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SPHERICAL HELLINGER-KANTOROVICH GRADIENT FLOWS
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Abstract: We study nonlinear degenerate parabolic equations of Fokker-Planck
type which can be viewed as gradient flows with respect to the recently intro-
duced spherical Hellinger-Kantorovich distance. The driving entropy is not as-
sumed to be geodesically convex. We prove solvability of the problem and the
entropy-entropy production inequality, which implies exponential convergence to
the equilibrium. As a corollary, we obtain some related results for the Wasser-
stein gradient flows. We also deduce transportation inequalities in the spirit of
Talagrand, Otto and Villani for the spherical and conic Hellinger-Kantorovich dis-
tances.
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1.Introduction
Unbalanced optimal transport [33, 29, 10, 32, 11, 39] is a recent variant

of the Monge-Kantorovich transport which is relevant in the situations
lacking the conservation of the total mass, such as processes involving re-
action. Important objects in the field are the conic Hellinger-Kantorovich
distance (also known as the Wasserstein-Fisher-Rao distance) on the set of
Radon measures and the spherical Hellinger-Kantorovich distance on the
set of probability measures, see Section 3.3 below for the definitions and
references.

On both the conic and spherical Hellinger-Kantorovich spaces, some
Otto calculus [36, 46] can be developed [29, 5], and it is easy to formally
define the gradient flows. This paper considers the spherical gradient
flows.

Our basic setting is as follows. Let Ω be either an open connected
bounded domain in R

d with sufficiently smooth boundary or a flat torus
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T
d. Fix functions E ∈ C(Ω× [0,∞)), f ∈ C1(Ω× (0,+∞)), and a probability

density m ∈ C(Ω) satisfying

E(x,u) ≥ 0, (x,u) ∈Ω× [0,∞); (1.1)

m(x) > 0, x ∈Ω; (1.2)

E(x,m(x)) = 0, x ∈Ω; (1.3)

Eu(x,u) = −f (x,u), (x,u) ∈Ω× (0,+∞); (1.4)

fu(x,u) < 0, (x,u) ∈Ω× (0,+∞). (1.5)

Here we opted to fix E, f , m satisfying some hypotheses, but it is possible
to state all the assumptions in terms of f only, and then reconstruct E and
m in a relevant way, see Section 3.1. The function

E(u) =
∫
Ω

E(x,u(x))dx. (1.6)

will be called the relative entropy.
We are interested in the formal gradient flow

∂tu = −gradE(u), (1.7)

where the gradient is taken w.r.t. the spherical Hellinger-Kantorovich
structure on the set of probability measures on Ω. More specifically, we
study the problem

∂tu = −div(u∇f ) +u
(
f −

∫
Ω

uf dx
)
, (x, t) ∈Ω× (0,∞), (1.8)

u
∂f

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞), (1.9)

u = u0, (x, t) ∈Ω× 0, (1.10)

u ≥ 0,
∫
Ω

udx = 1, (x, t) ∈Ω× (0,∞). (1.11)

We refer to Remark 1.1 concerning the relation between (1.7) and this
problem. The model (1.8)–(1.11) can be viewed as a reactive nonlinear
equation of Fokker-Planck type, in the spirit of [20], with conservation of
mass. Reaction-diffusion problems with conservation of mass were stud-
ied in [38, 25, 41, 42, 1, 24, 16], see also the references therein. On the
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other hand, after a change of variables, our problem fits into the frame-
work of fitness-driven models of population dynamics, and might be ap-
plicable to some human societies. In Remark 1.3 we discuss this issue in
detail.

Remark 1.1. The right-hand sides of (1.7) and (1.8) formally coincide when
Ω is a torus or is convex, see [31, 5]. In the case of non-convex Ω we will
still refer to (1.8)–(1.11) as to a gradient flow, although this is sloppy.

Remark 1.2. For the metric gradient flows like (1.7), the geodesic convex-
ity of the driving entropy functional (or at least semi-convexity, i.e., λ-
convexity with a negative constant λ) makes a difference [36, 3, 45, 46].
The presence of convexity allows one to apply minimizing movement
schemes [3, 28] to construct solutions to the gradient flow. Moreover, λ-
convexity with λ strictly positive enables the Bakry-Emery procedure [4]
which usually yields the exponential convergence of the relative entropy
to zero. Minimizing movement schemes for conic Hellinger-Kantorovich
gradient flows of geodesically convex functionals and for related reaction-
diffusion equations were suggested in [22, 21].

Under our assumptions, the entropy, generally speaking, does not pos-
sess neither geodesic convexity nor semi-convexity with respect to either
the spherical or conic Hellinger-Kantorovich structure, or even to the clas-
sical Wasserstein one, cf. [30, 29].

Remark 1.3. The fitness-driven models [34, 13, 14, 23] of population dy-
namics assume that the dispersal strategy is determined by a local intrin-
sic characteristic of organisms called fitness. The fitness manifests itself as
a growth rate, and simultaneously affects the dispersal as the species move
along its gradient towards the most favorable environment. In terms of the
PDEs, this can be expressed [30] in the following manner:

∂tU = −div(U∇F) +UF, (x, t) ∈Ω× (0,∞), (1.12)

U
∂F
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞). (1.13)

U =U0, (x, t) ∈Ω× 0. (1.14)
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Here U (x, t) is the nonnegative density of individuals, and F is the fitness
which depends on x and U in a certain way. Namely, we assume that

F(x, t) = f

x, U (x, t)∫
Ω
U (ξ, t) dξ

 . (1.15)

The direct dependence on x expresses the spatial inhomogeneity of the
resources. The dependence on the normalized population density (in con-
trast with [34, 13, 14, 15, 30] and the references therein, where the fitness
depends on the densityU itself) models the phenomenon that the individ-
uals compare the quality of their life with the ones of the other members
of the society, and their fitness is determined by their relative success in
comparison with the others. This model seems to be specifically relevant
for those human societies where the population growth (which depends
on various factors including fertility, ability of kids to survive, longevity
etc.) is an increasing function of the quality of life. The problem (1.12)–
(1.14) resembles a conic Hellinger-Kantorovich gradient flow, cf. [30], but
this guess is wrong. The reason is that (1.15) is not an L2 variation of any
functional. Setting

M :=
∫
Ω

U dx, u :=
U
M
, M0 :=

∫
Ω

U0 dx, u0 :=
U0

M0 ,

we recast (1.12), (1.13) in the form

∂tu = −div(u∇f ) +u
(
f −

d(logM)
dt

)
, (x, t) ∈Ω× (0,∞), (1.16)

u
∂f

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞). (1.17)

u = u0, (x, t) ∈Ω× 0, (1.18)

u ≥ 0,
∫
Ω

udx = 1, (x, t) ∈Ω× (0,∞). (1.19)

Since u(t) is a probability distribution, we at least formally infer that

d(logM)
dt

=
∫
Ω

uf dx, (1.20)

arriving at (1.8)–(1.11). On the other hand, givenU0 (and thus u0 andM0)
and a solution u to (1.8)–(1.11), we can recover the mass M(t) from (1.20),
and U =Mu solves (1.12)– (1.14).
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In what follows, dHK , dHKS , and W2 stand for the Hellinger-Kantorovich
distance (which will be also referred to as the conic distance), spherical
Hellinger-Kantorovich distance and the quadratic Wasserstein distance.
Observe that

dHK ≤ dHKS ≤W2 (1.21)

for probability measures (see Section 3.3 below), although dHK is of course
defined for Radon measures of any mass.

In this paper, we prove solvability (Section 3.1) and the entropy-entropy
production inequality (Section 2) for the spherical Hellinger-Kantorovich
gradient flow (1.7), and derive a related transportation inequality in the
spirit of Talagrand, Otto and Villani. We also deduce some results of this
kind for the Wasserstein and the conic Hellinger-Kantorovich gradient
flows. As was already anticipated, we do not assume geodesic convexity
of the driving entropies of the gradient flows. In order to better illustrate
our results and compare them with the existing ones, let us formally write
down the conceivable inequalities.

The following four inequalities are expected to hold under the assump-
tion

∫
Ω
u = 1:

E(u) .
∫
Ω

u|∇f |2, (1.22)

E(u) .
∫
Ω

u

(
f −

∫
Ω

uf

)2

+
∫
Ω

u|∇f |2, (1.23)

W 2
2 (u,m) . E(u), (1.24)

d2
HKS(u,m) . E(u). (1.25)

The next two inequalities do not require that
∫
Ω
u = 1:

E(u) .
∫
Ω

uf 2 +
∫
Ω

u|∇f |2, (1.26)

d2
HK(u,m) . E(u). (1.27)

Inequalities (1.22),(1.23), (1.26) are the entropy-entropy production
inequalities for the Wasserstein, spherical Hellinger-Kantorovich and
conic Hellinger-Kantorovich gradient flows, respectively. Inequalities
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(1.24),(1.25), (1.27) are the transportation (Talagrand) inequalities in those
spaces. Note that (1.22) implies (1.23), and (1.23) yields (1.26) since

∫
Ω

u

(
f −

∫
Ω

uf

)2

=
∫
Ω

uf 2 −
(∫

Ω

uf

)2

.

However, the last implication is only valid for probability distributions u,
whereas (1.26) would not be a consequence of (1.23) for u of arbitrary
mass. These three inequalities can be used to derive exponential con-
vergence to the equilibrium m for the corresponding gradient flows, see
[45, 46, 30] as well as Theorems 3.9 and 3.11 below.

Due to (1.21), inequality (1.24) implies (1.25), and (1.25) yields (1.27)
for probability distributions. Generally speaking, (1.27) is not a corollary
of (1.25) (cf. Remark 3.18 below).

Inequality (1.22) was proved in [8] via the Bakry-Emery approach pro-
vided the entropy is geodesically convex w.r.t. the Wasserstein structure
(displacement convex). It may be viewed as a generalized log-Sobolev in-
equality. The classical log-Sobolev corresponds to the case f = − logu.
Inequality (1.23) will be proved in Section 2 without assuming any kind
of geodesic convexity. This inequality can be used to derive (1.22) for
geodesically non-convex entropies (see Section 3.2) provided u satisfies
the Poincaré inequality (this is true for instance when u is a Muckenhoupt
weight [18]). Inequality (1.26) was established in [30] and will be used in
the proof of (1.23). Inequality (1.24) was proved in [44, 37, 9, 12] (mainly
for the case Ω = R

d) for displacement convex entropies. Inequalities (1.25)
and (1.27) will be proved in Section 3.3, again without assuming any geo-
desic convexity.

2.Spherical inequality
Let Ω be an open connected bounded domain in R

d with sufficiently
smooth boundary. The results of the section remain valid for the torus Ω =
T
d. Throughout the section, we will work with functions E ∈ C(Ω×[0,∞)),
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f ∈ C1(Ω× (0,+∞)), and a probability density m ∈ C(Ω) satisfying

E(x,u) ≥ 0, (x,u) ∈Ω× [0,∞); (2.1)

m(x) > 0, x ∈Ω; (2.2)

E(x,m(x)) = 0, x ∈Ω; (2.3)

Eu(x,u) = −f (x,u), (x,u) ∈Ω× (0,+∞); (2.4)

fu(x,u) < 0, (x,u) ∈Ω× (0,+∞). (2.5)

In what follows, bare f stands for f (x,u(x)), where u ∈ U is given; like-
wise, ∇f stands for the full gradient of f (x,u(x)) with respect to x.

The following theorem states the main result.

Theorem 2.1. Assume (2.1)–(2.5). Let U be a uniformly integrable set of
smooth probability measures on Ω. Then∫

Ω

E(x,u(x))dx

≤ C
[∫

Ω

u(x)(f (x,u(x))− a)2dx+
∫
Ω

u(x)|∇f (x,u(x))|2dx
]
, (2.6)

where the constant C may depend on U but is independent of u ∈U and a ∈R.

Our strategy of the proof of Theorem 2.1 consists in proving the inequal-
ity ∫

Ω

u(f − a)2dx+
∫
Ω

u|∇f |2dx ≥ κa2 (2.7)

with a constant κ > 0 independent of u ranging over a uniformly inte-
grable set U . Indeed, by [30, Theorem 2.9], we have the inequality∫

Ω

Edx ≤ C1

∫
Ω

u(f 2 + |∇f |2)dx

(we can apply the theorem because uniform integrability ensures that no
sequence in U converges to 0 in measure). Setting

f̄ =
∫
uf dx

and recalling that u is a probability measure, we see that∫
Ω

uf 2dx =
∫
Ω

u(f − f̄ )2dx+ f̄ 2,
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so if we had (2.7), we would apply it for a = f̄ obtaining∫
Ω

uf 2dx ≤ (1 +κ
−1)

∫
Ω

u(f − f̄ )2dx+κ
−1

∫
Ω

u|∇f |2dx,

and thus, ∫
Ω

Edx ≤ C
[∫

Ω

u(f − f̄ )2dx+
∫
Ω

u|∇f |2dx
]
.

This particular case of (2.6) actually implies (2.6), as∫
Ω

u(f − f̄ )2dx = min
a∈R

∫
Ω

u(f − a)2dx,

which is a consequence of the following instance of the Pythagorean the-
orem in L2(du): ∫

Ω

u(f − a)2dx =
∫
Ω

u(f − f̄ )2dx+ (f̄ − a)2.

Actually we will prove a slightly stronger inequality than (2.7), as stated
in the following lemma.

Lemma 2.2. Let U be a uniformly integrable set of smooth probability mea-
sures on Ω; then there exist κ > 0 and σ > 0 such that∫

[u≥σ ]
u(x)

(
(f (x,u(x))− a)2 + |∇f (x,u(x))|2

)
dx ≥ κa2 (2.8)

for all u ∈U and a ∈R.

The proof is carried out in the subsequent lemmas.
Given a set M of integrable functions on Ω, let

ωM(δ) = sup
{∫

A
|u|dx : u ∈M,A ⊂Ω, |A| ≤ δ

}
be the modulus of integrability of M. Clearly, ωM : [0,∞) → [0,∞] is a
nondecreasing function. Denote by

ω−(t) = inf{δ ≥ 0: ωM(δ) ≥ t}

its generalized inverse, cf. [17]. Obviously,

M is uniformly integrable⇔ lim
δ→+0

ωM(δ) = 0⇔∀t > 0: ω−M(t) > 0.
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Remark 2.3. Suppose that f → −∞ as u →∞ uniformly in x. Then if the
entropy is bounded on U , the set U is uniformly integrable. This can be
shown using a simple de la Vallée-Poussin argument. First of all, note that
by L’Hôpital’s rule we have

lim
u→∞

E(x,u)
u

= lim
u→∞

(−f (x,u)) =∞,

where the limits are uniform in x. Given ε > 0 take k > 0 such that u ≤
εE(x,u) whenever u ≥ k and assume that |A| ≤ ε; then for any u ∈ U we
have ∫

A
u(x)dx ≤ k|A|+ ε

∫
Ω

E(x,u(x))dx ≤
(
k + sup

u∈U
E(u)

)
ε

proving the uniform integrability.

Given c, the equation
f (x,ξ) = c

defines a positive function mc ∈ C(Ω), at least if c is sufficiently close to 0.
Clearly, [u ≥mc]=[f ≤ c], and similarly for other comparisons.

Remark 2.4. If mc exists for some c > 0, then mc′ exists whenever 0 < c′ ≤ c;
similarly, if mc exists for some c < 0, then mc′ exists whenever c < c′ < 0.

Remark 2.5. It follows easily from the Mean Value Theorem that ifmc exists
for some c > 0, then

inf
Ω

(m−mc) ≥
c

sup
mc(x)≤ξ≤m(x)

|fu(x,ξ)|
, (2.9)

and if mc exists for some c < 0, then

inf
Ω

(mc −m) ≥ − c
sup

m(x)≤ξ≤mc(x)
|fu(x,ξ)|

. (2.10)

Clearly, the suprema in (2.9) and (2.10) are finite.

Remark 2.6. Note that
inf
u>m

(uf )u < 0. (2.11)

Indeed, one only needs to observe that (uf )u = f + ufu is uniformly nega-
tive both as u → m (since m is uniformly positive and fu

∣∣∣∣
u=m

is uniformly

negative) and as u→∞ (since so is f ).
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Lemma 2.7. Suppose that mc exists for some c > 0; then∫
[mc<u<m]

(m−u)dx ≤ 1
inf

mc(x)≤ξ≤m(x)
|fu(x,ξ)|

∫
[mc<u<m]

f dx; (2.12)

likewise, if mc exists for some c < 0, then∫
[m<u<mc]

(u −m)dx ≤ 1
inf

m(x)≤ξ≤mc(x)
|fu(x,ξ)|

∫
[m<u<mc]

f dx. (2.13)

Proof : Both inequalities are easy consequences of the Mean Value Theo-
rem if we take into account that f (x,ξ) = 0 when ξ =m(x).

Lemma 2.8. Suppose that mc is defined for some c > 0; then for any u ∈ U we
have ∣∣∣[u > m]

∣∣∣ ≥ω−U (
inf
Ω

(m−mc)
∣∣∣[u ≤mc]

∣∣∣) . (2.14)

Proof : We have:

1 =
∫

[u≤mc]
udx+

∫
[mc<u≤m]

udx+
∫

[u>m]
udx

≤
∫

[u≤mc]
mc dx+

∫
[mc<u≤m]

mdx+
∫

[u>m]
udx

=
∫

[u>m]
(u −m)dx −

∫
[u≤mc]

(m−mc)dx+
∫
Ω

mdx.

The last integral equals 1, so∫
[u>m]

(u −m)dx ≥
∫

[u≤mc]
(m−mc)dx ≥ inf

Ω
(m−mc)

∣∣∣[u ≤mc]
∣∣∣.

Now using the positivity of m we deduce

ωU
(∣∣∣[u > m]

∣∣∣) ≥ ∫
[u>m]

udx ≥
∫

[u>m]
(u −m)dx ≥ inf

Ω
(m−mc)

∣∣∣[u ≤mc]
∣∣∣,

and (2.14) follows, observing that ω−U (ωU (s)) ≤ s.

Lemma 2.9. Suppose that mc is defined for some c < 0; then for any u ∈ U we
have ∣∣∣[u < m]

∣∣∣ ≥ infΩ(mc −m)
supΩm

∣∣∣[u ≥mc]
∣∣∣. (2.15)
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Proof : Mimicking the proof of Lemma 2.8, we obtain∫
[u<m]

(m−u)dx ≥
∫

[u≥mc]
(mc −m)dx ≥ inf

Ω
(mc −m)

∣∣∣[u ≥mc]
∣∣∣.

On the other hand, as u is nonnegative, we have∫
[u<m]

(m−u)dx ≤ sup
Ω

m
∣∣∣[u < m]

∣∣∣,
and (2.15) follows.

Lemma 2.10. Let c0 < c1 and suppose that mc1 is defined; then for any u ∈ U
we have∫

[c0<f <c1]
u|∇f |2dx

≥
C2
Ω

|Ω|
(c1 − c0)2 inf

Ω
mc1 min

(∣∣∣[f ≤ c0]
∣∣∣, ∣∣∣[f ≥ c1]

∣∣∣)2(d−1)/d
. (2.16)

Proof : By monotonicity of f we have u ≥mc1 on [c0 < f < c1], so∫
[c0<f <c1]

u|∇f |2dx ≥ inf
Ω
mc1

∫
[c0<f <c1]

|∇f |2dx

≥ |Ω|−1 inf
Ω
mc1

(∫
[c0<f <c1]

|∇f |dx
)2

. (2.17)

In what follows, we use some basic results and concepts from the geomet-
ric measure theory, which can be found in [35]. Using the coarea formula,
we have ∫

[c0<f <c1]
|∇f |dx =

∫ ∞

−∞
P
(
[f < t]; [c0 < f < c1]

)
dt

≥
∫ c1

c0

P
(
[f < t]; [c0 < f < c1]

)
dt.

The support of the Gauss–Green measure µ[f <t] is contained in the topo-
logical boundary of the set [f < t], so if c0 < t < c1, we see that the inter-
section of the support with Ω lies in [c0 < f < c1]. Consequently, we can
take relative perimeter with respect to Ω and proceed using the relative
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isoperimetric inequality as follows:∫
[c0<f <c1]

|∇f |dx ≥
∫ c1

c0

P
(
[f < t];Ω

)
dt

≥ CΩ

∫ c1

c0

min
(∣∣∣[f < t]∣∣∣, ∣∣∣[f ≥ t]∣∣∣)(d−1)/d

dt.

The integrand can be estimated using the obvious inclusions

[f < t] ⊃ [f ≤ c0], [f ≥ t] ⊃ [f ≥ c1] (c0 < t < c1),

and thus∫
[c0<f <c1]

|∇f |dx ≥ CΩ(c1 − c0)min
(∣∣∣[f ≤ c0]

∣∣∣, ∣∣∣[f ≥ c1]
∣∣∣)(d−1)/d

.

Combining this with (2.17), we obtain (2.16).

Lemma 2.11. Let c0 < 0 and c1 > 0 and suppose that mci (i = 0,1) are defined;
then for any u ∈U we have∫

[0<f <c1]
f dx

≥ inf
mc1(x)≤ξ≤m(x)

|fu(x,ξ)|
− c0

∣∣∣[u ≥mc0]
∣∣∣

sup
m(x)≤ξ≤mc0(x)

|fu(x,ξ)|

− sup
Ω

m
∣∣∣[u ≤mc1]

∣∣∣ (2.18)

Proof : Since u and m are probability measures, we have∫
[u>m]

(u −m)dx =
∫

[u<m]
(m−u)dx, (2.19)

Let us estimate the sides of (2.19).
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For the left-hand side, we have∫
[u>m]

(u −m)dx ≥
∫

[u≥mc0 ]
(u −m)dx

≥ inf
Ω

(mc0 −m)
∣∣∣[u ≥mc0]

∣∣∣
≥ −

c0

∣∣∣[u ≥mc0]
∣∣∣

sup{|fu(x,ξ)| : m(x) ≤ ξ ≤mc0(x)}
,

where we have used (2.10); for the right-hand side we have∫
[u<m]

(m−u)dx =
∫

[u≤mc1 ]
(m−u)dx+

∫
[mc1<u<m]

(m−u)dx

≤ sup
Ω

m
∣∣∣[u ≤mc1]

∣∣∣
+

1
inf

mc1(x)≤ξ≤m(x)
|fu(x,ξ)|}

∫
[mc1<u<m]

f dx,

where we have used (2.12). Comparing the estimates, we arrive at (2.18).

Now we are in the position to prove Lemma 2.2 for small negative a.

Lemma 2.12. Suppose that mc exists for |c| ≤ δ; then there exist aδ ∈ (−δ,0)
and κδ > 0 such that (2.8) holds for all a ∈ (aδ,0) and u ∈ U with κ = κδ and
any positive σ ≤ infΩmδ.

Proof : Fix u ∈ U , σ ≤ infΩmδ, and a ∈ (aδ,0), the constant aδ to be defined
below. We examine the possible alternatives and in each of them, we find
a suitable value for κδ.

Observe that in Ω,

f < δ⇔ u > mδ⇒ u > σ.

Consider the following partition of Ω:

Ω = [f ≥ δ]∪ [a/2 < f < δ]∪ [f ≤ a/2]. (2.20)

Clearly, at least one set on the right-hand side has volume ≥ |Ω|/3.
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If
∣∣∣[f ≥ δ]

∣∣∣ ≥ |Ω|/3, it follows from Lemma 2.8 that
∣∣∣[f ≤ 0]

∣∣∣ ≥ σδ with
σδ > 0 independent of u and a. Then Lemma 2.10 guarantees the estimate∫

[u>σ ]
u|∇f |2dx ≥

∫
[0<f <δ]

u|∇f |2dx ≥ Cδ ≥
Cδ
δ2 a

2

with Cδ > 0 independent of u and a, so (2.8) holds with κ = κ
′
δ := Cδ/δ2.

If
∣∣∣[a/2 < f < δ]

∣∣∣ ≥ |Ω|/3, we have the following simple lower bound on
the first term on the right-hand side of (2.8):∫

[u>σ ]
u(f − a)2dx ≥

∫
[mδ<u<ma/2]

u(f − a)2dx

≥ infΩmδ

|Ω|

(∫
[a/2<f <δ]

(f − a)dx
)2

≥ infΩmδ

4|Ω|
∣∣∣[a/2 < f < δ]

∣∣∣2a2

≥ |Ω| infΩmδ

36
a2 =: κ′′δa

2,

so (2.8) holds with κ = κ
′′
δ .

It remains to assume that
∣∣∣[f ≤ a/2]

∣∣∣ ≥ |Ω|/3 and s :=
∣∣∣[f ≥ δ]

∣∣∣ < |Ω|/3.
Using Lemma 2.10 with c1 = δ and c0 = a/2, we obtain∫

[a/2<f <δ]
u|∇f |2dx ≥ Cδs2(d−1)/d .

Of course, the right-hand side is a lower bound for the left-hand side
of (2.8), so if s ≥ |a|d/(d−1), the inequality holds with κ = κ

′′′
δ = Cδ.

Thus, assume that

s < |a|d/(d−1).

Now we evoke Lemma 2.11 with c0 = a/2 and c1 = δ. Taking the supremum
and infimum of |fu | on the right-hand side of (2.18) over the larger set
Ω× [−δ ≤ f ≤ δ], we ensure that these extreme values are independent of a
and the inequality still holds, i. e. we have∫

[0<f <δ]
f dx ≥ Aδa−Bδs ≥

(
Aδ −Bδ|a|1/(d−1)

)
|a| ≥ Aδ

2
|a|
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given that |a| < −aδ := min((Aδ/(2Bδ))d−1,δ). Then the first term on the
left-hand side of (2.8) admits the estimate∫

[u>σ ]
u(f − a)2dx ≥ inf

Ω
mδ

∫
[mδ<u<m]

(f − a)2dx

≥ infΩmδ

|Ω|

(∫
[0<f <δ]

f dx

)2

≥
A2
δ infΩmδ

4|Ω|
a2 =: κ′′′′δ a

2.

To complete the proof, it suffices to take κδ = min(κ′δ,κ
′′
δ ,κ

′′′
δ ,κ

′′′′
δ ).

Lemma 2.13. Let a ≥ 0 and c > 0, and suppose that mc exists; then for any
u ∈U we have ∫

[u>m]
u(f − a)2 ≥

(
infu>m(uf )u

supmc≤u≤m |fu |

)2

c2
∣∣∣[f > c]∣∣∣2. (2.21)

Proof : Let us again estimate both sides of (2.19).
On one hand, we have∫

[u<m]
(m−u)dx ≥

∫
[u<mc]

(m−u)dx

≥ inf
Ω

(m−mc)
∣∣∣[u < mc]

∣∣∣
≥

c
∣∣∣[u < mc]

∣∣∣
sup

mc(x)≤ξ≤m(x)
|fu(x,ξ)|

,

where we take advantage of (2.9).
Before estimating the right-hand side of (2.19), observe that if ξ > m, we

can use the Mean Value Theorem and get

ξ |f (x,ξ)| = |ξf (x,ξ)−m(x)f (x,m(x))| ≥
∣∣∣∣inf
u>m

(uf )u
∣∣∣∣ (ξ −m(x)),
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where the modulus of the infimum is uniformly positive by Remark 2.6.
Now, setting ξ = u(x), we have∫

[u>m]
(u −m)dx ≤

∣∣∣∣∣(inf
u>m

(uf )u
)∣∣∣∣∣−1∫

[u>m]
u|f |dx

≤
∣∣∣∣∣(inf
u>m

(uf )u
)∣∣∣∣∣−1∫

[u>m]
u|f − a|dx

=
∣∣∣∣∣(inf
u>m

(uf )u
)∣∣∣∣∣−1∫

Ω

u|f − a|1[u>m](x)dx

≤
∣∣∣∣∣(inf
u>m

(uf )u
)∣∣∣∣∣−1 (∫

Ω

u(f − a)21[u>m](x)dx
)1

2

=
∣∣∣∣∣(inf
u>m

(uf )u
)∣∣∣∣∣−1 (∫

[u>m]
u(f − a)2dx

)1
2

,

since u is a probability measure. Comparing this with the above estimate
of the left-hand side of (2.19), we recover (2.21).

Now we prove Lemma 2.2 for small positive a.

Lemma 2.14. Suppose that δ > 0 is such that mδ/2 is defined; then there exists
κδ > 0 such that inequality (2.8) holds with κ = κδ and any positive σ ≤
infΩmδ/2 for all u ∈U and a ∈ (0,δ).

Proof : Fix σ ≤ infΩmδ/2, u ∈U , and a ∈ (0,δ). Observe that in Ω,

f <
δ
2
⇔ u > mδ/2⇒ u > σ.

By Remark 2.4, ma/2 is defined. Consider the partition

Ω =
[
f >

a
2

]
∪

[
f ≤ a

2

]
.

Obviously, at least one of the sets on the right-hand side has volume ≥
|Ω|/2.

Suppose that ∣∣∣∣∣[f > a2]∣∣∣∣∣ ≥ |Ω|2
.
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Using into account inequality (2.21) for c = a/2 and observing that

sup
ma/2≤u≤m

|fu | ≥ sup
mδ/2≤u≤m

|fu |

with the right-hand side independent of a, we obtain∫
[u>σ ]

u(f − a)2dx ≥
∫

[u>m]
u(f − a)2dx ≥ κ

′
δa

2

with some constant κ′δ independent of a and u.
If, on the other hand, we have∣∣∣∣∣[f ≤ a2]∣∣∣∣∣ ≥ |Ω|2

,

then ∫
[u>σ ]

u(f − a)2dx ≥
∫

[f ≤a/2]
u(f − a)2dx

≥
(1
4

∣∣∣∣∣[f ≤ a2]∣∣∣∣∣ inf
Ω
ma/2

)
a2

≥
(1
8
|Ω| inf

Ω
mδ/2

)
a2 =: κ′′δa

2

with κ
′′
δ independent of u and a.

To complete the proof, it suffices to take κδ = min(κ′δ,κ
′′
δ ).

Lemma 2.15. Suppose that δ > 0 is such that mδ is defined; then there exists
κδ > 0 such that inequality (2.8) holds with κ = κδ and any positive σ ≤
infΩmδ for all u ∈U and a < −2δ.

Proof : Given a < −2δ and u ∈U , write

|Ω| =
∣∣∣∣∣[f ≤ a2]∣∣∣∣∣+

∣∣∣∣∣[a2 < f ≤ 0
]∣∣∣∣∣+

∣∣∣[0 < f < δ]
∣∣∣+

∣∣∣[f ≥ δ]
∣∣∣

=: s1 + s2 + s3 + s4.

Clearly,

maxsi ≥
|Ω|
4
. (2.22)

It follows from Lemmas 2.8 and 2.9 that a lower bound on
∣∣∣[f ≥ δ]

∣∣∣ = s4
yields a lower bound on

∣∣∣[f < 0]
∣∣∣ ≤ s1 + s2 and a lower bound on s1 =

∣∣∣[f ≤
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a/2]
∣∣∣ ≤ ∣∣∣[f ≤ −δ]

∣∣∣ yields a lower bound on
∣∣∣[f > 0]

∣∣∣ = s3 + s4. Together
with (2.22) this implies that at least one of the following inequalities hold:

s2 ≥
|Ω|
4
, s3 ≥

|Ω|
4
,

min(s1 + s2, s4) ≥ 2cδ, min(s3 + s4, s1) ≥ 2cδ,

where cδ > 0 is independent of u and a. Assuming for definiteness that
cδ < |Ω|/4, we easily check that either

min
(∣∣∣∣∣[f ≤ a2]∣∣∣∣∣ , ∣∣∣[f ≥ δ]

∣∣∣) = min(s1, s4) ≥ cδ (2.23)

or ∣∣∣∣∣[a2 < f < δ]
∣∣∣∣∣ = s2 + s3 ≥ cδ. (2.24)

On the set [a/2 < f < δ] we clearly have u > σ . Thus, if (2.23) is true,
using Lemma 2.10 we obtain∫

[u>σ ]
u|∇f |2dx ≥

∫
[a/2<f <δ]

u|∇f |2dx ≥ 4κ′δ

(
δ − a

2

)2
≥ κ

′
δa

2.

If, on the other hand, (2.24) holds, note that a/2 < f < δ implies f − a >
−a/2 > 0, and estimate∫

[u>σ ]
u(f − a)2dx ≥

∫
[a/2<f <δ]

u(f − a)2dx

≥ a
2

4
inf
Ω
mδ

∣∣∣∣∣[a2 < f < δ]
∣∣∣∣∣

≥ κ
′′
δa

2.

Thus, one can take κδ = min(κ′δ,κ
′′
δ ).

Lemma 2.16. Suppose that δ > 0 is such that mδ is defined; then there exists
κδ > 0 such that inequality (2.8) holds with κ = κδ and any σ ≤ infmδ for all
u ∈U and a ≥ 2δ.

Proof : The partition
Ω = [f < δ]∪ [f ≥ δ]

ensures that either
∣∣∣[f < δ]

∣∣∣ ≥ |Ω|/2 or
∣∣∣[f ≥ δ]

∣∣∣ ≥ |Ω|/2. In the latter case
Lemma 2.8 guarantees a lower bound on

∣∣∣[f ≤ 0]
∣∣∣ and hence on

∣∣∣[f < δ]
∣∣∣.
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Either way, we can write ∣∣∣[f < δ]
∣∣∣ ≥ sδ,

where sδ is independent of a and u.
As f < δ implies u > σ and f − a < δ − a ≤ −a/2, we have the estimate∫

[u>σ ]
u(f − a)2dx ≥

∫
Ω

u(f − a)21[f <δ](x)dx

≥
(∫

Ω

u|f − a|1[f <δ](x)dx
)2

=
(∫

[u>mδ]
u|f − a|dx

)2

≥
(1
4
sδ inf

Ω
mδ

)2

a2

and (2.8) follows.

Now we can assemble the proof of Lemma 2.2 from established particu-
lar cases.

Proof of Lemma 2.2: Take δ1 > 0 such that mc exists whenever |c| ≤ δ1. By
Lemma 2.12, there exist κ1 > 0, σ1 > 0, and a1 ∈ (−δ1,0) such that (2.8)
holds with κ = κ1 and σ = σ1 for all u ∈ U and a ∈ (a1,0). Set δ2 = −a1.
This is a suitable value of δ for Lemma 2.14, so we conclude that (2.8)
holds with κ = κ2 and σ = σ2 for u ∈U and a ∈ (−δ2,δ2) and, moreover, mc

is defined whenever |c| ≤ δ2. Now in order to find κ and σ such that (2.8)
holds for all u ∈U and all real a, it suffices to evoke Lemmas 2.15 and 2.16
with δ = δ2/3.

3.Applications
3.1. Spherical gradient flows. Let Ω be an open connected bounded do-
main in R

d with sufficiently smooth boundary and let ν be the outward
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unit normal along ∂Ω. We are interested in nonnegative solutions of

∂tu = −div(u∇f ) +u
(
f −

∫
Ω

uf dx

)
, (x, t) ∈Ω× (0,∞), (3.1)

u
∂f

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞), (3.2)

u = u0, (x, t) ∈Ω× 0, (3.3)

u ≥ 0,
∫
Ω

udx = 1, (x, t) ∈Ω× (0,∞). (3.4)

Here u is the unknown function and f = f (x,u(x, t)) is a known nonlinear
scalar function of x and u. The initial data u0 is a probability density.

For the sake of brevity we will denote

f̄ =
∫
Ω

uf dx.

Remark 3.1. The Neumann boundary condition (3.2) can be substituted
with the space-periodic one without affecting the validity of the results of
this section.

Throughout Section 3.1, we make the following assumptions about the
nonlinearity f . Some of the results do not require all of these assumptions:
it will be explicitly indicated where relevant.

f ∈ C2(Ω× (0,∞))∩L1
loc(Ω× [0,∞)), (3.5)

uf ,ufx ∈ C(Ω× [0,+∞)), (3.6)

fu < 0, (3.7)

|f (x,u)| ≤ g1(u) a. a. u > 0; g1 ∈ L1
loc[0,∞), (3.8)

u|fu(x,u)|+u|fxu(x,u)| ≤ g2(u) a. a. u > 0; g2 ∈ L1
loc[0,∞), (3.9)

(ufx)
∣∣∣
u=0

= 0, (3.10)

either fx = 0 for large u or lim
u→∞

f (x,u) = −∞ ∀x ∈Ω, (3.11)

either fx = 0 for small u or lim
u→+0

f (x,u) =∞ ∀x ∈Ω, (3.12)

u
[
f 2
x + (ufxu)2 + (ufu)2

]
=O(1), u→ 0 uniformly in x ∈Ω, (3.13)

ufuu =O(fu) as u→ 0 uniformly in x ∈Ω. (3.14)
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Assumption (3.7) ensures non-strict parabolicity of the problem. The
remaining assumptions are technical. It is easy to check (see [30, Remark
3.4]) that (3.11) and (3.12) ensure that given v ∈ L∞+ (Ω) bounded away
from 0, there exist mc1 and mc2 (this notation was introduced in the begin-
ning of Section 2) such that mc1 ≤ v ≤ mc2 a. e. in Ω. In particular, taking
v ≡ 2

|Ω| and v ≡ 1
2|Ω| in this observation, we infer existence of mc1, mc2 such

that ∫
Ω

mc1 dx ≤
1
2
,

∫
Ω

mc2 dx ≥ 2.

This implies (cf. Remark 2.4) existence and uniqueness of a C2-smooth
probability density m : Ω → (0,∞) such that f (x,m(x)) is constant on Ω.
Since problem (3.1)–(3.4) does not change after adding constants to f ,
without loss of generality we will assume that

f (x,m(x)) = 0. (3.15)

Let us introduce the energy and entropy functionals for equation (3.1)
as well as the notion of weak solution.

Bound (3.9) ensures that

Φ(x,u) = −
∫ u

0
ξfu(x,ξ)dξ, Ψ (x,u) =

∫ u

0
Φ(x,ξ)dξ

are well defined and belong to C1(Ω× [0,∞)), whereas

Φ(x,0) = Ψ (x,0) = 0, Φu = −ufu,

Φx = −
∫ u

0
ξfxu(x,ξ)dξ, Ψu = Φ ,

Φuu = −(ufu)u, Φxu = −ufxu.

Note that both Φ and Ψ are nonnegative and strictly increase with respect
to u.

Observe that the superposition operator L∞+ → L∞ associated with Φ is
bounded, i. e. if u is a nonnegative function of x and, possibly, t, then an
L∞-bound on u is translated into an L∞-bound on Φ(·,u(·)). The same is
true of Φu, Φuu, Ψxu, and Ψ .

In accordance with [30], we call the functional

W (u) =
∫
Ω

Ψ (x,u(x))dx



22 S. KONDRATYEV AND D. VOROTNIKOV

the energy of problem (3.1)–(3.4).
Define

E(x,u) = −
∫ u

m(x)
f (x,ξ)dξ. (3.16)

It follows from (3.8) that E is well-defined and continuous on Ω × [0,∞).
Moreover, E ≥ 0 and E(x,u) = 0 if and only if u = m(x), and the super-
position operator associated with E is bounded in L∞+ → L∞+ . Thus, for
u ∈ L∞+ (Ω) we can define the relative entropy of equation (3.1) as follows:

E(u) =
∫
Ω

E(x,u(x))dx. (3.17)

Lemma 3.2. Let u be a classical solution of (3.1)–(3.4) on [0,T ]. Then u
satisfies

(1) the energy identity

∂tW (u) = −
∫
Ω

|∇Φ |2dx+
∫
Ω

(Φx +ufx) · ∇Φ dx

+
∫
Ω

u(f − f̄ )Φ dx t > 0; (3.18)

(2) the entropy dissipation identity

∂tE(u) = −
∫
Ω

u((f − f̄ )2 + |∇f |2)dx t > 0; (3.19)

(3) the bounds

inf
Ω
f (x,u0(x)) ≤ f (x,u(x, t)) ≤ sup

Ω

f (x,u0(x))

(x, t) ∈Ω× (0,∞). (3.20)

Proof : Straightforward computation proves (i) and (ii).
Let us prove the first inequality in (3.20). Assume that the infimum

is finite, because otherwise there is nothing to prove; denote it by c. It
follows from (3.11) that the function mc : Ω→ R satisfying f (x,mc(x)) ≡ c
is defined. We have

∂t

∫
Ω

(u −mc)+dx =
∫
Ω

θ(u −mc)∂tudx,
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where

θ(s) =

1 if s > 0,
0 if s ≤ 0

is the Heaviside step function. Substituting the right-hand side of the
equation for ∂tu, we obtain

∂t

∫
Ω

(u −mc)+dx = −
∫
Ω

θ(u −mc)div(u∇f )dx

+
∫
Ω

θ(u −mc)u(f − f̄ )dx

=: −I1 + I2.

Writing

I1 =
∫
Ω

θ(u −mc)div(u∇f −mc∇f (x,mc(x)))dx,

we can use [30, Lemma 3.1] and conclude that I1 ≥ 0 (though the lemma
is proved for C∞ functions, it holds for C2 functions by density).

Now, if ∫
[u≥mc]

udx = 0,

we have u ≤mc a. e. in Ω and consequently, I2 = 0. Otherwise,

I2 =
∫

[u≥mc]
udx


∫

[u≥mc]
uf dx∫

[u≥mc]
udx

− f̄

 ≥ 0,

since the average of f with weight u over the set [u ≥ mc] = [f ≤ c] is no
greater than the weighted average over the whole Ω.

Thus, we see that

∂t

∫
Ω

(u −mc)+dx ≤ 0,

and as this integral equals 0 at t = 0, it equals 0 for any t, which is equiva-
lent to u ≤mc and to the first inequality in (3.20).

The second inequality in (3.20) is proved in the same way.

The integral on the right-hand side of (3.19) is called the entropy produc-
tion. We denote it by DE(u), so that (3.19) can be written as

∂tE(u) = −DE(u). (3.21)
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Remark 3.3. We can extend the definition of the entropy production to
functions u ∈ L∞+ (Ω) such that Φ(·,u(·)) ∈H1(Ω) by the formula

DE(u) =
∫
Ω

u(f − f̄ )2dx+
∫

[u>0]

1
u
| − ∇Φ +Φx +ufx|2dx,

where the second integral on the right-hand side may be infinite. This is
relevant for the weak solutions which will be introduced in Definition 3.6.

Lemma 3.4. If u is a classical solution of (3.1)–(3.4) on [0,T ] satisfying

‖u‖L∞(QT ) ≤ R,

then

‖∂tΦ(u)‖[C(0,T ;(W 1,∞(Ω))]∗ ≤ C(R,T )

with C(R,T ) > 0 independent of u.

Proof : For a given test function ψ ∈ C([0,T ];W 1,∞(Ω)) we have

|〈∂tΦ(u),ψ〉| =
∣∣∣∣∣∣
∫
QT

ψΦu∂tudxdt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
QT

ψΦu(−div(u∇f ) +u(f − f̄ ))dxdt

∣∣∣∣∣∣
≤ ‖ψ‖C([0,T ];W 1,∞(Ω))

∫
QT

u|∇Φu ||∇f |dxdt

+
∫
QT

u|Φu ||∇f |dxdt

+
∫
QT

u|Φu ||f − f̄ |dxdt


= ‖ψ‖C([0,T ];W 1,∞(Ω))(I1 + I2 + I3).

Our goal is to show that the integrals Ik are bounded from above.
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By (3.13), (3.14) there exist C ≥ 0 and ε > 0 both independent of u such
that

u|fx|2 ≤ C, (3.22)

u3|fxu |2 ≤ C, (3.23)

u|Φu |2 ≤ C, (3.24)

|Φuu | ≤ C|fu | (3.25)

whenever 0 < u < ε. Moreover, if we allow C to depend on T , we can
assume that (3.22)–(3.24) hold on Ω × (0,T ], since the left-hand sides are
continuous and |fu | is positive.

For I1 we have

I1 =
∫
QT

u
(
|Φuu ||∇u|+ |Φxu |

)
|∇f |dxdt

≤
∫
QT

u
(
C|fu ||∇u|+u|fxu |

)
|∇f |dxdt

≤
∫
QT

u
(
C|fu∇u + fx|+C|fx|+u|fxu |

)
|∇f |dxdt

≤ C
∫
QT

u|∇f |2dxdt

+
(
2
∫
QT

(Cu|fx|2 +u3|fxu |2)dxdt
)1/2 (∫

QT

u|∇f |2dxdt
)1/2

≤ C ′
∫ T

0

(
DE(u) +

√
DE(u)

)
dt

≤ C ′
∫ T

0
DE(u)dt +C ′

√
T

(∫ T

0
DE(u)dt

)1/2

.

As we assume an upper bound on u, the integral∫ T

0
DE(u)dt = E(0)−E(T )

is bounded, so we see that I1 is bounded uniformly in u.
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Further, we have

I2 + I3 ≤
(∫

QT

u|Φu |2dxdt
)1/2 (

2
∫
QT

u(|∇f |2 + |f − f̄ |2)dxdt
)1/2

≤ C ′′
(∫ T

0
DE(u)dt

)1/2

,

where the last term is bounded.

Lemma 3.5. For any smooth probability density u0 : Ω→ (0,∞) satisfying the
non-flux boundary condition, problem (3.1)–(3.4) has a classical solution.

Proof : Equation (3.1) can be cast in the form

∂tu = −ufu∆u −∇u · (fx + fu∇u)−u(fxx + 2fxu · ∇u + fuu |∇u|2 − f + f̄ ). (3.26)

Since the initial data u0 is strictly positive, any classical solution u is a
priori bounded away from 0 and∞. Indeed, evoking [30, Remark 3.4], we
can find mc1 and mc2 strictly positive such that c2 ≤ 0 ≤ c1 and

mc1(x) ≤ u0(x) ≤mc2(x) (x ∈Ω).

Then (3.20) and (3.7) yield

mc1(x) ≤ u(x, t) ≤mc2(x), (x, t) ∈Ω× (0,∞).

Hence we can avoid degeneracies or singularities in (3.26) and apply [2,
Theorem 13.1] to secure existence and uniqueness of a maximal weak so-
lution ũ in the sense of Amann. This solution is global in time provided
we can control its norm in a certain Sobolev space. Viewing

f̄ (t) :=
∫
Ω

ũ(x, t)f (x, ũ(x, t))dx

as a given coefficient, we “desactivate” the nonlocal term in (3.26). Boot-
strapping and employing the results of [2, Sections 14 and 15], we can
improve the regularity of f̄ (as a function of time) and that of ũ (as a func-
tion of time and space). We conclude that ũ is actually a global smooth
solution to (3.1)–(3.4).

Definition 3.6. Let u0 ∈ L∞(Ω) be a probability density. A function u ∈
L∞(QT ) is called a weak solution of (3.1)–(3.4) on [0,T ] if

∫
Ω
u(x, t)dx = 1
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for a.a. t ∈ (0,T ), Φ(·,u(·)) ∈ L2(0,T ;H1(Ω)), and∫ T

0

∫
Ω

(u∂tϕ + (−∇Φ +Φx +ufx) · ∇ϕ + (f − f̄ )uϕ)dxdt

=
∫
Ω

u0(x)ϕ(x,0)dx (3.27)

for any function ϕ ∈ C1(Ω × [0,T ]) such that ϕ(x,T ) = 0. A function u ∈
L∞loc([0,∞);L∞(Ω)) is called a weak solution of (3.1)–(3.4) on [0,∞) if for
any T > 0 it is a weak solution on [0,T ].

Theorem 3.7 (Existence of weak solutions). Suppose that f satisfies (3.5)–
(3.14). Then for any probability density u0 ∈ L∞+ (Ω) there exists a weak solu-
tion u ∈ L∞+ (Ω × (0,∞)) of problem (3.1)–(3.4) enjoying the following proper-
ties:

(1) u satisfies the energy inequality

∂tW (u) ≤
∫
Ω

(
− |∇Φ |2 + (Φx +ufx) · ∇Φ +u(f − f̄ )Φ

)
dx (3.28)

in the sense of measures and

ess lim sup
t→+0

W (u(t)) ≤W (u0); (3.29)

(2) u satisfies the entropy dissipation inequality

∂tE(u) ≤ −DE(u) (3.30)

in the sense of measures and

ess sup
t>0

E(u(t)) ≤ E(u0). (3.31)

Proof : It is easy to see that we can approximate the initial data u0 by
smooth and strictly positive probability densities u0

n satisfying the bound-
ary condition in such a way that

‖u0
n‖L∞(Ω) ≤ C, (3.32)

u0
n→ u0 weakly∗ in L∞(Ω) and a.e. in Ω, (3.33)

W (u0
n)→W (u0), (3.34)

E(u0
n)→E(u0). (3.35)
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The last two convergences can be secured using the Lebesgue dominated
convergence theorem. Let un be the classical solution starting from u0

n.
Put

fn = f (x,un(x, t)), fxn = fx(x,un(x, t)),

Φn = Φ(x,un(x, t)), Φxn = Φx(x,un(x, t)),

Ψn = Ψ (x,un(x, t)), En = E(x,un(x, t)).

Given T > 0, by Lemma 3.2 the sequence {un} is bounded in L∞(QT ), and
so are the sequences {unfn}, {unfxn}, {Φn}, {Φxn}, {Ψn}, and {En}. It follows
from the energy identity (3.18) that

∂tW (un) ≤ −
1
2

∫
Ω

|∇Φn|2dx+C, (3.36)

whence the integral∫
QT

|∇Φn|2dx ≤ 2
(
W (u0

n)−W (un(T )) +CT
)

is bounded, i. e. {Φn} is bounded in L2(0,T ;H1(Ω)). By Lemma 3.4 the
derivatives {∂tΦn} are bounded in C(0,T ; (W 1,∞(Ω))]∗. Hence, [40, Corol-
lary 7.9] implies that {Φn} is compact in L2(QT ). This is true for any T , so
{Φn} is compact in L2

loc([0,∞);L2(Ω)) and there is no loss of generality that
Φn→ φ in this space and a. e. in Ω× (0,∞).

Fix (x, t) ∈Ω× (0,∞) such that

Φ(x,un(x, t)) = Φn(x, t)→ φ(x, t).

Assuming that ‖un‖L∞(Ω×(0,∞)) ≤ R and taking into account that Φ increases
in u, we have Φn(x, t) ≤ Φ(x,R) and so 0 ≤ φ(x, t) ≤ Φ(x,R). As Φ is continu-
ous in u, there exists a unique u(x, t) ∈ [0,R] such that Φ(x,u(x, t)) = φ(x, t),
and as the inverse of Φ with respect to u is continuous in u as well, we
have un(x, t)→ u(x, t). Thus, we have defined a function u ∈ L∞+ (Ω× (0,∞))
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such that for any T > 0 we have

un→ u

unfn→ uf

unfxn→ ufx
Φn→ Φ

Φxn→ Φx

Ψn→ Ψ



a. e. in QT ,
strongly in any Lp(QT ), 1 ≤ p <∞,
weakly* in L∞(QT ),
and in the sense of distributions,

(3.37)

f̄n→ f̄ (3.38)

∇Φn→∇Φ weakly in L2(QT ). (3.39)

where we write Φ for Φ(·,u(·)), etc.
The function u is a weak solution of (3.1)–(3.4) on [0,T ] as it follows

from (3.33) and (3.37)–(3.39) that one can pass to the limit in the weak
setting for the approximate solution∫ T

0

∫
Ω

(un∂tϕ + (−∇Φn +Φxn +unfxn) · ∇ϕ + (fn − f̄n)unϕ)dxdt

=
∫
Ω

u0
n(x)ϕ(x,0)dx, (3.40)

where ϕ is an admissible test function.
In order to show that u satisfies the energy inequality on [0,T ] in the

sense of measures, we take a smooth nonnegative test function χ ∈ C∞(R)
vanishing outside of [0,T ] and write the energy inequality in the sense of
measures for the approximate solutions:

−
∫
QT

Ψnχ
′(t)dxdt ≤ −

∫
QT

|∇Φn|2χ(t)dxdt

+
∫
QT

χ(t)(Φxn +unfxn) · ∇Φndxdt +
∫
QT

un(fn − f̄n)Φnχ(t)dxcdt

Here one can use convergences (3.37) to pass to the limit in all the terms
but for the first one on the right-hand side. Further, (3.39) implies that√
χ∇Φn→

√
χ∇Φ weakly in L2(QT ), so∫

QT

χ|∇Φ |2dxdt ≤ liminf
n→∞

∫
QT

χ|∇Φn|2dxdt,
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and the energy inequality follows.
Let us check (3.29). By (3.36), the approximate solutions satisfy

ess sup
t∈(0,ε)

W (un(t)) ≤W (u0
n) +Cε.

It follows from (3.37) that

W (un)→W (u) weakly* in L∞(0, ε),

so we get

ess sup
t∈(0,ε)

W (u(t)) ≤ liminf
n→∞

ess sup
t∈(0,ε)

W (un(t))

≤ lim
n→∞
W (u0

n) +Cε

=W (u0) +Cε.

Now sending ε→ 0 we recover (3.29).
Let us show that u satisfies the entropy dissipation inequality on [0,T ] in

the sense of measures. Let χ ∈ C∞ be a smooth nonnegative test function
vanishing outside of [0,T ]. The approximate solutions satisfy the entropy
dissipation inequality in the sense of measures, so we have

−
∫
QT

Enχ
′(t)dxdt ≤ −

∫
QT

χ(t)un(fn − f̄n)2dxdt

−
∫
un>0

χ(t)
un
| − ∇Φn +Φxn +unfxn|2dxdt.

Consequently, for any δ > 0 we have

−
∫
QT

Enχ
′(t)dxdt ≤ −

∫
QT

χ(t)
max(un,δ)

(un(fn − f̄n))2dxdt

−
∫
QT

χ(t)
max(un,δ)

| − ∇Φn +Φxn +unfxn|2dxdt. (3.41)

Observe that

χ(t)
max(un,δ)

→ χ(t)
max(u,δ)

a. e. in QT ,
strongly in any Lp, 1 ≤ p <∞,
and weakly* in L∞(QT ),

(3.42)

vn := −∇Φn +Φxn +unfxn→−∇Φ +Φx +ufx weakly in L2(Ω). (3.43)
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In [30, claim (3.24)] it was proved that∫
QT

χ(t)
max(u,δ)

| − ∇Φ +Φx +ufx|2dxdt

≤ liminf
n→∞

∫
QT

χ(t)
max(un,δ)

| − ∇Φn +Φxn +unfxn|2dxdt (3.44)

and using (3.37), we pass to the limit in (3.41) obtaining

−
∫
QT

Eχ′(t)dxdt ≤ −
∫
QT

χ(t)
max(u,δ)

(u(f − f̄ ))2dxdt

−
∫
QT

χ(t)
max(u,δ)

| − ∇Φ +Φx +ufx|2dxdt.

On the set {(x, t) ∈ QT : u(x, t) = 0} we have ufx = 0 (by virtue of (3.10)),
Φx = 0 and Φ = 0, whence also ∇Φ = 0 a. e. on this set. Thus, we can write

−
∫
QT

Eχ′(t)dxdt ≤ −
∫
QT

χ(t)
max(u,δ)

(u(f − f̄ ))2dxdt

−
∫
u>0

χ(t)
max(u,δ)

| − ∇Φ +Φx +ufx|2dxdt

Letting δ→ 0, by Beppo Levi’s theorem we obtain the entropy inequality.
Inequality (3.31) is proved in the same way as (3.29) given that it holds

for the approximate solutions.

Theorem 3.8 (Entropy-entropy production inequality). Suppose that f sat-
isfies (3.5)–(3.8). Assume that the second of the alternatives in (3.11) holds,
and the limit is uniform w.r.t. x. Let U ⊂ L∞(Ω) be a set of probability densi-
ties such that for any u ∈U , we have Φ(·,u(·)) ∈H1(Ω) and

sup
u∈U
E(u) <∞. (3.45)

Then there exists CU such that

E(u) ≤ CUDE(u) (u ∈U ). (3.46)

Proof : Let us show that (2.6) holds with U merely satisfying the hypothe-
ses of Theorem 3.8. According to Remark 2.3, condition (3.45) ensures the
uniform integrability of U . As explained before Lemma 2.2, it suffices to
ensure that inequality (2.7) holds for U .
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Given u ∈U , we use the construction presented in the proof of [30, The-
orem 1.7] and approximate the function Φ(·,u(·)) with smooth functions
Φn in such a way that

Φn→ Φ(·,u(·)) in H1and a. e. in Ω,

while the functions un ∈ C2(Ω) satisfying Φ(x,un(x)) = Φn(x) are well-
defined and

‖un‖L∞ ≤ C,
un→ u a. e. in Ω.

}
(3.47)

There is no loss of generality in assuming that un are probability measures,
since we can normalize them taking into account that

‖un‖L1(Ω)→ ‖u‖L1(Ω) = 1.

By Lemma 2.2, we have∫
[un≥σ ]

un
(
(fn − f̄n)2 + |∇fn|2

)
dx ≥ κf̄ 2

n (3.48)

with σ > 0 and κ > 0 independent of n, where as usual fn stands for
f (x,un(x)), etc. Inequality (3.48) can be written as∫

Ω

(
1[un≥σ ]un(fn − f̄n)2 +

1[un≥σ ]

un
| − ∇Φn +Φxn +unfxn|2

)
dx

≥ κf̄ 2
n .

As the integrand vanishes whenever un < σ , one can pass to the limit as
n→∞ (cf. [30]). Observing that

limsup
n→∞

1[un≥σ ](x) ≤ 1[u≥σ ](x) a. e. in Ω,

we obtain∫
Ω

(
1[u≥σ ]u(f − f̄ )2 +

1[u≥σ ]

u
| − ∇Φ +Φx +ufx|2

)
dx ≥ κf̄ 2,

which is stronger than (2.7).

Theorem 3.9 (Convergence to equilibrium). Suppose that f satisfies (3.5)–
(3.8). Assume that the second of the alternatives in (3.11) holds, and the limit
is uniform w.r.t. x. Let u be a weak solution of (3.1)–(3.4) with the initial
data u0 ∈ L∞+ (Ω),

∫
Ω
u0 = 1. Suppose that u satisfies the entropy dissipation
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inequality (3.30) and inequality (3.31). Then u exponentially converges to m
in the sense of entropy:

E(u(t)) ≤ E(u0)e−γt a. a. t > 0, (3.49)

where γ > 0 can be chosen uniformly over initial data satisfying

E(u0) ≤ C (3.50)

with some C > 0.

Proof : As the entropy decreases along the solution, the set

U =
{
u ∈ L∞+ (Ω) :

∫
Ω

u = 1, E(u) ≤ C
}

is invariant under the flow generated by the problem: more precisely,
u(t) ∈ U for a. a. t ≥ 0. Let CU be correspondent constant in the entropy-
entropy production inequality granted by Theorem 3.8. Combining the
entropy dissipation and entropy-entropy production inequalities for a
given solution u, we obtain

∂tE(u(t)) ≤ −C−1
U E(u(t)) a. a. t > 0.

Letting e(t) = E(u(t))eC
−1
U t, we see that ∂te(t) ≤ 0 in the sense of measures,

whence e a. e. coincides with a nonincreasing function. Moreover,

ess sup
t>0

e(t) = ess lim sup
t→0

e(t) = ess lim sup
t→0

E(u(t))eC
−1
U t ≤ E(u0)

yielding (3.49) with γ = C−1
U .

3.2. Nonlinear Fokker-Planck equations and generalized log-Sobolev
inequalities. Let us return for a moment to the setting (2.1)-(2.5). Note
that we still do not assume any displacement convexity. Theorem 2.1 im-
mediately implies

Corollary 3.10 (Generalized log-Sobolev). Let U be a uniformly integrable
set of smooth probability measures on Ω, which satisfy the weighted Poincaré
inequality ∫

Ω

u(x)
(
g(x)−

∫
Ω

ug

)2

dx ≤ c
∫
Ω

u(x)|∇g(x)|2dx (3.51)
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with a uniform constant c independent of u ∈U and g ∈ C1(Ω). Then∫
Ω

E(x,u(x))dx ≤ C
∫
Ω

u(x)|∇f (x,u(x))|2dx, (3.52)

where the constant C may depend on U but is independent of u ∈U .

Consider the nonlinear Fokker-Planck equation

∂tu = −div(u∇f ), (x, t) ∈Ω× (0,∞), (3.53)

u
∂f

∂ν
= 0, (x, t) ∈ ∂Ω× (0,∞), (3.54)

u = u0, (x, t) ∈Ω× 0, (3.55)

u ≥ 0,
∫
Ω

udx = 1, (x, t) ∈Ω× (0,∞). (3.56)

Here u is the unknown function and f = f (x,u(x)) is a known nonlinear
scalar function of x and u, satisfying (3.5), (3.7). The initial data u0 is
a probability density. As in Remark 3.1, (3.54) can be replaced by the
periodic boundary conditions.

For simplicity, assume that u0 is bounded away from 0 and∞. Then the
behaviour of f at u = 0,∞ is not important, and we do not lose any gen-
erality in assuming existence and uniqueness of a C2-smooth probability
density m : Ω → (0,∞) such that f (x,m(x)) = 0 (cf. Section 3.1). Define
the relative entropy E by (3.16), (3.17). The existence of a unique classical
solution (which is smooth for t > 0) for such initial data is straightforward.

Theorem 3.11 (Convergence to equilibrium without reaction). Assume
(3.5), (3.7). Let u be a solution of (3.53)–(3.56) with the initial data u0 ∈
L∞+ (Ω),

∫
Ω
u0 = 1, κ1 ≤ u0 ≤ κ2 a.e. in Ω with some κ1,κ2 > 0. Then u expo-

nentially converges to m in the sense of entropy:

E(u(t)) ≤ E(u0)e−γt, (3.57)

where γ = γ(κ1,κ2) > 0 is independent of u0.

Remark 3.12. A particular case of Theorem 3.11 when f (x,u) = ρ(x)
ur+1 , ρ(x)

is a given function bounded away from 0 and ∞, r = cst > 0, with Ω be-
ing a torus or a bounded convex domain, has recently been established
in [26, 27]. The corresponding Wasserstein gradient flow is related to
the problem of quantisation for probability measures. In this situation
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it is even possible to prove the exponential convergence merely if certain
Lebesgue norms of u0 and 1

u0 are finite, since under this hypothesis any
solution instantaneously [27] becomes bounded away from 0 and∞. This
assumption at least visually resembles the definition of the Muckenhoupt
weights [43], which are known [18] to satisfy the Poincaré inequality. In
view of Corollary 3.10, it is plausible that similar exponential convergence
results hold for general entropies when u0 is, for instance, merely a Muck-
enhoupt weight.

Let us sketch the proof of Theorem 3.11. Since the behaviour of f at
u = 0,∞ is not relevant, we may assume (3.11) and (3.12). Using [30,
Remark 3.4], we find mc1 and mc2 strictly positive such that c2 ≤ 0 ≤ c1 and

mc1(x) ≤ κ1 ≤ κ2 ≤mc2(x) (x ∈Ω).

Now observe that problem (3.53)– (3.55) (without fixing the mass to
be 1) admits a comparison principle: u0

1(x) ≤ u0
2(x) a.e. in Ω implies

u1(x, t) ≤ u2(x, t), t > 0. This follows from [30, Lemma 3.1] by mimick-
ing the proof of [30, Lemma 3.2]. Hence, the set U of smooth probability
measures satisfying mc1 ≤ u ≤ mc2 is invariant under the flow generated
by this problem. Corollary 3.11 guarantees that (3.52) holds for this U .
A standard Wasserstein entropy-entropy production argument [45] yields
(3.57).

3.3. Unbalanced transportation inequalities. For simplicity, here we
restrict ourselves to the spatially periodic setting, although everything
seems to work for bounded convex domains. LetM+ and P be the sets of
Radon and probability measures, resp., on the flat torus Td. The Hellinger-
Kantorovich distance, cf. [29, 32, 33, 10, 11, 39], onM+ and the spherical
Hellinger-Kantorovich distance, cf. [31, 5], on P can be introduced as fol-
lows.

Definition 3.13 (Conic distance). Given two Radon measures ρ0,ρ1 ∈ M+

we define

d2
HK(ρ0,ρ1) = inf

A(ρ0,ρ1)

∫ 1

0

(∫
T
d
(|vt|2 + |αt|2)dρt

)
dt, (3.58)
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where the admissible set A(ρ0,ρ1) consists of all (ρt,αt,vt)t∈[0,1] such that
ρ ∈ Cw([0,1];M+),
ρ|t=0 = ρ0; ρ|t=1 = ρ1,
(u,v) ∈ L2(0,T ;L2(dρt)×L2(dρt)d),
∂tρt + div(ρtvt) = ρtαt in the weak sense.

Definition 3.14 (Spherical distance). Given probability measures ρ0,ρ1 ∈
P we define

d2
HKS(ρ0,ρ1) = inf

A1(ρ0,ρ1)

∫ 1

0

(∫
T
d
(|vt|2 + |αt|2)dρt

)
dt, (3.59)

where the admissible set A1(ρ0,ρ1) consists of all (ρt,αt,vt)t∈[0,1] such that
ρ ∈ Cw([0,1];P ),
ρ|t=0 = ρ0; ρ|t=1 = ρ1,
(u,v) ∈ L2(0,T ;L2(dρt)×L2(dρt)d),
∂tρt + div(ρtvt) = ρtαt in the weak sense.

The relation between the two distances is given by the fact that (M+,dHK)
is a metric cone over (P ,dHKS) [31, 5] (see, e.g., [7, 6] for the abstract defi-
nition of a metric cone). The definitions above and the classical Benamou-
Brenier formula immediately imply that

dHK(ρ0,ρ1) ≤ dHKS(ρ0,ρ1) ≤W2(ρ0,ρ1) (3.60)

for all ρ0,ρ1 ∈ P (Td), where W2 stands for the quadratic Wasserstein dis-
tance.

The conventional transportation inequality (1.24) (also known as Tala-
grand’s inequality [37, 9, 12]) estimates the Wasserstein distance by dis-
placement convex relative entropies. Here we present similar inequali-
ties for the spherical distance dHKS and the conic distance dHK , but for
a much wider class of entropies. In view of (3.60), our results are inter-
esting merely for the entropies which are not geodesically convex in the
Wasserstein space.

Remark 3.15. In Section 3.1 we defined the relative entropy E(u) for
bounded probability distributions, but we can actually use any absolutely
continuous probability measure u, although the entropy may become in-
finite. Moreover, the relative entropy can be defined in the same way for
distributions of any mass, and without assuming that the implicit function
m defined by (3.15) is a probability measure (cf. [30]).
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Theorem 3.16 (Spherical Talagrand inequality). Suppose that f satis-
fies (3.5)–(3.8). Assume that the second of the alternatives in (3.11) holds, and
the limit is uniform w.r.t. x ∈ Td. Let u0 ∈ L1(Td) be an absolutely continuous
probability density with E(u0) <∞. Then

d2
HKS(u0,m) ≤ C E(u0), (3.61)

with C independent of u0.

Proof : The proof is an adaptation of the Otto-Villani strategy [37]. We
first observe that it suffices to prove the theorem when u0 is smooth and
strictly positive. Indeed, every u0 ∈ L1(Td) with finite entropy can be ap-
proximated with bounded (from above and below) functions χk◦u0, where
χk(s) = max(k−1,min(s,k)). Since both dHK and W2 metrize the weak topol-
ogy of P (Td), (3.60) implies that dHKS metrizes the same topology. This
fact and Beppo Levi’s theorem imply that both sides of (3.61) are contin-
uous w.r.t. our approximation. Each of the χk ◦ u0 can be approximated
by smooth bounded (from above and below) functions, cf. the proof of
Theorem 3.7, so that both sides of (3.61) are continuous w.r.t. the approx-
imation. The claim follows by a diagonal argument with renormalization
of the masses in order to have an approximating sequence of probability
distributions.

Since the left-hand side is always bounded by π2 [5], we only need to
consider the case when E(u0) is bounded, say, by 1. Consider the classical
solution u to problem (3.1), (3.3), (3.4) on T

d (cf. Lemma 3.5 and Remark
3.1), and let f = f (x,u(x, t)). As in the proof of Theorem 3.9, with the help
of Theorem 3.8 we can find a constant C1 such that

E(ut) ≤ C1DE(ut), t ≥ 0. (3.62)

A simple scaling observation shows that the triple

(us+th,h(fs+th − f s+th),h∇fs+th)
belongs to the admissible set A1(us,us+h), s ≥ 0, h > 0. By the definition of
the distance,

dHKS(us,us+h)

≤ h

√∫ 1

0

(∫
T
d
(|fs+th − f s+th|2 + |∇fs+th|2)us+thdx

)
dt.
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As h→ 0, the square root on the right-hand side converges to DE(us), and
we infer

d
dh

∣∣∣∣+
h=0
dHKS(us,us+h) ≤

√
DE(us). (3.63)

Consequently,

d
ds

∣∣∣∣+dHKS(ut,us) = limsup
h→0

dHKS(ut,us+h)− dHKS(ut,us)
h

≤ limsup
h→0

dHKS(us,us+h)
h

≤
√
DE(us), t ≤ s. (3.64)

Consider the function

φ(s) := 2
√
C1E(us) + dHKS(ut,us), s ≥ t.

By (3.21), (3.62) and (3.64),

d
ds

∣∣∣∣+φ(s) ≤

−
√
C1DE(us)
E(us)

+ 1

√DE(us) ≤ 0.

Therefore

dHKS(ut,us) ≤ φ(s) ≤ φ(t) = 2
√
C1E(ut) ≤ 2

√
C1e−γtE(u0). (3.65)

The cone (M+,dHK) is a complete metric space (cf. [29]), hence [6] the
sphere (P ,dHKS) is also complete. Now (3.65) yields existence of u∞ ∈ P
such that ut → u∞ as t → ∞ in (P ,dHKS) and thus weakly as probability
measures. Fix c > 0 such that there exists m−c (actually any c > 0 would
work since the second alternative in (3.11) is assumed). Observing that
Eu = −f > c for u > m−c(x) we can deduce existence of a continuous func-
tion a : Td→R such that

E(x,u) > a(x) + cu. (3.66)

Taking into account that Euu > 0 and using the results of [19, Subsection
6.4.5] we infer that the entropy functional E is lower-semicontinuous w.r.t.
the weak convergence , whence E(u∞) = 0, and u∞ = m. Letting t = 0 and
s→ +∞ in (3.65), we get the claim (3.61).

Using a similar argument and the entropy-entropy production inequal-
ity obtained in [30, Theorem 2.9] for the Hellinger-Kantorovich gradient
flows, we can get a transportation inequality for the conic distance. From
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now on we do not assume that that the implicit function m defined by
(3.15) has mass 1 (cf. Remark 3.15).

Theorem 3.17 (Conic Talagrand inequality). Suppose that f satisfies (3.5)–
(3.8). Let u0 ∈ L1(Td), E(u0) <∞. Then

d2
HK(u0,m) ≤ C E(u0), (3.67)

with C independent of u0.

Proof : As in the previous proof, we may assume that u0 is smooth and
strictly positive. In the case when E(u0) < E(0) the proof mimicks the
previous one, basically substituting the objects related to the spherical
Hellinger-Kantorovich distance with the conic ones. Let us merely de-
scribe the small differences that show up. Consider the classical solu-
tion u to the conic Hellinger-Kantorovich gradient flow [30]. The con-
dition (3.11) is not needed because the conic entropy-entropy production
inequality [30, Theorem 2.9] does not require it. However, in order to ap-
ply that theorem we need to find a set U containing the trajectory ut of
the conic gradient flow starting from u0 such that no sequence in U con-
verges to 0 in the sense of measures. An argument involving Lebesgue’s
dominated convergence theorem shows that we can simply take

U =
{
u ∈ L∞+ (Ω) : E(u) ≤ E(u0) < E(0)

}
.

It remains to treat the case E(u0) ≥ E(0). Since E(0) is a positive constant,
it suffices to prove the inequality

d2
HK(u0,m) ≤ C (1 + E(u0)). (3.68)

We recall [10, 31, 5] the upper bound for the Hellinger-Kantorovich dis-
tance in terms of the masses,

d2
HK(u0,m) ≤ 4

(∫
T
d
u0 +

∫
T
d
m

)
.

Consequently, it is enough to show∫
T
d
u0 ≤ C (1 + E(u0)). (3.69)

Let c be a small positive constant such that the implicit functionm−c exists.
As in the previous proof, we can deduce (3.66) with c just defined and
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some function a(x) independent of u. Hence,∫
T
d
u0 ≤ C + c−1

∫
T
d
E(x,u0(x))dx,

proving (3.69).

Remark 3.18. Inequality (3.67) follows from (3.61) and (3.60) provided u0

and m are probability measures. However, when the masses of u0 and m
do not coincide, (3.67) is not an immediate consequence of (3.61).
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