary property does not hold or that inverse
implications are not true. For the stochastic ordering, we introduce a new criterium,
based on the analysis of the sign variation of a suitable function. This criterium is
then applied to prove ageing properties of parallel systems formed with components
that have exponentially distributed lifetimes.
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1. Introduction
According to Barlow and Proschan [6], one of the most important aims

of reliability theory is to provide researchers with all the necessary tools to
understand, estimate and optimize the life span and failure distributions of
systems and their components. In reliability theory, ageing is defined as a
phenomenon of increasing risk of failure with the passage of time. If the risk
of failure is not increasing with age (the “old is as good as new” principle),
then there is no ageing in terms of reliability theory, even if the calendar
age of a system is increasing. Thus, the regular and progressive changes
over time do not constitute ageing unless they produce some deleterious
outcome (failures). Rausand and Høyland [31], define failure as the event that
makes the system to behave differently than what it is desired and expected.
“Positive ageing” can be identified in cases where the residual lifetime tends
to decrease with increasing age of the system. “Negative ageing” (also known

Received September 6, 2018.
This work was partially supported by the Centre for Mathematics of the University of Coimbra –

UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded
by the European Regional Development Fund through the Partnership Agreement PT2020.

1



2 IDIR ARAB, M. HADJIKYRIAKOU AND P.E. OLIVEIRA

as “beneficial ageing”) has the exact opposite effect, but this is a less common
situation and has attracted significantly less research interest.

Ageing properties can be employed in order to define different classes of
life distributions. Note that the exponential distribution is a member of
almost every class, exactly because of its memoryless property. Lifetime dis-
tributions can be characterized by their reliability function, the conditional
survival function, their failure rate or their expected value of residual life.
These quantities are used to express different notions of ageing also known
as reliability classes. For example, distributions that have either increas-
ing failure rate (IFR) or decreasing failure rate (DFR) have been studied
by various researchers, while other notions such “increasing failure rate on
average” (IFRA), “new better than used” (NBU), “new worse than used”
(NWU), “new better than used in expectation” (NBUE), “new worse than
used in expectation” (NWUE) and “decreasing mean residual life” (DMRL)
have also attracted a lot of attention.

The interesting properties of these ageing classes include preservation or
closure properties of a given class under the formation of coherent systems of
independent components, under convolution or mixture. It is also important
to be able to provide reliability bounds and moment inequalities and test ex-
ponentiality against other lifetime distributions. Properties of IFR and DFR
have been studied by Barlow and Proschan [6], Patel [29] while important re-
sults for IFRA can be found in Barlow and Proschan [6], Sengupta [32] and
El-Bassiouny [17]. Abouammoh and El-Neweihi [1] showed that the NBU
class is closed under formation of parallel systems of independent and identi-
cally distributed components while Barlow and Proschan [6] provided prob-
ability bounds for NBU, NWU, NBUE and NWUE. Chen [12] showed that
the distributions of these classes may be characterized through certain prop-
erties of the corresponding renewal functions, Cheng and He [12] studied the
reliability bounds on NBUE and NWUE classes while Cheng and Lam [13]
obtained reliability bounds on NBUE from the first two known moments.
Bryson and Siddiqui [9] proved that IFR (DFR) implies DMRL (IMRL),
Abouammoh and El-Neweihi [1] proved that DMRL classes are closed under
the formation of parallel systems, while Abu-Youssef [2] derived a moment
inequality that was used by the author to derive a test for testing exponen-
tiality against DMRL (IMRL).
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Another important aspect in the study of lifetime distributions is their or-
der relations. These usually define partial orderings which establish the com-
parison between two lifetime variables in terms of their failure rates, density
functions, survival functions, mean residual lives or other ageing character-
istics. Ageing classes can often be characterized by some partial orderings.
Barlow and Proschan [6] proved that IFR and IFRA classes are character-
ized by some specific choice of “convex ordering” and “star-shaped ordering”
respectively. Partial ordering of lifetime distributions has been studied ex-
tensively by various authors (see for example, Desphande et al. [15], Kochar
and Wiens [20], Singh [34], Fagiuoli and Pellerey [18], Shaked and Shanthiku-
mar [33]) because of their applicability in a wide spectrum of different fields
such as econometrics (Whitmore [39]), reliability (Barlow and Proschan [6]),
queues (Stoyan [36]) and other stochastic processes (Ross [30]). Singh and
Jain [35] and Fagiuoli and Pellerey [18] have proposed an application to sto-
chastic comparison between two devices that are subjected to Poisson shock
models.

Over the last decades there is an increasing interest in generalized partial
orderings and several generalizations can be found in the literature. Some of
these new ordering notions led to the creation of new ageing classes. Averous
and Meste [4] and later Fagiuoli and Pellerey [18] introduced new concepts of
partial stochastic ordering, namely s−FR, s−ST, s−CV, s−CX and s−SFR.
For the case where s = 1 or s = 2 the new orderings is reduced to well-known
stochastic orders. The authors provide relations between the new ordering
concepts and classical partial orders and they also give the definitions of the
related classes of life distributions. Nanda et al. [27] introduced new general-
ized partial orderings, particularly the s−IFR, s−IFRA, s−NBU, s−NBUFR
and s−NBAFR orderings. In their paper they also provide some equivalent
representations for each ordering and they also discuss inter-relations among
these orderings. Again for s = 1, 2, 3 some of these new orderings are equiv-
alent to already known partial stochastic orders. Despite the fact that for
higher values of s these partial orderings may not have clear and meaningful
applications, their mathematical nicety and the fact that they unify existing
results, make their study very interesting. Nevertheless, one motivation for
these extensions can be found in Loh [24] where different types of general-
ized partial orderings were used for testing for discrepancies in the tails of
symmetric distributions.
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Researchers are often interested in comparing the skewness of two distribu-
tions. Van Zwet [38] introduced a new skewness order, the so-called convex
transform order. In reliability theory the particular order is used to capture
the fact that one distribution is more IFR-increasing failure rate than an-
other distribution. Kochar and Xu [23] proved that a parallel system with
heterogeneous exponential component lifetimes is more skewed (according to
the IFR order) than the system with independent and identically distributed
exponential components. In other words, they proved that a parallel system
with homogeneous exponential components, ages faster than a system with
heterogeneous exponential components in the sense of the “more IFR” prop-
erty. Note that in what follows the IFR ordering will be denoted by 1−IFR,
following the notation introduced by the references mentioned above. Many
authors have studied orderings of such systems when the parameters of the
exponential distributions satisfy certain restrictions (see for example Dykstra
et al. [16], Khaledi and Kochar [19], Kochar and Xu [21, 22], among many
other authors). Recently, a number of researchers have also studied the case
where the exponential distribution is substituted with some generalized ver-
sions (see, for example, Balakrishnan et al. [5], Bashkar et al. [7]).

In this paper, we study some properties of lifetimes that are either s−IFR or
s−IFRA and at the same time we are interested in constructing criteria that
will enable us to identify whether specific lifetime distributions are ordered
via the s−IFR order. One of the main results of this work is that although
in general, the s−IFR (or the s−IFRA) ordering is not an inherited trait of
distributions, Theorem 3.1 of Kochar and Xu [23] is verified for the s−IFR
ordering where s can be any positive integer.

The paper is structured as follows: in Section 2 we provide some definitions
and results that will be useful for the rest of the paper while Sections 3 and
4 refer to properties of distributions that are either s−IFR or s−IFRA. In
Section 5 we will present an example of distributions that proves that two
stochastic orders that were reported in the literature as equivalent are in fact
two different concepts. The main results of the paper are concentrated in
Sections 6 and 7. Particularly, in Section 6 we provide a new criterium for
the s−IFR ordering via s−IFRA order and in Section 7 this new criterium is
used to prove ageing properties of parallel systems formed with components
that have exponentially distributed lifetimes.
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2. Preliminaries
We recall here the basic definitions and representations about the tail-

weight iterated distributions. These iterated distributions were introduced by
Averous and Meste [4] and initially studied by Fagiuoli and Pellerey [18]. Let
X be a nonnegative random variable with density function fX , distribution
function FX , and tail function FX = 1− FX .

Definition 1. For each x ≥ 0, define

TX,0(x) = fX(x) and µ̃X,0 =

∫ ∞
0

TX,0(t) dt = 1. (1)

For each s ≥ 1, define the s−iterated distribution TX,s by its tail TX,s =
1− TX,s as follows:

TX,s(x) =
1

µ̃X,s−1

∫ ∞
x

TX,s−1(t) dt where µ̃X,s =

∫ ∞
0

TX,s(t) dt. (2)

Moreover, we extend the domain of definition of each TX,s by defining
TX,s(x) = 1 for x < 0.

The distribution TX,2 is also known as the equilibrium distribution of X,
and plays an important role in ageing relations (see, for example, Chatter-
jee and Mukherjee [10]) and in renewal theory (see Cox [14]). Hence, the
iteration process above defines, for each s ≥ 1, TX,s as the equilibrium dis-
tribution of a random variable with tail TX,s−1. Although the definitions are
introduced in a recursive way, a closed form representation for the iterated
distributions is available.

Lemma 2 (Lemma 2 and Remark 3 in Arab and Oliveira [3]). The tails TX,s
may be represented as

TX,s(x) =
1

EXs−1

∫ ∞
x

fX(t)(t− x)s−1 dt. (3)

The s−iterated distribution moments are given by

µ̃X,s =
1

s

EXs

EXs−1
. (4)

Note that (3) may be rewritten as

TX,s(x) =
1

EXs−1
E(X − x)s−1

+ , (5)
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where (X−x)+ = max(0, X−x) is the residual lifetime at age x. Therefore,
the s−iterated distribution may be interpreted as the normalized survival
moment of order s− 1.

One of the most simple and common ageing notion is defined through the

monotonicity of the failure rate function of a distribution fX(x)
1−FX(x) =

TX,0(x)

TX,1(x)
.

The direct verification of this monotonicity is, in general, not a simple task, as
for many distributions the tail does not have an explicit closed representation
or, at least, not a manageable one. Having defined iterated distributions, it
becomes natural to proceed likewise with respect to the failure rate functions,
as defined in Nanda et al. [27] and also studied in Arab and Oliveira [3].

Definition 3. For each s ≥ 1 and x ≥ 0, define the s−iterated failure rate
function as

rX,s(x) =
TX,s−1(x)∫∞

x TX,s−1(t) dt
=

TX,s−1(x)

µ̃X,s−1TX,s(x)
.

It is obvious that for s = 1 we find the failure rate of X, rX,1(x) = fX(x)

FX(x)
,

hence the monotonicity of the failure rate is expressed as the monotonicity of
rX,1. We may extend this monotonicity notion by considering the s−iterated
distribution, as done in Averous and Meste [4], Fagiuoli and Pellerey [18],
Nanda et al. [27], among many other references.

Definition 4. For s = 1, 2, . . ., the nonnegative random variable X is said
to be

(1) s−IFR (resp. s−DFR) if rX,s is increasing (resp. decreasing) for x ≥ 0.
(2) s−IFRA (resp. s−DFRA) if 1

x

∫ x
0 rX,s(t) dt is increasing (resp. de-

creasing) for x > 0.

The above mentioned references introduce a few other monotonicity no-
tions, but we refer only the ones to be addressed in the present paper. Remark
that it follows easily from the definition above that the s−IFR monotonicity
of a random variable X implies that the variable is also s−IFRA.

We introduce next the order relations to be addressed.

Definition 5. Let F denote the family of distributions functions such that
F (0) = 0, X and Y be nonnegative random variables with distribution func-
tions FX , FY ∈ F , and s ≥ 1 an integer.
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(1) The random variable X (or its distribution FX) is said smaller than
Y (or its distribution FY ) in s−IFR order, and we write X ≤s−IFR Y ,

or equivalently, FX ≤s−IFR FY , if cs(x) = T
−1
Y,s(TX,s(x)) is convex.

(2) The random variable X (or its distribution FX) is said smaller than Y
(or its distribution FY ) in s−IFRA order, and we write X ≤s−IFRA Y ,
or equivalently, FX ≤s−IFRA FY , if ts(x) = 1

xcs(x) is increasing (this is
also known as cs(x) being star-shaped).

Fagiuoli and Pellerey [18] and Nanda et al. [27] concentrated on establishing
relations between the ordering notions defined. It is useful to note that
these order relations define partial order relations in the equivalence classes
of F corresponding to the equivalence relation F ∼ G defined by F (x) =
G(kx), for some k > 0. In case of families of distributions that have a scale
parameter, this allows to choose the parameter in the most convenient way.

The exponential distribution plays an important role when dealing with
ageing notions. Besides being a fixed point with respect to the iteration
procedure, the comparability with the exponential, either in the s−IFR or
s−IFRA sense, is equivalent to the s−IFR or s−IFRA monotonicity as proved
by Nanda et al. [27] (see Theorems 3.2 and 4.3)

Theorem 6. Let X be a random variable with distribution function FX ∈ F
and Y with exponential distribution.

(1) X ≤s−IFR Y (resp., Y ≤s−IFR X) if and only if X is s−IFR (resp., X
is s−DFR).

(2) X ≤s−IFRA Y (resp., Y ≤s−IFRA X) if and only if X is s−IFRA (resp.,
X is s−DFRA).

As an immediate consequence of the above, we have the following compar-
ison results.

Corollary 7. Let X and Y be random variables with distribution functions
FX , FY ∈ F , and s ≥ 1 an integer. If X is s−IFR and Y is s−DFR, then
X ≤s−IFR Y . The same holds replacing IFR and DFR by IFRA and DFRA,
respectively.

A general characterization of the above order relations is given below (see
Propositions 3.1 and 4.1 in Nanda et al. [27]).

Theorem 8. Let X and Y be random variables with distribution functions
FX , FY ∈ F .
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(1) X ≤s−IFR Y if and only if for any real numbers a and b, T Y,s(x) −
TX,s(ax + b) changes sign at most twice, and if the change of signs
occurs twice, it is in the order “+,−,+”, as x traverses from 0 to
+∞.

(2) X ≤s−IFRA Y if and only if for any real number a, T Y,s(x)− TX,s(ax)
changes sign at most twice, and if the change of signs occurs twice, it
is in the order “−,+”, as x traverses from 0 to +∞.

Remark 9. As mentioned in Remark 25 in Arab and Oliveira [3], it is enough
to verify the above characterizations only for a > 0.

The above characterization requires explicit expressions of the tails of
the iterated distributions, which are often not available. Computationally
tractable characterizations to decide about the actual comparison of general
distributions were studied in Arab and Oliveira [3]. We quote the character-
ization proved in Theorem 27 and Corollary 29 in [3].

Theorem 10. Let X and Y be random variables with absolutely continuous
distributions with densities fX and fY and distribution functions FX , FY ∈ F ,
respectively. If, for every constants a > 0 and b ∈ R, either of the functions,

Hs(x) =
1

EY s−1
fY (x)− as

EXs−1
fX(ax+ b)

or

Hs−1(x) =
1

EY s−1
F Y (x)− as−1

EXs−1
FX(ax+ b).

changes sign at most twice when x traverses from 0 to +∞, and if the change
of sign occurs twice, it is in the order “+,−,+”, then FX ≤s−IFR FY .

The functions Hs and Hs−1 may, respectively, be replaced by

Ps(x) = log fY (x)− log fX(ax+ b) + log
EXs−1

asEY s−1
,

and

Ps−1(x) = logF Y (x)− logFX(ax+ b) + log
EXs−1

as−1EY s−1
.

The next statement provides a criterium to verify the s−IFRA order rela-
tion. We do not include a proof, as this follows reproducing the arguments
presented in Arab and Oliveira [3] for the proof of the previous result.
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Theorem 11. Let X and Y be random variables with absolutely continuous
distributions with densities fX and fY and distribution functions FX , FY ∈ F ,
respectively. If, for every a > 0 and b = 0, either of the functions Hs(x) or
Hs−1(x) changes sign at most once when x traverses from 0 to +∞, and if
the change of sign occurs, it is in the order “−,+”, then FX ≤s−IFRA FY . The
functions Hs and Hs−1 may, respectively, be replaced by Ps(x) and Ps−1(x).

As indicated in Theorem 8, the control of the sign variation of T Y,s(x) −
TX,s(ax+b) is crucial to characterize the s−IFR and s−IFRA ordering. This
function is obtained after integration of Hs or Hs−1 defined in Theorems 10
and 11. Below, we quote a result about sign variation after integration, used
in Arab and Oliveira [3] for the proof of Theorem 10, that is an important
tool for our results below.

Lemma 12 (Lemma 26 in Arab and Oliveira [3]). Let f and g be two real-
valued functions defined on [0,∞) such that,

g(x) =

∫ ∞
x

f(t) dt.

Assume that, as x traverses from 0 to +∞, f(x) changes sign in one of the
following orders “−,+” or “+,−” or “+,−,+” or “−,+,−,+”. Then g(x),
as x traverses from 0 to ∞, has sign variation equal to every possible final
part of the sign variation of f(x).

The lifetime of parallel systems is expressed as the maximum of the lifetimes
of each component. When these component have exponentially distributed
lifetimes, the distribution functions of the system’s lifetime is expressed as a
linear combinations of exponential terms. Later, it will be important to be
able to count and localize the roots of such expressions. The following result
will play an important role on this aspect.

Theorem 13 (Theorem 1 in Shestopaloff [37]). Let n ≥ 0, p0 > p1 > · · · >
pn > 0, and αj 6= 0, j = 0, 1, . . . , n, be real numbers. Then the function
f(t) =

∑n
j=0 αjp

t
j has no real zeros if n = 0, and for n ≥ 1 has at most

as many real zeros as there are sign changes in the sequence of coefficients
α0, α1, α2, . . . , αn.

3. Hereditary monotonicity properties
A common feature about iterated monotonicity properties is an hereditary

with respect to the iteration parameter. However, the hereditary property
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does not hold for all the order relations defined, as we will be showing below
by an example. We quote first the hereditary property for monotonicity of
the iterated failure rate.

Lemma 14. Let X be a nonnegative random variable. For every integer
s ≥ 1, the following relations hold.

a) If X is s−IFR, then X is (s+ 1)−IFR.
b) If X is s−DFR, then X is (s+ 1)−DFR.

This result is included in Theorem 2 in Navarro and Hernandez [28]. It
implies that, for most distributions, it is enough to verify the 1−IFR or the
1−DFR property. Exhibiting distributions that do not have lower iterated
monotonicity but verify it after a few iteration steps, usually requiring a
suitable modification of known families of distributions. Such an example,
using fattened tail Pareto distributions, was given in Example 9 in Arab and
Oliveira [3]. This hints a way to construct distributions with failure rates
that become monotone only after a few iteration steps. The example below
shows the same effect for a distribution that is IFR, instead.

Example 15. Let X be a nonnegative random variable with density function

f(x) = (x2+c)e−x

c+2 . It is easily verified that

TX,1(x) =
(x2 + 2x+ 2 + c)e−x

c+ 2
, TX,2(x) =

(x2 + 4x+ 6 + c)e−x

6 + c
,

and

rX,1(x) =
f(x)

TX,1(x)
=

x2 + c

x2 + 2x+ 2 + c
, rX,2(x) =

6 + c

2 + c
×x

2 + 2x+ 2 + c

x2 + 4x+ 6 + c
.

Differentiating, we find

r′X,1(x) =
2x2 + 4x− 2c

(x2 + 2x+ 2 + c)2 , r′X,2(x) =
6 + c

2 + c
× 2x2 + 8x+ 4− 2c

(x2 + 4x+ 6 + c)2 .

By choosing c ∈ (0, 2) we obtain rX,1 that starts decreasing and eventually
becomes increasing, while rX,2 is increasing. That is, X is not 1−IFR but is
2−IFR. Moreover, it is also easy to verify that X is not 1−IFRA.

Let us now look at the hereditary property concerning the s−IFRA mono-
tonicity, to show that the situation is quite different from what happens with
the s−IFR monotonicity.
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Proposition 16. Let Y1 and Y2 be independent exponential random variables
with mean 1 and 1/λ, respectively, where λ 6= 1, and define Y = max(Y1, Y2).
Then Y is 1−IFRA, but it is neither 2−IFRA nor 2−DFRA. Moreover,
there exists s0 > 2 such that Y is s−DFR for every s ≥ s0.

Proof : Remark first that

T Y,s(x) =
1

c(s, λ)

(
e−x +

e−λx

λs−1
− e−(λ+1)x

(λ+ 1)s−1

)
,

where c(s, λ) = 1 + 1
λs−1 − 1

(λ+1)s−1 . To prove that Y is 1−IFRA, we need to

verify that −t1(x) =
log(TY,1(x))

x is decreasing. Taking into account Theorem 8,

we need to prove that H(x) = e−x + e−λx − e−(1+λ)x − e−ax changes sign at
most once in the order “+,−” for every a > 0 (note that we are here inter-
ested in proving the function is decreasing, while Theorem 8 characterized
increasingness). Moreover, remark that, for every x ≥ 0, T Y,1(x) ≥ e−x, so
it is enough to consider a < 1. Hence, the sign pattern of the coefficients
means that, according to Theorem 13, H has at most two real roots. More-
over, we have that limx→+∞H(x) = 0−, H(0) = 0, and H ′(0) = a > 0, so it
follows that the second root does exist and is positive, consequently the sign
variation of H(x) is “+,−”. Therefore, we have proved that Y is 1−IFRA.

To prove the second statement, we verify that t2(x) =
− log(TY,2(x))

x is not
monotone. Indeed, we have

lim
x→0

t2(x) =
1

1 + 1
λ −

1
1+λ

< 1, and lim
x→+∞

t2(x) = 1.

We verify now that the equation t2(x) = 1 has one positive solution. Rewrite
this as

t2(x) = 1 ⇔ P (x) =

(
1

λ+ 1
− 1

λ

)
e−x +

e−λx

λ
− e−(1+λ)x

1 + λ
= 0.

Again from Theorem 13, P has at most two real roots. As P (0) = 0, P ′(0) >
1
λ −

1
λ+1 > 0 and limx→+∞ P (x) = 0−, there exists a strictly positive second

root.
For the final statement, we want to prove the monotonicity of

rY,s(x) =
T Y,s−1(x)

µ̃Y,s−1T Y,s(x)
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which coincides with the monotonicity of

N(x) =
e−x + e−λx

λs−2 − e−(λ+1)x

(λ+1)s−2

e−x + e−λx

λs−1 − e−(λ+1)x

(λ+1)s−1

.

We look at the numerator of N ′(x), which after some algebraic manipulation,
may be written as

Q(x) = −(λ− 1)2

λs−1
e−(λ+1)x +

λ2

(λ+ 1)s−1
e−(λ+2)x +

1

(λ2 + λ)s−1
e−(2λ+1)x

Of course, the sign of N ′(x) coincides with the sign of Q(x). Notice that if
λ > 1, we have λ+ 1 < λ+ 2 < 2λ+ 1, while the two last terms interchange
when λ < 1. Hence, it follows from Theorem 13 that Q has, at most, one
real root. Moreover, limx→+∞Q(x) = 0−. Therefore, if Q(0) > 0 the sign
variation of Q in (0,+∞) is “+,−”, and if Q(0) < 0 the sign variation is
“−”. We have that

Q(0) =
λs+1 + 1− (λ− 1)2(1 + λ)s−1

(λ2 + λ)s−1
,

and this, as function of s, will eventually become negative as the numerator
has a negative coefficient for λs, the largest power in that expression.

The following is an immediate consequence of Example 15 and Proposi-
tion 16.

Corollary 17. The s−IFRA monotonicity does not have the hereditary prop-
erty.

4. Simple failure rate monotonicity properties
This section presents simple properties of IFR or DFR distributions that

are not of hereditary nature. We first highlight som improvement on clas-
sical moment bounds that may be derived from the iterated failure rate
monotonicity.

Proposition 18. Let X be a random variable with distribution function FX ∈
F and density function fX, and let s > 3.

(1) If X is s−IFR, then(
1− 1

s− 1

)
E(X−x)s−3

+ E(X−x)s−1
+ ≤

(
E(X − x)s−2

+

)2 ≤ E(X−x)s−3
+ E(X−x)s−1

+ .
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(2) If X is s−DFR, then(
E(X − x)s−2

+

)2 ≤
(

1− 1

s− 1

)
E(X − x)s−3

+ E(X − x)s−1
+ .

Proof : A direct application of Hölder inequality justifies the upper bound in
s−IFR case. Both the lower bound in the s−IFR, and the upper bound in
the s−DFR case follow by requiring the appropriate sign on the numerator
of r′X,s and taking into account (4) and (5).

Remark 19. Note that the previous result, in the case of DFR distributions,
provides a bound for the s − 2 moment of the residual life at age x sharper
than what is given by the Hölder inequality. For the case of IFR distributions,
Proposition 18 together with Hölder inequality gives a sharp interval for the
s− 2 moment of the residual life at age x.

We now have a look at the iterated failure rate properties of parallel sys-
tems. The lifetime of such a system is expressed mathematically as the
maximum of the lifetimes of each one of the components, has already been
used to provide an example about the nonhereditary of the IFRA mono-
tonicity (see Proposition 16). We recall here a well known property about
the monotonicity of parallel systems and derive a few simple consequences.

Proposition 20. Let X1, . . . , Xn be independent and identically distributed
1− IFR random variables, with distribution function F ∈ F and density
function f . Then X(n) = max(X1, . . . , Xn) is s−IFR, for every s ≥ 1.

Proof : Taking into account Lemma 14, it is enough to verify that is X(n)

is 1− IFR. Writing rX(n),1(x) = nFn−1(x)
1+F (x)+···+Fn−1(x)

f(x)
1−F (x) , the conclusion is

immediate.

Remark 21. Although the result presented above i.e. the property that paral-
lel systems of identical 1−IFR units are also 1−IFR is a known result (see for
example [6]), we present its proof for the sake of completeness. Note that, to
the best of our knowledge, this is a new approach for the proof of the partic-
ular property. An alternative proof for n = 2 can be found in Example A.11
in Marshall and Olkin [26].

An easy consequence follows if we form the parallel system with components
after a few iteration steps.
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Corollary 22. Let X be s−IFR, for some s ≥ 1, random variable, with dis-
tribution function F ∈ F and density function f . Let Y(n) = max(Y1, . . . , Yn)

where Yi are independent with tail function TX,s(x). Then Y(n) is s−IFR, for
every s ≥ 1.

A related result was proved in Theorem 2.2 in Abouammoh and El-Neweihi [1],
that we quote here presented in a slightly more general wording.

Proposition 23. Let X1, . . . , Xn be independent and identically distributed
s−IFR, for some s ≥ 2, random variables with distribution function F ∈ F .
Let Y(n) = max(Y1, . . . , Yn) where Yi are independent with tails TX,s−1(x).
Then Y(n) is s−IFR.

The original statement by Abouammoh and El-Neweihi [1] considers only
the case where s = 2. The above version follows immediately by remember-
ing the hereditary of the s−IFR monotonicity. Both results prove the iterated
monotonicity of maxima based on distributions constructed after some iter-
ation steps. The statement in Proposition 23 has a more straightforward
practical interpretation.

5. Nonhereditary of the s−IFR ordering
We now have a look at hereditary properties of the s−IFR ordering. We

shall prove that, opposite to what happens with the s−IFR monotonicity,
the ordering relation is not an hereditary property. For the discussion, we
need to recall one more stochastic order relation (see Section 4.B.2 in Shaked,
Shanthikumar [33]).

Definition 24. Let X and Y be random variables with distribution functions
FX , FY ∈ F . The random variable X is said to be more DMRL than Y, and

we write X ≤DMRL Y , if d(x) =
TY,2(T

−1

Y,1(x))

TX,2(T
−1

X,1(x))
is decreasing.

The following relation with failure rate order holds.

Theorem 25 (Theorem 4.B.20 in Shaked, Shanthikumar [33]). Let X and Y
be random variables with distribution functions FX , FY ∈ F . If X ≤1−IFR Y ,
then X ≤DMRL Y .

Nanda et al. [27], mention in their Remark 3.1, without proof, that the
DMRL order is equivalent to the 2−IFR order. An immediate consequence
of Nanda et al. [27] remark is that if X ≤1−IFR Y then X ≤s−IFR Y for any
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s ≥ 2. Indeed, once proved that X ≤1−IFR Y , Theorem 4.B.20 in Shaked and
Shanthikumar [33], implies that X ≤DMRL Y , hence, according to Nanda
et al. [27] remark, X ≤2−IFR Y . If we define now X∗2 with tail function
TX,2, and Y ∗2 with tail function T Y,2, the previous order relation means that
X∗2 ≤1−IFR Y

∗
2 . Therefore, iterating once again, and applying Theorem 4.B.20

from Shaked and Shanthikumar [33] and the mentioned remark, it follows
that X∗2 ≤2−IFR Y ∗2 , which is just a rewriting for X ≤3−IFR Y . Repeating
the above construction, it would follow that X ≤s−IFR Y , for every s ≥ 1.
However, the equivalence mentioned in Remark 3.1 of Nanda et al. [27] is, in
general, not true. We can prove the stated equivalence only when one of the
random variables is exponentially distributed. The construction of a counter-
example for the general result requires a very careful choice of distribution
functions, as described below in Proposition 28.

Proposition 26. Let X be a random variable with distribution function FX ∈
F and Y a random variable with exponential distribution. Then X ≤2−IFR Y
if and only if X ≤DMRL Y .

Proof : Taking into account the comments after Definition 5, it is enough to
consider the case where Y has mean 1. Then we have that T Y,1(x) = T Y,2 =

e−x. Therefore, X ≤DMRL Y is equivalent to d(x) =
TY,2(T

−1

Y,1(x))

TX,2(T
−1

X,1(x))
= x

TX,2(T
−1

X,1(x))

being decreasing. On the other hand, X ≤2−IFR Y is equivalent to c2(x) =

T
−1
Y,2(TX,2(x)) being convex or, alternatively, c′2 being increasing. Differenti-

ating, c′2(x) =
TX,1(x)

TY,2(T
−1

Y,1(TX,2(x)))
=

TX,1(x)

TX,2(x)
. Hence, X ≤2−IFR Y is equivalent to

c′2(T
−1
X,1(x)) = d(x) being decreasing, which proves the equivalence.

As an immediate consequence, we have the hereditary property of the s−
IFR order with respect to exponentially distributed random variables. This
proves Nanda et al. [27] remark for the particular choice of the exponential
as the reference distribution.

Corollary 27. Let X be a random variable with distribution function FX ∈ F
and Y a random variable with exponential distribution. If, for some s ≥ 1,
X ≤s−IFR Y , then X ≤(s+1)−IFR Y .

However, the same hereditary does not hold when comparing general ran-
dom variables with respect to the s−IFR ordering. That is, Remark 3.1 in
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Nanda et al [27] is, in general, not true as it is proven in the proposition that
follows.

Proposition 28. Neither the 1−IFR or the DMRL order imply the 2−IFR
order.

Proof : Given c1, c2 > 0, we say that a random variable X has branched
Pareto distribution with parameters c1, c2, X ∼ BP(c1, c2), if its survival
function is:

TX,1(x) =
c2

1

(x+ c1)2
I[0,c1](x) +

(c1 + c2)
2

4(x+ c2)2
I(c1,+∞)(x).

Explicit expressions for the 2-iterated distribution and for the corresponding
inverse functions are:

TX,2(x) =
4

3c1 + c2

(
c2

1

x+ c1
+
c2 − c1

4

)
I[0,c1](x) +

(c1 + c2)
2

(3c1 + c2)(x+ c2)
I(c1,+∞)(x),

T
−1
X,1(x) =

(
c1 + c2

2
√
x
− c2

)
I[0, 14 ](x) +

(
c1√
x
− c1

)
I( 1

4 ,+∞)(x),

T
−1
X,2(x) =

(
(c1 + c2)

2

(3c1 + c2)x
− c2

)
I[0,

c1+c2
3c1+c2

](x)

+

(
4c2

1

(3c1 + c2)x− (c2 − c1)
− c1

)
I(

c1+c2
3c1+c2

,+∞)(x).

Moreover,

TX,2(T
−1
X,1)(x) =

2(c1 + c2)
√
x

3c1 + c2
I[0, 14 ](x)+

4

3c1 + c2

(
c1

√
x+

c2 − c1

4

)
I( 1

4 ,+∞)(x),

and

TX,1(T
−1
X,2)(x) =

(3c1 + c2)
2

4(c1 + c2)2
x2I[0,

c1+c2
3c1+c2

](x)+
((3c1 + c2)x− (c2 − c1))

2

16c2
1

I(
c1+c2
3c1+c2

,+∞)(x).

Choosing suitably the parameters c1 and c2, we obtain the counter-example.
A possible choice is X ∼ BP(5, 10) and Y ∼ BP(2, 6). For these parameters,
we find

d(x) =
10

9
I[0, 14 )(x) +

25 (2
√
x+ 1)

12
(
5
√
x+ 5

4

)I[ 14 ,+∞)(x),
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that is decreasing,

c′2(x) =
81

100
I[0, 35 ](x) +

9x2

(5x− 1)2
I( 3

5 ,
2
3 ](x) +

4(3x− 1)2

(5x− 1)2
I( 2

3 ,1](x),

which is not monotone, and

c1(x) = T
−1
Y,1(TX,1)(x) =

(
2(x+ 5)

5
− 2

)
I[0,5](x)+

(
8(x+ 10)

15
− 6

)
I(5,+∞)(x),

which is convex.

6. A criterium for s−IFR ordering and a first application
We have recalled (see Theorem 10), the criterium introduced by Arab and

Oliveira [3] to prove s−IFR order between two different random variables,
and we have mentioned, in Theorem 11, the straightforward extension to
prove the s−IFRA order. The criterium introduced in Theorem 10 was used
in Arab and Oliveira [3] to establish the iterated order within the families
of the Gamma or the Weibull distributions. The proofs given in Arab and
Oliveira [3] required a careful analysis of the sign variation of

Ps(x) = log fY (x)− log fX(ax+ b) + log
EXs−1

asEY s−1
,

(or of Ps−1, defined in Theorem 10). A close look at those proofs shows that
the difficult cases to handle always correspond to b < 0, needing a correct
positioning of the roots. So, it would be quite useful if we could reduce the
need to verify the behaviour described in Theorem 10, considering only a > 0
and b ≥ 0. We may obtain such a simplification with the help of the s−IFRA
ordering.

Theorem 29. Let X and Y be random variables with distribution functions
FX , FY ∈ F , respectively. If X ≤s−IFRA Y and the criterium from Theorem 10
is verified for b ≥ 0, then X ≤s−IFR Y .

Proof : To prove thatX ≤s−IFR Y , we need to verify that cs(x) = T
−1
Y,s(TX,s(x))

is convex or, equivalently, that T
−1
X,s(T Y,s(x)) is concave. Taking into ac-

count Theorem 20 in Arab and Oliveira [3], this is equivalent to verifying

that V (x) = T
−1
X,s(T Y,s(x)) − (ax + b) has, for every real numbers a and

b, at most the sign variation “−,+,−”. The assumption X ≤s−IFRA Y

means that cs(x)
x is increasing or, equivalently, that

T
−1

X,s(TY,s(x))

x is decreas-
ing. For x > 0, the sign variation of V (x) is the same as the sign variation of
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V (x)
x =

(
T

−1

X,s(TY,s(x))

x − a
)
− b

x . The expression in the parenthesis is decreasing

and, for b < 0, b
x is increasing, therefore V (x)

x has, at most, one root so the
proof is concluded.

We may now prove a comparison result ordering two distributions, one
from the Weibull family and the other from the Gamma family.

Proposition 30. If α > 1, then Weibull(α, θ1) ≤s−IFR Γ(α, θ2), for every
s ≥ 1.

Proof : Choose X with Weibull(α, 1) distribution with density
fX(x) = αxα−1e−x

α

, and Y with Γ(α, 1) distributed with density fY (x) =
1

Γ(α)x
α−1e−x. We are taking θ1 = θ2 = 1, as these are scale parameters, so

their value does not affect the order relation between the random variables.
We want to prove that X ≤s−IFR Y . Put Vs(x) = T Y,s(x)− TX,s(ax+ b). We
will now analyse the sign variation of Vs for x ≥ 0.

Step 1. The s−IFRA ordering : On the definition of Vs take b = 0. There-
fore, we have

Ps(x) = −(α− 1) log(a)− x+ aαxα − log(αΓ(α)) + log
EXs−1

asEY s−1
,

implying that limx→+∞ Ps(x) = +∞, and P ′s(x) = −1 + aααxα−1,
so the sign variation of P ′s is “−,+”, and the monotonicity of Ps is
“↘↗”. If Ps(0) < 0, the sign variation of Ps is “−,+”, so, using
Lemma 12, the sign variation of Vs is, at most, “−,+”. If Ps(0) ≥ 0,
the sign variation of Ps may be “+,−,+”. The function Vs is obtained
by integrating Hs, given in Theorem 10, so, again based on Lemma 12,
and taking into account that Vs(0) = 0, the sign variation of Vs is, at
most, “−,+”. Therefore, we have proved that X ≤s−IFRA Y .

Step 2. The s−IFR ordering : We consider now Vs with a > 0 and b > 0.
Then we have

Ps(x) = (α−1) (log x− log(ax+ b))−x+(ax+b)α−log(αΓ(α))+log
EXs−1

asEY s−1
.

It is obvious that limx→+∞ Ps(x) = +∞. Differentiating, we have that

P ′s(x) =
α− 1

x
− a(α− 1)

ax+ b
− 1 + aα(ax+ b)α−1 =

Ns(x)

x(ax+ b)
,
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where Ns(x) = aαx(ax + b)α − ax2 − bx + b(α − 1). Hence, as we
will be considering x such that the denominator is positive, the sign
of P ′s is determined by the sign of Ns. Differentiating Ns, we obtain
N ′′′s (x) = a3α2(α−1)(ax+b)α−3

(
a(α+1)x+3b

)
. Therefore, sgn(N ′′′s ) =

sgn
(
a(α+1)x+3b

)
. As a(α+1)x+3b ≥ 0, it follows that N ′′′s (x) ≥ 0,

hence N ′′s is increasing. We have that limx→+∞N
′′
s (x) = +∞, and

N ′′s (0) = 2a(aα2bα−1 − 1), and this last one may be either positive or
negative. Looking now at N ′s, we have N ′s(+∞) = +∞, and N ′s(0) =
b(aαbα−1− 1), which my be either positive or negative, irrespective to
the sign at the origin for N ′′s . Finally, we have Ns(0) = b(α − 1) > 0
and limx→+∞Ns(x) = +∞. The table below summarizes the most sign
varying possibilities, taking into account the behaviour just described.

N ′′(0) positive N ′′(0) negative
sign variation
of N ′′

+ −,+

monotonicity of
N ′

↗ ↘↗

N ′(0) positive N ′(0) negative N ′(0) positive N ′(0) negative
sign variation
of N ′

+ −,+ +,−,+ −,+

monotonicity of
N

↗ ↘↗ ↗↘↗ ↘↗

sign variation
of N

+ +,−,+ +,−,+ +,−,+

As sgn(P ′s) = sgn(Ns), it follows that the possible monotonicities
for Ps are “↗” or “↗↘↗”. Going back to the expression for Ps, we
verify that limx→0+ Ps(x) = −∞ and limx→+∞ Ps(x) = +∞, therefore,
the possible sign variation of Ps are “−,+” or “−,+,−,+”. Based
again on Lemma 12, for the first case it follows that the possible sign
variations for Vs are “−,+” or “+”, while in the second case, the
possible sign variation for Vs are “−,+,−,+”, “+,−,+”, “−,+” or
“+”. Taking into account that Vs(0) = 1− TX,s(b) ≥ 0, actually only
the sign variations starting at positive values are possible, that is, the
possibilities are “+” or “+,−,+”, so the proof is concluded.

Remark 31. The proof of the comparison just described may be approached
using Theorem 10, that is, the same methodology as in Arab and Oliveira [3].
In this case we would need to describe the sign variation also for the case
b < 0, and this can only be successfully completed assuming α > 2, due
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to the need to have a precise characterization of the location of the roots
of Vs enabling to derive the appropriate control of the sign variation of this
function.

Using the criterium proved in Theorem 29 we may complete the comparison
within the Gamma or the Weibull families of distributions, partially given
in Propositions 30–33 in Arab and Oliveira [3]. We state here the complete
result.

Theorem 32. Let α′ > α > 0.

(1) If X ∼ Γ(α′, θ1) and Y ∼ Γ(α, θ2) then X ≤s−IFR Y .
(2) If X ∼Weibull(α′, θ1) and Y ∼Weibull(α, θ2) then X ≤s−IFR Y .

Proof : Given Propositions 30–33 in Arab and Oliveira [3], we only need to
consider the case where 1 > α′ > α > 0. The result follows repeating the
steps for the proof of Proposition 30, with the arguments used in Proposi-
tions 30 and 32 in Arab and Oliveira [3].

Remark 33. The treatment of the case 1 > α′ > α > 0 was out of reach of
the methodology used in [3], exactly due to the difficulty on handling the sign
variation of the function Vs when choosing b < 0.

7. Failure rate ordering of exponentially distributed par-
allel systems

We now apply our results to prove extended ordering relations among
parallel systems with components that have exponentially distributed life-
times. We will be extending Theorem 3.1 by Kochar and Xu [23], where
these authors prove that a parallel system where the components have the
same exponential distribution ages faster than a same sized system where
the components have exponential lifetimes with different mean values. We
will be using the criterium introduced in Theorem 29 to extend, for general
s ≥ 1, this ageing characterization of parallel systems proved by Kochar and
Xu [23].

Throughout this section, we take

X = max(X1, X2), X1 and X2 are independent mean 1 ex-
ponentially distributed,

Y = max(Y1, Y2), Y1, mean 1 exponentially distributed,
Y2, mean 1/λ < 1 exponentially dis-
tributed, and independent.

(6)
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The choice made for the mean values of the components lifetimes is not really
essential, but makes our proofs easier to explain. The only important fact
is that X1 and X2 have the same mean. Indeed, taking into account the
comments after Definition 5, we may always renormalize the variables to
reduce to the present case. This section studies the s−iterated failure rate
order between X and Y . The main tool for the analysis is the result about
roots of polynomials of exponentials, recalled in Theorem 13.

As already mentioned in course of the proof of Proposition 16, it is easily
verified that

T Y,s(x) =
1

c(s, λ)

(
e−x +

e−λx

λs−1
− e−(λ+1)x

(λ+ 1)s−1

)
,

where c(s, λ) = 1+ 1
λs−1− 1

(λ+1)s−1 . The tail of the distribution of X is obtained

replacing λ by 1 in these expressions.

For sake of readability, we will present the various partial results leading
to the comparison of X and Y in s−IFR order in a series of propositions.

Proposition 34. Let X and Y be defined as in (6). For every s ≥ 1 and
x ≥ 0, we have TX,s(x) ≥ T Y,s(x).

Proof : Define

Us(x) = TX,s(x)− T Y,s(x)

=
2se−x − e−2x

2s − 1
− 1

c(s, λ)

(
e−x +

e−λx

λs−1
− e−(λ+1)x

(λ+ 1)s−1

)
=

(
2s

2s − 1
− 1

c(s, λ)

)
e−x − e−2x

2s − 1
− e−λx

c(s, λ)λs−1
+

e−(λ+1)x

c(s, λ)(λ+ 1)s−1
.

We are considering λ > 1, so the signs of the coefficients of Us, after ordering
decreasingly with respect to the exponents, are “+,−,−,+” (the sign of the
coefficients of e−λx and e−2x are the same, so we do not need to consider
the two cases). So, taking into account Theorem 13, Us has, at most, two
real roots. One root is easily located, as Us(0) = 0. Moreover, notice that
limx→−∞ Us(x) = +∞, governed by the sign of the coefficient of e−x, while
limx→+∞ Us(x) = 0+, described by the sign of the coefficient of the exponen-
tial with the smallest exponent. In order to locate the remaining root, we
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need to differentiate: for k < s, we have

U (k)
s (x) = (−1)k

[
2se−x − 2ke−2x

2s − 1
− 1

c(s, λ)

(
e−x +

e−λx

λs−1−k −
e−(λ+1)x

(λ+ 1)s−1−k

)]
,

and

U (s)
s (x) = (−1)s

[
2se−x − 2se−2x

2s − 1
− 1

c(s, λ)

(
e−x + λe−λx − (λ+ 1)e−(λ+1)x

)]
.

Hence, the signs of the coefficients of the exponentials alternate with each

differentiation, and U
(s)
s (0) = 0. It is now convenient to separate into two

cases.

s even: The signs of the coefficients in U
(s)
s are “+,−,−,+”, implying

that limx→−∞ U
(s)
s (x) = +∞, limx→+∞ U

(s)
s (x) = 0+, and U

(s)
s has, at

most, two real roots. As U
(s)
s (0) = 0, depending on the location of the

second root, the sign variation in (0,+∞) of U
(s)
s may be either “+” or

“−,+”. The sign of U
(s−1)
s (0) is not determined, and the signs of the

limits at ±∞ are reversed with respect to U
(s)
s , so we need to consider

the two possibilities leading to the following possible situations:

U
(s)
s “+” “−,+”

U
(s−1)
s (0) positive negative positive negative

sign variation of

U
(s−1)
s in (0,+∞)

not possible “−” “+,−” “−”

Therefore, there are only two possible sign variations for U
(s−1)
s when

x ∈ (0,+∞): “−” or “+,−”. We may proceed to characterize the

possible sign variation in (0,+∞) of U
(s−2)
s , repeating the above ar-

guments. Again, notice that it is not possible to determine the sign

of U
(s−2)
s (0), so the possibilities are:

U
(s−1)
s “−” “+,−”

U
(s−2)
s (0) positive negative positive negative

sign variation of

U
(s−2)
s in (0,+∞)

“+” not possible “+” “−,+”

We find, for the sign variation in (0,+∞) of U
(s−2)
s exactly the same

behaviour as for U
(s)
s , so we may repeat the arguments above to find
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that U ′s has the same sign variation in (0,+∞) as U
(s−1)
s , that is, it is

either “−” or “+,−”. Going back to Us remember limx→−∞ Us(x) =
+∞, limx→+∞ Us(x) = 0+, and Us(0) = 0. This behaviour does not
allow for the case U ′s being always negative, so the sign variation of
U ′s is “+,−”, which implies that Us(x) ≥ 0, for every x ≥ 0.

s odd: For this case, we have that the signs of the coefficients in U
(s)
s

are “−,+,+,−”, limx→−∞ U
(s)
s (x) = −∞, limx→+∞ U

(s)
s (x) = 0−,

U
(s)
s (0) = 0, and U

(s)
s has, at most, two real roots. Therefore, the only

possible sign variation in (0,+∞) for U
(s)
s is “+,−”, which is what we

found for the s − 1 derivative in the previous case. Hence, repeating
the arguments, we find the same conclusion, that is, Us(x) ≥ 0, for
every x ≥ 0, as well.

Corollary 35. Let X and Y be defined as in (6). Then
T

−1

Y,sTX,s(x)

x ≤ 1, for
every x > 0.

Proof : We have just proved that TX,s(x) ≥ T Y,s(x) which, as T Y,s is a de-

creasing function, implies that T
−1
Y,sTX,s(x) ≤ x, so the result is proved.

Proposition 36. Let X and Y be defined as in (6). For every s ≥ 1,
X ≤s−IFRA Y .

Proof : We need to prove that ts(x) =
T

−1

Y,s(TX,s(x))

x is increasing for x ≥ 0,
or, equivalently, that the sign variation in (0,+∞) of ts(x) − a is, at most,
“−,+”. The previous corollary means that we need only to consider 0 <
a ≤ 1. This is still equivalent to proving that, for the described choice for a,
TX,s(x) − T Y,s(ax) behaves, at most, as “+,−”. Reversing this expression,
this is equivalent to prove that Vs(x) = T Y,s(x)− TX,s(ax) behaves, at most,
as “−,+”, now for a > 1. This is the same formulation as in Theorem 8
with a reduced scope for the choice of a. To write the expression explicitly,
we have

Vs(x) =
1

c(s, λ)

(
e−x +

e−λx

λs−1
− e−(λ+1)x

(λ+ 1)s−1

)
− 2se−ax − e−2ax

2s − 1
.

We will be using Theorem 13 to identify the maximum number the roots
of Vs and proceed in a similar way as before to locate them, and infer the
sign variation of the function. As in the proof of Proposition 34, we start by
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differentiating to obtain

V (s)
s (x) = (−1)s

[
1

c(s, λ)

(
e−x + λe−λx − (λ+ 1)e−(λ+1)x

)
− 2sas

e−ax − e−2ax

2s − 1

]
,

so we have V
(s)
s (0) = 0. To apply Theorem 13, we need to order decreasingly

with respect to the exponents the exponential terms in Vs, which means
we need to separate into several cases, depending on the location of a with
respect to λ, verifying in each one that the sign variation of Vs is, at most,
“−,+”. Recall that both these parameters are larger or equal than 1.

Case 1: 1 < a < 2a < λ < λ+ 1: As previously, we need to treat sep-
arately the case where s is even from where s is odd.

s even: The sign pattern of the coefficients in Vs and in V
(s)
s is now

“+,−,+,+,−”, indicating that each function has, at most, three
real roots. Moreover, this sign pattern implies that

lim
x→−∞

V (s)
s (x) = −∞, lim

x→+∞
V (s)
s (x) = 0+, V (s)

s (0) = 0.

Therefore, the most sign varying in (0,+∞) case for V
(s)
s is

“+,−,+”. As before, the sign of V
(s−1)
s (0) is not determined,

so we need to analyze each possibility. Remember that the coef-
ficient signs and the signs at each limit when x → ±∞ reverses
with each differentiation, meaning that

lim
x→−∞

V (s−1)
s (x) = +∞, lim

x→+∞
V (s−1)
s (x) = 0−.

Taking this into account, the possibilities are:

V
(s)
s “+,−,+”

V
(s−1)
s (0) positive negative

sign variation of

V
(s−1)
s in (0,+∞)

“+,−” “−,+,−”

To proceed the analysis about V
(s−2)
s , notice first that the sign of

this function at the origin is not determined, and that

lim
x→−∞

V (s−2)
s (x) = −∞, lim

x→+∞
V (s−2)
s (x) = 0+.

Therefore, the possible sign variations are:
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V
(s)
s “+,−,+”

V
(s−1)
s (0) positive negative

sign variation of

V
(s−1)
s in (0,+∞)

“+,−” “−,+,−”

V
(s−2)
s (0) positive negative positive negative

sign variation of

V
(s−2)
s in (0,+∞)

“+” “−,+” “+,−,+” “−,+”

This means that the most sign varying possibility for V
(s−2)
s is

the same as for V
(s)
s , hence we may recurse on the argument to

arrive at the conclusion that the most sign varying in (0,+∞)
case for V ′s is “−,+,−”. Taking into account that Vs(0) = 0,
limx→−∞ Vs(x) = −∞, limx→+∞ Vs(x) = 0+, and Vs has, at most,
three real roots, its sign variation in (0,+∞) may, at most, be
“−,+”.

s odd: The sign pattern of the coefficients in V
(s)
s is now

“−,+,−,−,+”, and limx→−∞ V
(s)
s (x) = +∞, limx→+∞ V

(s)
s (x) =

0−, and V
(s)
s (0) = 0. This means that the most sign varying in

(0,+∞) possibility for V
(s)
s is now “−,+,−”, which corresponds

to the behaviour of the s − 1 derivative in the previous case, so
the same conclusion still holds.

Therefore, for this case we have verified that the sign variation in
(0,+∞) of Vs is, at most, “−,+”.

Case 2: 1 < a < λ < 2a < λ+ 1: The sign pattern of the coefficients
coincides with the one observed in the previous case, so the result also
holds.

Case 3: 1 < a < λ < λ+ 1 < 2a: The sign pattern of the coefficients
of the function Vs is now “+,−,+,−,+”, hence there could exist up
to 4 real roots. Of course, we still have Vs(0) = 0, so we need to
locate the remaining ones. Due to the number of possible roots, a
direct usage of the arguments as in the previous cases with Vs does
not allow to conclude about a sign variation compatible with s−IFRA
order. Note that, in this case, we have a > λ+1

2 , so, for every fixed

x ≥ 0, TX,s(ax) < TX,s(
λ+1

2 x), therefore Vs(x) = T Y,s(x)−TX,s(ax) >

V∗,s(x) = T Y,s(x) − TX,s(λ+1
2 x). We shall prove that V∗,s(x) ≥ 0, for

x ≥ 0, so the same holds for Vs. Rewriting V∗,s, with the exponentials
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already ordered decreasingly with respect to their exponents, we have

V∗,s(x) =
1

c(s, λ)
e−x − 2s

2s − 1
e−

(λ+1)
2 x +

1

c(s, λ)λs−1
e−λx

+

(
1

2s − 1
− 1

c(s, λ)(λ+ 1)s−1

)
e−(λ+1)x.

The coefficient of the last exponential is easily seen to be positive,
so the sign pattern of the coefficients in V∗,s is “+,−,+,+”, hence,
besides having V∗,s(0) = 0, we have limx→−∞ V∗,s(x) = +∞ and
limx→+∞ V∗,s(x) = 0+. Moreover, taking into account Theorem 13,
V∗,s has, at most, two real roots. To complete the study of the sign
variation we need, as before, to separate the cases depending on the
value of s.
s even: Repeating the arguments above, the sign pattern for the

coefficients of V
(s)
∗,s is the same as for V∗,s. Therefore, we may

repeat the arguments used in course of proof of Proposition 34
for the case where s is even, to derive that V∗,s(x) ≥ 0, hence
Vs(x) ≥ 0, for every x ≥ 0.

s odd: As in the proof of Proposition 34, this corresponds to the
behaviour of the s−1 derivative when s is even, so the result also
holds.

Case 4: 1 < λ < a < 2a < λ+ 1: The sign pattern of the coefficients,
after ordering the exponentials, is “+,+,−,+,−”, meaning that are,
at most, three real roots. This is exactly the same sign pattern we
found in Case 1 above. So, repeating the arguments, the same sign
variation for Vs follows.

Case 5: 1 < λ < a < λ+ 1 < 2a: This is the simplest case to analyse.
The sign pattern for the coefficients of Vs is “+,+,−,−,+”, implying
that there are, at most, two real roots, limx→−∞ Vs(x) = +∞ and
limx→+∞ Vs(x) = 0+. This is easily seen to be compatible with two
possible sign variation in (0,+∞): “−,+” or “+”.

Case 6: 1 < λ < λ+ 1 < a < 2a: This case produces the same sign pat-
tern for the coefficients as for Case 5, so the same conclusion about
the sign variation of Vs follows.
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Therefore, we have verified that in all possible cases, the sign variation of Vs
is, at most, “−,+”, hence ts(x) is, for x ≥ 0, increasing, so the proposition
is proved.

The previous result establishes the s−IFRA order, so may now proceed to
the proof of the s−IFR relation between these two random variables.

Theorem 37. Let X and Y be defined as in (6). For every s ≥ 1, X ≤s−IFR

Y .

Proof : The plan for the proof is the same as for Proposition 36. The differ-
ence here is that we will be interested in proving the convexity of the relevant
functions and we will not be able to automatically locate one of the roots
of them. Taking into account Theorem 8, Remark 9 and Theorem 29 it is
sufficient to verify that Vs(x) = T Y,s(x)− TX,s(ax+ b) changes sign at most
twice, in the order “+,−,+”, for every a > 0 and b ≥ 0. The case b = 0
was treated in Proposition 36, so we may assume in the sequel that b > 0.
Although the function is similar to the one considered on Proposition 36, one
should notice that now Vs(0) = 1 − TX,s(b) > 0 and, in general, is positive.
Of course, the sign patterns of the coefficients are similar, but we must take
into account the extra terms e−b and e−2b.

We start by writing explicitly the expression for Vs and its s-order derivative

V
(s)
s :

Vs(x) =
1

c(s, λ)

(
e−x +

e−λx

λs−1
− e−(λ+1)x

(λ+ 1)s−1

)
− 2se−(ax+b) − e−2(ax+b)

2s − 1
,

V (s)
s (x) = (−1)s

[
1

c(s, λ)

(
e−x + λe−λx − (λ+ 1)e−(λ+1)x

)

−2sas
e−(ax+b) − e−2(ax+b)

2s − 1

]
.

Note that V
(s)
s (0) = (−1)s+12sase−b(1−e−b)

2s−1 , which has the same sign as (−1)s+1,
as b > 0.

Case 1: 1 < a < 2a < λ < λ+ 1: The sign pattern of the coefficients,
after ordering the exponential in decreasing order of their exponents,
is “+,−,+,+,−”, so Vs has, at most, three real roots. Moreover,
limx→−∞ Vs(x) = −∞, limx→+∞ Vs(x) = 0+ so, remembering that
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Vs(0) > 0, it follows that the sign variation of Vs in (0,+∞) is either
“+” or “+,−,+”.

Case 2: 1 < a < λ < 2a < λ+ 1: This case is treated exactly as the
previous one.

Case 3: 1 < a < λ < λ+ 1 < 2a: As before, this case requires a more
careful analysis, as the number of possible roots is larger. The sign
pattern of the coefficients of the function Vs is now “+,−,+,−,+”,
so we may have up to 4 real roots for Vs, and limx→−∞ Vs(x) = +∞,
limx→+∞ Vs(x) = 0+. We again separate according to s being even or
odd.
s even: In this case, we have V

(s)
s (0) < 0, so the sign variation

in (0,+∞) of V
(s)
s is either “−,+,−,+” or ‘−,+”. Now, taking

into account that each differentiation step reverses all signs, and
that, with the exception of the s-order derivative, the sign of the
derivatives at the origin is not determined, we have the following
possibilities for the sign variations:

V
(s)
s “−,+” or “−,+,−,+”

V
(s−1)
s (0) positive negative

sign variation of

V
(s−1)
s in (0,+∞)

“+,−,+,−” or “+,−” “−” or “−,+,−”

V
(s−2)
s (0) positive negative positive negative

sign variation of

V
(s−2)
s in (0,+∞)

“ + ”
or

“+,−,+”

“−,+”
or

“−,+,−,+”

“ + ”
or

“+,−,+”
“−,+”

Hence, the most sign varying possibility, in (0,+∞), for V
(s−2)
s is

the same as for V
(s)
s , so we repeat the argument to obtain that the

most sign varying possibility, in (0,+∞), for V ′s is “+,−,+,−”.
Therefore, the monotonicity of Vs is “↗↘↗↘”, which, remem-
bering that Vs(0) > 0 implies that the sign variation of Vs may
be “+” or “+,−,+”.

s odd: Now we have V
(s)
s (0) > 0 which, taking into account the

signs for V
(s)
s at ±∞, implies a sign variation, in (0,+∞), as

“+,−” or “+,−,+,−”, that is, we find the same behaviour as
for the s − 1 derivative in the previous case, so the conclusion
about the sign variation of Vs also follows.
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Case 4: 1 < λ < a < 2a < λ+ 1: This case coincides with the behaviour
observed for Case 1 above, so the conclusion holds.

Case 5: 1 < λ < a < λ+ 1 < 2a: The sign pattern of the coefficients of
Vs, after ordering the exponentials in the usual way, is “+,+,−,−,+”,
implying that there are, at most, two real roots, limx→−∞ Vs(x) = +∞
and limx→+∞ Vs(x) = 0+. As Vs(0) > 0, the only possibility for the
signa variation in (0,+∞) for Vs is “+” or “+,−,+”.

Case 6: 1 < λ < λ+ 1 < a < 2a: This case coincides with the previous
one.

Case 7: 0 < a < 1: In this case, regardless of the actual value for a, the
sign pattern of the coefficients is “−,+,+,+,−”, so limx→−∞ Vs(x) =
−∞ and limx→+∞ Vs(x) = 0−. As Vs(0) > 0, the only possible sign
variations in (0,+∞) is “+,−”.

We have verified that, for all relevant choices of the parameters a and b, the
assumptions of Theorem 8 are satisfied, so it follows that X ≤s−IFR Y .

Remark 38. Our Theorem 37 above partially extends Theorem 3.1 in Kochar
and Xu [23] to iterated failure ordering. The extension is partial as Theo-
rem 37 deals only with maxima between two random variables, while Kochar
and Xu’s result deals with arbitrary families of variables.

In the result that follows, we compare the ageing properties of a paral-
lel system with n components with independent and identically distributed
exponential lifetimes, with a parallel system with k components that are
independent and identical exponential lifetimes but assuming that k < n.

Proposition 39. Let X1, . . . , Xm, m ≥ 3, be independent random vari-
ables with exponential distribution with mean 1/λ, and Y1, . . . , Yk, 2 ≤ k <
m, independent exponential random variables with mean 1/β. If X(m) =
max(X1, . . . , Xm) and Y(k) = max(Y1, . . . , Yk), then X(m) ≤1−IFR Y(k)

Proof : As the parameters λ and β are scale parameters we may take λ =
β = 1. The random variables Xm and Yk have the following tail distribu-
tions: Fm(x) = 1 − (1 − e−x)m, F k(x) = 1 − (1 − e−x)k, respectively. The

proposition follows by proving that c1(x) = F
−1
k (Fm) = − log(1−(1−e−x)mk )

is convex. As c1(x) is differentiable, the convexity is characterized by the
nonnegativeness of the second derivative. Computing derivatives, and taking
into account that the sign of c′′1 is determined by the sign of its numerator,
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it can be seen that the sign of c′′1 is the same as the sign of

Q(x) =
m

k
e−x + (1− e−x)

m
k − 1,

which is positive for every x ≥ 0 and 2 ≤ k < m, so the conclusion follows.

As an immediate consequence, we have the following ordering for the order
statistics.

Corollary 40. Let X1, . . . , Xn, n ≥ 3, be independent random variables with
exponential distribution with mean 1/λ, and define, for each k = 2, . . . , n,
X(k) = max(X1, . . . , Xk). Then X(n) ≤1−IFR X(n−1) ≤1−IFR · · · ≤1−IFR X(2).

Remark 41. Kochar and Xu [23] mention an unsolved problem for which
they announce having empirical evidence although no mathematical proof
could be obtained. This unsolved problem is stated as follows: let Xi be inde-
pendent exponentially distributed variables with means 1/λi, and Yi be inde-
pendent exponentially distributed variables with means 1/θi; if (λ1, . . . , λn) ≺
(θ1, . . . , θn), in the sense of Definition A.1 in Marshal and Olkin [25] i.e.∑k

i=1 λ(i) ≥
∑k

i=1 θ(i), for k = 1, . . . , n − 1, and
∑n

i=1 λi =
∑n

i=1 θi where
λ(1) ≤ λ(2) ≤ . . . ≤ λ(n) then one should expect max(X1, . . . , Xn) ≤1−IFR

max(Y1, . . . , Yn). For the particular conjecture, we have evidence that it is
in general not true for iterated failure rate order as long as the iteration pa-
rameter s ≥ 2. We provide an example were this ordering does not hold. Let
X1, and X2 be independent exponential random variables with means 1/λi,
i = 1, 2, and Y1 and Y2 be independent exponential random variables with
means 1/θi, i = 1, 2. Assume, without loss of generality, that λ1 ≤ λ2

and θ1 ≤ θ2, and that (λ1, λ2) ≺ (θ1, θ2), i.e. λ1 + λ2 = θ1 + θ2 and
λ1 ≥ θ1. Write, for simplicity, X = max{X1, X2} and Y = max{Y1, Y2}
and consider Vs(x) = T Y,s(x) − TX,s(ax), where a > 0. If we choose the
parameters (s, λ1λ2 ,

θ2
θ1
, a) = (2, 0.34, 11, 2.89) the sign variation of Vs(x) is

“−,+,−” so, according to Theorem 8, X and Y are not comparable with
respect to the 2−IFRA order, hence they cannot be comparable with respect
to the 2−IFR order. The particular choice for the parameters made above
gives raise to a family of possible choices for the vectors (λ1, λ2) and (θ1, θ2)
leading to counter-examples. Indeed, taking into account the order relation
(λ1, λ2) ≺ (θ1, θ2), it follows that (λ1, λ2, θ1, θ2) = 1

1474(408, 1200, 134, 1474)ϑ,
with ϑ > 0, generates a whole family of counter-examples for the conjecture
when the iteration parameter s = 2. Alike Kochar and Xu, we cannot find a
counter-example for the case s = 1, nor provide a proof for such a result.
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